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CHAPTER 1 INTRODUCTION

This dissertation is devoted to studying matrix-valued random sequences modulated by

a discrete-time Markov chain. The main effort is to obtain asymptotic properties of such

random processes through appropriate scaling and interpolation. In the introduction, we

first review some recent progress in hybrid systems. Then we give motivation of the study

of Markov modulated sequences followed by an outline of the dissertation.

1.1 Recent Progress

In recent year, much effort has been devoted to studying hybrid systems. By hybrid

systems, we mean systems that include both continuous dynamics and discrete event. One

class of such hybrid systems is the so-called switching diffusions in which the underlying

systems have a continuous component represented by a diffusion process and a discrete

component that is a switching process. The two component process may be written as

(X(t), α(t)) with X(t) and α(t) representing the continuous and discrete states, respec-

tively. The switching component takes values in a finite state space, say M. For each

of the discrete states ι ∈ M, X(t) is a solution of a stochastic differential equation with

suitable drift and diffusion coefficients depending on ι. The continuous state and discrete

events coexist and interact resulting in certain properties that are not seen in either diffu-

sions or switching processes alone. For example, putting two linear differential equations

that are both stable through a switching process may result in an unstable system. Like-

wise, solutions of two equations that are both ergodic may result in a system that is not

ergodic. Because of the distinct features, much effort has been devoted to the study of

such processes. For an account of switching diffusions when the switching process is a
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continuous-time Markov chain independent of the Brownian motion, we refer the work of

Mao and Yuan [9], when the switching process is a continuous-state-dependent process,

see Yin and Zhu [28]. For applications of switched dynamic systems, we mention the works

for control systems [2, 10, 15, 16], manufacturing and production planning [17, 18], com-

munication and computer networks [21], hybrid filtering [22], discrete optimization [23],

mathematical finance [24], and many references therein.

Parallel to the development of continuous-time systems, effort has also been placed on

treating discrete-time systems. The main motivation is reduction of complexity. Based on

such motivation, in the work [12, 13], the authors launched a study on discrete-time ver-

sion of “hybrid switching diffusions”. They considered multiple number of vector-valued

sequences of random processes modulated by a discrete-time Markov chain and revealed

the asymptotic properties of the two-component sequences by using martingale problem

formulation and strong approximation using a probabilistic approach. One of main ideas

that we used is decomposition and aggregation, which was considered in the work of

[1]. In that reference, Courtois illustrated that one can decompose a state space into sub-

spaces leading to a so-called nearly completely decomposable model (see also [19]). In

this dissertation, we continue our quest in this direction with the emphasis on a Markov

modulated sequences. Nevertheless, the primary sequences we consider are sequences of

double arrays or sequences of matrices. The problem becomes more complex. Our aim is

to analyze the asymptotic properties of the sequence.
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1.2 Markov Modulated Sequences

Before proceeding to our study, we address a couple of questions first. These questions

indicates the main features of the random sequences that we are interested in and the

motivation for the study.

What are the main features of Markov-modulated sequences? Concentrating on discrete-

time models, let us begin with a discrete-time Markov chain αk with a finite state space

M = {1, . . . ,m0}, and suppose that there arem0 sequences of random variables {Xk(γ)}γ∈M

(in this work, these random variables are matrix-valued), where in the notation Xk(γ), k

denotes the discrete time and γ is the index the γth sequence. At any given time j, the

Markov chain takes a value γ ∈ M, the chain will sojourn in γ for some time. During

this time, the sequence {Xj(γ)} is activated. This sequence will remain active until the

Markov chain switches to another state γ1 ∈ M at some later time say k > j. Then

the γ1th sequence {Xk(γ1)} is activated, which will be active until a later time when the

Markov chain switching to another state γ2, and so on. We call {Xk(γ)} (for γ ∈ M) the

primary sequence. The combined sequence of interest in our study can be described by

{Xk(αk)}. We can also easily write Xk(αk) =
∑

γ∈MXk(γ)I{αk=γ}, where IA is the usual

indicator function of the set A. The sample paths of αk are constructed in accordance with

the transition probability matrix P .

Why should we be interested in studying Markov modulated sequences? One of the

primary motivations for our studies is the treatment of networked systems. In the new

era, many physical, biological, and social systems are rather complex. The usual method

of modeling is often inadequate. Thus various networked systems come into being. Such
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systems usually have complex structures and with different components and subsystems

that are inter-connected and interacted. To model the inter-connections and the change of

the inter-connections, we allow the configuration of the overall system to be time-varying.

One way of modeling is that on top of the different components or subsystems, to assume

that there is a switching device. The different components (subsystems) can be thought

of as satellites around an exchange center. The exchange center dictates which sequence

to be active next. The use of a discrete-time Markov chain enables the formulation of

the configuration change to be done at random time. Such modeling point has become

increasingly more popular in various applications; see for example, consensus formation

of multi-agent systems [25], chemostat models and wastewater treatment [11], stochastic

ecosystems [20], and discrete optimization [23]. Because of their importance, the study

on such systems and related issues has gained resurgent interests and drawn the attention

from many researchers.

1.3 Outline

With the motivation given above, this dissertation concentrates on studying matrix-

valued sequence. Limit results of double array processes were contained in almost of

probability textbooks. The classical work dealt with law of large numbers and related

limit theories. In this dissertation, the primary sequences we consider are φ-mixing ran-

dom matrix-valued processes with appropriate mixing rates. Our main effort is on getting

the desired asymptotic results. In a certain sense, this work is inspired by [12, 13], but

the primary sequence becomes matrix-valued. Similar to the aforementioned references,

we assume that the modulating sequence is a discrete-time Markov chain with transition
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probability matrix displaying certain two-time-scale properties. Technically, comparing to

[12, 13], in lieu of using perturbed test function methods, we use direct averaging methods

to treat the underlying problems. Our main study is based on the use of functionals, which

map the matrix-valued processes to real-valued processes. Then we proceed to study the

asymptotic behavior. In addition to such an approach, near the end of the dissertation, we

demonstrate how matrix-valued processes may be dealt with directly. In addition, slightly

different from the rest of dissertation, the main effort in that chapter is to obtain certain

exponential type of bounds of tail probabilities, which is interesting in its own right.

The rest of the dissertation is arranged as follows. In chapter 2, definitions and related

properties of Wiener process, stochastic differential equations, Itô’s Lemma, Martingale

problem formulation and Markov chains are recalled. Chapter 3 gives the precise formu-

lation of the problem. Chapter 4 presents the main asymptotic results. Section 5 concen-

trates on specializations and extensions. Chapter 6 issues some final remarks to conclude

the dissertation. Finally, an appendix is placed at the end of the dissertation, which collects

some results on two-time-scale Markov chains.
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CHAPTER 2 STOCHASTIC DIFFERENTIAL EQUATIONS AND MARKOV
CHAINS

This chapter presents some preliminaries and background materials.

2.1 Stochastic process

Definition 2.1.1. (see [29], p.10) A stochastic process is a parametrized collection of random

variables {Xt}t∈T defined on a probability space (Ω,F , P ) and taking values in Rn.

The parameter space T may be a subset of R (an interval [a, b], the non-negative in-

tegers, but usually the half-line [0,∞)). For each t fixed, the Xt is a random variable

ω → Xt(ω); ω ∈ Ω. On the other hand, by fixing ω ∈ Ω the function t → Xt(ω), t ∈ T

is a path of Xt. For convenience, the notation X(t, ω) sometimes is used instead of Xt.

It means the process Xt can be regarded as a function of two variables (t, ω) → X(t, ω)

from T × Ω into Rn. The (finite-dimensional) distributions of the process X = {Xt}t∈T

are the measures µt1,...,tk defined on Rnk, k = 1, 2, . . . , by µt1,...,tk(F1 × F2 × · · · × Fk) =

P [Xt1 ∈ F1, · · · , Xtk ∈ Fk]; ti ∈ T , where F1, . . . , Fk denote Borel sets in Rn. Conversely,

given a family {νt1,...,tk ; k ∈ N, ti ∈ T} of probability measure on Rnk it is able to construct

a stochastic process Y = {Yt}t∈T having νt1,...,tk as its finite-dimensional distributions.

Theorem 2.1.2 (Kolmogorov’s extension theorem). (see [29], p. 11) For all t1, . . . , tk ∈

T, k ∈ N, let νt1,...,tk be probability measures on Rnk s.t.

νtσ(1),··· ,tσ(k)(F1 × · · · × Fk) = νt1,··· ,tk(Fσ−1(1) × · · · × Fσ−1(k))



7

for all permutations σ on {1, 2, . . . , k} and

νt1,...,tk(F1 × · · · × Fk) = νt1,...,tk,tk+1,...,tk+m(F1 × · · · × Fk × Rn × · · · × Rn)

for all m ∈ N. Then there exists a probability space (Ω,F , P ) and a stochastic process {Xt}

on Ω, Xt : Ω→ Rn, s.t.

νt1,...,tk(F1 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk ∈ Fk],

for all ti ∈ T, k ∈ N and all Borel sets Fi.

Fix x ∈ Rn and define p(t, x, y) = (2πt)−n/2 exp
(
− |x−y|

2

2t

)
for y ∈ Rn, t > 0. For any

0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, define a measure νt1,··· ,tk on Rnk by

νt1,··· ,tk(F1×· · ·×Fk) =

∫
F1×···×Fk

p(t1, x, x1)p(t2−t1, x1, x2) · · · p(tk−tk−1, xk−1, xk)dx1 · · · dxk

By Kolmogorov’s theorem there exists a probability space (Ω,F , P x) and a stochastic pro-

cess {Bt}t≥0 on Ω such that the finite-dimensional distributions of Bt are given by

P x(Bt1 ∈ F1, · · · , Btk ∈ Fk) =

∫
F1×···Fk

p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)dx1 . . . dxk.

Definition 2.1.3. (see [29], p. 12) Such a process is called a (version of) Brownian motion

starting at x (observe that P x(B0 = x) = 1).

Definition 2.1.4. (see [29], p. 14) Suppose that {Xt} and {Yt} are stochastic processes on

(Ω,F , P ). Then we say that {Xt} is a version of (or a modification of) {Yt} if P ({ω;Xt(ω) =
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Yt(ω)}) = 1 for all t.

Theorem 2.1.5 (Kolmogorov’s continuity theorem). (see [29], p. 14) Suppose that the

process X = {Xt}t≥0 satisfies the following condition: For all T > 0 there exists positive

constants α, β,D such that E[|Xt −Xs|α] ≤ D · |t − s|1+β; 0 ≤ s, t ≤ T . Then there exists a

continuous version of X.

2.2 Itô Integrals

Definition 2.2.1. (see [29], p. 25) Let Bt(ω) be n-dimensional Brownian motion. A σ-

algebraFt = F (n)
t can be defined as the one generated by the random variables {Bi(s)}1≤i≤n,0≤s≤t.

In other words, Ft is the smallest σ-algebra containing all sets of the form {ω;Bt1(ω) ∈

F1, · · · , Btk(ω) ∈ Fk}, where tj ≤ t and Fj ⊂ Rn are Borel sets, j ≤ k = 1, 2, . . ..

Definition 2.2.2. (see [29], p. 25) Let {Nt}t≥0 be an increasing family of σ-algebras of

subsets of Ω. A process g(t, ω) : [0,∞) × Ω → Rn is called Nt-adapted if for each t ≥ 0 the

function ω → g(t, ω) is Nt-measurable.

Definition 2.2.3. (see [29], p. 25) Let V = V(S, T ) be the class of functions f(t, ω) :

[0,∞)× Ω→ R such that

(i) (t, ω)→ f(t, ω) is B×F -measurable, where B denotes the Borel σ-algebra on [0,∞).

(ii) f(t, ω) is Ft-adpated.

(iii) E[
∫ T
S
f 2(t, ω)dt] <∞.

Definition 2.2.4 (The Itô integral). (see [29], p. 29) Let f ∈ V(S, T ). Then the Itô inte-

gral of f (from S to T ) is defined by
∫ T
S
f(t, ω)dBt(ω) = limn→∞

∫ T
S
φn(t, ω)dBt(ω) (limit in

L2(P )) where {φn} is a sequence of elementary functions such thatE
[∫ T

S
(f(t, ω)− φn(t, ω))2dt

]
→
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0 as n→∞.

Corollary 2.2.5 (The Itô isometry). (see [29], p. 29)

E

[(∫ T

S

f(t, ω)dBt

)2
]

= E

[∫ T

S

f 2(t, ω)dt

]
for all f ∈ V(S, T ).

Corollary 2.2.6. (see [29], p. 29) If f(t, ω) ∈ V(S, T ) and fn(t, ω) ∈ V(S, T ) for n = 1, 2, . . .

and E[
∫ T
S

(fn(t, ω)− f(t, ω))2dt]→ 0 as n→∞, then
∫ T
S
fn(t, ω)dBt(w)→

∫ T
S
f(t, ω)dBt(ω)

in L2(P ) as n→∞.

Definition 2.2.7. (see [29], p. 31) A filtration (on (Ω,F) is a family M = {Mt}t≥0 of

σ-algebras Mt ⊂ F such that Ms ⊂ Mt for 0 ≤ s < t. An n-dimensional stochastic

process {Mt}t≥0 on (Ω,F , P ) is called a martingale with respect to a filtration {Mt}t≥0 (and

with respect to P ) if i) Mt is Mt-measurable for all t, ii) E[|Mt|] < ∞ for all t, and iii)

E[Ms|Mt] = Mt for all s ≥ t.

Theorem 2.2.8 (Doob’s martingale inequality). (see [29], p. 31) If Mt is martingale such

that t→Mt(ω) is continuous a.s., then for all p ≥ 1, T ≥ 0 and all λ > 0

P [ sup
0≤t≤T

|Mt| ≥ λ] ≤ 1

λp
E[|MT |p].

Theorem 2.2.9. (see [29], p. 32) Let f ∈ V(0, T ). Then there exists a t-continuous version

of
∫ t

0
f(s, ω)dBs(ω); 0 ≤ t ≤ T , i.e. there exists a t-continuous stochastic process Jt on

(Ω,F , P ) such that P [Jt =
∫ t

0
fdB] = 1 for all t, 0 ≤ t ≤ T .

Corollary 2.2.10. (see [29], p. 33) Let f(t, ω) ∈ V(0, T ) for all T. ThenMt(ω) =
∫ t

0
f(s, ω)dBs
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is a martingale w.r.t. Ft and

P [ sup
0≤t≤T

|Mt| ≥ λ] ≤ 1

λ2
· E
[∫ T

0

f(s, ω)2ds

]
; λ, T > 0.

2.3 Itô Formula and the Martingale Representation Theorem

Definition 2.3.1 (1-dimensional Itô processes). (see [29], p. 44) Let Bt be a 1-dimensional

Brownian motion on (Ω,F , P ). A (1-dimensional) Itô process (or stochastic integral) is a

stochastic process Xt on (Ω,F , P ) of the form

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dBs,

where v ∈ WH, so that P
[∫ t

0
v2(s, ω)ds <∞ for all t ≥ 0

]
= 1, and u is Ht-adapted i.e.

P
[∫ t

0
|u(s, ω)|ds <∞ for all t ≥ 0

]
= 1.

Theorem 2.3.2 (The 1-dimensional Itô formula). (see [29], p. 44) Let Xt be an Itô process

given by dXt = udt + vdBt, and let g(t, x) ∈ C2([0,∞) × R). Then Yt = g(t,Xt) is again an

Itô process, and

dYt =

(
∂g

∂t
(t,Xt) + u

∂g

∂x
(t,Xt) +

v2

2

∂2g

∂x2
(t,Xt)

)
dt+ v

∂g

∂x
(t,Xt)dBt

Theorem 2.3.3 (Integration by parts). (see [29], p. 46) Suppose f(s, ω) is continuous and

of bounded variation with respect to s ∈ [0, t]. Then
∫ t

0
f(s)dBs = f(t)Bt −

∫ t
0
Bsdfs.

Definition 2.3.4 (n-dimensional Itô process). (see [29], p. 48) LetB(t, ω) = (B1(t, ω), · · · , Bm(t, ω))
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denote m-dimensional Brownian motion. Suppose that vij ∈ WH so that

P

[∫ t

0

v2
ij(s, ω)ds <∞ for all t ≥ 0

]
= 1

and ui is Ht-adapted i.e.

P

[∫ t

0

|ui(s, ω)|ds <∞ for all t ≥ 0

]
= 1

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, then a n Itô processes can be defined as the following



dX1 = u1dt+ v11dB1 + · · ·+ v1mdBm

...
...

...

dXn = undt+ vn1dB1 + · · ·+ vnmdBm

Or, in matrix notation simply

dX(t) = udt+ vdB(t),

where

X(t) =


X1(t)

...

Xn(t)

 , u =


u1

...

un

 , v =


v11 · · · v1m

...
...

vn1 · · · vnm

 , dB(t) =


dB1(t)

...

dBm(t)



Theorem 2.3.5 (The general Itô formula). (see [29], p. 48) Let dX(t) = udt+vdB(t) be an

n-dimensional Itô process. Let g(t, x) = (g1(t, x), · · · , gp(t, x)) be a C2 map from [0,∞)× Rn
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into Rp. Then the process Y (t, w) = g(t,X(t)) is again an Itô process, whose component

number k, Yk, is given by

dYk =
∂gk
dt

(t,X)dt+
∑
i

∂gk
∂xi

(t,X)dXi +
1

2

∑
ij

∂2gk
∂xi∂xj

(t,X)dXidXj

where dBidBj = δijdt, dBidt = dtdBi = 0.

2.3.1 The Martingale Representation Theorem

Lemma 2.3.6. (see [29], p. 50) Fix T > 0. The set of random variables

{φ(Bt1 , . . . , Btn); ti ∈ [0, T ], φ ∈ C∞0 (Rn), n = 1, 2, . . .}

is dense in L2(FT , P ).

Lemma 2.3.7. (see [29], p. 50) The linear span of random variables of the type

exp

{∫ T

0

h(t)dBt(ω)− 1

2

∫ T

0

h2(t)dt

}
;h ∈ L2[0, T ] (deterministic)

is dense in L2(FT , P ).

Theorem 2.3.8 (The Itô representation theorem). (see [29], p. 51) Let F ∈ L2(F (n)
T , P ).

Then there exists a unique stochastic process f(t, ω) ∈ Vn(0, T ) such that F (ω) = E[F ] +∫ T
0
f(t, ω)dB(t).

Theorem 2.3.9 (The martingale representation theorem). (see [29], p. 52) Let B(t) =

(B1(t), . . . , Bn(t)) be n-dimensional. Suppose Mt is an F (n)
t -martingale (w.r.t. P) and that

Mt ∈ L2(P ) for all t ≥ 0. Then there exists a unique stochastic process g(s, ω) such that

g ∈ V(n)(0, t) for all t ≥ 0 and Mt(ω) = E[M0] +
∫ t

0
g(s, ω)dB(s) a.s., for all t ≥ 0.



13

2.4 Stochastic Differential Equations

Definition 2.4.1. (see [7], p. 10) Suppose that the Rr-valued random function b(·) is Ft-

adapted and satisfies
∫ T

0
|b(u)|du < ∞ w.p. 1. Let the r × r matrix-valued random function

σ(·) be Ft-adapted and satisfy
∫ T

0
|σ(u)|2du <∞ w.p. 1. A process x(·) defined as

x(t) = x(0) +

∫ t

0

b(s, x(s))ds+

∫ t

0

σ(s, x(s))dw(s),

is called a diffusion. Rewrite it in differential form

dx(t) = b(t, x(t))dt+ σ(t, x(t))dw(t).

Theorem 2.4.2 (Existence and uniqueness theorem for stochastic differential equations).

(see [29], p. 68) Let T > 0 and b(·, ·) : [0, T ] × Rn → Rn, σ(·, ·) : [0, T ] × Rn → Rn×m be

measurable functions satisfying |b(t, x)| + |σ(t, x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ] for some

constant C, (where |σ|2 =
∑
|σij|2) and such that |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤

D|x − y|; x, y ∈ Rn, t ∈ [0, T ] for some constant D. Let Z be a random variable which is

independent of the σ-algebra F (m)
∞ generated by Bs(·), s ≥ 0 and such that E[|Z|2] <∞. Then

the stochastic differential equation dXt = b(t,Xt)dt + σ(t,Xt)dBt, 0 ≤ t ≤ T , X0 = Z has a

unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to the filtration

FZt generated by Z and Bs(·); s ≤ t and E
[∫ T

0
|Xt|2dt

]
<∞.

Definition 2.4.3. (see [7], p. 10) Let C2,1 denote the space of function on Rr × [0, T ] whose

mixed partial derivatives up to order 2 in x and order 1 in t are continuous. Let f(·, ·) ∈ C2,1.
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Now denote L as the differential operator which is defined by

Lf(x, t) =
∑
i

bi(t, x)fxi(x, t) +
1

2

∑
i,j

aij(t, x)fxixj(x, t),

where a(t, x) = [aij(t, x)] ≡ σ(t, x)σ′(t, x).

2.5 Discrete-Time Markov Chains

Suppose that αk is a stochastic process taking values inM, which is at most countable

(i.e., it is either finiteM = {1, 2, . . . ,m0} or countableM = {1, 2, . . .}).

Definition 2.5.1. (see [26], p. 26) The process αk is a Markov chain if

pijk,k+1 = P (αk+1 = j|αk = i)

= P (αk+1 = j|α0 = i0, . . . , αk−1 = ik−1, αk = i),

for any i0, . . . , ik−1, i, j ∈M

Given i, j, if pijk,k+1 is independent of time k, then αk has stationary transition probabili-

ties. In this case, P (n) = (P )n, where P = (pij) is the transition matrix, and P (n) = (pij,(n)),

with pij,(n) = P (xn = j|x0 = i) is the n-step transition matrix.

Definition 2.5.2. (see [26], p. 27) For a Markov chain αk, state j is said to be accessible from

state i if pij,(k) = P (αk = j|α0 = i) > 0 for some k > 0. Two states i and j, accessible from each

other, are said to communicate. A Markov chain is irreducible if all states communicate with

each other. For i ∈ M, let d(i) denote the period of state i, i.e., the greatest common divisor

of all k ≥ 1 such that P (αk+n = i|αn = i) > 0 (define d(i) = 0 if P (αk+n = i|αn = i) = 0 for

all k). A Markov chain is called aperiodic if each sate has period one.
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Definition 2.5.3. (see [26], p. 27) Let P be a transition matrix for a finite-state Markov

chain. A row vector π = (π1, . . . , πm0) with each πi ≥ 0 is called a stationary distribution of

αk if it is the unique solution to the system of equations

πP = π∑
i

πi = 1.

Theorem 2.5.4. (see [26], p. 27) Let P = (pij) be the transition matrix of an irreducible

aperiodic finite-state Markov chain. Then there exist constants 0 < λ < 1 and c0 > 0 such

that |(P )k − P | ≤ c0λ
k for k = 1, 2, . . . , where P = 1lm0π, 1lm0 = (1, . . . , 1)′ ∈ Rm0×1, and

π = (π1, . . . , πm0) is the stationary distribution of αk. This implies, in particular, limk→∞ P
k =

1lm0π.

Definition 2.5.5. (see [26], p. 30) A sequence {f(i) : i ∈ M} is P -harmonic or right-

regular if a) f(·) is a real-valued function such that f(i) ≥ 0 for each i ∈ M, and b)

f(i) =
∑

j∈M pijf(j) for each i ∈M.

Definition 2.5.6. (see [26], p. 31) A jump process is a right-continuous stochastic process

with piecewise-constant sample paths. Let α(·) = {α(t) : t ≥ 0} be a jump process defined on

Ω,F , P ) taking values in M. Then {α(t) : t ≥ 0} is a Markov chain with state space M, if

P (α(t) = i|α(r) : r ≤ s) = P (α(t) = i|α(s)), for all 0 ≤ s ≤ t and i ∈ M, with M being

either finite or countable.

Definition 2.5.7 (q-Property). (see [26], p. 32) A matrix-valued function Q(t) = (qij(t)),

for t ≥ 0, satisfies the q-Property, if

(a) qij(t) is Borel measurable for all i, j ∈M and t ≥ 0;
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(b) qij(t) is uniformly bounded. That is, there exists a constant K such that |qij(t)| ≤ K,

for all i, j ∈M and t ≥ 0;

(c) qij(t) ≥ 0 for j 6= i and qii = −
∑

j 6=i q
ij(t), t ≥ 0.

For any real-valued function f onM and i ∈M, write Q(t)f(·)(i) =
∑

j∈M qij(t)f(j) =∑
j 6=i q

ij(t)(f(j)− f(i)).

Definition 2.5.8 (Generator). (see [26], p. 32) A matrix Q(t), t ≥ 0, is an infinitesimal

generator of α(·) if it satisfies the q-Property, and for any bounded real-valued function f

defined onM

f(α(t))−
∫ t

0

Q(ζ)f(·)(α(ζ))dζ

is a martingale.

Lemma 2.5.9. (see [26], p. 33) LetM = {1, . . . ,m0}. Then α(t) ∈ M, t ≥ 0, is a Markov

chain generated by Q(t) iff

(
I{α(t)=1}, . . . , I{α(t)=m0}

)
−
∫ t

0

(
I{α(ζ)=1}, . . . , I{α(ζ)=m0}

)
Q(ζ)dζ

is a martingale.

Let 0 = τ0 < τ1 < · · · < τl < · · · be a sequence of jump times of α(·) such that the

random variables τ1, τ2 − τ1, . . . , τk+1 − τk, . . . are independent. Let α(0) = i ∈ M. Then

α(t) = i on the interval [τ0, τ1). The first jump time τ1 has the probability distribution

P (τ1 ∈ B) =

∫
B

exp

{∫ t

0

qii(s)ds

}
(−qii(t))dt,
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where B ⊂ [0,∞) is a Borel set. The post-jump location of α(t) = j, j 6= i, is given by

P (α(τ1) = j|τ1) = qij(τ1)
−qii(τ1)

.

In general, α(t) = α(τl) on the interval [τl, τl+1). The jump time τl+1 has the conditional

probability distribution

P (τl+1−τl ∈ Bl|τ1, . . . , τl, α(τ1), . . . , α(τl)) =

∫
Bl

exp

{∫ t+τl

τl

qα(τl)α(τl)(s)ds

}
(−qα(τl)α(τl)(t+τl))dt.

The post-jump location of α(t) = j, j 6= α(τl) is given by

P (α(τl+1) = j|τ1, . . . , τl, τl+1, α(τ1), . . . , α(τl)) =
qα(τl)j(τl+1)

−qα(τl)α(τl)(τl+1)
.

Theorem 2.5.10. (see [26], p. 34) Suppose that the matrix Q(t) satisfies the q-Property for

t ≥ 0. Then the following statements hold.

(a) The process α(·) constructed above is a Markov chain.

(b) The process f(α(t)) −
∫ t

0
Q(ζ)f(·)(α(ζ))dζ is a martingale for any uniformly bounded

function f(·) onM. Thus Q(t) is indeed the generator of α(·).

(c) The transition matrix P (t, s) satisfies the forward differential equation

dP (t, s)

dt
= P (t, s)Q(t), t ≥ s,

P (s, s) = I,

where I is the identity matrix.
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(d) Assume further that Q(t) is continuous in t. Then P (t, s) also satisfies the backward

differential equation

dP (t, s)

ds
= Q(s)P (t, s), t ≥ s,

P (s, s) = I.

Definition 2.5.11 (Irreducibility). (see [26], p. 34)

(a) A generator Q(t) is said to be weakly irreducible if, for each fixed t ≥ 0, the system of

equations

ν(t)Q(t) = 0,

m0∑
i=1

νi(t) = 1

has a unique solution ν(t) =)ν1(t), . . . , νm0(t)) and ν(t) ≥ 0.

(b) A generator Q(t) is said to be irreducible, if for each fixed t ≥ 0 the systems of equations

has a unique solution ν(t) and ν(t) ≥ 0.

Definition 2.5.12 (Quasi-Stationary Distribution). (see [26], p. 35) For t ≥ 0, ν(t) is

termed a quasi-stationary distribution if it is the unique solution and satisfies ν(t) ≥ 0.

Definition 2.5.13. (see [26], p. 35) A generator Q(t) is said to be weakly irreducible if, for
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each fixed t ≥ 0, the system of equations

f(t)Q(t) = 0,

m0∑
i=1

f i(t) = 0

has only the trivial solution.

2.5.1 Asymptotic Expansions

For a small parameter ε > 0, let αεk be a discrete-time Markov chain depending on

ε and having finite state space M = {1, . . . ,m0} and transition matrix P ε
k = Pk + εQk,

where for each k, Pk is a transition probability matrix and Qk = (qijk ) is a generator of a

continuous-time Markov chain.

Definition 2.5.14. (see [26], p. 44) Denote pεk be the probability vector

pεk = (P (αεk = 1), . . . , P (αεk = m0)) ∈ R1×m0 .

Assuming that the initial probability pε0 is independent of ε, i.e. pε0 = p0 = (p1
0, . . . , p

m0
0 )

such that pi0 ≥ 0 for i = 1, . . . ,m0 and p01lm0 =
∑m0

i=1 p
i
0 = 1, then pεk is a solution of the

vector-valued difference equation

pεk+1 = pεkP
ε
k , k = 0, 1, . . . , bT/εc,

pε0 = p0.

Theorem 2.5.15. (see [26], p. 45) Suppose that P ε = P + εQ and that P is irreducible. For
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an integer n0 > 0, for some T > 0, and for any 0 ≤ k ≤ bT/εc, as ε→ 0 and k →∞, pεk → ν,

where ν is the stationary distribution corresponding to P . Moreover, there exist two sequences

{ϕi(t)}n0
i=0, 0 ≤ t ≤ T , and {ψi(k)}n0

i=0 such that |ψi(k)| ≤ Kλk0 for some 0 < λ0 < 1, that ϕ(·)

for i = 0, . . . , n0 are sufficiently smooth, and that

sup
0≤k≤bT/εc

∣∣∣∣∣pεk −
n0∑
i=0

εiϕi(εk)−
n0∑
i=0

εiψi(k)

∣∣∣∣∣ = O(εn0+1).

Suppose that T > 0 and ε > 0 is a small parameter, and that for 0 ≤ k ≤ bT/εc, αεk

is a discrete-time Markov chain with state space M = {1, . . . ,m0} and transition matrix

P ε = P+εQ, where P is a transition matrix of a discrete-time Markov chain andQ is a gen-

erator of a continuous-time Markov chain. Suppose P is given by P = diag(P 1, . . . , P l0) =
P 1

. . .

P l0

 , where P i ∈ Rmi×mi are transition matrices and
∑l0

i=1 mi = m0, or

P =



P 1

P 2

. . .

P l0

P ∗,1 P ∗,2 · · · P ∗,l0 P ∗


, where P i are transition matrices for each i ≤ l0

and (P ∗,1, . . . , P ∗,l0 , P ∗) corresponds to the transient states. Then the state spaceM can be

rewritten as

M = {s11, . . . , s1m1} ∪ {s21, . . . , s2m2} ∪ . . . ∪ {sl01, . . . , sl0ml0}

=M1 ∪M2 ∪ · · · ∪Ml0 ,
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with m0 = m1+m2+· · ·+ml0 . The subspaceMi, for each i = 1, . . . , l0, consists of recurrent

states belonging to the ith ergodic class. Furthermore, suppose that P ε, P , and P i for i ≤ l0

are one-step transition probability matrices such that for each i ≤ l0, P i is irreducible and

aperiodic.

Theorem 2.5.16. (see [26], p. 77) Under conditions of being irreducible and aperiodic, the

following assertions hold:

(a) For the probability distribution vector pεk = (P (αεk = sij)) ∈ R1×m0, we have

pεk = θ(εk)diag(ν1, . . . , νl0) +O(ε+ λk)

for some λ with 0 < λ < 1, where νi is the stationary distribution corresponding to the

transition matrix Pi, and θ(t) = (θ1(t), . . . , θl0(t)) ∈ R1×l0 satisfies

dθ(t)

dt
= θ(t)Qθ(0) = p01̃l,

where

Q = diag(ν1, . . . , νl0)Q1̃l 1̃l = diag(1lm1 , . . . , 1lml0 ).

(b) For k ≤ T/ε, the k-step transition probability matrix (P ε)k satisfies

(P ε)k = Φ(t) + εΦ̂(t) + Ψ(k) + εΨ̂(k) +O(ε2)

where

Ψ(t) = 1̃lΘ(t)diag(ν1, . . . , νl0)
dΘ(t)

dt
= Θ(t)QΘ(0) = I.
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Moreover, Φ(t) and Φ̂(t) are uniformly bounded in [0, T ] and Ψ(k) and Ψ̂(k) decay

exponentially, i.e., |Ψ(k)|+ |Ψ̂(k)| ≤ λk for some 0 < λ < 1.

Define continuous-time interpolations by αε(t) = αεk, and αε(t) = αεk for t ∈ [εk, ε(k +

1)), and denote by D([0, T ];M) the space of functions that are defined on [0, T ] taking

values inM and that are right continuous and have left limits endowed with the Skorohod

topology.

Theorem 2.5.17. (see [26], p. 78) As ε→ 0, αε(·) converges weakly to α(·), a Markov chain

generated by Q.

For k = 0, . . . , T/ε, i = 1, . . . , l0 and j = 1, . . . ,mi, define sequences of occupation

measures by

πε,ijk = ε
k−1∑
l=0

(
I{αεl=sij} − ν

ijI{αεl=i}
)

πεk = (πε,ijk ) ∈ R1×m0 .

Define continuous-time interpolations

πε,ij(t) = πε,ijk for t ∈ [kε, (k + 1)ε),

πε(t) = (πij(t)) ∈ R1×m0 .

Theorem 2.5.18. (see [26], p. 79) For i = 1, . . . , l0, j = 1, . . . ,mi,

sup
0≤k≤T/ε

E|πε,ijk |
2 = O(ε) and sup

t∈[0,T ]

E|πε,ij(t)|2 = O(ε).
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For each i = 1, . . . , l0, j = 1, . . . ,mi, and each 0 < k ≤ T/ε, define sequences of

normalized occupation measures

nε,ijk =
√
ε

k−1∑
l=0

wij(αεl ) =
1√
ε
πε,ijk ,

nεk = (nε,ijk ∈ R1×m0 .

where wij(α) = I{α=sij} − νijI{α∈Mi}.

Lemma 2.5.19. (see [26], p. 80) Let F εt = σ{αε(s) : s ≤ t}. Then

(a) sup0≤t≤t+s≤T E[(nε(t+ s)− nε(t))|F εt ] = O(
√
ε);

(b) For each i = 1, . . . , l0 and j = 1, . . . ,mi and for any 0 < s ≤ δ,

E[(nε,ij(t+ s)− nε,ij(t))2|F εt ] = O(δ).

Lemma 2.5.20. (see [26], p. 80) {nε(·), αε(·)} is tight in D([0, T ];Rm0 ×M).

Define operator L as the following Lf(x, i) = 1
2

∑mi
j1=1

∑mi
j2=1 a

j1j2(i) ∂2f(x,i)

∂xij1∂xij2
+Qf(x, ·)(i),

for i = 1, . . . , l0, where A(i) = (aj1J2(i)) is symmetric and nonnegative definite.

Theorem 2.5.21. (see [26], p. 81) (nε(·), αε(·)) converges weakly to (n(·), α(·)) such that

the limit is the solution of the martingale problem with operator L.

Suppose that P ε, P and P i for i ≤ l0 are one-step transition probability matrices such

that for each i ≤ l0, P i is irreducible and aperiodic. All the eigenvalues of P ∗ are inside

the unit circle. Then we have

Theorem 2.5.22. (see [26], p. 83)
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(a) The probability vector pεk = θ(εk)diag(ν1, . . . , νl0 , 0m∗) +O(ε+λk), where 0m∗ ∈ R1×m∗

and θ(t) = (θ1(t), . . . , θl0(t)) ∈ R1×l0 satisfies dθ(t)
dt

= θ(t)Q∗, θi(0) = pi(0)1lmi − p∗(0)ai.

The transition matrix satisfies P ε(εk0, εk) = Φ(t0, t) + Ψ(k0, k) + εΦ̂(t0, t) + εΨ̂(k0, k) +

O(ε2), for some λ with 0 < λ < 1, where Φ(t0, t) = 1̃l∗Θ∗(t0, t)ν∗ with Θ∗(t0, t) =

diag(Θ(t0, t)Im∗×m∗) whre Θ(t0, t) = (θij(t0, t)) satisfies the differential equation ∂Θ(t0,t)
∂t

=

Θ(t0, t)Q∗(t), Θ(t0, t0) = I.

(b) For each j = 1, . . . ,mi, supt∈[0,T ] E|πε,ij(t)|2 =


O(ε), for i = 1, . . . , l0,

O(ε2), for i = ∗;

(c) αε(·) converges weakly to α(·), a Markov chain generated by Q∗;
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CHAPTER 3 PROBLEM FORMULATION

3.1 Problem Formulation and Conditions

Consider a sequence of double arrays or a sequence of matrices modulated by a discrete-

time Markov chain αk with a finite state spaceM. We denote the sequence by {Xk(ı, , αk)}.

This work aims to investigate the asymptotic properties of {Xk(ı, , αk)}. Note that k =

0, 1, 2, . . . denotes the discrete time, and (ı, ) denotes the indices of the matrices with

ı,  = 1, . . . , d. That is, for each k and each γ ∈ M, Xk(ı, , γ) ∈ Rd×d is a d × d matrix. In

fact, for each γ ∈M,

Xk(γ) =



Xk(1, 1, γ) Xk(1, 2, γ) . . . Xk(1, d, γ)

Xk(2, 1, γ) Xk(2, 2, γ) . . . Xk(2, d, γ)

. . . . . . . . . . . .

Xk(d, 1, γ) Xk(d, 2, γ) . . . Xk(d, d, γ)


∈ Rd×d. (3.1)

For simplicity, in what follows, we will suppress the ı,  dependence and write it in a more

compact notation as Xk(γ).

Remark 3.1.1. In lieu of a square matrix Xk(γ) ∈ Rd×d, we can consider Xk(γ) ∈ Rd1×d2

with d1 6= d2. All subsequent development goes through with no essential difficulties. Only

the notation is somewhat different. In fact, we give a remark on how to treat sequences of

non-square matrix-valued random elements at the last chapter of this dissertation.

3.1.1 Decomposition and Subspaces

Suppose that the state space of the Markov chain is

M =M1 ∪M2 · · · ∪Ml0 . (3.2)
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We assume that the Markov chain is nearly completely decomposable in the sense [1], the

subspace ofMι is given by

Mι = {sι1, . . . , sιmι}, (3.3)

with the cardinality ofMι given by

|Mι| = mι for each ι = 1, . . . , l0,

so that

m0 = m1 +m2 + · · ·+ml0 . (3.4)

Thus, the cardinality of M is |M| = m0. Note that in the above, we used | · | to denote

the cardinality of a set. In what follows, we also use | · | to denote the norm of a vector

(absolute value of a scalar in particular). They should be clear from the context.

Corresponding toM, the transition matrix of the Markov chain is given by P ε = P+εQ,

where ε > 0 is a small parameter. Suppose

P =



P 1

P 2

. . .

P l0


, (3.5)

where P ι for ι ≤ l0 are themselves probability transition matrices; Q is a generator of a

continuous-time Markov chain. That is, qγγ1 ≥ 0 and for each γ ∈ M,
∑

γ1∈M
qγγ1 = 0. To

highlight the ε-dependence of the transition probabilities, we denote the Markov chain by
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αεk. For this Markov chain, we assume the following conditions hold.

(A1) For each ι = 1, . . . , l0, P ι is irreducible and aperiodic.

Remark 3.1.2. A consequence of (A1) is the following fact. Consider a Markov chain with

transition matrix P ι. Then this Markov chain is ergodic. That is, there is a stationary

distribution νι such that 
νιP ι = νι

νι1lmi = 1,

(3.6)

where 1lmι = (1, . . . , 1)′ is an mι-dimensional column vector with all components being 1.

In fact, νι is the unique solution of the system (3.6). It is easily seen that (3.6) can also be

written as

νι(P ι − Imι) = 0,

where Imι denotes the mι-dimensional identity matrix. Moreover, the n-step transition

probability matrix (P ι)n converges to 1lmιν
ι exponentially fast in that there is a K > 0 and

a λ satisfying 0 < λ < 1 such that

(P ι)n → 1lmιν
ι as n→∞ and |(P ι)n − 1lmιν

ι| ≤ Kλn,

and that 1lmιν
ι has identical rows.

3.1.2 Aggregation and Interpolated Process

To proceed, we define an aggregated state spaceM as

M = {1, . . . , l0}, (3.7)
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and an aggregation process

αεk = ι if αεk ∈Mι. (3.8)

Define also an interpolated process αε(·) as

αε(t) = αεk for t ∈
[
εk, ε(k + 1)

)
. (3.9)

A number of preliminary results concerning the processes αεk and αεk are relegated to an

appendix. These results, in particular, Lemma 6.3.1 and Remark 6.3.2 in the appendix will

be used throughout the rest of the dissertation.

Next, we specify the primary sequence {Xk(ι)}. For each ι ∈M, {Xk(ι)} is independent

of {αεk} and is a φ-mixing sequence with mixing measure φ̃(·). More details of the mixing

sequence will be specified later. To study Xk(ι) ∈ Rd×d, we consider a functional f̃(·) :

Rd×d → R. For each ι ∈M, and write fk(ι) = f̃(Xk(ι)). There are many such functionals of

interests. For example, fk(ι) = tr(Xk(ι)), or fk(ι) = |Xk(ι)|, where | · | is the induced norm

of Xk(ι), etc. In the above, we used the idea of mapping a sequence of d× d matrices into

a sequence of real numbers so that the asymptotic properties of {Xk(ι)} can be explained

by {fk(ι)}. Note that

fk(ι) = f̃(Xk(ι)) for each ι ∈M so

fk(α
ε
k) = f̃(Xk(α

ε
k)).

(3.10)

Our study is through proper centered, scaled, and interpolated sequences.
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CHAPTER 4 ASYMPTOTIC PROPERTIES

Denote the σ-algebras by FXk = σ{Xj(ι) : j ≤ k, ι = 1, . . . , l0}, Fα
ε

k = σ{αεj : j ≤ k},

and Fk = σ{Xj(ι), α
ε
j : j ≤ k, ι = 1, . . . , l0}. We are interested in a centered and scaled

sequence. To proceed, we specify f̃(·) in what follows.

Define

f(ι) = Ef̃(Xk(ι)). (4.1)

We proceed to define a centered and rescaled sequence yεk as

yεk =
√
ε
k−1∑
j=0

∑
ι∈M

[f̃(Xj(ι))− f(ι)]I{αεj=ι}. (4.2)

Note that f(αεj) = E[f̃(Xj(α
ε
j))|Fα

ε

j ]. Thus yεk may also be written as

yεk =
√
ε
k−1∑
j=0

{f̃(Xj(α
ε
j))− E[f̃(Xj(α

ε
j))|Fα

ε

j ]}. (4.3)

(A2) The functional f̃(x) is continuous in its argument and there is a c0 ≥ 1 such that

|f̃(x)| ≤ K(1 + |x|c0).

(A3) For each ι ∈M, the sequence {Xk(ι)} satisfies

EXk(ι) = 0

E|Xk(ι)|2(c0+∆) <∞
(4.4)
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for some ∆ > 0 and the mixing measure satisfies

∞∑
k=0

φ̃1/2(k) <∞. (4.5)

Remark 4.0.1. We note the following.

• Condition (A2) indicates that f̃(·) is of polynomial growth in its argument and is

a continuous functional. The intuition of this conditions stems from the examples

mentioned before.

• Equation (4.3) gives us the equivalence of the definition of yεk using conditional ex-

pectation. However, for our analysis to follow, it is more convenient to use (4.2).

• Because {Xk(ι)} is stationary mixing, {f̃(Xk(ι))} is also a mixing sequence.

Now we are in a position to study the asymptotic properties of the sequence {yεk}. The

study is through the examination of a continuous-time interpolation. In fact, we define

yε(t) = yεk for t ∈ [εk, εk + ε). We aim to obtain a weak convergence result for the two

component sequence {yε(·), αε(·)}. Our effort will be devoted to showing that (yε(·), αε(·))

converges weakly to (y(·), α(·)), a switching diffusion limit. To this end, consider the

following operator for a suitable function h(·, ·) that is smooth with respect to the first

variable y,

Lh(y, ι) =
1

2
a(ι)

d2h(y, ι)

dy2
+Qh(y, ·)(ι), ι ∈M, (4.6)
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where

Q =


ν1

. . .

νl0

Q


1lm1

. . .

1lml0

 ,

1lmi = (1, . . . , 1)′ ∈ Rmi×1,

(4.7)

Qh(y, ·)(ι) =

l0∑
`=1

qι`h(y, `), (4.8)

and a(ι) is defined as

a(ι) = E[f̂0(ι)]2 + 2
∞∑
j=1

Ef̂0(ι)[f̂j(ι)]. (4.9)

Lemma 4.0.2. Let (y(·), α(·)) be a solution of the martingale problem associated with the

operator defined in (4.6). Then the solution of the martingale problem is unique.

Proof. The proof is similar to [26, Lemma 14.8], thus we will only provide a short outline

here. It suffices to verify the uniqueness in distribution of a solution (y(·), α(·)) of the

martingale problem associated with the operator L for each 0 ≤ t ≤ T . To this end,

consider the characteristic function ρ̃(y, l) = E exp(ı(yλ + sl)), where ı2 = −1, for each

positive integer l, each y, λ, s ∈ R. Define ριι1 (t) = E[I{α(t)=ι}ρ̃(y(t), ι1)] for ι, ι1 ∈ M.

Because (y(t), α(t)) is a solution of the martingale problem associated with the operator

L, ριι1 (t) is the solution of a linear ordinary differential equation. The details are similar

to [26, Proof of Lemma 4.9], which is omitted. As a result, it has a unique solution. Thus,

(y(t), α(t)) is uniquely determined. So the desired uniqueness follows. �

Because of the polynomial growth of {f̃(Xk(ι))}, we need to work with a truncated

version of the sequence. For fixed but otherwise arbitrary positive real number N , we
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define

yε,Nk =
√
ε

k−1∑
j=0

∑
ι∈M

[f̃N(XN
j (ι))− fN(ι)]I{αεj=ι}, (4.10)

where

f̃N(XN
j (ι)) = f̃(XN

j (ι))qN(f̃N(XN
j (ι))),

f
N

(ι) = Ef̃N(XN
j (ι)),

qN(y) is a smooth function with qN(y) =

 1 if y ∈ S̃N ,

0 if y ∈ R− S̃N+1,

(4.11)

where S̃n = {y ∈ R : |y| < n} denotes the interval containing the origin of radius n in R.

Because of the possible unboundedness, we need to overcome the difficulty by use of the

truncation device. That is, we first obtain the desired properties for

yε,N(t) = yε,Nk for t ∈ [εk, εk + ε),

the interpolation of the truncated process yε,Nk . Note that

yε,N(t) =
√
ε

bt/εc−1∑
j=0

∑
ι∈M

[f̃N(XN
j (ι))− fN(ι)]I{αεj=ι}. (4.12)

For notational convenience, we define

f̂j(ι) = [f̃(Xj(ι))− f(ι)]

f̂Nj (ι) = [f̃N(XN
j (ι))− fN(ι)],

(4.13)

respectively.
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Lemma 4.0.3. Assume that (A1)-(A3). Then {yε,N(·)} is tight in D[0, T ], the space of func-

tions that are right continuous with left limits endowed with the Skorohod topology.

Proof. Denote the conditional expectation with respect to F εt by Eε
t . We use K to denote

a generic positive constant whose value may different for different appearances. For any

δ > 0, t, and s > 0 satisfying s ≤ δ, consider

Eε
t |yε,N(t+ s)− yε,N(t)|2

= εEε
t

b(t+s)/εc−1∑
j=bt/εc

b(t+s)/εc−1∑
k=bt/εc

∑
ι∈M

[f̃N(XN
k (ι))− fN(ι)][f̃N(XN

j (ι))− fN(ι)]I{αεk=ι}

≤ KεEε
t

b(t+s)/εc−1∑
j=bt/εc

∑
k≥j

∑
ι∈M

[f̃N(XN
k (ι))− fN(ι)][f̃N(XN

j (ι))− fN(ι)]I{αεk=ι}

= KεEε
t

b(t+s)/εc−1∑
j=bt/εc

∑
k≥j

∑
ι1,ι∈M

Ej f̂
N
k (ι)f̂Nj (ι)EjI{αεk=ι}

(4.14)

Because αεk is an aggregation of αεk, it may not be a Markov chain, but the value is bounded.

It follows that for j < k,

EjI{αεk=ι} = P (αek = ι|F εj ) ≤ 1.

Because {Xk(ι)} is a mixing sequence, the truncated sequence {f̂N(j, ι)} is a bounded

mixing sequence. Because f̂N(j, ι2) is F εj -measurable, [7, Lemma 4, p.82] implies that

Ej f̂
N
k (ι)f̂Nj (ι) = f̂Nj (ι)Ej f̂

N
k (ι) ≤ φ̃(k − j)f̂Nj (ι). (4.15)

Note that
∑

k≥j φ̃(k − j) < ∞, that Eε
t f̂

N
j (ι2) is a bounded random variable that is F εt -
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measurable, and that

ε

b(t+s)/εc−1∑
j=bt/εc

K ≤ Kε(t+ s− t)/ε = Ks ≤ Kδ.

We have that there is a random variable γε(t) that is F εt -measurable such that

εEε
t

b(t+s)/εc−1∑
j=bt/εc

∑
k≥j

φ̃(k − j)f̂Nj (ι)

≤ KεEε
t

b(t+s)/εc−1∑
j=bt/εc

f̂Nj (ι)

≤ Kγε(δ).

(4.16)

Combining (4.14)-(4.16), we have

Eε
t |yε,N(t+ s)− yε,N(t)|2 ≤ Kγε(δ)

such that

lim
δ→0

lim sup
ε→0

Eγε(t) = 0.

Thus, [7, Theorem 3, p. 47] yields that {yε,N(·)} is tight. �

Next, we obtain another lemma.

Lemma 4.0.4. Under assumption (A1), {αε(·)} is tight in D[0, T ].

The proof is given in [26, Theorem 4.3]. We omit the details. The next result is a direct

consequence of Lemma 4.0.3 and Lemma 4.0.4.

Corollary 4.0.5. Under (A1)-(A3), {yε,N(·), αε(·)} is tight.

Because {yε,N(·), αε(·)} is tight, by Prohorov’s theorem [8, Chapter 7], the pair of se-
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quences is sequentially compact. Select a weakly convergent subsequence with limit de-

noted by (yN(·), α(·)). Without loss of generality, we still index the sequence by ε. We

proceed to characterize the limit process. We shall show that the limit is the solution of

the martingale problem with operator

LNh(y, ι) =
1

2
aN(ι)

d2h(y, ι)

dy2
+Qh(y, ·)(ι), ι ∈M, (4.17)

where aN(ι) is defined as

aN(ι) = E[f̂N(0, ι)]2 + 2
∞∑
j=1

Ef̂N(0, ι)f̂N(j, ι), (4.18)

with f̂N(i, ι) defined in (4.13). In the above, again, we are using gN(y) = g(y)qN(y) with

the qN(y) being the truncation function.

To proceed, it is sometimes convenient to write yε,Nk in recursive form. It is easily

verified that

yε,Nk+1 = yε,Nk +
√
ε
∑
ι∈M

f̂N(k, ι)I{αεk=ι}. (4.19)

For each ι ∈ M, let h(·, ι) ∈ C2
0 (where C2

0 denotes the class of functions that are C2 with

compact support). Let h(y, α) be defined as

h(y, α) =


h(y, 1), if α ∈M1,

· · · · · ·

h(y, l0), if α ∈Ml0 .

(4.20)
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Using the structure of h(y, α), it is readily verified that

h(yε,N(t+ s), αε(t+ s))− h(yε,N(t), αε(t))

= h(yε,N(t+ s), αε(t+ s))− h(yε,N(t), αε(t)).
(4.21)

Choose a sequence {nε} such that nε →∞ as ε→ 0, but δε = εnε → 0. Then

h(yε,N(t+ s), αε(t+ s))− h(yε,N(t), αε(t))

=

(t+s)/ε∑
lnε=t/ε

[h(yε,Nlnε+nε , α
ε
lnε+nε)− h(yε,Nlnε , α

ε
lnε)]

=

(t+s)/ε∑
lnε=t/ε

[h(yε,Nlnε+nε , α
ε
lnε)− h(yε,Nlnε , α

ε
lnε)]

+

(t+s)/ε∑
lnε=t/ε

[h(yε,Nlnε+nε , α
ε
lnε+nε)− h(yε,Nlnε+nε , α

ε
lnε)].

(4.22)

Note that because of the continuity of h(·) and hence the continuity of h(·), we can replace

(t+s)/ε∑
lnε=t/ε

[h(yε,Nlnε+nε , α
ε
lnε+nε)− h(yε,Nlnε+nε , α

ε
lnε)]

with
(t+s)/ε∑
lnε=t/ε

[h(yε,Nlnε , α
ε
lnε+nε)− h(yε,Nlnε , α

ε
lnε)]
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since εnε → 0. Furthermore, we can write the above sum as

(t+s)/ε∑
lnε=t/ε

[h(yε,Nlnε , α
ε
lnε+nε)− h(yε,Nlnε , α

ε
lnε)]

=

(t+s)/ε∑
lnε=t/ε

lnε+nε−1∑
k=lnε

∑
1≤j≤mi,1≤i≤l0

h(yε,Nlnε , sij)I{αεk=sij}

=

(t+s)/ε∑
lnε=t/ε

lnε+nε−1∑
k=lnε

∑
1≤j≤mi,1≤i≤l0

h(yε,Nlnε , sij)[I{αεk=sij} − νijI{αεk∈Mi}]

+

(t+s)/ε∑
lnε=t/ε

lnε+nε−1∑
k=lnε

∑
1≤j≤mi,1≤i≤l0

h(yε,Nlnε , sij)ν
i
jI{αεk∈Mi}

(4.23)

First, we state a lemma, whose proof is essentially in [26].

Lemma 4.0.6. Under condition (A1),

Eε
m

{ n−1∑
k=m

[I{αεk=sij} − νijI{αεk∈Mi}]
}2

= O(ε).

With Lemma 4.0.6 at our hand, for any positive integer κ, any tm ≤ t with m ≤ κ, any

t, s > 0, and any bounded and continuous function g(·, i) (for each i ∈ M), it is readily

seen that

Eg(h(yε,N(tm), αε(tm) : m ≤ κ)

×
[ (t+s)/ε∑
lnε=t/ε

lnε+nε−1∑
k=lnε

∑
1≤j≤mi,1≤i≤l0

h(yε,Nlnε , sij)[I{αεk=sij} − νijI{αεk∈Mi}]
]

→ 0 as ε→ 0.

(4.24)
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Moreover, we can further show that

Eg(h(yε,N(tm), αε(tm) : m ≤ κ)

(t+s)/ε∑
lnε=t/ε

lnε+nε−1∑
k=lnε

∑
1≤j≤mi,1≤i≤l0

h(yε,Nlnε , sij)ν
i
jI{αεk∈Mi}

→ Eh(yN(tm), α(tm) : m ≤ κ)

∫ t+s

t

Qh(yN(u), ι)I{α(u)=ι}du

= Eh(yN(tm), α(tm) : m ≤ κ)

∫ t+s

t

Qh(yN(u), α(u))du.

(4.25)

In the above, we have used h(y, αε(u)) = h(y, αε(u)), the weak convergence of (yε,N(·), αε(·))

to (yN(·), α(·)), and the Skorohod representation.

Next we work on the terms of the third line of (4.22). We have

(t+s)/ε∑
lnε=t/ε

[h(yε,Nlnε+nε , α
ε
lnε)− h(yε,Nlnε , α

ε
lnε)]

=

(t+s)/ε∑
lnε=t/ε

hy(y
ε,N
lnε
, αεlnε)[y

ε,N
lnε+nε

− yε,Nlnε ]

+
1

2
hyy(y

ε,N,+
lnε

, αεlnε)[y
ε,N
lnε+nε

− yε,Nlnε ]2

=
√
ε
∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

hy(y
ε,N
lnε
, αεlnε)

lnε+nε−1∑
j=lnε

f̂Nj (ι)I{αεj=ι}

+ε
1

2

∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

hyy(y
ε,N,+
lnε

, αεlnε)
[ lnε+nε−1∑

j=lnε

f̂Nj (ι)I{αεj=ι}

]2

,

(4.26)

where hy and hyy denote the first and the second derivatives of h with respect to y, respec-

tively, yε,N,+lnε
denotes the quantity on the line segment joining yε,Nlnε and yε,Nlnε+nε.

We next average out the terms in the last two lines of (4.26). For any positive integer

κ, any tm ≤ t with m ≤ κ, any t, s > 0, and any bounded and continuous function g(·, i)
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(for each i ∈M), because hy(y
ε,N
lnε
, αεlnε) is Flnε-measurable, we have

√
εEg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

hy(y
ε,N
lnε
, αεlnε)

lnε+nε−1∑
j=lnε

f̂Nj (ι)I{αεj=ι}

=
√
εEg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

hy(y
ε,N
lnε
, αεlnε)

×Elnε
lnε+nε−1∑
j=lnε

f̂Nj (ι)I{αεj=ι}

→ 0 as ε→ 0,

(4.27)

by the mixing property of the sequence f̂Nj .

Next for the last term, we note that the limit of

ε

2
Eg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

×
∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

hyy(y
ε,N,+
lnε

, αεlnε)
[ lnε+nε−1∑

j=lnε

f̂Nj (ι)I{αεj=ι}

]2
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is the same as that of

ε

2
Eg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

×
b(t+s)/εc∑
lnε=bt/εc

hyy(y
ε,N
lnε
, αεlnε)

∑
ι∈M

[ lnε+nε−1∑
j=lnε

f̂Nj (ι)I{αεj=ι}

]2

=
1

2
Eg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

×
∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

δεhyy(y
ε,N
lnε
, αεlnε)

1

nε

[ lnε+nε−1∑
j=lnε

f̂Nj (ι)I{αεj=ι}

]2

=
1

2
Eg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

b(t+s)/εc∑
lnε=bt/εc

δεhyy(y
ε,N
lnε
, αεlnε)

×
∑
ι∈M

1

nε

{[lnε+nε−1∑
j=lnε

lnε+nε−1∑
k=lnε

Elnεf̂
N
j (ι)f̂Nk (ι)ElnεI{αεj=ι}

−
lnε+nε−1∑
j=lnε

lnε+nε−1∑
k=lnε

Ef̂Nj (ι)f̂Nk (ι)ElnεI{αεj=ι}

]
+

lnε+nε−1∑
j=lnε

lnε+nε−1∑
k=lnε

Ef̂Nj (ι)f̂Nk (ι)ElnεI{αεj=ι}

}
.

(4.28)

Moveover, the limit of

1

2
Eg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

×
∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

δεhyy(y
ε,N
lnε
, αεlnε)

1

nε

[lnε+nε−1∑
j=lnε

lnε+nε−1∑
k=lnε

[Elnε f̂
N
j (ι)f̂Nk (ι)I{αεj=ι}

−Ef̂Nj (ι)f̂Nk (ι)][ElnεI{αεj=ι}

]
is the same as that of

1

2
Eg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

×
∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

δεhyy(y
ε,N
lnε
, αεlnε)

1

nε

[lnε+nε−1∑
j=lnε

lnε+nε−1∑
k>j

[Elnεf̂
N
j (ι)f̂Nk (ι)− Ef̂Nj (ι)f̂Nk (ι)]

×ElnεI{αεj=ι}
]
.

(4.29)
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Because {f̂j(ι)} is a stationary mixing sequence by (A3), {f̂Nj (ι)} is a bounded stationary

mixing sequence. With a slight abuse of notation, we still denote the mixing measure by

φ̃(·). Then by virtue of [7, Lemma 4, p.82],

|Elnεf̂Nj (ι)f̂Nk (ι)− Ef̂Nj (ι)f̂Nk (ι)| ≤ Kφ̃1/2(k − j)φ̂1/2(j − lnε).

Moreover, in view of (A3), ∑
ι

φ̃1/2(ι) <∞.

It then yields that for some K > 0,

1

2
Eg(yε,N(tm), αε(tm) : m ≤ κ, tm ≤ t)

×
∑
ι∈M

b(t+s)/εc∑
lnε=bt/εc

δεhyy(y
ε,N
lnε
, αεlnε)

1

nε

[lnε+nε−1∑
j=lnε

lnε+nε−1∑
k>j

[Elnεf̂
N
j (ι)f̂Nk (ι)− Ef̂Nj (ι)f̂Nk (ι)]

×ElnεI{αεj=ι}
]

→ 0 as ε→ 0.

(4.30)

Next, the bounded stationary mixing implies the ergodicity. As a result, in view of (A

1

nε

lnε+nε−1∑
j=lnε

lnε+nε−1∑
k=lnε

Ef̂Nj (ι)f̂Nk (ι)

→ E[f̂N(ι)]2 + 2
∞∑
j=1

E[f̂Nj (ι)f̂N0 (ι)] as ε→ 0

= aN(ι);

(4.31)

see (4.18). That is, aN(ι) is similar to a(ι), except a truncation device is used. Note

that ElnεI{αεj=ι} = P (αεj = ι|F εlnε) and (yε,N(·), αε(·)) converges weakly to (yN(·), α(·)).

Combining the results obtained thus far, we obtain that (yε,N(·), αε(·)) converges weakly
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to (yN(·), α(·)) as ε→ 0, where (yN(·), α(·)) is the solution of the martingale problem with

operator LN , where LN is the operator defined in (4.17). Summarizing what have been

obtained, we have the following theorem.

Theorem 4.0.7. Under assumptions (A1)–(A3), as ε → 0, (yε,N(·), αε(·)) converges weakly

to (yN(·), α(·)), which is the solution of the martingale problem with operator LN .

Next, we show that the untruncated sequence (yε(·), αε(·)) is also convergent. This step

is done by sending N →∞.

Theorem 4.0.8. Under the conditions of Theorem 4.0.7, as ε → 0, (yε(·), αε(·)) converges

weakly to (y(·), α(·)) such that the limit is the solution of the martingale problem with oper-

ator L.

The idea of proof follows from that of Corollary [7, p.46]. So we will be very brief.

The essential idea is on the use of the uniqueness of the martingale problem. Denote by

P (·) and PN(·) the measures induced by y(·) and yN(·) on the Borel subsets of D[0, T ], re-

spectively. The measure P is unique because of the uniqueness of the martingale problem.

Thus, for each T1 ≤ T , P (·) agrees with PN(·) on all Borel subsets of the set of paths in

D[0, T ] whose values are in SN for each t ≤ T1. However, P (supt≤T1 |y(t)| ≤ N) → 1 as

N →∞. This implies that yε,N(·) converges weakly to yN(·) implies yε(·) converges weakly

to y(·). Because that the limit is unique, the chosen subsequence is irrelevant.
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CHAPTER 5 SPECIALIZATION AND EXTENSION

In this chapter, we look at two cases. In the first case, the modulating Markov chain

is given by P ε = P + εQ, where P is irreducible. In the second case, we allow the P to

include transient states.

5.1 Modulating Markov Chain with P Being Irreducible

We consider the case that the modulating Markov chain is P ε = P + εQ, where Q is a

generator of a continuous-time Markov chain as before, and P itself is a transition matrix

that is irreducible and aperiodic. The state space of the Markov chain isM = {1, . . . ,m}.

It is easily seen that in this case, the stationary distribution associated with the transition

matrix P is ν = (ν1, . . . , νm) ∈ R1×m. In this case, it can be proved as in [26], the asymptotic

expansions of the transition matrices can be constructed so that

(P ε)k = 1lν +O(ε+ λk),

where 0 < λ < 1 and 1l = (1, . . . , 1)′ ∈ Rm×1. As in the previous chapters, we define

ỹn =
√
ε
n−1∑
k=0

(fk(i)− Efk(i))[I{αεk=i} − νi]

=
√
ε

n−1∑
k=0

(f̃(Xk(i))− Ef̃(Xk(i)))[I{αεk=i} − νi],

ỹε(t) = ỹn, for t ∈ [εn, εn+ ε),

(5.1)

where fk(i) = f̃(Xk(i)) is as defined in (3.10). For simplicity, define

f̂k(i) = fk(i)− fk(i) = fk(i)− Efk(i).
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Using the techniques of previous chapter, we can obtain the following limit theorem. For

brevity, we omit the verbatim proof.

Proposition 5.1.1. Assume that the P is as given in this section, and that (A2) and (A3)

hold. Then ỹε(·) converges weakly to a real-valued Brownian motion with variance σ̃2t, where

σ̃2 =
m∑
i=1

[
νi(1− νi)Ef̂ 2

0 (i) + 2
∞∑
k=1

νiψii(k)
[
Ef̂0(i)f̂k(i)

]]
+

∑
1≤i<j≤m

{
∞∑
k=1

[
2νiψij(k)2Ef̂0(i)f̂k(j)

+ 2νjψji(k)Ef̂0(j)f̂k(i)
]

− 2νiνjEf̂0(i)f̂0(j)

}
,

(5.2)

where ψij(k) denotes the ijth entry of the matrix Ψ(k) as in the asymptotic expansions (6.16).

5.2 Modulating Markov Chain Including Transient States

In a finite-state Markov chain, there is at least one recurrent state (i.e., not all states

are transient). Iosifescu [6, p. 94] has indicated that any transition probability matrix of a

finite-state Markov chain with stationary transition probabilities can be put into either the

form of (3.5) (i.e., inclusion of all recurrent states) of the form

P =



P 1

P 2

. . .

P l0

P ∗,1 P ∗,2 · · · P ∗,l0 P ∗


, (5.3)
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where each P i is itself a transition matrix within the ιth recurrent classMι for ι ≤ l0. In

fact, (5.3) takes care of the situation that there are transient states. The last row of the

partitioned matrix in (5.3), namely, (P ∗,1, · · ·P ∗,l0 , P ∗) in (5.3) is resulted from the inclu-

sion of the transient states. It turns out P ∗,ι, ι = 1, . . . , l0, are the transition probabilities

from the transient states to the recurrent states inMι, and P ∗ is the transition probabilities

within the transient states. We assume the following conditions hold.

(A1’) For the transition matrix P given by (5.3), for each ι ≤ l0, P ι is transition probability

matrix that is irreducible and aperiodic. In addition, P ∗ is a matrix having all of its

eigenvalues inside the unit circle.

To proceed, we need some notation. Define 1̃l and 1̃l∗ as

1̃l = diag(1lm1 , . . . , 1lml0 ) =


1lm1

. . .

1lml0

 and

1̃l∗ =

 1̃l 0(m0−m∗)×m∗

Ξ∗ 0m∗×m∗

 ,

(5.4)

where 0l1×l2 denotes a 0 matrix with dimension l1 × l2, and

Ξ∗ = (ξ1, . . . , ξl0) ∈ Rm∗×(m1+···+ml0 ) (5.5)

with

ξι = −(P ∗ − I)−1P ∗,ι1lmι , ι = 1, . . . , l0. (5.6)

Note that ξι ≥ 0 for ι = 1, . . . , l0 (in the sense that all components of ξι are nonnegative).
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Moreover, using

P ∗1lm∗ +

l0∑
ι=1

P ∗,ι1lmι = 1lm∗ ,

it is easily verified that
l0∑
ι=1

ξι = 1lm∗ . (5.7)

That is, for each ι, ξι represents the probability of transition from the transient states to

the ιth recurrent classMι.

We can still aggregate the states in αεk. Nevertheless, we only aggregate the states in

each recurrent class, but do not aggregate states in the transient class. Eventually, these

transient states will go to the respective recurrent classes. To proceed, partition the matrix

Q as

Q =

Q11 Q12

Q21 Q22

 , (5.8)

where

Q11 ∈ R(m0−m∗)×(m0−m∗), Q12 ∈ R(m0−m∗)×m∗ ,

Q21 ∈ Rm∗×(m0−m∗), and Q22 ∈ Rm∗×m∗ ,

and set

Q∗ = diag(ν1, . . . , νl0)(Q111̃l +Q12A∗). (5.9)

Denote

ν∗ = diag(ν1, . . . , νl0 , 0m∗×m∗).
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Next, we define an aggregated process

αεk =

 ι, if αεk ∈Mι,

Uι1 , if αεk = s∗ι1 ,
(5.10)

where Uι1 is given by

Uι1 = I{0≤U≤ξ1,ι1} + 2I{ξ1,ι1<U≤ξ1,ι1+ξ2,ι1} + · · ·+ l0I{ξ1,ι1+···+ξl0−1,ι1<U≤1},

with U being a random variable that is independent of the Markov chain αεk and that is

uniformly distributed on the unit interval [0, 1]. Define also the interpolation of αk by

αε(t) = αk for t ∈ [εk, εk + ε). (5.11)

With the preparation above, we can proceed to study the limit of the modulated matrix

sequences. We consider {Xk(α
ε
k)}, but this time the αεk includes the transient states as

given in this section. Redefine f̃(Xk(ι)) and fk(ι) as in (3.10), but fk(αεk) is define with αεk

given by (5.10). Modify the definition of the operator L with

L̂h(y, ι) =
1

2
a(ι)

d2h(y, ι)

dy2
+Q∗h(y, ·)(ι), ι ∈M, (5.12)

where

Q∗h(y, ·)(ι) =

l0∑
ι1=1

q∗,ιι1h(y, ι1), (5.13)

where Q∗ is given by (5.9) and q∗,ιι1 denotes the ιι1th entry of Q∗.
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Define the centered and normalized sequence ŷεk as in (4.2) but with the aggregated

process αek defined by (5.10). Define also ŷε(t) = ŷεk for t ∈ [εk, εk+ε). Using Lemma 6.3.3

and modifying the proofs in the previous sections, we obtain the following result.

Theorem 5.2.1. Assume conditions (A1’), (A2), and (A3) hold. Then (ŷε(·), αε(·)) converges

weakly to (ŷ(·), α(·)). The limit process (ŷ(·), α(·)) is the solution of the martingale problem

with operator L̂ defined in (5.12).
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CHAPTER 6 FURTHER REMARKS AND RAMIFICATION

6.1 A Remark on Non-Zero Drift

This dissertation concentrates on the use of a martingale problem formulation. It has

been shown that (e.g., in Section 4), the limit (y(·), α(·)) is a solution of the martingale

problem with operator L. Such a result can also be described by means of limit stochastic

differential equation. In fact, if we consider the process y(·), we can write it as

y(t) =

∫ t

0

√
a(α(s))dW (s),

where W (·) is a real-valued standard Brownian motion. Similar results hold for the case

of Markov modulated sequence including the transient states.

In view of the scaling, we could include a drift term. For example, for the results in

Section 4, we may consider another nonlinear function g(·) and denote

gk(ι) = g̃(Xk(ι)) for each ι ∈M so

gk(α
ε
k) = g̃(Xk(α

ε
k)).

(6.1)

Define a scaled sequence as

zεk = ε
k−1∑
j=0

∑
ι∈M

gj(ι)I{αεj=ι} +
√
ε

k−1∑
j=0

∑
ι∈M

[f̃(Xj(ι))− f(ι)]I{αεj=ι}

zε(t) = zεk for t ∈ [εk, εk + ε).

(6.2)

Then using the techniques of Section 4, (zε(·), αε(·)) converges weakly to (z(·), α(·)) such



50

that z(·) is a solution of the following stochastic equation

z(t) =

∫ t

0

g(α(s))ds+

∫ t

0

√
a(α(s))dW (s),

where

g(ι) = Eg̃(Xk(ι)) for ι ∈M. (6.3)

Alternatively, the above stochastic integral equation may be written as a stochastic differ-

ential equation

dz(t) = g(α(t))dt+
√
a(α(t))dW (t).

6.2 Ramification

We have studied sequences of matrix-valued random elements by taking a functional to

map the matrix-valued processes into real-valued processes. This section takes a different

approach by dealing with the matrix-valued processes directly. Specifically, we aim to

obtain exponential-type of probability upper bounds. The problem is interesting in their

own right. First let us state the following condition.

(A4) There is a Markov chain αk with a finite state spaceM = {1, . . . ,m} and transition

matrix P such that P is irreducible and aperiodic. For each i ∈ M, {Xk(i)} is a

sequence of independent and identically distributed d1 × d2-valued normal random

variables;

X1(i) ∼ Nd1,d2(M(i),Ψ1 ⊗Ψ2). (6.4)

The Markov chain αk and {Xk(i)} are independent.



51

Remark 6.2.1. In this section, we still assume that there is a finite-state Markov chain and

that the m sequences {Xk(i)} for i = 1, . . . ,m are modulated by αk. However, we assume

the chain is irreducible and has a simpler structure.

Note that (6.4) indicates that X1(i) ∈ Rd1×d2 is normally distributed with mean M(i) ∈

Rd1×d2 and covariance Ψ1 ⊗ Ψ2, where both Ψ1 ∈ Rd1×d1 and Ψ2 ∈ Rd2×d2 are symmetric

positive definite, and ⊗ denotes the Kronecker product [3]. Note that in view of our

assumption, for different i ∈M, only the means of X1(i) are different. The covariances are

the same for all i ∈M. This is more or less for convenience in the subsequent development

although different covariance matrices can be dealt with.

It is known that

(i) by definition [4, p. 55], X1(i) ∼ Nd1,d2(M(i),Ψ1⊗Ψ2) if and only if the vectorization

vec(X ′1(i)) is a (d1d2)-dimensional normal vector satisfying

vec(X ′1(i)) ∼ N(vec(M ′(i)),Ψ1 ⊗Ψ2);

(ii) the density function of X1(i) is given by ([4, p. 56])

f̃(x) = (2π)−
1
2
d1d2 [det(Ψ1)]−

1
2
d2 [det(Ψ2)]−

1
2
d1

× exp
{

tr
[
− 1

2
Ψ−1

1 (x−M(i))Ψ−1
2 (x−M(i))′

]}
;

(6.5)

(iii) the moment generating function of X1(i) is given by

G̃(z, i) = exp
{

tr
(
z′M(i) +

1

2
z′Ψ1zΨ2

)}
. (6.6)



52

In addition, the moment generating function of X1(i)−M(i) is given by

G(z) = exp
{

tr
(1

2
z′Ψ1zΨ2

)}
:= eγ(z), (6.7)

where γ(z) is a positive real-valued function independent of i. We use the eγ(z) to

simply the notation in the following calculation.

In contrast to the previous sections, we study exponential type of probability bounds

for sum of a block of random variables. To begin, for each l, define

Sκ =
l+κ∑
j=l

εj

(∑
i∈M

[Xj(i)−M(i)]I{αj=i}

)
, (6.8)

where {εj} is a sequence of positive real numbers satisfying εj → 0 as j → ∞ and∑∞
j=0 εj = ∞ and

∑∞
j=0 ε

2
j < ∞. For any e > 0, with the motivation of finding the tail

probability error bounds of

P (max
κ≤n
|Sκ| ≥ e) = P

(
max
κ≤n

∣∣∣ l+κ∑
j=l

εj[Xj(αj)−M(αj)]
∣∣∣ ≥ e

)
, (6.9)

we examine ζ(e) defined as for any z ∈ Rd1×d2 and arbitrary β > 0,

ζ(e) = P

(
max
κ≤n

exp

{
tr
(
βz′

l+κ∑
j=l

εj
[∑
i∈M

[Xj(i)−M(i)]I{αj=i}
])
≥ exp

(
βe
z′z

|z|

)})
,

(6.10)

but z′z/|z| = |z|, the term exp (βez′z/|z|) above can be replaced by exp (βe|z|).

Redefine by Fk the σ-algebra generated by {Xj(i), αj : j < k, i = 1, . . . ,m}. Note that

for two square matrices A and B, tr(A + B) = tr(A) + tr(B). Using the familiar Markov
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inequality, we obtain

ζ(e) = exp(−βe|z|)E exp
{

tr
(
β
l+κ∑
j=l

εj
[∑
i∈M

z′[Xj(i)−M(i)]I{αj=i}
])}

= exp(−βe|z|)EEl+κ exp
{(
β
l+κ∑
j=l

εjtr
[∑
i∈M

z′[Xj(i)−M(i)]I{αj=i}
])}

= exp(−βe|z|)E exp
{
β
l+κ−1∑
j=l

εj
∑
i∈M

tr
(
z′[Xj(i)−M(i)]

)
I{αj=i}

}
×El+κ exp

[
βεκ+l

∑
i∈M

tr
(
z′[Xκ+l(i)−M(i)]

)
I{ακ+l=i}

]
= exp(−βe|z|)EEl+κ−1 exp

{
β
l+κ−1∑
j=l

εj
∑
i∈M

tr
(
z′[Xj(i)−M(i)]

)
I{αj=i}

}
× exp(β2ε2

k+lγ(z)).

(6.11)

To reach the last line in (6.11), we have used the independence of Xκ+l(i) and ακ+l, the

i.i.d. assumption on {Xk(i)}, the moment generating function of the form (6.7) that does

not depend on i, and noting the property of conditional probability

∑
i∈M

pακ+l−1,i = 1

with pακ+l−1,i
denoting the conditional probability from the state ακ+l−1 to i, to obtain

El+κ exp
[
βεκ+l

∑
i∈M

tr
(
z′[Xκ+l(i)−M(i)]

)
I{ακ+l=i}

]
=
∑
i∈M

exp(β2ε2
κ+lγ(z))pακ+l−1,i

= exp(β2ε2
κ+lγ(z)).

Working on (6.11), repeatedly taking conditional expectations El+κ−1, El+κ−2, El+κ−3, . . . ,
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and so on one at a time, we finally arrive at

ζ(e) = exp
((
β2γ(z)

κ+l∑
j=l

ε2
j

)
− βe|z|

)
. (6.12)

Treating the index of the exponential as a quadratic function of β, it is readily seen that

the minimum of the function is reached at

β∗ =
e|z|

2γ(z)
κ+l∑
j=l

ε2
j

.

Using β∗ in (6.12), we then obtain the desired error bound

ζ(e) ≤ exp

(
− e2|z|2

4γ(z)
κ+l∑
j=l

ε2
j

)
. (6.13)

Remark 6.2.2. Note that for any l > 0, it can proved that

l+κ∑
j=l

εj

(∑
i∈M

[Xj(i)−M(i)]I{αj=i}

)
→ 0

as κ → ∞, which is essentially a law of large numbers type of result. However, for each

e > 0, one would not be able to obtain any estimate on the tail probability

P
(

tr
( l+κ∑
j=l

εjz
′(
∑
i∈M

[Xj(i)−M(i)]I{αj=i})
)
≥ |z|e

)

using either law of large numbers or central limit theorems. Now, our result in (6.13)
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provided such error bounds. Because of our condition
∑

j ε
2
j <∞,

κ+l∑
j=l

ε2
j → 0 as l→∞.

Thus, (6.13) indicates that the tail probability is exponentially small. The bound belongs

to large deviations type of estimates. The exponential bounds we obtained are particularly

useful for applications using stochastic approximation; see [8].

In [8], one mainly dealt with vector-valued processes. In the above, we indicated how

matrix-valued estimates can be handled. For simplicity, here we treated independent and

identically distributed random elements that have Gaussian distributions. This condition

can be much relaxed with the use of correlated noise. What is crucial is that we need

a condition on the bounds of the conditional moment generating function similar to the

exact moment generating function; see [8, Section 5.3].

6.3 Additional Remarks

This dissertation has been devoted to Markov modulated random sequences that are

matrix valued. Our main effort is on obtaining scaling limit of the underlying sequences.

We used a functional mapping the matrix-valued processes to R. An alternative approach

is to pile up the columns of the matrices into a big vector. Then one can examine the limit

process through vectorization.

We finally close this dissertation by mentioning that a number of topics related to the

problems considered in this work are worthwhile to be pursued further. It is possible

to consider certain jump processes as a component in the primary sequence leading to a

jump diffusion type limit with Markov modulation. In addition, it is also a good effort to
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replace the modulating Markov chain by a semi-Markov process (see [5] for discussions

on semi-Markov processes). Much of these require further analysis and consideration.
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APPENDIX: PRELIMINARY RESULTS

This chapter presents some preliminary results to be used in the study of the disser-

tation, in particular, in the study of scaling limit. It includes two parts. The first part

considers Markov chains having only recurrent states, whereas the second part considers

Markov chains include also transient states.

Recurrent Classes. We state a lemma whose proof can be found in [26, Theorem 4.1 and

Theorem 4.3]. In fact, a full asymptotic expansion (or asymptotic series) was developed

in [26], but for us in this dissertation, we only need the following results.

Lemma 6.3.1. Assume (A1). Then the following results hold:

(i) Consider the probability vector pεk ∈ R1×m0. Then

pεk = θ(εk)


ν1

. . .

νl0

+O(ε+ λk) (6.14)

where λ is a constant satisfying 0 < λ < 1, and θ(t) = (θi(t) : ι = 1, . . . , l0) ∈ R1×l0 is a

solution of the following initial value problem

dθ(t)

dt
= θ(t)Q

θ(0) = p0


1lm1

. . .

1lml0

 ,
(6.15)

where Q is given by (4.7), and z′ is the transpose of z.
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(ii) For some finite T > 0, k ≤ T/ε, the kth step transition probability matrix

(P ε)k = (P + εQ)k

satisfies

(P ε)k = Φ(εk) + εΦ1(εk) + Ψ(k) + εΨ1(k) +O(ε2) (6.16)

where

Φ(t) =


1lm1

. . .

1lml0



ν1

. . .

νl0

 (6.17)

and 
dΘ(t)

dt
= Θ(t)Q

Θ(0) = I

(6.18)

Φ(εk) and Φ1(εk) are uniformly bounded in [0, T ], and Ψ(k) and Ψ1(k) decay exponen-

tially in that

|Ψ(k)| ≤ Kλk (6.19)

|Ψ1(k)| ≤ Kλk (6.20)

for some K > 0 and some 0 < λ < 1.

(iii) Recall αε(·) defined in (3.9). Then αε(·) converges weakly to α(·), which is a continuous-

time Markov chain with generator Q defined in (4.7).

Remark 6.3.2. Let us make a couple of remarks below.
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(i) In view of the asymptotic expansion

(P ε)k = Φ(εk) +O(ε+ λk) (6.21)

(ii) We can write out Ψ(k). It can be chosen so that Φ(0) + Ψ(0) = Im0, and

Ψ(k) = Ψ(0)(P )k

Ψ(k) =


(Im1 − 1lm1ν

1)(P 1)k

. . .

(Iml0 − 1lml0ν
l0)(P l0)k

 ,

where Il denotes an l× l identity matrix. For Im0, we will also use I if there is no confusion.

Inclusion of Transient States. When the Markov chain αεk includes also transient states

as in Section 5.2, we can still carry out the asymptotic expansions as in [26, Chapter 3].

Recall all the notation given in Section 5.2. As for the aggregated process αεk, we have the

following lemma, whose proof can be found in [26, Chpater 4].

Lemma 6.3.3. Assume (A1’). Then αε(·) converges weakly to α(·) such that the limit is a

continuous-time Markov chain with generator Q∗ given in (5.9).
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In this dissertation, we consider a number of matrix-valued random sequences that are

modulated by a discrete-time Markov chain having a finite space. Assuming that the state

space of the Markov chain is large, our main effort in this work is devoted to reducing the

complexity. To achieve this goal, our formulation uses time-scale separation of the Markov

chain. The state-space of the Markov chain is split into subspaces. Next, the states of the

Markov chain in each subspace are aggregated into a “super” state. Then we normalize the

matrix-valued sequences that are modulated by the two-time-scale Markov chain. Under

simple conditions, we derive a scaling limit of the centered and scaled sequence by using a

martingale averaging approach. The limit is considered through a functional. It is shown

that the scaled and interpolated sequence converges weakly to a switching diffusion. To-

wards the end of the work, we also indicate how we may handle matrix-valued processes

directly. Certain tail probability estimates are obtained.

Keywords. Matrix-valued random sequence, mixing process, Markov chain, two-time-scale



65

formulation.



66

AUTOBIOGRAPHICAL STATEMENT

HUY NGUYEN

Education

• Ph.D. in Mathematics (expected), 2022

Wayne State University, Detroit, Michigan, USA

• M.S. in Mathematics, 2007

Vinh University, Nghe An, Vietnam

• B.S. in Mathematics, 2004

Vinh University, Nghe An, Vietnam

Selected List of Publications

1. G. YIN, Z. WEN, H. QIAN, AND H. NGUYEN, Numerical solutions for optimal control of

stochastic Kolmogorov systems, Journal of Systems Science and Complexity 34 (2021),

1703–1722.

2. N.V. QUANG, N.N. HUY AND L.H. SON, The degenerate convergence criterion and

Feller’s weak law of large numbers for double arrays in noncommutative probability,

Statistics and Probability Letters , 83 (2013), 1812 -1818.

3. N.V. QUANG AND N.N. HUY, Weak law of large numbers for adapted double arrays of

random variables, Journal of the Korean Mathematical Society, 45 (2008), 795 -805.


	Sequences Of Random Matrices Modulated By A Discrete-Time Markov Chain
	Recommended Citation

	Dedication
	Acknowledgements
	Introduction
	Recent Progress
	Markov Modulated Sequences
	Outline

	Stochastic Differential Equations and Markov Chains
	Stochastic process
	Itô Integrals
	Itô Formula and the Martingale Representation Theorem
	The Martingale Representation Theorem

	Stochastic Differential Equations
	Discrete-Time Markov Chains
	Asymptotic Expansions


	Problem Formulation
	Problem Formulation and Conditions
	Decomposition and Subspaces
	Aggregation and Interpolated Process


	Asymptotic Properties
	Specialization and Extension
	Modulating Markov Chain with P Being Irreducible
	Modulating Markov Chain Including Transient States

	Further Remarks and Ramification
	A Remark on Non-Zero Drift
	Ramification
	Additional Remarks

	Appendix A
	References
	Abstract
	Autobiographical Statement

