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By coupling a superconducting weak link to a microwave resonator, recent experiments probed the spectrum
and achieved the quantum manipulation of Andreev states in various systems. However, the quantitative
understanding of the response of the resonator to changes in the occupancy of the Andreev levels, which are

of fermionic nature, is missing. Here, using Bogoliubov—de Gennes formalism to describe the weak link and
a general formulation of the coupling to the resonator, we calculate the shift of the resonator frequency as a
function of the levels occupancy and describe how transitions are induced by phase or electric field microwave
drives. We apply this formalism to analyze recent experimental results obtained using circuit-QED techniques

on superconducting atomic contacts and semiconducting nanowire Josephson junctions.
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I. INTRODUCTION

Circuit-QED (cQED) was born from the transcription of
the concepts of cavity quantum electrodynamics [1,2], which
describes the strong coupling of atoms to the photons of a
cavity, to superconducting circuits in which the discrete spec-
trum of collective electromagnetic modes mimics the energy
levels of an atom [3,4]. These techniques are nowadays at the
core of quantum information processing with superconducting
circuits [5,6]. Furthermore, the coupling of superconducting
cavities with a variety of systems is now intensively used to
probe and manipulate other degrees of freedom at the single
quantum level [7-9]. These can be either collective modes,
like the modes of a nanomechanical oscillator [10], or micro-
scopic ones, like the spin of an electron in semiconducting
quantum dots or in defects in an insulator [11]. Most super-
conducting circuits probed so far using cQED correspond to
the former case, as the relevant modes are surface plasmons
in nonlinear oscillators, rendered dissipationless by the exis-
tence of the superconducting gap. A very interesting exception
arises in phased-biased Josephson weak links or in quantum
dots with superconducting electrodes, where localized dis-
crete subgap states (Andreev bound states (ABS) [12-15] or

“These authors contributed equally to this work.

"Present address: MUQUANS Institut d’Optique d’ Aquitaine, rue
Francois Mitterrand, 33400, Talence, France.

Corresponding author: hugues.pothier @cea.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2021/3(1)/013036(20) 013036-1

Yu-Shiba-Rusinov states [16,17]) develop, giving rise to a
truly atomiclike spectrum of levels for fermionic quasiparti-
cles. Two types of transitions, both conserving fermion parity,
can be driven in an Andreev system: pair transitions, in which
two quasiparticles are excited at once, and single quasiparticle
transitions that correspond to atomiclike transitions of a quasi-
particle from one Andreev level to another. Pair transitions,
first observed in atomic contacts [18], give rise to the Andreev
qubit [19-21]. Single quasiparticle transitions, first observed
in InAs weak links [22], offer a route, alternative to quantum
dots, to couple a single fermionic spin with a microwave
resonator and develop an Andreev spin qubit [23-27]. Most
of these experiments were performed using cQED techniques
[19,22,23,27,28]. The aim of the present work is to develop
a theory of the coupling of a microwave resonator to a mul-
tilevel many-body fermionic system of Andreev levels, able
to describe the main features of the spectra measured in those
recent experiments, in particular the intensity of the transition
lines, and analyze the possible existence of selection rules
associated with the spin.

The article is organized as follows. In Sec. II we introduce
the theoretical model and discuss the resonator frequency shift
in the absence of driving fields. This shift is given, up to a
prefactor, by the imaginary part of the weak link admittance, a
quantity that has been computed for zero-length weak links in
Refs. [29,30], using linear response theory. Here we start from
the microscopic Bogoliubov—de Gennes (BdG) equations for
a weak link of arbitrary length, and express the shift in the
resonator frequency as a function of the occupancy of indi-
vidual Andreev levels. In Sec. III we introduce a model to
describe the driving through either an AC flux or an AC gate
voltage and find under which conditions spin-nonconserving
transitions can occur. In Sec. IV we derive the resonator

Published by the American Physical Society
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FIG. 1. Schematics of a superconducting weak link (light green)
placed in a superconducting loop and inductively coupled to a mi-
crowave resonator, represented as a lumped-element LC circuit. The
superconducting phase § across the weak link is imposed by the
magnetic flux ® threading the loop. The resonator frequency depends
on the occupancy of the Andreev states in the weak link. Transitions
between Andreev states can be driven by an AC signal either through
a gate (V) or a flux line (15°).

frequency shifts in the presence of driving fields. In Sec. V
we compare the predictions of the theory to experimental data
on superconducting atomic contacts and nanowire weak links.

II. RESONATOR-WEAK LINK COUPLING

The system we consider comprises a weak link of length
L embedded in a superconducting loop that is inductively
coupled to a microwave resonator (Fig. 1). The microwave
cavity is represented as a lumped-element LC resonator with
bare resonance frequency f, = (Zna/LrC,)_l.Introducing the
photon annihilation (creation) operators a (a'), it can be de-
scribed by the Hamiltonian H, = hf.a'a.

The DC phase difference § = 27 ® /P, across the weak
link, with &y = h/2e the flux quantum, is imposed by the
magnetic flux & threading the superconducting loop (we as-
sume in this section that the loop inductance is negligible).
An electrostatic gate fixes with its DC value V, the electro-
chemical potential in the weak link. We consider applying
a microwave drive either on the gate voltage VgAC or on the

flux ®AC,
The Hamiltonian for the weak link can be written in the
form

Hy(8) = I/dx VT )Ho(8) P (x), ey

where W (x) = (Y1 (x), ¥ (x), v, (), —I/f;(x))T is  the
Nambu bispinor field operator and x is the position
along the weak link. We denote by |®,,) the eigen-
states of the Bogoliubov—de Gennes (BdG) equation
Ho(8)|Diy) = Eis|Piy), which correspond to Andreev
states when |E;,| < A, where A is the superconducting gap
in the leads. In this notation the subscript io refers to the
level i with spin o. Levels labeled with positive i are above
the Fermi level. Due to the electron-hole symmetry implicit
in the BdG formalism, each state io is associated with a
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FIG. 2. Phase dependence of Andreev states, as obtained by solv-
ing the Bogoliubov—de Gennes equations, for (a) a zero-length weak
link, (b) a finite-length weak link, and (c) a finite-length weak link in
the presence of spin-orbit coupling. In (a) and (b), all lines are spin
degenerate. In (c), dark and light gray lines correspond to Andreev
levels with different pseudospins. In the ground state, all levels with
negative energy are occupied. Two types of transitions can occur:
pair transitions, leading to two additional excitations, are represented
with arrows crossing the Fermi energy [in (a), leftmost arrow in (b),
and in (c)]. Single particle transitions are possible when quasiparticle
excitations are already present in the system. They correspond to
atomiclike transitions between two levels both at either positive or
negative energies [rightmost arrow in (b), rightmost arrows in (c)].

state with opposite spin at opposite energy —ig. Notice that
when spin-orbit interaction is at play, as can be the case in
a nanowire weak link, spin is no longer a good quantum
number and o has to be understood as a pseudospin index
noted “u” or “d” in the following. Otherwise o corresponds
to spin up (1) or spin down ({,). In Fig. 2 we show the energy
of the Andreev states arising in a weak link with a single
occupied channel, for three cases of increasing complexity.
(a) For a zero-length junction, there is only one pair of
subgap spin-degenerate levels i = £=1. Each level can be
occupied by 0, 1, or 2 quasiparticles. This case describes well
atomic contacts weak links with length L « &, where £ is the
superconducting coherence length. For ballistic conduction
channels, & = hvp/A, where vr is the Fermi velocity at
the weak link. (b) For finite length weak links, without
spin-orbit coupling, the parameter A = L/ determines how
many spin-degenerate Andreev pairs appear in the gap:
depending on § and channel transmission t, this number is
14 [2A/m] or 2+ [2A/m] (|x] is the integer part of x). For
the parameters of Fig. 2(b) (A = 1.7, 7 = 0.97), i = +1, £2.
Compared to short junctions, a new type of excitation arises:
a quasiparticle in state 1 can absorb a photon and be excited
to state 2. (c) The spin character of these excitations becomes
relevant when spin-orbit interaction is present in the weak
link, which leads to a lifting of the levels spin degeneracy
when § # 0, w. This lifting results from a spin-dependent
Fermi velocity, leading to different values of A for the two
spin textures [22,26]. In Fig. 2(c) the gray level of the lines
encodes the state pseudospin. Among all possible transitions,
some conserve the pseudospin, others do not. This regime
describes well InAs nanowire weak links [22,23].

The coupling between resonator and weak link occurs
through current fluctuations in the resonator, assumed to be
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in its ground state, which induce phase fluctuations across the
weak link, so that § — & +§,, where §, = §,,(a + a’) with
d,p the amplitude of zero-point phase fluctuations. In accor-
dance with experiments, we assume d,, < 1. In Ref. [31], by
expanding the Hamiltonian Ay up to second order in §,, we

J

haf(ia)

derived a general expression to compute the photon-number-
dependent shift of the energy of an Andreev level and, more
importantly here, the frequency shift of the resonator when
a single level |®,,) is occupied (we write here explicitly the
spin indices):

1 1

r 4
= ZMW( -

jo'tic m jo!

where we have introduced the transition energies Ei; jor =
Ej; — Ejs, the curvature E], = 0°E;, /38%, and My jor =
[{®;|H|P ;)| the modulus of the matrix element of the cur-
rent operator H;, = dH,/98 between states ic and jo'. The
coupling strength g, j, is related to My jor by ligio, jor =
8,pMic, jor. The term associated with virtual transitions from
io to jo' is noted Vi, j,-. We note that the terms

Bt 2 M ()
loj(f

jo'#io
in Eq. (2) arise from the H{ = 8°H,/08> term in the expan-
sion of Hamiltonian (1), whereas the remaining terms

1 1
M —
Z i0.jo’ ( Eia,ja’ - hfr Eia,ja’ + hfr)

jo'#io

that result from the #;, term can also be derived from the
Jaynes-Cummings Hamiltonian [31]. On the right-hand-side
of Eq. (2), one obtains, with a prefactor goéa),, the imagi-
nary part of the contribution of state ioc to the weak link
admittance (here w, = 27 f;). It has two terms: one from the
zero frequency response 1/L§' wy, With L(’”) @3 /E]
Josephson inductance of state io (py = D¢ /2n) the second
one from the response at finite frequency [29].

According to Ref. [31] two different regimes can be identi-
fied: the adiabatic one, which occurs when hf, < |Ejs jo| for
all io, jo', leading to h8f) o E}.; and the dispersive one
when hf, ~ |E;, jo-| for a set of io, jo’, in which case the
terms which involve exchange of virtual photons dominate.
We shall analyze the occurrence of the two regimes for the
examples presented below.

It can be seen from Eq. (2) that all transitions which couple
a given state ioc with other states jo’' via H{ are relevant to
calculate the shift of the resonator. Note that jo' cannot be
taken equal to —i& since electron-hole symmetry anticom-
mutes with H,.

Fermionic statistics: The actual resonator frequency shift
is determined not by a single but by all Andreev levels which
are populated in a given many-body state of the weak link. We
consider first the ground state |g), in which all negative energy
levels are occupied. The frequency shift is then

=3 D

i<0,0

3£} 3)

where the factor 1/2 compensates for the redundancy of the
BdG description. Note how we differentiate in the notation the
shift § £(“) (with parentheses) associated with the occupancy

io,jo’ — hfr

- E! Vie.io's 2
Ein,ja’ +hfr) + Z J ( )

jo'#io

(

of a single level io and the shift §f/*) (with a ket) associ-
ated with a many-body state |¥). When combining Eqgs. (2)
and (3), and taking into account that Vs j;r = —Vjo io, Only
virtual transitions to positive energy levels contribute

hé
(SJ; + Z Vw ,jo's

i<0,0

4)
j>0,0'

where Ejgy = (1/2) ), , Eis is the energy of the ground
state. Further simplification occurs in the absence of a mag-
netic field and in the presence of a mirror symmetry, where
the operator #;, does not mix opposite pseudospins (¢ and &)
[26], so that Vi js = 0.

Any many-body state | W) can be built by creating electron-
like in| g) (i > 0) or holelike y, |g) (i < 0) excitations from
the ground state. Here yij, is the Bogoliubov quasiparticle
creation operator. Notice also that |, = —sy;, due to double
counting in the semiconducting picture that we are using,
where s = 1(—1) for 0 = u(d). The frequency shift in |¥)
is

O =8 + 3 [madf7) —

i>0,0

(1 =n_i)8f) (5

where n;, = 0, 1 is the occupancy of the state ioc. More gen-
erally, n;, has to be understood as the average occupancy of
this state. The number of fermionic quasiparticle excitations
in the weak link given by Ny = D", , [ic + 1 — n_;z] can
be even or odd, but states with different parity are not coupled
by photons.

We now illustrate these ideas in a simple case.

Zero-length junctions: In the limit L — 0, accessed ex-
perimentally in superconducting atomic contacts, the BdG
equation can be solved analytically. For a single conduc-
tion channel of transmission 7, the resulting pair of Andreev
states within the gap, represented in Fig. 2(a), has energies
Eii o = £EA(8) = £AV/1 — t5in*(8/2) [13-15]. In Fig. 3
the frequency shift of a resonator at f, = 0.2A/h as given
by Eq. (5) is shown for t = 0.8 and v = 0.999, and for three
many-body states: the ground state |g), the odd parity state |o)
obtained by creation of one quasiparticle [o) = [1o) = ¥, |g),
and the lowest-in-energy excited state with even parity |e) =
[111)) = leT y11|g). In each state, the resonator frequency
shift (dashed red line in Fig. 3) results from the sum of four
contributions. The first one corresponds to the contribution of
the curvature E [, of the many-body state W) (green lines in
Fig. 3). The second one (blue lines) is associated with virtual
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FIG. 3. Zero-length one-channel junction. (a)—(e) Resonator fre-
quency shifts (in units of (Spr /h) for two values of the channel
transmission 7, and (f) and (g) transition energy 2E, with color-
coded frequency change when driving the system from |g) to |e), all
as a function of the phase §. The bare resonator frequency, shown as a
black line in (f) and (g), was taken at f, = 0.2A/h. In the left panels,
7 = 0.8, and the transition frequency is always larger than A f,; in the
right ones, 7 = 0.999, and 2E, crosses hf,. Total frequency shifts
Sfje-lo-le) in state |g) (a), (b), and (b'), |0} (c), and |e) (d) and (e)
are shown with dashed red lines. They are decomposed into three
contributions: states’ curvature E |, 1, (green lines), virtual transi-
tions among Andreev levels (blue lines), and virtual transitions from
Andreev levels to continuum levels (orange lines). In each panel the
contributions that have a negligible contribution are not shown, for
clarity.

transitions between the Andreev levels —1 and +1 [see arrow
in Fig. 2(a)], coupled by the matrix element of #;, [19,32]:

AITT(8 h)

M:Mfaa: -
to1 2 E, A

(6)

The corresponding term reads

M2 (2 1 1
Vflo',la - <

-\~ - ) (7
fA fA_fr fA +fr

with fj = 2E4/h the Andreev transition frequency.

The third type of contribution (orange lines) is associated
with virtual transitions between an Andreev level and states
in the continuum C~ at energies E < —A or C" at energies
E > A. Using the expressions for the matrix elements of
‘H;, given in Refs. [32,33], and introducing a broadening of
1073 A, one finds that the associated shift grows positive from
8 = 0, presents a maximum, and exhibits a negative dip when
A — E4 = hf,. This is characteristic of a threshold behavior
associated with the continuum, also discussed in Ref. [29].

The last contribution, which results from virtual transitions
from states in C~ to states in C™, is negligible.

In the ground state [Figs. 3(a) and 3(b)], the level —1 and
all levels of C~ are doubly occupied, so that the factor % in
Eq. (4) cancels out with a factor 2 for the spin, and

hsf®
2 = Ely + 2 Vi, ®)
w i<0
Jj>0

where we dropped the spin indices since H;, conserves the
spin for zero-length junctions. In the zero-length limit, the

energy of the states in the continuum does not depend on
phase [34], and EI:;) = —E}. The second term reads

Zvi,jzv—l,l+zvi,l+ZV—I,j+Zvi.j‘ 9)

i<0 iec” jecr ieC~
j>0 ject
Since V; ; = —V;; and V; ; = —V_; _;, one obtains, neglect-

ing virtual transitions from C~ to C* [last term in Eq. (9)],

hs £

o M E{ AV +2) Vo (10)
zp ject

In practice, because of the large energy E_; ; > E4 + A for

a transition to C*, the last term in Eq. (10) can always be

neglected:
hs £ ) 1
%%—EX &<—— - ) (11
5zp h fA fA - fr fA + f;

When f; > f,, the three terms from V_; | compensate and
the frequency shift is entirely due to E7, as shown in Fig. 3(a)
and far from § = 7 in Fig. 3(b). When |f, — fa4] < A there
is a compensation between —E} and Mzﬁ [green and blue
lines in Figs. 3(b) and 3(b')], i.e., the contribution due to H,
vanishes [31], and the frequency shift is essentially the one
that can be derived from the Jaynes-Cummings Hamiltonian

[35,36]

2
5 18).JC _ _<&8)) ( 1 1 >, 12
I 7 )\ s Ty (12)

with g(8) = M$,p/h. At the scale of Fig. 3(b'), 8¢ and

the exact § fr‘g) coincide within the linewidth. The rotating-
wave approximation (RWA), which consists of neglecting the
second term

s plorn _ _[8G)/27
' fA _fr

overestimates the little bump of § f,‘g> at § = m by a factor ~2.

13)
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The odd parity state |0) = yfa |g) has energy E, + E4 = 0.
The shift of the resonator in this case is

SfI =5 f18 450 (14)
Using
hsfiy o,
S =E{AVio+ ) Vit ) Vi (19)
zp jec- jec+
and Vi ; = —V_1 ;, one obtains
hS 1 ~ Z Vo1 + V1)) (16)
ject

Although this state does not disperse with § (E|,, = 0), one
obtains a finite shift associated with transitions from Andreev
states to continuum states, which becomes sizable when E4
approaches A [see Fig. 3(c)].

The excited state |e) = yf} yf B |g) has energy E, + 2E;, =
Ej4. The shift in this state [shown in Figs. 3(d) and 3(e)] is

8f) =8f1¥ + 2817, (17)
and one gets
hS fle ,
8{’ %EA’—V_l,l—i-ZZVLj. (18)
zp jec+

When E4 < A the continuum contributions can be neglected
and §f19 ~ —(Sfr‘g>. This is no longer the case when E4 ap-
proaches A, a situation in which both 23, .. V1 ; and EJ
contribute to the shift, as shown in Figs. 3(d) and 3(e).

In spectroscopy experiments [19], transitions |g) — |e) are
observed. The frequency shift that governs the measured sig-
nal is Af, = 8pjy(8f19 —5f%), with 8py, the population
change in the excited state due to the microwave excitation.
In Figs. 3(f) and 3(g) 819 — 8£% is encoded in the color of
the line showing 2E4(8). For t = 0.8, it is dominated by the
curvature term 2E, except when E4 approaches A and virtual
transitions enter in §£/¢. For T = 0.999, close to § = m, the
terms associated with virtual transitions between ABS causes
a change of sign of Af, when 2E, crosses Af,, as expressed
by the dispersive approximation [Eq. (12)].

These results coincide with those obtained from a linear
response derivation of the admittance of the zero-length weak
link in Ref. [29], using the relation

hé £V
8];’ =<p§w,lm<
zp

o +Y“’><wr>>, (19)
Ly w,

where L)") = @3/E[, and Y'¥) are the Josephson induc-
tance and the finite frequency admittance of the weak link in
state |W).

Finite-length junctions, with spin-resolved levels: The situ-
ation becomes richer when there are several Andreev levels
within the gap as in Figs. 2(b) and 2(c). Furthermore, in
the presence of spin-orbit [Fig. 2(c)] the subgap states are
spin split, which gives rise to a larger number of possible
transitions. The terms V_;; j» depend on the matrix elements
of H; which do not have analytic forms in this case. They
can be obtained by solving numerically the BdG equation, for

which we use two complementary approaches: the scattering
model of Ref. [22] and a discretized tight-binding model of
the nanowire (see Appendixes B and C for technical details).
As these methods rely on different approximations, one can-
not expect a one-to-one correspondence of their results. For
instance, the scattering method is based on a linearization
of the electrons and holes dispersion relations around the
Fermi level (Andreev approximation) which is not assumed in
the tight-binding model. On the other hand, the tight-binding
model only includes two sites to describe the nanowire cross
section. We have checked, however, that the methods yield
qualitatively similar results for the limits where their approxi-
mations are both valid.

In Fig. 4 we show the predictions for the frequency shifts
in the case of a weak link with three spin-split manifolds of
Andreev levels [same parameters as Fig. 2(c)], at zero Zeeman
field. Two values of the bare resonator frequency are con-
sidered: f, = 0.07A/h [Figs. 4(a)—4(e)] and f, = 0.18A/h
[Figs. 4(f)—4(j)]. The frequency shift in the ground state |g)
is first evaluated using Eq. (4). All matrix elements are com-
puted with a tight-binding model, as described in Appendix C.
We assume that scattering takes place only in the longitudinal
direction, and hence does not mix the subbands. Thus, in
the absence of magnetic field the matrix elements of H are
then zero for all pseudospin-nonconserving transitions [26].
Frequency shifts in the other states are found from Eq. (5).
Transitions from |g) create pairs of excitations (pair tran-
sitions), leading for example [leftmost arrow in Fig. 2(c)]
to the state y;rdy_ld|g) = —yfdyfu|g) = —|luld). Because of
the redundancy between negative- and positive-energy states,
we use here only labels corresponding to positive energies
[Figs. 4(a) and 4(f)]. The states accessible from |g) and in-
volving only the two lowest subgap levels are therefore those
shown in Figs. 4(b) and 4(g). We also consider the closest-
in-energy states that can be reached from the single-particle
state |1u) [Figs. 4(c) and 4(h)]. On the one hand, states with
a single quasiparticle are accessible through single quasi-
particle transitions, like |2u) = y;uyluuu) or |2d). On the
other hand, the same fermion parity is also maintained with
pair transitions that lead to states with three quasiparticles:
[Muld2u) = —yfdy_2d|1u), [1uld2d), and |1u2u2d). For all
these possible states, frequency shifts are given by Eq. (5),
which simplifies to

SFIY = sflo 4 Z Nig8 £, (20)

i>0,0

Figures 4(b), 4(c) 4(g). and 4(h) shows the transition ener-
gies from |g) and |1u), with line colors encoding the resonator
frequency shift for each transition [color scale in Fig. 4(d) or
4(e)]. The phase asymmetry of the transition energies shown
in Figs. 4(c) and 4(h) comes from the fact that we consider
an initial state with a given pseudospin (|u)). The mirrored
spectra about § = w would be obtained when considering
transitions from |1d). The situation is the simplest when the
resonator photons energy Af, is smaller than the energy of
all the virtual transitions entering in the calculation of § £
All §£%) are then dominated by the curvature term, and
the resonator frequency shift for each transition is essentially
related to the curvature of the transition energy. This is seen in
Figs. 4(b) and 4(c) with the red color (8 1% — 5£¢/1" > 0)
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FIG. 4. Resonator frequency shift for finite-length junction with spin-orbit coupling [same parameters as in Fig. 2(c)]. (a)—(e) Resonator
at f, = 0.07A/h; (H)-G) f, = 0.18A/h. (a) and (f) Spectrum of Andreev states at positive energies, with bars indicating places where energy
difference between levels of same spin is equal to A f,. (b) and (g) Energy of transitions from state |g); (c) and (h) idem from state |1u). The
color of the lines encodes the resonator frequency difference between initial and final state [color scale on the y axis of (d) and (e)]. (d) and
(e) Resonator frequency shift difference between |g) and |luld) (pair transition), and contribution of the states’ curvature (dashed line). (e)
and (j) Idem for the transitions from |1u) to |2u) or |2d) (single particle transitions). The resonator shifts are calculated from matrix elements

obtained with a tight-binding model.

of the transition lines when they have positive curvature, blue
for negative curvature. Detailed comparisons of the total shift
with the curvature contribution are shown in Fig. 4(d) for the
pair transition |g) — |luld) and in Fig. 4(e) for the single
quasiparticle transitions |lu) — |2u) and |1u) — |2d).

The results look more complicated in Figs. 4(g) and 4(h),
with many sign inversions of the frequency shift when sweep-
ing 8. Sign inversions occur when the energy of one of the
virtual transitions entering in the calculation of the frequency
shift in the initial or the final state coincides with A f,. These
coincidences are marked in Fig. 4(f) with small vertical bars
linking levels with same spin distant by Af,. For example,
there is one of them at §/m =~ 1.92, where E, — Ey, = hf,.
Correspondingly, § £ and § f**) present abrupt changes of
sign at this phase, which is seen in all the lines involving 1u
or 2u in Figs. 4(g) and 4(h). Similarly, there is another such
coincidence at 6/ & 1.27, where E3; — E»y = hf,, leading
to color changes in the transition lines |g) — |...2d). De-
tailed plots of the frequency shift for pair and single particle
transitions are shown in Figs. 4(i) and 4(j), with divergences
when energy differences match Af;,.

III. GATE AND FLUX DRIVING

As illustrated in Fig. 1, transitions between Andreev states
can be driven either with an AC electric field, using a gate
[22], or with a magnetic flux, by means of an AC current
in a conductor placed nearby the loop [28]. The magnetic
flux can also be modulated with an excitation applied through

the resonator coupled to the superconducting loop [19]. The
driving can be modeled by the following term added to the
system Hamiltonian:

o 1 .
At) = 3 Z (Aia,jgfyily_/-a,e"”d’ +H.c),

ioc<jo'

21

where wy; = 2m f; is the driving frequency. In the case
of a flux driving, which acts on the phase §, A jor
(®i |H(| P jor). In the absence of magnetic field and for a bal-
listic model which preserves the transverse spatial symmetry
[26], the H;, operator does not mix the transverse channels of
the weak link and thus only pseudospin-conserving transitions
are allowed. Notice, however, that whenever the drive or the
scattering breaks the transverse spatial symmetry spin-flip
transitions can take place [27].

In the case of the gate driving the AC signal induces a
displacement §V (¥) in the electrostatic potential experienced
by the electrons in the junction region. The corresponding
matrix elements in the driving Hamiltonian are thus A, j,» =
(@i |8V (F)T,| D js), Where 7, is a Pauli matrix in electron-hole
space.

In connection to recent experiments [22,23,28], we ana-
lyze the case of spin-split Andreev states in semiconducting
nanowires. As described in Ref. [26], the pseudospin of
the Andreev states comes from nanowire’s transverse modes
with different spins hybridized by Rashba spin-orbit cou-
pling. A perturbation §V uniform in the transverse direction
does not couple different transverse modes and therefore
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pseudospin flip transitions are not allowed, i.e., A;, jq = 0.
Only a nonuniform perturbation couples transverse modes and
allows pseudospin flip transitions.

The fact that all possible transitions between two Andreev
manifolds have been observed in the experiments of Ref. [22]
indicates that the nonuniform component of the induced po-
tential §V by the gate electrode was significant. More insight
into the possibility to engineer the selection rules using gate
driving can be obtained by considering the model of Ref. [26]
for the nanowire’s transverse channels. Within this model
the nanowire confining potential is assumed to have cylindri-
cal symmetry. Thus, the modes in the lowest subband have
zero angular momentum along the nanowire axis (I = 0) and
they have / =1 on the first excited subband. A lateral gate
would impose a perturbation §V (¥) which typically breaks
the rotational symmetry and therefore would couple states on
different subbands, naturally leading to both pseudospin flip
transitions and pseudospin conserving transitions. One could
think, however, of a more general gate configuration like the
one in Fig. 5(a), where two lateral gates can be set such that
8V (y) = =8V (—y) [or 6V (y) = 8V (—y)] in an antisymmetric
(or symmetric) configuration as indicated in the right panel.
In the antisymmetric case, the 6V matrix elements vanish for
states on the same subband, but are finite for states in different
subbands. As a consequence we would have A;, j, = Ajg ja =
0. The allowed transitions between spin split Andreev states
are indicated in Fig. 5(c) with arrows of different colors for
symmetric (blue), antisymmetric (green), or an intermediate
(magenta) configuration. The phase-dependent matrix ele-
ments for each case are shown in Fig. 5(d) for the parameters
that give the spectrum in (c) which correspond to a fit of the
data in Fig. 11 discussed below.

IV. RESONATOR FREQUENCY SHIFTS
FOR THE DRIVEN WEAK LINK

While a driven two-level system can be described using
Bloch equations [37], we develop here the theory for the
general multilevel case in the weak drive regime. In order
to obtain the frequency shift for the resonator coupled to the
driven weak link we analyze the resonator spectral function
DR (w) = —i [~ dte ([a(t), a’(0)]). We take first the inter-
action picture in which the time evolution of the resonator
and the weak link are provided by solving master equations
including dissipation, and then we treat the resonator-weak
link coupling and the drive as perturbations. We calculate the
perturbation terms up to second order in both §,, and A;s jo-
(see Appendix A for details).

The frequency shift for a single quasiparticle transition
from |iyoy) is

2
S5O =2 3 M((S U0 sy (22

jo>0 | igzro,j(r|2
where D, = hwy — |E;, — Ep| +i(Ty, +Tp)h/2, wy is the
driving field frequency, and I',() are phenomenological pa-
rameters to account for the finite linewidths in the transition
spectrum, which in our present theory are associated with the
states relaxation.

(b)

y
—— symmetric
—— anti-symmetric
—— mostly anti-symmetric

(d) 6x10”

EAN o 3
KN\ .
AN )
T T T 0 =

T T T
00 05 10 15 20
o/n o/m

FIG. 5. (a) Schematic of a nanowire weak link with local side
gates. (b) Induced driving potential in the transverse (y) direction of
the nanowire in various situations: symmetric (blue line), antisym-
metric (green line), or mostly antisymmetric (magenta line) profiles
can be obtained by controlling V,; and V,, applied to the gates. (c) Al-
lowed transitions in the weak link with spin-split Andreev levels.
Each color indicates the transitions induced by the driving potentials
illustrated in (b). According to the corresponding matrix elements
shown in (d) (calculated with the scattering model), the symmetric
and antisymmetric potentials lead to pseudospin-conserving [dashed
arrows in (c), dashed lines in (d)] and pseudospin-flipping [dashed-
dotted and full arrows in (c), dashed-dotted and full lines in (d)]
transitions, respectively, and the mostly antisymmetric potential
results in both transitions with similar amplitudes. The square ma-
trix elements for pseudospin-flipping intramanifold transitions (solid
lines) are ~15 times larger in the second manifold than in the first
one, which at this scale is barely visible.

For a pair transition from the ground state |g), one obtains

A_js ko . /

57T =2 Z |A—js ko Iz((sfr(_,g) + 8%, (23)
ey 1P=jo ko'l

Jjoka')
where {jo, ko’} means a set of indices jo and ko’ corre-
sponding to positive energy levels ordered in energy, and does
not contain a permutation of the indices. jo and —j& are for
a pair of particle-hole symmetric Andreev levels.

V. COMPARISON WITH EXPERIMENTS
A. Atomic contacts

We first focus on the simplest experiments, reported partly
in Ref. [19], dealing with atomic contacts hosting a small
number of transport channels. The superconducting loop
containing the atomic contact is coupled to a microwave
resonator at f, = 10.1 GHz measured in reflection. In the
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FIG. 6. Fit of single-tone continuous-wave spectroscopy data taken with a vector network analyzer (VNA) on a series of atomic contacts
obtained from the same sample (described in Ref. [19]), with resonator at f, = 10.1 GHz. (a)—(g) Raw data, with reflection coefficient of the
resonator S1; coded with gray scale. By fitting Sy (f) at each flux with the sum of shifted resonance curves, up to three values of the frequency
shift could be extracted [(a")—(g") and (g”) symbols]. They are associated with the shifts in states |g), |0), and |e) of the channel with the largest
transmission. Solid line are fits with complete theory, using 8,, = 0.0042 and A/h = 44.3 GHz. Blue: § /), green: § f1 (with respect to first
channel), red in (2") and (b'): §f!¢). Fit parameters are given in Appendix E. In (g”) the dashed line corresponds to §f/¢) in the rotating wave

approximation [Eq. (13)].

experiment, atomic contacts with various channel transmis-
sions are formed and probed with the same sample.

We first discuss single-tone continuous-wave (CW) spec-
troscopy data taken on seven different atomic contacts, as
shown in Fig. 6. To acquire these data the microwave response
of the resonator is probed as a function of flux ¢ = 27 ® /Py,
with no drive applied on the weak link. Over a small flux range
around ¢ = m, the amplitude of the reflection coefficient |S}; |
displays up to three distinct local minima (in dark) as a func-
tion of frequency, as shown in Figs. 6(a)-6(g). The positions
f1.3 of these minima were extracted by fitting |S;1|(f) with
the linear combination Z?:l pilSY,|(f, fi) of resonance lines
|S(1)1|( f, fi) corresponding to a single resonance centered at
fi- The extracted f; are shown with symbols in Figs. 6(a’) and
6(g’). These data can essentially be understood by considering
the contribution of just one dominant channel of transmission
71 such that the corresponding Andreev frequency f4; comes
very close to the resonator frequency f, [Figs. 6(a) and 6(b)]
or crosses it [Figs. 6(c)-6(g)]. The data are ordered with
increasing 7, from Fig. 6(a) to 6(g). The three resonances are
attributed to partial occupancy of ground, odd, and excited
states for the corresponding channel. As shown in Egs. (10)
and (18), and since, according to the analysis of Sec. II,
contributions of the continuum can safely be neglected for
phases close to 7, the frequency shifts associated with ground
and excited state are opposite [Figs. 6(a) and 6(b)], and the
frequency shift associated with the odd state is zero [Figs. 6(a)
and 6(e)]. Finally, in order to explain a small residual global
shift, it is necessary to consider the contribution of one or two
additional channels with smaller transmissions, as explained
below.

The resonator frequency shift is obtained from Egs. (10),
(16), and (18), adding the contributions of all channels. The
bare resonator frequency f, was determined from measure-
ments of the resonator with open contacts. The phase § across

the contact differs slightly from ¢ =27 ®/P( due to the
phase drop across the loop inductance (see Appendix D). In
a first step, the value of §,, = 0.0042, common to all contacts,
was determined by fitting Fig. 6(d), taken on a contact for
which a fit of the two-tone spectroscopy yielded t; = 0.992
(Ref. [19] and Fig. 7). For the other contacts, the fitting
parameters are the transmissions 7; of two or three channels
(fit parameters given in Appendix E). The transmission t; of
the most-transmitted channel determines the overall shape of
the spectra. In the small phase interval considered here, the
effect of the other channels is simply a constant overall shift
of the order of a MHz. The predictions for § f, assuming the

13 0.02 0.2
0A (V) 0.00 0.0 6Q
12 - -0.02 -0.2 ,
= \
N1 /
e
o 10— . gl
9 —
8 —
I I I
0.95 1.00 1.05
o/n

FIG. 7. Two-tone spectrum measured on the same atomic contact
as for Fig. 6(d). Left: Experimental data. Color scale corresponds to
the change of amplitude of a quadrature of the reflected signal. Right:
Calculated spectrum, line color codes change in S;;, scaled in order
to fit at best the data.
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most-transmitted channel to be in |g), |o) or |e) are shown with
blue, green, and red lines.

The § and t dependence of the coupling constant g is an
essential ingredient to obtain a consistent fit of all the data
at once. The difference between the full theory and the JC
contribution is very small at the scale of Fig. 6. In Figs. 6(a)—
6(c), since | fa1 () — fr| < fa1(;r) + f;, the counter-rotating
term ocl/(fa; + f;) can also be neglected, and the RWA
is sufficient. When 71| is closer to 1 [Figs. 6(d)-6(g)], fai
becomes significantly smaller than f. near § = and the
counter-rotating term must be taken into account, as illustrated
in Fig. 6(g") where the RWA prediction shown with a dashed
line departs clearly from the data.

We present in Fig. 7 the two-tone spectroscopy measured
for the atomic contact of Fig. 6(d) [19]. A single transi-
tion appears in the measurement window, corresponding to
a channel with transmission t =~ 0.992. To acquire this data
a strong microwave pulse drives the two-level system, during
a time exceeding its relaxation and dephasing times, imme-
diately followed by a microwave tone probing the resonator.
The two quadratures of the signal reflected by the resonator
are measured by homodyne detection. In Fig. 7 the color
scale represents the change of amplitude §A of one of these
quadratures, relative to its value in the absence of excitation.
It depends on the steady state occupancy of the states after the
excitation pulse and on the frequency shift of the resonator
in each state. For this data taken on a very high-transmission
contact and around § = m, the resonator frequency shifts are
dominated by the dispersive shifts, with negligible effects of
the states in the continuum, and the rotation wave approxima-
tion [Eq. (13)] applies: 8 ;¢ ~ —8f1¢) ~ —[g(8)/271*/(fs —
fr) with g(6) =~ g(m)Es(r)/Es(8) [from Eq. (6), when Ey <
A]. When the resonator frequency is f, 4+ §f,, the complex
reflection coefficient of a measurement tone at frequency
fr + & f,u on the resonator is [19]

@) =1—=(1+e?)/(1 + Qext/Qim), (24)
with
6 = —2arctan [2Q,(8 f; — 8 fn)/ fr]. (25)

In this expression, Qint, Qext, and Q; are the internal, exter-
nal, and total quality factors of the resonator. When driving
the system, if it is in an even state (probability 1 — p,), the
occupancies of the ground and excited states change by dp,
and 6p, = —8p,, resulting in a change of §j; by 651 =
SpelSi1(8 £18) — $11(8f1)]. Putting everything together, one
gets, for 6 f,,, = 0,

8i u

1+%1+4u2

3811 = dpg =0, (26)

with u = Q,6 f,lg> / fr. To compute 8p,, one uses the result of
the Bloch equations [37] adapted for the presence of the odd
state:

po _ 1=py
_ P

0pg = 7 RERA @7
T\ o}

with 77 and 75 the lifetime and coherence time, §w = 27 (f; —
fa) the detuning between the drive frequency f; and the

qubit frequency f4, and wg the Rabi frequency. For simplicity
we assume here that 7} and 7, are constant: 77 = 4 us and
T, = 38 ns (values measured at § = 7). Since the excitation
acts on the phase across the contact, the Rabi frequency de-
pends on 8: wg o M? [see Eq. (6)]. The drive tone being
sent through the resonator, its amplitude is filtered: wp o
[1+ Qtz(fl/f, — £-/f)*7 2. In the fitting of the data, wg
is set to 2w x 4.2 MHz at § = & in order to reproduce the
measured linewidth.

Using @, = 2200, Qi = 4800, f, =10.13 GHz, and
g(m)/2m = 72 MHz, one obtains the fit shown on the right-
hand side of Fig. 7, with the color scale of §Q adapted to
match the data. Not only does the change in the Q quadrature
reproduce the changes §A in the measured quadrature on the
resonance line f4(8), but one also predicts a signal at f; = f,,
which has its origin in the very large Rabi frequency when
the drive signal is not filtered by the resonator. At this precise
frequency, the strong detuning dw is compensated by the large
wg in Eq. (27), and 8p, is nonzero even if the drive is far
from the resonant frequency f4. This feature is clearly visible
in the data, although not as strong as in the calculation for
fa > f perhaps due to an effect of the resonator nonlinearity
not included in the model.

In Fig. 8 we show the two-tone spectroscopy and the
single-tone CW data of one particular contact obtained with
the same sample and showing a double avoided crossing.
In the two-tone spectroscopy [Fig. 8(a)], one observes three
Andreev transitions (labeled fa1, fa2, and fa3) corresponding
to channels with transmissions 7; = 0.998, 1, = 0.992, and
73 = 0.980, with minimum transition frequencies (at § = )
of 4.1, 7.7, and 12.6 GHz. Two transition lines f1; and fa»
cross the resonator at 10.1 GHz. The experimental data [left
half of Fig. 8(a)] show split transition lines at § # w. This
is accounted for by the relation between the phase § across
the contact and the reduced flux ¢, which involves the phase
drop across the loop inductance, proportional to the current
through the atomic contact (see Appendix D). In the presence
of several channels which can be either in the ground or the
odd state (we neglect the occupancy of the excited states), this
current can take several values. As a consequence, the phase
across the contact, common to all the channels, depends on
the states occupancy, which gives rise to an effective coupling
between the channels. To calculate the spectrum from theory,
we use Eq. (24) (with §f,, = —0.4 MHz) for each state |¥),
and compute the weighted average S;; = ZW) S ()
using the probabilities pjy) for each state. The probabilities
to find each channel in the odd state were taken constant,
Po1 = 0.55, p,n =0.5, ps = 0.4, determined by fitting the
phase dependence of S;;(¢) at an excitation frequency where
no transition is observed (f; = 16 GHz). In the presence of
the excitation pulse, the change in each py, was obtained
from Eq. (26). For simplicity we assumed 73 =4 us and
T, = 38 ns at each phase and for each state. Depending on
the state of the other channels, a transition from |g) to |e) in
one channel leads to different changes in Sy, as illustrated
in Fig. 9. The resulting calculated spectrum is shown in the
right half of Fig. 8(a), in which we represent the changes
30 in the Q quadrature. Fainter lines in the data are mul-
tiphoton transitions (at fy;/n), or transitions involving two
channels [fi1 + fa» and (fa2 + fa3)/2], not included in the
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FIG. 8. (a) Two-tone spectroscopy of an atomic contact. On the
right half of the figure, calculated spectrum (see text) with identi-
fication of three Andreev transitions with frequencies fy; 3. Lines
color corresponds to the calculated change in Q quadrature of Sy;.
(b) Grayscale codes reflection coefficient amplitude |S;,|. Lines on
the right-hand side are theoretical resonator shifts depending on the
states occupancy: black (ggg): all channels in ground state; Red: first
channel in odd state (ogg); Green: second channel in odd state (gog);
Blue: first and second channel in odd state (0og). A global shift of
—3.4 MHz was applied to the theory curves, which can be attributed
to the effect of several low-transmitting channels that are not visible
in the two-tone spectrum.

theoretical plot. Despite the strong simplifications in the anal-
ysis, the changes §A in the amplitude of the reflected signal in
Fig. 8(a) are well reproduced by the calculated changes in the
Q quadrature of S;;. Similar agreement is found on the other
quadrature.

In Fig. 8(b) we show the single-tone spectroscopy of the
resonator. The resonator frequency shift calculated under the
assumption that the three channels are in the ground state is
shown as a black solid line. Features associated with configu-
rations in which one (red and green lines) or both (blue line)
of the two most-transmitted channels are in the odd state are
also observed. Horizontal shifts of the red and green lines with

FIG. 9. Representation in the /Q plane of Sy, at ¢ = 1.04x, for
the states involved in transitions on the third channel [see dashed
line in Fig. 8(a)]. Depending on the state of the two first channels,
the change of Q takes very different values, the largest change corre-
sponding to |oog) — |ooe) (in magenta). In Fig. 8(a), §Q for the four
transitions is further scaled by the probability of each initial state,
e.g., PoiP2(l — po3) for |oog) — |ooe). Among the four transition
lines, only this one is clearly visible in Fig. 8(a).

respect to the black ones result from the phase drop across the
loop inductance, different in each configuration. The analysis
of the data of Fig. 8 illustrates how, in a multichannel weak
link, the frequency shift associated with a transition in one
channel depends strongly on the occupancy of the Andreev
states in the others.

B. Nanowire junctions

The two-tone spectra shown in the left-half of Figs. 10
and 11 were measured on the same InAs nanowire device
at two different gate voltages [22]. In this experiment, the
coupling between the weak link and the resonator was two
orders of magnitude smaller than in the atomic contacts case,
and consequently the resonator frequency shift was always
smaller than its linewidth. In this limit, AS;; depends linearly
on the sum of the frequency shifts associated with each level,
and the complications of the well-coupled system described
in the previous section can be ignored. Hence, the color scales
in Figs. 10 and 11 directly corresponds to the resonator fre-
quency shift. Both spectra correspond, like in Figs. 4(a)—4(e),
to a situation in which the resonator frequency f, = 3.26 GHz
is very low as compared to most of the observed transition
lines.

A pair transition and several single-particle transitions are
clearly recognized in the spectrum of Fig. 10. The signal at
each point being integrated over 100 ms, a time much longer
than the one for parity changes due to quasiparticle poisoning
[28], transitions from states of different parities appear in the
spectrum. From the analysis illustrated by Figs. 4(a)-4(e),
one understands that the frequency shifts corresponding to
transitions above the resonator frequency are essentially given
by the curvature of the transition lines: with the color scale
of Fig. 10, lines are red where they have positive curvature,
and blue when negative. For a more quantitative comparison
with theory, we first fit the position of the bundle of single-
particle transitions appearing in the range 3—10 GHz, using
the scattering model presented in Ref. [22] (see parameters
in Appendix F). The calculated single particle transition lines
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FIG. 10. Two-tone spectroscopy of an InAs nanowire weak link
(from Ref. [22]). Left: Experimental data. Color scale represents the
resonator frequency shift (sign corrected compared to Ref. [22]). A
pair transition (PT) and a bundle of single particle transitions (SQPT)
are pointed at. Right: Calculation for a single occupied channel
(see text). Color scale is the difference in frequency shift between
initial and final state. Solid line at 3.26 GHz indicates the resonator
frequency. In the calculation, it was assumed that §,, = 1.2 x 107>
and the dissipation rate is I'1, + I'»» = 0.62 GHz. The sign of the
frequency shift in the experiment has been corrected compared to
Ref. [22].

shown in the right half of Fig. 10 reproduce well the observed
single particle transition energies, but the pair transition pre-
dicted from the same Andreev levels disperse less than in the
experimental data. Using these parameters, we calculate the
matrix elements for #;, (see Appendix B). Since the two-tone
spectroscopy data was taken at very small power, the theory
of weak driving is fully applicable. We evaluate the matrix
elements for the weak driving through the gate and compute
the resonator shift shown in the figure, using Eqgs. (22) and
(23). Globally, the shifts calculated for the four single particle
transitions reproduce quite well the observed ones. However,
some details differ, notably for the highest single quasiparticle
transition, with shifts near ¢ = 0 larger in the data than in the
calculation. The shift for the pair transition is reproduced only
at a qualitative level.

A similar procedure was used to fit the data in Fig. 11,
taken at another value of the gate voltage [22], but again in a
situation where the effect of states’ curvature dominates. The
fit parameters are given in Appendix F. In this case, the cal-

25_ ke -

f; (GHz)

o/

FIG. 11. Comparison between experimental results on Andreev
transitions in a nanowire junction [22] and a full calculation of the
shift taking into account that the transitions were induced by mi-
crowaves applied on the gate. The parameters for the calculation are
those that allowed fitting the spectrum [22] and the matrix elements
for the microwaves shown in Fig. 5(c) with magenta are used. The
same values of 8,, and the dissipation rate are used as in Fig. 10.

culated pair transition lies outside the frequency range of the
graph and only the bundle of four single-particle transitions
is clearly recognizable (transitions in the range 13-23 GHz).
Theory captures most of the features of the experiment for this
set of single particle transition lines.

In the experimental results reported in Ref. [22], the res-
onators shift was remarkably low (tens of Hz) as compared to
that observed for atomic contacts (tens of MHz) [19]. There
are two reasons for this. On the one hand, the geometry of the
circuit, which determines the phase fluctuations the resonator
induces in the loop. It can be optimized with the circuit design.
On the other hand, and more fundamental, the reduction of the
matrix element of #;, in the long-junction limit. As a rough
approximation (more accurate close to § = ), the matrix
element expression reduces to that for a short junction with
an effective gap A = 1%; this contributes to a (1 + A)?
reduction in the coupling.

In recent experiments [38] we coupled the nanowire
through a shared inductance, increased the resonator fre-
quency, and diminished its impedance, leading to an enhanced
d,p by three orders of magnitude. The data from Figs. 12, 13,
and 14 have been taken using this new setup. The sample com-
prises a L ~ 550-nm-long weak link from a full shell InAs-Al
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FIG. 12. (a) Two-tone spectrum measured on an InAs nanowire
weak link of length L ~ 550 nm, and using a resonator at f, =
6.6 GHz. The color-coded quadrature of the measured signal shows
many sign changes along the transition lines, qualitatively in agree-
ment with the behavior illustrated in Figs. 4(g) and 4(h): the sign
changes are attributed to situations where the energy of some virtual
transitions match A f,. (b) Associated single-tone spectrum.

nanowire (same batch as the one in Ref. [22]), coupled to a
resonator with f, = 6.6 GHz. The coupling being much larger
than in Figs. 10 and 11, the measured signal cannot be easily
converted in a resonator shift, and we show the change in one
quadrature, §Q.

In the range between 5 and 10 GHz of the otherwise very
busy spectrum of Fig. 12, one recognizes three pair transitions
and a bundle of single particle transitions. The color-coded
quadrature shows many abrupt sign changes along the transi-
tion lines, like the behavior illustrated in Figs. 4(g) and 4(h):
the sign changes are attributed to situations where the energy
of some virtual transition matches the resonator frequency (as
indicated by the black dashed lines).

This spectrum has other remarkable features, like the oc-
currence of sets of pair transitions very close in energy. This
is something we have observed many times in these nanowire
weak links (see for example Fig. 13 between 11-20 GHz).
Although we do not have a closed explanation yet, it could
originate from subband orbital quasidegeneracies due to the
approximate rotational symmetry of the weak link, or to mul-
tiple subbands occupancy. Moreover, the shape of several
other lines in the spectrum does not correspond to what our

f, (GHz)

5Q(MV)
—_~ 0.1
N
T
9 0.0

-0.1

¢)w 1

© 3 S14(dB)
2 0 iEO
“I_ -1 T T T T 10

0.0 0.5 1.0 1.5 2.0

o/m

FIG. 13. (a) and (b) Two-tone spectrum measured on an InAs
nanowire weak link of length L ~ 550 nm (different gate tuning com-
pared to previous one), and using a resonator at f, = 6.6 GHz. The
color-coded quadrature of the measured signal shows sign changes
along the transition lines, qualitatively in agreement with the behav-
ior illustrated in Figs. 4(g) and 4(h): the sign changes are attributed
to situations where the energy of some virtual transitions match Af,.
For example, when the lowest transition line of the second group
of single particle transitions [underlined with black splines in (a)]
crosses the resonator, the sign of frequency shift along the transition
lines in the lowest group of SQPT changes. In (b), same data as
(a) but stronger contrast and other color scale, intramanifold spin-flip
transitions are visible. The red lines that superimpose on the data are
obtained as differences between the intermanifold transition energies
underlined in black and labeled a, b, c, d. (c) Single-tone spectrum.

simplistic model predicts, and levels anticrossings might be
required to explain them.

In Fig. 13 we show data measured in a different cooldown.
In this case, changes of sign of the displayed quadrature
occur when the lowest transition of a single-particle tran-
sition bundle (drawn in black based on the signal of both
quadratures) crosses the resonators line. The resonator shift
measured in the CW single-tone spectroscopy [Fig. 13(c)]
shows a dominant contribution from the pair transition that
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FIG. 14. (a) Two-tone spectroscopy of an InAs nanowire weak
link of length L ~ 550 nm, showing a pair transition f, anticrossing
the resonator at f, = 6.60762 GHz. Red line on the right side is a fit
of this transition (see Appendix F) with its two replicas at fy £ f,
shown in dashed gray. (b) Single-tone spectroscopy. (Left) Trans-
mission coefficient amplitude S,; measured with vectorial network
analyzer. (Right) Comparison with theory. For each phase value,
the resonator frequency is extracted from the raw data; the shift
from its bare value is shown with gray disks and compared to the
calculated shift due to a single channel (dashed red), whose pair
transition towards the lowest Andreev manifold fits the transition line
fa shown in (a). Blue dashed line: Contribution of an effective second
channel [parameters in Appendix F; because of its low transmission,
the corresponding pair transition does not fall in the frequency range
of (a)]. Black line: Total shift due to both channels.

lies at 12 GHz at § = 7, but the anticrossings expected at
the position of the dotted lines in Fig. 13(a) are not visible,
indicating the very small occupancy of the initial state for
the corresponding transition. This is in agreement with the
difference in intensity between the transition lines in the two-
tone spectroscopy. A remarkable feature in this spectrum is
the presence of two very low-frequency lines (below 2 GHz),
better seen in Fig. 13(b). By analyzing their position in energy,
they can be identified as spin-flip intramanifold transitions.
The lines labeled a, b, c, d correspond to transitions between
the first and the second manifold, at energies E»g 14, Eou.1d,
E»q.1us Esu 1y Their differences, labeled a-c, b-d, a-b, and
c-d, coincide two by two. They are shown with red lines and
perfectly match the observed low-frequency transitions. The
two first ones correspond to a transition energy E\, 14, the two
last ones to Eyy,. The lines are dimmer at low frequency
because the matrix elements go to zero at phases 0 and 7
[see Fig. 5(d)], and because the difference in occupancy of
the two spin states diminishes when their energy difference
is comparable to temperature: kg7 /h ~ 0.8 GHz. Note that
such transitions have been recently driven indirectly through
Raman processes [27].

In general, a complete fit of the spectra found in nanowire
weak links is not possible with a simple modeling of the weak
link. However, in the absence of a drive, the frequency shift
of the resonator is often dominated by the contribution from
a single channel, which allows for a simpler description. In
Figs. 14(a) and 14(b) we show the two-tone spectroscopy and
single-tone measurement of the same nanowire weak link as
in Fig. 12, again from another cooldown. Among the observed
transition lines, there is a high-contrast pair transition that
crosses the resonator at ¢ = (1 £ 0.12). Within the scatter-
ing model (Appendix B), it can be fitted as a pair transition
towards the lowest of three Andreev manifolds arising from
a high-transmission channel (r = 0.996). In Fig. 14(a) we
indicate this fit with a red line on the right-hand side (pa-
rameters in Appendix F), as well as two replicas shifted by
+f,, also visible in the data and associated with a strong
measurement tone. The corresponding shift of the resonator,
fitted with Egs. (2) and (3) with §,, = 0.012 and using f, =
6.60762 GHz (bare frequency measured when the nanowire is
fully depleted), is shown in dashed red in the right-hand side
of Fig. 14(b). Although it contains contributions from both
the continuum and the three Andreev manifolds, it is mainly
dominated by the H;, contribution at energy E_; ; associated
with the transition to the lowest manifold. Therefore, it can
be well approximated within a simplified Jaynes-Cummings
description, taking Eq. (12) with a renormalized gap A.g/h =
15.4 GHz and f; = 2E_; ; (not shown in the figure for clarity,
because it coincides almost exactly with the full theory for the
channel shown in dashed red). Although it does not fit per-
fectly, it offers a simple analytical form that captures well the
main features of the data around the anticrossing. The small
discrepancies with the experimental data are attributed to the
other channels. Many other transitions are indeed visible in
the two-tone spectroscopy, which we model with an effective
second channel (parameters in Appendix F). Its contribution,
shown with a dashed blue line in Fig. 14(b), produces the
smooth background that, added to the shift from the main
transition, accounts precisely for the data for all phases (black
line).

VI. CONCLUSIONS

We have developed a general formalism to describe the
readout of the states of a phase-biased superconducting weak
link coupled to a microwave resonator in a circuit-QED setup,
based on Ref. [31]. The fermionic character of the weak link
excitations gives rise to a rich phenomenology in the presence
of a driving field, with different responses depending on the
states’ parity. We show how both spin-conserving or noncon-
serving transitions can occur, depending on how the system is
driven.

We have applied this theory to analyze experimental results
obtained on atomic contacts and semiconducting nanowire
junctions. For the former, only one pair of spin-degenerate
Andreev levels exists per channel, which greatly simplifies the
theory, leading to analytical results. Quantitative agreement
with the data, both for the ground state properties and the
spectroscopy, is reached. For the nanowire case, the junctions
host many Andreev states in each channel and spin degen-
eracy is broken by spin-orbit coupling. This requires a more
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involved analysis and the comparison with experiments is less
straightforward. However, with a simple modeling of these
junctions we were able to interpret several features observed
in the experiment, such as the effect on the resonator shift
of the levels’ curvature and the crossing of virtual transitions
with the resonator frequency. In addition, we reported data
on longer nanowire weak links with a stronger coupling to a
resonator, in which direct intramanifold spin-flip transitions
of a single quasiparticle in a superconducting weak link have
been observed in the absence of a Zeeman field. The spectra
also suggest that Andreev levels in different channels are
coupled, and display groups of similar transitions that require
further modeling.
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APPENDIX A: THEORY FOR THE FREQUENCY SHIFT OF
A RESONATOR COUPLED TO A DRIVEN WEAK LINK

We provide a detailed derivation of Eqgs. (22) and (23) in
Sec. IV.

1. Dissipation in the resonator and the weak link

For a more realistic description, we assume that external
baths are coupled to the system, leading to photon losses in the
resonator and relaxation in the weak link. For the resonator,
the time evolution of an operator O including the photon loss
can be described by the master equation

1
Q — iwr[aTa’ O] + K(nt——i_)ﬂ[a

¥ e
T > 10+ 5 L[a]O,

(A1)
where L[c]O = 2¢Oc’ — cc"O — Occ, w, = 27 f,, k is the
loss rate, and n, = 1/[exp(fiw,/kgT ) — 1] is the thermal pho-
ton in the resonator. Solving the equation for O = a, a’ and
ng = a'a, we obtain

a(t) — e—iw,t—Kl/Za(O),
a[(t) . elw,[ Kt/2 I(O)
"ng(0) 4+ (1 — e n,.

np(t) = e™* (A2)

For the weak link the Hamiltonian from Eq. (1) can be
written in terms of Bogoliubov operators as

g ¥
= Z Eiayiayia +E ’

ic>0

(A3)

where E; = (1/2) 3,1 Ejo' is the ground state energy. In
this representation, in order to consider only states with pos-
itive energy, we used the relation yiz = —SY_i5, wWhere s =
1(—1) for 0 = u(d). The master equation taking into account
the relaxation of a quasiparticle from one energy level to the
next lower one is given by

do I3 Fja’
— =1 io Ly, ) L'U’ s
: l;w [yl v, O]+j20; - LILjo 1O

(A4)

where w;; = Ejs/h, I'j, is the relaxation rate, and L;o =
)/JL,)/]._IG,. If we truncate the equations at first order in I'j,-,
we obtain approximate solutions,

Vio (1) = e~ @' it I2y, (0),

. , (AS)
)/,l,(t) — elwwf r'“t/2)/,j,(0),

where

f‘i(r == Fi(r[l - ni—l(r(o)] + l_‘H-l(r}'li-i—l(r(o)a (Aé)

and n;,(0) is the occupancy of the ic Andreev level at ¢ = 0.
For simplicity we assume that n;_,(0) and n;,(0) are zero,
that iS, f‘,»a = F,’J.

2. Spectral function of the resonator

The shift of the resonator coupled to the driven weak link in
a many-body state can be obtained by using a retarded Green’s
function of the resonator,
Df(w) = —i / dre™ ([a(t), a' (0)]). (A7)
0
In the absence of the coupling to the weak link, the Green’s
function is given by DR (w) = 1/(w — w, + ik /2) where we
used the form of a(t) in Eq. (A2). Let us now consider the
resonator-weak link coupling Hamiltonian [31] including the
driving field,

P(t) = H.(8) + A@), (A8)

A

’y N5 4 8r ¥
H:(8) = é,Hy(8) + ?HO (%), (A9)

where A, (8) is given by

(1)
Z hla ,jo! 1ay]“

io, jo’

/(1) (1)
Z hta io + Z hza jo ylayJU

ioc <0 io,jo'>0

A,") =

-y 2(hjf;’>_m,y,;,y +Hc), (Al0)

io,jo'>0

013036-14



CIRCUIT-QED WITH PHASE-BIASED JOSEPHSON WEAK ...

PHYSICAL REVIEW RESEARCH 3, 013036 (2021)

and the driving Hamiltonian A(r) is

N 1 .
T 0)
A(r) = 3 E Ao joVie Vjer € + H.c.

ioc<jo'

_ T iwgt
- 2 Aiﬁyjaryia yjc’e ‘

jo'>ioc>0

1 iw,
+5 D (DA o VieYjed™ +He. (ALD)

io,jo'>0

In the interaction picture, the expectation value in Eq. (A7)
is written as

([a(t), a’(0)]) = Tr[p[T (t)ay (1) Uy(t), af (0)]],

where the subscript “I”” denotes the interaction picture where
creation and annihilation operators evolve in time according to
Egs. (A2) and (AS), and p = pr ® pwr is the density matrix
at time t = 0 with pg for the resonator and pw. for the weak
link, where

(A12)

X _Namn
e "N
pr = ———In)nl,

(A13)
n=0
pwr = 18)(gl or [ipoo)(igoo]. (Al4)

Here N is the mean photon number of the resonator and
the many-body state of the weak link at t = 0 is either the
ground (|g)) or the excited odd (|ipop) = yizm)lg)) state. The

time evolution operator Uy in Eq. (A12) is

Ul(t)zT[exp(%i/ dr’ Pl(t’)>],
0

where 7 denotes the time-ordered product. We approximate

the evolution operator to obtain pr—order term (the shift with-

J

(A15)

182 t t t
CHqu(t) = h—zp / dt1 f dtz/ dl‘3 912923 H{,A2A3 — 921923 A]HZ//Ag, + 92]932A1A2Hé/,
0 0 0

out the driving field) and 8zzp Ao, jor |2-order term (the shift
with the driving field), requiring us to expand up to fourth
order in P;(t"). We assume that the coupling coefficient dzp, the
strength of the driving field, and the dissipation in each system
are sufficiently weak such that a leading order correction to the
expectation value of (A12) can be written as

(la(), a"(O)]) & e~ ™21 — i8ew, 1)
oo (A16)
~ e—zw,t—sz,t—Kz/Z'
Below we calculate this shifted frequency dw,, and provide
the results given in the main text. Hereafter, all operators
will be in the interaction picture [described by Egs. (A2) and
(AS5)] and we omit the subscript I for simplicity unless stated
otherwise.
The perturbation expansion of Ut()a@)U () and keeping
terms that contribute to the frequency shift lead to

U )a@®)U(t) = at)[1 + Cyr(t) + Cyn(2)

(A17)
+ Cra2 () + Cep2 (1)1,
where Cy(t) and Cy2(t) are 8§p-0rder terms,
—i82 t
Cyr(t) = th / du H'(t)), (A18)
0

Cyn(t) = %/0’ dh /0’ dtr(—012€"" 4 051e™)
x H'(t)H' (), (A19)

where 6;; = 6(t; — t;) is the Heaviside step function and
Wi = (o + ik /2)t; + (—w, + i [2)t;. (A20)

The field-dependent terms Cyrp2(¢) and Cyry2(¢) are given by

(A21)

52 t t t t
Crep(t) = — / dt, / dt / dt; / dty
n*Jo 0 0 0

912923934(6iw12H1/H2/A3A4 + eiW13H1/A2H3/A4 + eiW]4H1/A2A3HA;)

— 021023034 (" H{H}A3A4 + "> A H,HJ Ay + €A H,A3H))

+ 02103034 (" H{ Ay HAy + "2 A\ HyHAy + €A1 A HHY)

— 021032043 (" H{AA3H) + "2 A H,A3H) + €9 A 1Ay HLHY),

where the subscript numbers n = 1, ..., 4 indicate the time
dependence,
H};/ = H//(tn)7 H,/, = H/(tn)a Ap = A(ty). (A23)

Substituting Eq. (A17) into Eq. (A16) and performing the
integrations with respect to the given many-body state, we find
the shifted frequency dw,,

86{), = (SC()H” =+ 80)[.]/2 =+ CSLUH//AZ =+ 8(1)].1/2,42, (A24)

(A22)

(

where 8wy, with X € {H”, H?, H'A?, H?A?}, are the fre-
quency associated with Cx (¢),

i
dwyx = ;TF[PWL Cx ()] (A25)
For pwL = |g){gl, they are given by
8221’ 7
Swnlig = o4 D W (A26)

ioc<0
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82
Swgn || = ﬂ Z Ris,

(A27)
za<0
Z |A—IU o' |
(S(!)H!/AZ |‘g) P Z Z ]
ioc>0 jo >O D_is Jo!
X (h;; ic T h/j,a ,jo’ ) (A28)
5 A jo'
Somely =3 ) D 5
h ioc>0 jo'>0 |D_lﬁ’j”/|
X (Rig + Rjor), (A29)
where
2|h;g o | Eia, jo!
== (A30)
jo'ic io,jo' — *r
Dis,jor = hwg — |Ejo ic| + i(Uic + T'jg)R/2. (A31)

Here Ejo ;v = Eic — Ej, is the energy difference between
the levels io and jo', and E, is the resonant energy of the
resonator including the effect of the dissipation, E . =h fr —
i(Fia‘ + Fjo'/ + IC)/2

The frequency shift for pwr. = |ipoo) (ipop| is obtained as

82
8on livoy) = 80n lig + — i o (A32)
2
360[-1/2 |‘i00‘0) = (SCL)H/Z hg) + %pRioaov (A33)
25 N Wil
SwH”A2 ||i060 — ZP |Dtr)60 ,jo! |
jo'>0 io0o, jo'
X (h;/ff ,Jjo! - h::)ao l()U(]) (A34)
287, Ay jo' |
8wH’2A2 |‘i0(70) = T m
jo'>0 inoo, jo’
X (R]-(T, - Riod())' (A35)

First, note that in absence of drive, the coupling to the weak
link induces a shift in the resonator’s frequency which is

hsw®
B =5 z :(hw' io
Zp  ldr off ztr<()
Z[ > e E]
=5 io,ic 2 ’
za<0 jo'>0 za j(r E

which is a generalized version of Eq. (4) taking into account
the intrinsic resonator’s linewidth and the inherited contribu-
tion due to the finite lifetime of Andreev states. To see this,
note that the last term can be written as

—|H, . |2( !
e Eio',ja’ - hfr + i(Fia + Fja’ + K)/2

1
+ - )
Eio*,ja/ + hfr - l(ria + l—‘ja’ + K)/2>

and has the form of Jaynes-Cummings with dissipation. The
contribution from the drive is

1g) 1g)
héwy _ héwy Z Z |A_is ](7|
52 2
zp  'dron zp ldroff io>0 jo >0 D—is Jo!

X(h;; i + RiU + h}/a’,ja’ + R.fg/)’

which, for example, if the drive frequency is close to |g) —
|[1uld) transition, the term with the denominator

D—lu,lu - hwd - |Elu,—lu| + i(F—lu + l—‘lu)h/z
becomes the most relevant and

i hsw®

dron 82P
A vl (A, 1, + Riw + hgra + Ria)
(hwg — |Ev—1ul)* + (1 + T1, 202 /47

which corresponds to the shift in |luld) multiplied by a
Lorenztian coefficient associated with the probability of the
transition, here the matrix element is the Rabi frequency.
So the result is very intuitive: once the shifts S/ |, for
the different many-body configurations are determined, the
effect of the drive is to take into account selection rules for
transitions to occur.

2
82P dr off

APPENDIX B: THEORETICAL MODEL
OF THE NANOWIRE: SCATTERING MODEL

We briefly repeat the theoretical model of the nanowire
weak link reported in Refs. [22,26], and discuss the effect of
side gates on the transitions between Andreev levels of the
weak link.

The nanowire is described by the Hamiltonian H3P con-
sisting of a kinetic energy, a confining harmonic potential in
the transverse y and z directions with a confinement width W
(effective diameter of the nanowire), and Rashba spin-orbit
coupling with intensity «,

PP RO+ )

3D __
= 2m* 2m*(W/2)*

+ o (—kysy + kysy),
(BD)

where m* is the effective mass and s, , are the Pauli matrices
for spin. We consider the lowest two spin-full transverse sub-
bands denoted by ns, withn = 1,2 and s =%, |, arising from
the confining potential in the transverse direction under the
effect of the Rashba spin-orbit coupling [26]. The transverse
mode wave functions (l)nL_Y (v, z) are

= 2(y24-72 2

¢ 2 —2(y 42

15(y7 Z) - ﬁe O +z°)/W Xs»

[0) 2\/_2 B2)
;;(y, Z) = —ye ‘2()“+32)/W2X

JTW? >

with energy eigenvalues E;X = 4hR%n/(m*W?), where X1 =
(1/4/2)[1, i(—i)]. By integrating out the transverse modes,
3P can be reduced to one-dimensional form. The energy
dispersion relations of the resulting lowest subbands (named
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m; and m,) are

k2 EL EL ?
o+ 7* — <7 + (—l)vakx> +n?, (B3)

E, (kx) =

where v = 1 corresponds to m; and v = 2 to m;, and Ei =

Ef- + EZJ- n = +/2a/W is the strength of the subband mix-
ing due to the Rashba spin-orbit coupling. In accordance
with the estimated nanowire diameter in Ref. [22] we take
W ~ 140 nm, which leads to E5- — Ei- ~ 0.68 meV for the
subband separation.

1. Andreev levels

The linearized Bogoliubov—de Gennes equation around the
chemical potential u for which only the lowest subbands are
occupied is

Ho®(x) = E O(x), Ho= Hnw + Hp +Ha)T: + AW)1,
(B4)
where 7, are Pauli matrices in Nambu space. The wave

function is written in the basis

h h h n\T
¢ = (¢.et,-,R’ ¢.et,-$L’ ¢6_,R’ ¢6_,L’ ¢+,R’ ¢+,L’ ¢—,R’ ¢_’L) ,

where R (L) refers to the right-moving (left-moving) electron
(e) or hole (h) in the bands m;(—), m,(+). The Hamiltonian
for electrons in the nanowire Hyxw and the potential scattering
term H, are

Haw = —i(vid, + v_b)hd, — h(ky + k_b.d,),

. (BS)
Hp = Upd(x — x0)(1 + dycos[(61 — 62)/2]),
where b ; and d ;i (j = x,y, z) are Pauli matrices acting in the
subband (4, —) and right/left mover space, respectively. vy
and k. are functions of Fermi velocities (v; and v,) and Fermi
wave vectors (kpy and krp),
oy = v = vz’ ke = vikp) £ vszz’ (B6)
2 2
where fiv; = 0E;(kp;)/dk, with E;(kp;) = . Particle
backscattering within the nanowire is accounted for
by a single deltalike potential barrier of the strength
Up located at some arbitrary position xp, and 6;—;, =
arccos[(—1)/ (fikp, /m* — v;)/a] characterize the mixing with
the higher subbands. The superconducting order parameter
A(x) is given by A(x) = A at |x| > L/2 and zero otherwise.
We assume that the phase drop of the superconducting order
parameter across the weak link occurs at x = xo.
The Hamiltonian H( commutes with the pseudospin op-
erator b, which defines pseudospin-up and pseudospin-down
Andreev states & (x) = $,(x) ® |o) witho = u, d,

F i n T
Q= (‘bi,R’ D% 1 Py s ¢+,L) )

by = (¢ o 91 8" 0" 1)

The Andreev states are obtained by imposing the boundary
condition at x = xg,

(B7)

D, (xo +07) = My Dy (xo — 07), (B8)

where 07 is a positive infinitesimal. M, is the transfer matrix

given by
R e~I2M 0
M, = ( 0 20, ) (B9)

and M, by replacing M/, in M, by My, where M;; is the 2 x 2
matrix given by
tt —rr ﬂ}’/e"“’

My =1 Ve, (B10)

with ¢ = [(kgy + kg2) + (A1 + Az)€/L]xp. The reflection and
transmission coefficients are determined by

. -1
, . sind
te e =t'eM = (COSd g ) ’

: : . sind 01 — 92
re ¥ = % = —l\/m p cos ( 5 tt',

1
d= 5\/14% + 12 — 2uyu c0s(6; — 6),
where vo = hviva/Uo, u; = v;/vo, us = (u; +uz)/2, and
u, = (u; —up)/2. From the continuity conditions at x =
+L/2 and Eq. (B8) we find the transcendental equation

(B11)

Tcos[(A — Ap)e F 8]+ (1 — ) cos[(A; + Ap)ex,]

= cos[2 arccos € — (A + Ar)e], (B12)

where x, = 2xo/L and T = |¢|? is the transmission probability.
The normalization condition for the Andreev bound states ®;,
with |[Ei;| < Ais

/ dx ®F (X)D o (X) = 880 (B13)

o0
The continuum states ®;, at |E| > A are degenerate with i =
(ip, ig) where i, = e, h denote electronlike or holelike state
and iy = [, r are the left or right source. They are normalized
by the local density at the source region,

O () iy (x) = iS00 (B14)

io 1T 2 hvg(E)’
where the group velocity v,(E) at energy E
is given by uwVE?2—A2Z/|[E| for (0,0 ig) =

(u, e, 1), (u,h,r), (d,e,r), (d,h1), and v;vVE* — A?/|E|
for (o, iy, iq) = (u,e,r), (u,h,1), (d,el), (d,h,r).

The current operator Hy = 9H/9$ of the linearized band
is given by

vl 0 0 0
,  BS(x—x)[ 0O —v2 0 0 1.
Ho=—7F—"1o o v o [0 G
0 0 0 -—vl

where the factor 1/2 reflects the particle hole redundancy and
Ty is the identity matrix in the Nambu space. We find the
matrix element of the current operator between states io and
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Jjo'. For pseudospin-up states, o, 0’ = u, we obtain

<cDiL¢|H6|CDju>

/dx¢> (x)?-lo D, (x)

vl 0 0 0
0 —v2 0 0
0

éju(xO) 0 0 vl &)ju(XO)a
0 0 0o -2
(B16)
and for pseudospin-down sates, o, 0’ = d,
(Pia| Ho|®ja) = / dx ®},(x) Hj ©ja(x)
v2 0 0 0
h 0 —-vl O 0 |x
0 0 0 -—wvl
(B17)

2. Effect of side gates and selection rules

A displacement §V (¥) in the electrostatic potential of the
nanowire induced by the side gates shown in Fig. 5 can be
modeled as

5V (7) = {SV(y)

where we assumed that the electric field of the gates is in the
y direction and are uniform in the normal region x; < x < xp.
To reveal the role of the spatial symmetry of the transverse
wave functions, we decompose §V (y) into symmetric and
antisymmetric parts, 8V (y) = §Vs(y) + dVa(y),
V() +8V(=y)
2 9
V(y) —
—8Va(—=y) = 3

Mapping onto the subspace spanned by the transverse modes
(@i, ¢3.), given in Eq. (B2), leads to

forx; < x < xp,

elsewhere, (B18)

Vs(y) = 8Vs(—y) =

SV (—y) (B19)
SVA(Y) = Y

/dydmi) (5, 2) 8Vs(») o1 (9, 2) = Vst 8y,
/dydquff(y, 2)8Vs () 3y (v, 2) = Vo 8y,

/ dydz ¢7- (v, 2) 8Va(y) §35 (3, 2) = Vi 8y,
(B20)

/dyd2¢ (5, 2) VA o1t (v, 2) =
/ dydz ¢35 (9, 2) Va(y) 92 (v, 2) = 0

/ dydz ¢, (3, 2) 8Vs(y) ¢35, (v, 2) = 0,

where we used the spatial symmetry of the transverse modes
in the y direction. Here V5 and Vg, are associated with the
symmetric part §Vs(y), and V4 on the antisymmetric part
8Va(y), with which we fit the experimental data. H4 is given

by
Hp = r(x)(Asi + Asob.d. + Assdy + Axbyd.),  (B21)

where r(x) is the rectangular function that takes 1 for x; <
x < xp and O elsewhere, and

Vsi . ,6, Vo 5,0,
Ag = —sin“ — + — cos” —,
st nzzmzl ) 2
Vsi . ,6, Vs On
_ gkt Vst o0 Vsa o 5 On
Asz_n;z( 1) (2 sin 2 + > cos 2),

Ass = Ve, sin L sin 2 4 v O os 2
= n—Ssin — COS — COS —,
S3 = VS1 Sl ) 1 ) S2 ) )

01 — 6,
2 .

Note that the last term in Eq. (B21) containing the matrix by
does not conserve the pseudospin o, and thus, are responsible
for the pseudospin-flip transitions. Specifically, the matrix
elements for the pseudospin conserving transitions take the
forms

AA = VAsin(

X2 ] N ~

Ay = / dx® (Odsi 2.0, (B22)
X1
X2 . N -

A = / dxd (Ods 2,040, (B23)
X1

where Agy = Ag j:Aszzfz +As3a7x. The matrix element be-
tween Andreev states of opposite pseudospin is
X2
Ajuja = / dx &7 (0)Ad 2, D (x), (B24)
X1
indicating that the antisymmetric parameter V, allows the
pseudospin flip transitions. For the matrix elements shown
in Figs. 5(d) and 11, we used the parameters (Vsi, Vsz, Va)
which are (324 weV, 130 weV,0) and (0,0,324 ueV)
for the symmetric and antisymmetric cases, respectively,
and (10 weV,4 peV,314 peV) for the almost anti-
symmetric case. x; = —108 nm and x, = 166 nm are
taken for all cases. For Fig. 10 we used (Vsi, Vs2,Va) =
(10.8 ueV, =7.2 ueVv,216.2 ueV), x; = —10.3 nm and x, =
181 nm.

APPENDIX C: TIGHT-BINDING MODELING

The tight-binding calculations used in Fig. 4 use customary
Nambu-spinor discretization, in particular the one presented
in Ref. [39]. As the goal is a qualitative understanding of
the phenomena, we model the effect of spin-orbit channel
mixing by considering only the two transverse channels of a
two-sites-wide tight-binding stripe. The longitudinal hopping
is taken #; = 35.3 A and the perpendicular hopping 7, = 0.3¢.
The longitudinal (perpendicular) spin-orbit coupling, which
is only included in the normal region, involves o, (oy) and
has a hopping strength of A; = 0.43#; (», = +/0.3%)). The
chemical potential lies at 0.5737; from the bottom of the
band. It has been tuned to allow the transport through a sin-
gle effective channel. This choice also ensures a significant
difference in the spin-dependent Fermi velocities [40]. The
normal region is modeled with 80 sites, whereas 350 sites
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TABLE 1. The data of Fig. 6 were taken during different
cooldowns (runs) of the same sample, labeled I, II, and III. In runs
I and III the bare resonator frequency f, was measured when the
contact was open, whereas for run II it was a fit parameter. The
largest transmission 7, is the essential fit parameter, determining
the overall shape. In the last column, we indicate the minimal
value of the Andreev frequency associated with this transmission
fﬂi“ = far(m) =2A1 — t;. When fﬁi“ < f; (c)—~(g), one observes
an avoided crossing. A second channel with transmission ,, and for
Figs. 6(a") and 6(b’) a third one with transmission 3 taken equal to
75, essentially accounts for an overall shift of the resonator frequency.
From the estimated loop inductance £ =~ 0.1 nH [42], we obtain the
screening parameter 8 = 0.03 used to fit the data.

Contact Run f, (GHz) T T T3 f/;"li“ (GHz)
(a) 1 10.1345 0.9850 0.9428 0.9428 10.85
(b) I 10.1345 0.9856 0.9468 0.9468 10.63
©) III 10.1091 0.9890 0.9 - 9.29
(d) 1 10.1345 0.9922 0.8783 - 7.82
(e) II  10.1091 0.9945 0.6561 - 6.57
® II 10.1364 0.9967 0.9692 - 5.09
(2) 1 10.1345 0.9996 0.8497 - 1.77

represent each superconducting region. A direct calculation
of the Fermi velocity allows estimating L/&y = 1.6. Finally,
the superconducting phase difference § enters (halved) in the
longitudinal hopping terms at the center of the normal region
[41], and a sharp uncentered barrier of height %IH is located at
site 20 of the normal region.

APPENDIX D: LINK BETWEEN APPLIED FLUX
AND PHASE ACROSS THE WEAK LINK

When a weak link is placed inside a superconducting loop
with geometric inductance ¢ threaded by a magnetic flux ®,

TABLE II. Parameters for the spectra shown in the figures, cal-
culated using Eq. (B12).

)»1 }»2 X T

Fig. 2(a) 0 0 0 0.97
Fig. 2(b) 1.7 1.7 0.83 0.45
Fig. 2(c), Fig. 4 1.7 3.56 0.83 0.45
Fig. 5(c), Fig. 11 1.3 2.3 0.525 0.295
Fig. 10 2.80 4.85 0.18 0.25
Fig. 14 1.86 1.86 0 0.996

0.95 0.95 -1 0.26

the screening current due to the weak link leads to a phase
drop across the loop inductance. This leads to the following
relation between the reduced flux ¢ = 27 ® /P and the phase
8 across the weak link:

3= ¢ — Bij(8),

with the screening parameter § = £A /(pg, wo = Pp/2m, and
iiwy = @oljwy /A = (1/A)3E|y)/d8 the reduced current asso-
ciated with the weak link in state |¥). In a single-channel

short weak link, iy = —0+/1 — 71 sin2(8/2)/88, lley = —l|g),

and l"o) =0.

(D1)

APPENDIX E: PARAMETERS FOR FIG. 6

The parameters used for Fig. 6 are given in Table 1.

APPENDIX F: SPECTRA PARAMETERS

Most of the spectra (illustrative of fit) were obtained from
Eq. (B12). We give in Table II the parameters corresponding
to the various figures.
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