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CHAPTER 1 INTRODUCTION

Image processing is an essential part of modern technology, with a wide range of ap-

plications, such as in autonomous cars, medical devices, computer vision systems and

augmented reality interfaces. An image processing system typically consists of two parts,

an optical unit collecting impinging light and converting it to electrical signals and a dig-

ital one for processing the collected signals. The optical unit is usually a combination of

lenses and photodetectors and it operates at very high speed, theoretically the speed of

light, and with minimal power consumption. On the other hand, the digital unit is built

up with billions of transistors, which consume power and have operation speed restric-

tions. Given that integrated circuits are quickly approaching the limits of Moore’s law, it is

clear that an all-digital approach can hardly meet the constantly increasing demands for

smaller, faster and power-efficient devices. For this reason, the old field of optical signal

processing (OSP) has recently attracted renewed attention [1, 2, 3]. Replacing all or some

of the digital processing unit with an optical component utilizing only light to carry out

the desired processing operation may allow to largely overcome some of the speed restric-

tions and power consumption problems of existing digital approaches. This paradigm has

quickly gained traction and successfully been explored for applications in edge detection

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], optimization [18, 19], machine learning

[20, 21], pattern recognition [22, 23] and analog computation [24, 25].

Conventional OSP is based on Fourier optics and consists in converting an optical sig-

nal to Fourier space through lenses, performing the desired operation in the Fourier space

through partially transparent screens or metasurfaces, and finally converting back to the
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Figure 1: Discrete space optical signal processing. (a) Illustration of the concept. An
array of optical antennas is used to sample an impinging optical field in space. Then, the
desired operation is performed on the sampled field through a network with a discrete
number of input/output ports. (b) Realistic implementation of the proposed concept. Top
apertures are used to sample incoming wave profile. The sampled signals are supplied to
a waveguide structure that realizes the desired mathematical operation. The composition
of the waveguide may be complex, depending on the operation. Photodetectors collect the
output waves at bottom openings. The lenses are used to increase the effective area of the
apertures and enhance the efficiency of the system.

spatial domain through another set of lenses [26]. Despite its robustness and generality,

this approach leads to bulky devices and therefore is not very attractive for modern sys-

tems. As a solution to this problem, several recent studies have explored metasurfaces,

with the goal of tailoring their nonlocal response to the spatial Fourier transform of a de-

sired operation. Such a task can for example be achieved through leaky wave resonances,

taking advantage of their strong spatial dispersion [1, 6, 9, 13, 15, 16]. Another option is

using the Brewster effect or geometrical phase, which leads to broadband responses, but

with less flexibility over the realized nonlocal response [5, 7, 11, 8, 12, 14, 17]. Meta-

surface approaches have so far been limited to simple operations, like differentiation or

integration, most likely because they rely on physical mechanisms with specific nonlocal

responses that are difficult to be matched to complex mathematical operations. Further-
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more, since they often depend on resonant effects, they are subject to limitations in terms

of bandwidth versus nonlocality, imposing another restriction on the responses that can be

achieved.

This thesis introduces a radically new approach to OSP, with the ability to implement

general mathematical operations without the limitations of other approaches. To this end

we borrow inspiration from digital filters, where a signal is first discretized in time, then

the desired operation is performed in the digital domain and finally the output signal is

converted back to the analog domain [27]. Following this paradigm, we propose a system

where an optical signal is sampled in space through an array of antennas and subsequently

supplied to a nano-photonic network with a discrete number of input and output ports that

performs the desired mathematical operation (Fig. 1a). The output of this network is a dis-

crete signal in space and can be directly supplied to an array of photodetectors, thus saving

us from having to convert the signal back to the analog domain, as in conventional digital

filters. Similar to digital filters, our system offers great versatility for implementing gen-

eral operations, since its design boils down to the design of a discrete port network with

a given scattering matrix, which, as has been recently shown, can be efficiently executed

through inverse design algorithms [28]. We demonstrate the proposed paradigm for the

case of edge detection (differentiation) and the novel concepts of image compression and

color encoding transformation (in chapters 2, 3 and 4, respectively) via a structure con-

sisting of an array of lens antennas for sampling the signal in space and a waveguide with

periodic arrays of input and output apertures for implementing the desired mathematical

operation.

The proposed discrete-space design approach has significant advantages compared to
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the currently main approach for OSP based on momentum-domain metasurfaces. First,

since we do not rely on momentum domain design characteristics, such as leaky-wave res-

onances, we design metamaterials with a relatively large bandwidth. For example, in the

case of edge detection the proposed design supports a 5% frequency bandwidth, which

is one of the largest reported in the literature. Second, direct spatial design is not sub-

ject to the restrictions of the physical effects used in momentum-based approaches, like

leaky-wave resonances, and unveils a way to implement a variety of mathematical oper-

ations. In other words, as long as the design expectations are not against fundamental

electromagnetic principles, like power conservation and reciprocity, one can design any

scattering matrix. This flexibility of the discrete space approach has allowed us to propose

for the first time image compression in the optical domain through a structure that im-

plements the Haar wavelet transform, which is one of the mathematical operations used

in the JPEG image compression algorithm. The fairly complex nature of this transform

makes its implementation through a momentum-based metasurface a rather challenging,

if not impossible, task. On the other hand, with the discrete-space approach it turns out

to the design of a linear network with a discrete number of input and output ports, which

can be efficiently accomplished trough topology optimization. In our work, this task is ac-

complished through an in-house-developed Finite-Difference Frequency Domain (FDFD)

inverse topology optimization algorithm.

Another problem of highly practical significance that was tackled in this thesis is color

encoding (chapter 4). We targeted a transformation between two of the most well-known

color codes, RGB and YUV. RGB represents light illumination based on color elements Red

(R), Green (G) and Blue (B) only, while YUV separates intensity and color components
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of light. Y represents intensity information, while color information is encoded in U and

V. YUV has huge potential in communication engineering, image and video processing,

bandwidth reduction, differential color representation and unique brittleness control ca-

pability. We obtain a proper scattering matrix to realize this transformation after a slight

manipulation ta make sure the matrix satisfies conservation of power. Once again, com-

bining discrete-space metamaterials and inverse design, we carefully optimized needed

metamaterial to make the operation possible.

In chapter 5, we focus on a related problem problem in antenna engineering. Con-

ventional communication systems are composed of an antenna and a Low Noise Amplifier

(LNA) at the receiving end. However, large input impedance of the LNA often causes a

considerable amount of power reflection between this two blocks, and therefore, enforces

efficiency reduction over the entire receiving mechanism. Another case where impedance

mismatch can be a serious problem is in energy harvesting systems, which are terminated

to diodes with very high impedances, much different that the impedances of antennas.

The conventional way for addressing these problems is by adding a matching network

between the antenna and the load, but it is known that the efficiency of such networks

drops quickly as the ratio between the input and output impedances increases. At the

same time, there it no reason, at least at first sight, why an antenna cannot be design to

have an impedance that matches the load impedance, which would render the matching

network unnecessary. Here we try to address this possibility by exploring any fundamental

trade-offs between the impedance of an antenna, and its efficiency and size. We tackle

this problem by using the topology-optimization algorithm we have developed earlier in

the thesis. We show that the an inverse-designed metamaterial antenna can convert an
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incident beam to a high-impedance output signal with high efficiency, as long as the size

of the antenna is beyond a limit determined by the value of the output impedance. The

analysis reveals a previously unexplored trade-off for antennas and can be important for

the design of wireless systems.

In summary, the discrete space approach introduced in this thesis constitutes a sig-

nificant leap forward in the implementation of complex image processing operation with

waves that cannot be achieved with other approaches. This fact is demonstrated for the

practically important cases of edge detection, image compression and YUV color encoding.

Furthermore, it is shown how the techniques developed in the thesis can be useful for

understanding other important problems in antenna design. The discrete space approach

is characteristic for its generality and capability to be integrated in imaging systems. As

such, it has the potential of enabling a new class of smart cameras with high speed and

ultra-low power consumption.
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CHAPTER 2 EDGE DETECTION

2.1 Sampling Array

A simple way to realize sampling in space is through a periodic array of apertures on

a metallic layer, as in Fig. 1b. According to the Nyquist-Shannon theorem, the array pe-

riodicity needs to be selected as W ≤ π/kt,max, where kt,max, is the maximum transverse

wavenumber of the impinging optical signal, which is the analogue of angular frequency in

the spatial domain. Any value below this limit is permitted, but, as will become clear later,

operating exactly on the limit leads to the simplest form for the spatial filter. Apertures

on a metallic layer are effective magnetic dipoles with an effective aperture approximately

equal to λ/2, λ being the wavelength in free space [29]. Since kt,max < k, where k is

the wavenumber in free space, we find from W = π/kt,max that W > λ/2, meaning that

the apertures can only capture a fraction of the impinging power, limiting the system’s

efficiency. An array of lenses on top of the apertures solves this problem and improves

the efficiency of the whole structure. Using Fermmat’s principle, it can be shown that

an ellipsoidal lens focuses a bundle of normally incident rays to one of the ellipse’s fo-

cal points [30]. Keeping this fact in mind, we position the openings at the lenses’ focal

points. A quarter-wavelength coating layer of relative permittivity ϵcoat =
√
ϵlens, where

ϵlens is the relative permittivity of the lens, is also added on the surface of the lens to elim-

inate air-lens impedance mismatch and multiple internal reflections. When the lenses are

introduced in the periodic aperture array, they have to be truncated to a width match-

ing the array periodicity. This leads to spillover loss and reduction of the power captured

by the apertures. This fact can be better understood by examining the apertures in the
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Figure 2: Design of the sampling antenna. (a) Optical fields are sampled in space through
apertures on a metallic wall. The apertures are supplemented with a leaky-wave air cav-
ity and a lens to enhance their affective area and consequently maximize the amount of
collected power. (b) Radiation pattern of the lens-aperture system. (c) Electric field for
excitation with a plane wave with incident angle θ = 0◦ (left) and θ = 3◦ (right). The
dimensions of the structures have the following values: L = 22λ, h1 = 0.038λ, h2 = 0.45λ,
W = λ/(2 sin 3◦), where λ is the wavelength in free space.

transmitting mode and taking into account that due to the reciprocity theorem the radi-

ation pattern is identical in the receiving and transmitting modes. When the apertures

are operated as transmitters, the lenses capture only a portion of the radiated power, in

particular the one inside the cones defined by the apertures and the lenses, thus limiting

the radiated power and consequently the effective area towards the normal direction. To

overcome this problem, we have added a low-index (here air) dielectric slab with a height

of approximately half a wavelength between the aperture and the lens, designed to sup-
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port a broadband leaky-wave resonance with the ability to focus the radiated power from

the aperture within the aperture-lens cone [31, 32]. From reciprocity, it directly follows

that such a strategy also increases the receiving efficiency of the apertures.

Based on the above remarks, we have designed a two-dimensional antenna as in Fig. 2a,

assuming an out-of-plane (transverse-electric (TE)) electric field polarization. The lens is

made of a material with a relative permittivity ϵlens = 9 and approximated as a spherical

sector. The apertures are connected to short channels in the metallic layer with the same

width as the apertures, to guide the received signals to the processing part of the system.

The channels are filled with a dielectric material εr = 9. In order to avoid impedance

mismatch between the leaky-wave air cavity and the channels, we slightly extend the di-

electric material of the channels to the top of the aperture array. The system is designed for

optical fields with angular spread from −3◦ to 3◦, which corresponds to kt,max = k sin θmax,

where θmax = 3◦. This value was selected so that at 600 nm (approximately the middle of

the optical spectrum), W = 5.7 µm, which is a typical pixel size in commercial imaging

systems. Ideally, we would like the radiation pattern to be flat for −θmax < θ < θmax with

effective aperture equal to W and 0 otherwise. In reality, the radiation pattern is smoother,

as in Fig. 2b. Then, θmax is the cutoff angle of the structure, at which directivity drops by

3 dB compared to its value at θ = 0◦. Fig. 2b shows the simulation results of the electric

field intensity for θ = 0◦ and θ = 3◦. For both illumination angles, the extended hemispher-

ical lens and the index-matching layer focus the incoming waves on the leaky wave cavity.

Although the focal point for θ = 3◦ excitation is slightly shifted off to the right from the

aperture, the leaky-wave cavity helps the wave to couple to the waveguide thus mitigating

this misalignment effect. By dividing the collected power in the channels by the incident
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power over a single period W , we find that the effective area is 0.85W and 0.5W at θ = 0◦

and θ = 3◦, respectively.

2.2 Analysis of the Antenna Array

Here, we are going to analyze the response of the periodic antenna array to an imping-

ing plane wave. As a first step, we will derive a general expression for the radiated field

by a periodic antenna array. The problem of calculating the received power for excitation

with a plane wave can be obtained from this result by applying reciprocity.

Fig. 3 shows a linear array of N antennas, with a periodicity W and input signals

xn = x0e
−jnφ, where φ is the phase difference between two adjacent antennas of the array.

The problem is assumed two dimensional, i.e., uniform along the z-axis, with an electric

field polarized along the z-axis, as the antennas in the main text. Consider, first, a single

element of the array. The radiated field is given by

E(r, θ) = xinF (θ)
e−jkr√
2πr

, (2.1)

where xin is an input signal at the port of the antenna, F (θ) is the radiation pattern, k is

θ

x
-1

x
0

x
1

r

W W

x

y

z

Figure 3: A linear array of antennas excited by signals xn.
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the wavenumber in free space, θ is the azimuthal angle defined as in Fig. 3 and r is the

radial distance from the center of the antenna. The directivity is defined as

D(θ) =
Urad(θ)

Uiso

, (2.2)

where Urad(θ) is the radiation intensity of the antenna, i.e., the radiated power per unit

angle, and Uiso is the radiated intensity of an isotropic antenna with the same radiated

power. The radiation intensity of the antenna is given by

Urad(θ) = r
|E(r, θ)|2

2η
=

|xin|2

4πη
|F (θ)|2, (2.3)

where η is the wave impedance in free space. The radiation intensity of the isotropic

antenna is given by Uiso = Prad/(2π), where Prad is the radiated power, which is equal

to Prad = |xin|2/(2Zant), where Zant is the input impedance at the port of the antenna.

Replacing these equations into (2.2) yields

D(θ) =
Zant

η
|F (θ)|2. (2.4)

Furthermore, from (2.3) we have

Urad(θ) =
Prad

2π
D(θ). (2.5)

Now, let us move to the case of the array. Following the antenna theory [33], the
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radiated field by the array is given by

E(r, θ) = x0AF (θ)F (θ)
e−jkr√
2πr

, (2.6)

where AF (θ) is the array factor given by

AF (θ) =

N
2
−1∑

n=−N
2

e−jnψ = ej
ψ
2
sin

(
Nψ
2

)
sin

(
ψ
2

) , (2.7)

where ψ = φ− kW sin θ. The radiation intensity is given by

Urad(θ) = r
|E(r, θ)|2

2η
=

|x0|2

4πη
|AF (θ)|2|F (θ)|2. (2.8)

Replacing |F (θ)|2 from (2.4) into (2.8) results in

Urad(θ) =
Pin

2π
|AF (θ)|2D(θ), (2.9)

where Pin is the input power at the port of each antenna in the array. Replacing (2.7) into

(2.9) yields

Urad(θ) =
Pin

2π

sin2
(
Nψ
2

)
sin2

(
ψ
2

) D(θ). (2.10)

The total radiated power can be found through integration with respect to θ as

Prad =

∫ π

−π
Urad(θ)dθ =

Pin

2π

∫ π

−π

sin2
(
Nψ
2

)
sin2

(
ψ
2

) D(θ)dθ. (2.11)

If we assume antennas radiating only in the top-half space, i.e., for −π/2 < θ < π/2, (2.11)
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becomes

Prad =
Pin

2π

∫ π
2

−π
2

sin2
(
Nψ
2

)
sin2

(
ψ
2

) D(θ)dθ. (2.12)

From the theory of distributions (Fejer’s theorem) [34], it is known that

lim
N→∞

1

N

∫ π

−π

[
sin

(
Nx
2

)
sin

(
x
2

) ]2

f(x)dx = 2πf(0), (2.13)

where f(x) is a continuous function in (−π, π). This identity can be extended over an

infinite range as follows

lim
N→∞

1

N

∫ ∞

−∞

[
sin

(
Nx
2

)
sin

(
x
2

) ]2

f(x)dx = 2π
∞∑

m=−∞

f(2mπ). (2.14)

(2.14) can be used to calculate the radiated power from each antenna element in the limit

of an infinity array, which is defined by

Pant = lim
N→∞

Prad

N
. (2.15)

Specifically, changing the variable of integration from θ to ψ in (2.12) leads to

Prad =
Pin

2π

1

kW

∫ φ+kW

φ−kW

sin2
(
Nψ
2

)
sin2

(
ψ
2

) D(θ)

cos θ
dψ. (2.16)

Replacing (2.16) into (2.15) and then applying (2.14) yields

Pant =
Pin

kW

∑
m

D(θm)

cos θm
, (2.17)
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where θm are the solutions of the equation φ− kW sin θm = 2mπ in the range (−π/2, π/2).

Each term of the sum in (2.17) corresponds to a plane wave propagating along the angle

θm with a total power Pin

kW
D(θm)
cos θm

within one unit cell. Therefore, the radiation efficiency of

the antenna array along an angle θ is equal to 1
kW

D(θm)
cos θm

. Due to reciprocity, this equation

also provides the receiving efficiency for an incident plane wave from the same angle

Tarray =
1

kW

D(θ)

cos θ
(2.18)

The received power is given by

Prec =
Pinc

kW

D(θ)

cos θ
, (2.19)

where Pinc is the incident power within one unit cell.

In order to have perfect collection of the incident power by the antenna array, it is

necessary that Prec = Pinc, leading to

D(θ) = kW cos θ. (2.20)

Furthermore, from the antenna theory, the directivity should satisfy

∫ π

−π
D(θ)dθ = 2π. (2.21)

It is not difficult to show that (2.20) and (2.21) are concurrently satisfied for an antenna
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Figure 4: Radiation pattern of the antenna with an angular range −10◦ < θ < 10◦

with

D(θ) =


kW cos θ, −θmax < θ < θmax

0, otherwise

, (2.22)

where kW sin θmax = π, which is the Nyquist-Shannon sampling condition of the array.

Therefore, by satisfying the condition in (2.22), we can make sure that incident optical

fields with an angular range from −θmax to θmax are perfectly captured by the array. Here,

for instance, radiation directivity when θmax = 10◦ is plotted in Fig. 4.

2.3 Subtracting Metamaterial

The second part of the system is a linear optical network performing the desired math-

ematical operation. Here, this network is a waveguide formed between two metallic walls

with an arbitrary material composition depending on the operation that has to be realized,

as shown in Fig. 1b. The waveguide is connected to the antenna array through short chan-

nels on its top wall, from where the antenna signals xn are injected. On the bottom wall

of the waveguide there is another array of channels, from where the output signals yn are
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collected. Both arrays have the same periodicity W . Similar to digital filters, the output

signals are given by an expression of the form

yn =
N∑

k=−M

hkxn−k, (2.23)

where M,N are integers and hk is the impulse response of the structure. (2.23) states that

the output signal at the n-th output aperture is a linear superposition of M + N signals

over the top apertures, essentially providing the scattering matrix of the network. Since we

Figure 5: Discrete port network for implementing a difference operation. (a) The network
is based on a parallel-plate waveguide with periodic arrays of input/output channels at
opposite walls. The collected signals from the antenna array are injected to the network
through the top channels, while the processed signal is retrieved through the bottom ones.
The difference operation is achieved by displacing the output channels compared to the
input ones by an appropriately selected distance d. The obstacles in the vicinity of the
T-junctions between the channels and the waveguide are added for matching purposes.
The dimensions of the structure are as follows: d = 0.477W , wg = 0.18λ, r = wg

2
− 0.02λg

and wo = 0.018λg where λg is the guide wavelength inside the core waveguide. W is the
same as for the sampling array in Fig. 2. (b) Transmission coefficient versus incident angle
θ and frequency. The center frequency is f0 = 1.1fc, where fc is the cutoff frequency of the
core waveguide.
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are dealing with signals in space, we are not limited by causality, hence the bottom limit

in (2.23) can be a negative number. Quite importantly, (2.23) describes a translationally

symmetric structure, as required to make sure that the response is insensitive to the lateral

location of the incident signal with respect to the structure.

Taking into account the above remarks, we have designed a system performing a dis-

crete derivative, i.e., difference, operation yn = xn+1−xn. To this end, we use a waveguide

filled with a uniform dielectric material ϵr = 9, which is the same material as for the in-

put/output channels, and output channels displaced by a distance d with respect to the

input ones, as shown in Fig. 5a. Assuming a nearest neighbor approximation, the signal at

the n-th output channel is approximately equal to

yn ≈ 1

2
xn+1e

−jβ(W−d) +
1

2
xne

−jβW , (2.24)

where β is the wavenumber inside the waveguide and the 1
2

factor is due to the fact that

the input signals are split to two parts propagating in opposite directions when they enter

the waveguide. If d is selected such that β(W − 2d) = (2m + 1)π, where m is an integer,

the output signal becomes

yn ≈ e−jβ(W−d)(xn+1 − xn), (2.25)

yielding the desired difference operation. From all possible values for d, we select the one

that is closer to W/2, because, as will be shown later, it leads to maximum bandwidth. In

order to eliminate reflections at the T-junctions between the input/output channels and

the waveguide, we have added carefully designed metallic obstacles in the vicinity of the
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junctions as shown in Fig. 5a, following the technique in [35].

2.4 Analysis of the subtracting waveguide

Here, we are going to analyze the transmission response of the core waveguide. Re-

call that the input channels of this waveguide carry the collected signals by the preceding

antenna array. If the input/output channels are matched to the core waveguide, the scat-

tering matrix of the T-junctions assumes the general form

¯̄S =


0 1√

2
1√
2

1√
2

r t

1√
2

t r

 , (2.26)

where ports are defined as in Fig. 6, r is the reflection coefficient from port 2 or 3 and t is

the transmission coefficient from port 2 to 3 or vice versa. The 1/
√
2 terms originate from

the fact that the incident signal from input channels is split to two equal parts propagating

in opposite directions. Assuming a lossless network, we have

¯̄S† ¯̄S = ¯̄I, (2.27)

where ¯̄I is the identity matrix and † represents the conjugate transpose operation. Inserting

(2.26) into (2.27) results in

r + t = 0, (2.28)

|r|2 + |t|2 = 1

2
. (2.29)
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(2.28) and (2.29) are satisfied for

r = −t = −1

2
. (2.30)

If the waves in the waveguide are defined as in Fig. 6, applying (2.26) to the left T-

junction results in the following equations

A2 =
1√
2
+ tA1 + rB2, (2.31)

B1 =
1√
2
+ tB2 + rA1. (2.32)

Similarly, from the right junction we have

A3e
jβ(W−d) = tA2e

−jβd + rB3e
−jβ(W−d), (2.33)

B2e
jβd = rA2e

−jβd + tB3e
−jβ(W−d), (2.34)

where β is the wavenumber in the waveguide. Assuming a plane-wave excitation with

transverse wavenumber kt, the signals at the input channels of the waveguide are of the

form xn = x0e
−jnkt, where xn is the input signal at the n-th channel. As a result, at

the boundaries of a unit cell of the waveguide defined between two consecutive input

channels, as in Fig. 6, the fields satisfy the Floquet conditions

A3 = A1e
−jφ, (2.35)

B3 = B1e
−jφ, (2.36)
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Figure 6: Illustration of wave profiles coefficients inside the subtarctor metasurface waveg-
uide.

where φ = ktW . Solving (2.31)-(2.36) for A2, B3 and using t = −r yields

A2 =
1√
2

1− 2r2
[
e−j(φ+βW ) + e−j2β(W−d)]

∆
, (2.37)

B3 =
1√
2

1− 2r2
[
ej(φ−βW ) + e−j2βd

]
∆

e−jφ, (2.38)

where

∆ = 1− 2r2 {cosφ+ cos[β(W − 2d)]} e−jβW . (2.39)

The outgoing field at the output channel is given by

Eout =
1√
2

[
A2e

−jβd +B3e
−jβ(W−d)] . (2.40)

By inserting (2.37), (2.38) into (2.40) we find

Eout =
1

∆

{
e−j

φ+βW
2 cos

[
φ+ β(W − 2d)

2

]
− 4r2e−j

φ+3βW
2 cos

[
φ− β(W − 2d)

2

]}
. (2.41)
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Replacing r = −1/2 into (2.41) leads to

Eout =
1

∆
e−j

φ+2βW
2

{
ej

βW
2 cos

[
φ+ β(W − 2d)

2

]
− e−j

βW
2 cos

[
φ− β(W − 2d)

2

]}
, (2.42)

where

∆ = 1− 1

2
{cosφ+ cos [β(W − 2d)]} e−jβW . (2.43)

Considering that in the above analysis the incident field was assumed equal to 1, the

transmission coefficient is found as

Twg = |Eout|2 =

∣∣∣ej βW2 cos
[
φ+β(W−2d)

2

]
− e−j

βW
2 cos

[
φ−β(W−2d)

2

]∣∣∣2
|∆|2

. (2.44)

Assume now that β(W − 2d) = (2m + 1)π, which is the condition for obtaining a perfect

difference operator. Then, (2.42) becomes

Eout = ∓ 2

∆
e−j

φ+2βW
2 cos

(
βW

2

)
sin

(φ
2

)
, (2.45)

where the minus/plus sign hold for even/odd m. The output field in (2.45) is proportional

to sin(φ/2), which represents a difference operator in the Fourier space.

If we analyze the sinusoidal functions in (2.41) to complex exponentials and multiply

both sides of the equation with 2∆ we get

2
{
1− 2r2 cos [β(W − 2d)] e−jβW

}
Eout − 2r2e−jβW ejφEout − 2r2e−jβW e−jφEout

=
[
e−jβd − 4r2e−jβ(2W−d)]+ [

e−jβ(W−d) − 4r2e−jβ(W+d)
]
e−jφ. (2.46)
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Taking into account that the incident field from channel n = 0 is equal to 1, we can write

x0 = 1 and x1 = e−jφ. Similarly, y0 = Eout, y−1 = ejφEout and y1 = e−jφEout. Then, (2.46)

becomes

2
{
1− 2r2 cos [β(W − 2d)] e−jβW

}
y0 − 2r2e−jβWy−1 − 2r2e−jβWy1

=
[
e−jβd − 4r2e−jβ(2W−d)]x0 + [

e−jβ(W−d) − 4r2e−jβ(W+d)
]
x1. (2.47)

Since the structure is translationally symmetric, (2.47) can be written in the general form

2
{
1− 2r2 cos [β(W − 2d)] e−jβW

}
yn − 2r2e−jβWyn−1 − 2r2e−jβWyn+1

=
[
e−jβd − 4r2e−jβ(2W−d)]xn + [

e−jβ(W−d) − 4r2e−jβ(W+d)
]
xn+1. (2.48)

If r = 0, i.e., the waves in the waveguide were not reflected by the T-junctions, (2.48)

would take the form

2e−jβWyn = e−jβdxn + e−jβ(W−d)xn+1, (2.49)

which is Eq. (2) in the main text, derived under a nearest-neighbor assumption. In the

more general case of r ̸= 0, (2.48) shows that the output signal is the result of two con-

tributions: 1) the input signals xn, xn+1 from the nearest-neighbor input channels propa-

gating towards the output channel (terms e−jβd and e−jβ(W−d)) and 2) reflections of these

signals to each other’s T-junction. For example, e−jβ(2W−d)xn is the input signal from chan-

nel n reaching the output channel n after being reflected at the T-junction of the input

channel n + 1. Similarly, e−jβ(W+d)xn+1 is the the input signal from channel n + 1 reach-

ing the output channel n after being reflected at the T-junction of the input channel n.
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Replacing the actual value of the reflection coefficient r = −1/2 in (2.48), we get

{
1− 1

2
cos [β(W − 2d)] e−jβW

}
yn −

1

4
e−jβWyn−1 −

1

4
e−jβWyn+1

= je−jβW {xn sin[β(W − d)] + xn+1 sin(βd)} . (2.50)

{
1− 1

2
cos [β(W − 2d)] e−jβW

}
yn −

1

4
e−jβW (yn+1 + yn−1)

= je−jβW {xn sin [β(W − d)] + xn+1 sin(βd)} . (2.51)

The sinusoidal functions in the right-hand side of (2.51) are due to standing waves formed

between the input channels. Such standing waves do not affect the operation of the struc-

ture, as under the condition β(W − 2d) = (2m + 1)π the input term in (2.51) is still

proportional to xn+1 − xn.

2.5 Response Under Plane-wave Incidence

To gain further insight into the operation of the network, we study its response under

plane-wave illumination with incidence angle θ and transverse wavenumber kt = k sin θ.

Then, the signals at the input channels of the subtracting network have the form xn =

x0e
−jnktW , where x0 is a complex constant that is proportional to the incident field ampli-

tude. Substituting this equation to (2.25), we find after some simple algebraic manipula-

tions |yn|2 ≈ sin2
(
ktW
2

)
|x0|2. We see that for kt = 0 the output signals are zero and increase

as kt increases, as expected from a derivative operation. The output signal takes its maxi-

mum value for kt = π/W , which, as discussed earlier, is the upper value of the transverse
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Figure 7: Response of the full structure (antenna array and ensuing waveguide). (a)
Intensity and phase of the transmission coefficient compared to ideal difference response.
(b) Transmission versus frequency and illumination angle.

wavenumber dictated by the Nyquist-Shannon sampling theorem. This fact shows that

sampling according to the Nyquist-Shannon bound leads to the most efficient use of the

structure. If sampling was faster, i.e., W < π/kx,max, the output from the subtracting net-

work at the maximum wavenumber of the input image would be less than its maximum

possible value, reducing the output signal intensity. Since we are dealing with passive

structures, boosting the output signal in this case would require using a larger number

of input signals beyond the nearest neighbor ones, increasing the order and therefore the

complexity of the filter. Following the analysis used for the derivation of (2.51), we find

that the full expression for the transmission coefficient valid at any frequency is given by

T (kt, β) =
|y0|2

|x0|2

=

∣∣∣ej βW2 cos
[
ktW−β(W−2d)

2

]
− e−j

βW
2 cos

[
ktW+β(W−2d)

2

]∣∣∣2
|∆(kt, β)|2

, (2.52)

where

∆(kt, β) = 1− 1

2
{cos(ktW ) + cos [β(W − 2d)]} e−jβW . (2.53)
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Fig. 5b presents transmission versus frequency and incident angle obtained through

(2.52) and full-wave simulations through Comsol Multiphysics for a structure designed to

work for a maximum incident angle θmax = 3◦. The theoretical and numerical results are

in excellent agreement with each other. The response is symmetric with respect to θ = 0◦,

with transmission being close to zero at θ = 0◦ and increasing as θ increases, as it should be

for a difference operation. The resonant features are due to the standing-wave resonances

between the input channels (the sinusoidal terms in the right-hand side in (2.51)). At the

center frequency f0, i.e., the frequency for which β(W − 2d) = (2m + 1)π is satisfied, the

angle of maximum transmission is θ = ±3◦, per design, while as we move further from f0,

this angle slightly decreases. This response is maintained over a bandwidth of about 5%

about f0 (roughly speaking, the bandwidth of the center dark region in Fig. 5b), which

is among the highest among all structures reported so far for edge detection. To gain a

better understanding about the factors determining the bandwidth, we calculate the Taylor

expansion of (2.51) with respect to β about it value β0 at f0. Keeping only the lowest-order

terms, the result reads

T (kt, β) ≈ T (kt, β0) +
cos2

(
ktW
2

)
sin2

(
β0W
2

)
|∆(kt, β0)|2

[∆β(W − 2d)]2, (2.54)

where ∆β = β − β0. For small kt, as here, cos2(ktW/2) ≈ 1 and the second term in

(2.54) represents a constant shift of the transmission level depending on β (frequency).

Considering that β =
√
k2εr − (π/wg)2, where wg is the width of the waveguide, we find

∆β ≈ (k0εr/β0)(2π∆f/c), where ∆f = f − f0 and c is the speed of light. Assuming

operation far from the waveguide cutoff frequency, it follows that the perturbation from
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the ideal response is proportional to ∆f 2√εr(W−2d)2. Therefore the bandwidth increases,

if we reduce εr or W − 2d, with the latter condition achieved by selecting d as close as

possible to W/2.

Next, we discuss the response of the complete structure, consisting of both the lens

array and the subtracting waveguide. Fig. 7a shows the magnitude and phase of the

transfer function versus the incidence angle at the center frequency f0. The response was

obtained through full-wave simulation with Comsol Multiphysics. In the same figure, we

also plot the response expected for an ideal difference operation. The agreement between

the ideal and numerical results is excellent. The intensity of transfer function is symmetric

with respect to θ = 0◦, as expected from (2.52) and in agreement with the ideal response.

On the other hand, the phase is odd symmetric with respect to θ = 0◦ as required for

a first-derivative operation. Note that peak transmission is greater than 1, because the

system funnels the incident power over one period to the much smaller area of the output

channels. Fig. 7b shows the output power from the metasurface versus frequency and

incident angle. The response is almost the same as for the subtracting waveguide and

exhibits a bandwidth of about 5%.

To better see the effect of the metasurface on an incident image, Fig. 8 presents the

output from the structure when the input is a 1-D image that includes constant, ramp,

parabolic and sinusoidal functions. The results have been obtained for a broad range of

frequencies and for three different image lengths. The image is selected so that for the

smaller length the image’s maximum spatial frequency is equal to the system’s kt,max. Ob-

viously, increasing the image length leads to a narrower spatial spectrum. The output

images were obtained by multiplying the spatial Fourier transform of the input signal with
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Figure 8: Response of the structure under illumination with a generic optical field. Three
cases for the length of the input image are analyzed, 500λ, 700λ and 900λ, with the smallest
length yielding an angular spectrum equal to the one of the structure. The results are
derived for 5 different frequencies spanning the entire bandwidth of the structure. In all
cases, the response is very close to the ideal difference response.

the system’s transfer function and converting the result to spatial domain through an in-

verse Fourier transform. The proposed system is capable of performing high-quality edge

detection for all lengths and frequencies, with the results being the best at the center fre-

quency f0, as expected. Note the proper edge detection performance with this range of

frequency bandwidth and over a momentum spectrum with this level of proximity to null-

momentum value, as is the case of projected images on typical sensor arrays, is pretty rare

in the literature. As will be explained in the following, this fact makes the proposed system

particularly suitable for integration with sensor arrays.

2.6 Photo-detection Integration and Numerical Aperture

The proposed approach can be seamlessly integrated with sensor arrays, if the peri-

odicity of the system is selected to be equal to the pixel size of the array and the output

apertures are aligned with the array sensors. In that sense, the proposed system shares

similarities with the broadly-used Bayer filters, where each sensor is supplied with an ex-

tra absorptive layer or more sophisticated nanostructures, e.g., Fabry-Perot resonators, to
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achieve color separation. Here we bring this approach one step further, by showing how

it can be used for OSP. It is important to mention that our approach is more suitable for

such integration than other OSP approaches, like those based on nonlocal metasurfaces.

Nonlocal metasurfaces are typically designed with a relatively large numerical aper-

ture (NA), in the order of 0.3, corresponding to a maximum transverse wavenumber

kt,max = 0.3k. On the other hand, a typical camera with a pixel size ∆ = 5 µm operat-

ing at the middle of the visible spectrum, 0.5 µm, can resolve images with a maximum

wavenumber kt,max = 1/(2∆) = 0.008k, more than two orders of magnitude smaller than

the maximum wavenumber of the metasurface, showing that only a very small fraction

of the spatial spectrum of the metasurface around kt = 0 is actually used, which leads to

small efficiency, since transmission around kt = 0 is very small. In principle, this prob-

lem can be overcome by designing the metasurface to have a small NA or alternatively

speaking a spatial spectrum matching the one of the sensor array. This would require very

Figure 9: Sensor array integration with OSP approaches. Nonlocal metasurfaces are de-
signed with a large numerical aperture (NA=0.3); much larger than the desired NA for an
array with periodicity of 0.5 µm.
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Figure 10: Trade-off between radiation decay rate τsw and temporal frequency bandwidth
BW . Strong nonlocality needs large radiation decay and therefore narrow bandwidth.
Looking at two extreme cases of τsw may provide a better insight into this trade-off. An
impulse τsw as a function of time excites infinite number of frequencies (very large BW )
and a constant τsw over time results a single frequency radiation (very small BW ).

strong nonlocality, since transmission would have to change from 0 to 1 over a very small

kt range. For structures based on leaky-wave resonances, such strong nonlocality would

necessarily translate to a smaller bandwidth, since the leaky wave would have to propagate

over a longer distance along the metasurface before being converted to radiation, which is

only possible by reducing the radiation decay rate and consequently the bandwidth. Our

structure is free from this trade-off, because waves propagate as guided modes along the

core waveguide of the structure.
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CHAPTER 3 OPTICAL IMAGE COMPRESSION

Optical computing has emerged as a promising candidate to replace electronics in im-

age processing. The work in this area has so far focused on simple operations, like edge

detection, which can be realized with the intrinsic nonlocal response of metasurfaces.

However, implementation of more complex operations is still an open problem. Here,

combining concepts from filter theory, signal processing and optical network design, we

present a general framework to realize advanced image processing with waves. We focus

on the case of image compression and present a structure that realizes the second-scale

Haar discrete wavelet transform in the optical domain over a volume that fits within the

space of a camera. We demonstrate the efficacy of the structure by studying the statistics of

an image before and after it is transmitted through the structure. The presented approach

opens up a route to the development of a new class of wave-operated smart cameras with

high speed and low power power consumption.

Optical computing (OC), i.e., the use of optical signals to perform mathematical opera-

tions, emerged several decades ago, when the capabilities of electronic computers were

still limited [36, 37, 38, 2]. The systems that were proposed in these early works were

typically based on Fourier optics and although they supported a wide range of opera-

tions, they were bulky. For this reason, the interest in them gradually diminished, as

transistor technology advanced towards smaller and faster devices. However, the recent

progress in optical nanotechnology combined with the fundamental limitations of digi-

tal computers resulting from Moore’s law have brought this idea back to the spotlight

[1, 39, 40, 41, 42, 43, 44, 45, 46, 47, 15, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. Al-
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though the development of general-purpose optical computers might be out of reach now,

due to the weak nature of optical nonlinearities that make the design of optical logical

gates difficult, optical waves are ideal for the implementation of linear operations, i.e.,

matrix algebra, which are usually the most demanding operations of a computing system

[59]. Building upon this fact, several works have proposed optical implementations of

the matrix operations involved in deep learning networks [41, 44, 51, 52, 53] or image

processing [1, 40, 42, 43, 45, 15, 60, 49, 54], with the latter mostly focusing on relatively

simple operations, like edge detection, which can be realized with the intrinsic nonlocal

responses of photonic metasurfaces. However, such responses follow specific patterns and

cannot be used for the implementation of more complex operations. One solution to this

problem is offered by the so-called discrete-space optical computing (DSOC) that was pro-

posed in chapter 2. This method approaches OC as a digital filter in space and consists of

discretizing a wave in space through an array of antennas and then implementing a desired

linear operation on the discretized wave through a photonic structure with a discrete num-

ber of input and output ports. A second approach that can also implement general linear

matrices was proposed in [44, 55] and is based on stacks of diffractive metasurfaces. Both

of these approaches have the capability of realizing complex image operations for waves

in free-space, which cannot be realized with other techniques.

An image processing operation of high complexity but also high practical significance is

image compression[61]. Any communication system is characterized by an upper limit

on its capacity, commonly known as Shannon’s limit, which predicts a maximum rate for

transmission of digital information depending on the signal to noise ratio. Approaching

this limit typically requires some kind of encoding to remove redundancies in the input
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Figure 11: Conceptual illustration of an optical implementation of the DWT transform.
(a) An incident wave is discretized in space through an array of lenses. The discrete
outputs of the array are guided to a network with a discrete number of input and output
ports that implements the Haar matrix. The output wave of the network are guided to
a photodetector array. The periodicity of the lens array is the same as the one of the
photodetector array. (b) Three-dimensional artistic rendering of the concept.

signal. For images, encoding is commonly referred as image compression and it exists in

various forms, with the JPEG standard being the most popular one. An image compression

system generally consists of two parts, one that performs a linear transformation, like the

discrete wavelet transform (DWT), followed by a series of nonlinear operations that quan-

tize and encode the output of the linear part. To date image compression is exclusively

implemented in the digital domain. However, as a linear operation, the first block of an

image compression system is suitable for an all-optical implementation, which can lead to

a new class of smart imaging systems with high speed and low power consumption.

Here, we address this problem and show how the DWT, which is the most basic type of a

linear transform in image compression, can be implemented in the optical domain through

the DSOC approach in chapter 2. Our vision is outlined in Fig. ?? and consists of adding

an optical structure designed to perform the DWT in front of the photodetector array of an
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imaging system. Since the ultimate resolution of the system, i.e., the maximum transverse

wavenumber of an input image that can be discriminated by the system, is determined by

the photodetector array, in an optimal design the DWT structure should also have the same

resolution. A mismatch between the resolutions of the OC structure and the photodetector

array would require the addition of magnifying lenses between them, thus increasing the

system’s form factor. This requirement can be directly fulfilled with the DSOC approach, in

which an incident wave is first sampled in space with a periodicity equal to the periodicity

of the photodetector array and then the desired OC operation is performed on the resulting

spatially discretized signal. An illustration of this approach is presented in Fig. 11(a). An

optical wave is incident on an array of optical antennas, which can be a simple lens array, as

in Fig. 11(a), or of a more sophisticated form, as will be presented later in this chapter. The

purpose of the array is to periodically sample an incident wave in space. The output signals

of the array are then directed to a second network with a discrete number of input and

output ports that implements the desired linear operation, which in our case is the DWT.

As will be shown in the following, this approach allows implementing high-quality loss-

less image compression exclusively in the optical domain over a compact volume, which

in addition to its own merit as the first all-optical realization of image compression lays

the ground work towards the realization of also other operations for imaging systems. In

signal processing the DWT is usually defined through a series of successive low- and high-

pass filtering operations, followed by down-sampling operations [61, 62]. If this process

is applied P times, the DWT is said to have a scale P . Although this definition is ideal for

a software implementation of the DWT, for an optical implementation the transform has

to be expressed in a matrix form. For example, for one-dimensional signals the transform
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Figure 12: Optical implementation of the one-dimensional Haar DWT transform of scale
P for a system with 2J pixels. The structure is a combination of 2J−P identical networks
each of which has 2P input and 2P output ports and a transformation matrix H0 equal to
the Haar matrix.

has to be expressed in the form Y = HX, where X is an input signal of length N , Y

is the output signal of the same length as X, and H is a N × N matrix representing the

transform. Taking N to be a power of 2, i.e., N = 2J , as is usually the case, the matrix of

the transform can be written as

H =



H0 H1 H2 . . .

H−1 H0 H1 . . .

H−2 H−1 H0 . . .

...
...

... . . .


, (3.1)

where Hi are square matrices of size 2P×2P . For a general DWT, an optical implementation

of H would require a network with 2N input and 2N output ports, which might be difficult

to realize for systems with a large number of pixels. However, there is a specific case of

a DWT, yet of high practical significance, where the form of H simplifies to a significant
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degree. This is the so-called Haar transform, for which all the off-diagonal elements of H

are zero, i.e., Hi = 0 for i ̸= 0. In this case H reduces to a block diagonal matrix with H0 as

the diagonal elements of the matrix. Then, an optical implementation of H would consist

of 2N−P identical networks, each of which realizes H0 and has 2P input and 2P output

ports, as shown in Fig. 12. Therefore, the complexity of a Haar transform is 2N−P times

smaller than a general DWT, making it a particularly attractive transform for an optical

implementation.

Following these remarks, here, we demonstrate an optical implementation of the second-

level (P = 2) Haar transform with a matrix

H0 =
1

2



1 1 1 1

1 1 −1 −1
√
2 −

√
2 0 0

0 0
√
2 −

√
2


. (3.2)

This matrix is unitary, which means that it can be realized with a passive optical network.

To design such a network, we use two-dimensional topology optimization [63], assuming

dielectric waveguides as input and output ports and a material with a relative electric

permittivity of 2.26 (polypropylene). We start with the design of the lens array by invoking

as a requirement that each lens converts an incident Gaussian beam to the fundamental

mode of the input waveguides of the computing part of the system. Although in principle

it is possible to use conventional lenses for the lens array, here we prefer custom-designed

ones because they lead to a smaller form factor. The lenses are shown in Fig. 14a and have

dimensions 2.82λ× 3.34λ, significantly smaller than the dimensions of a conventional lens
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used in chapter 2. By applying the Lorentz reciprocity theorem, the output of these lenses

is approximately found as

xn ≈
∫
Einc(x)W (x− na)dx∫

[W (x)]2dx
, (3.3)

where Einc(x) is the incident field, W (x) = exp(−x2/w2
0) is the profile of the incident

Gaussian beam, w0 is the beam waist which is 0.95λ, n is an index for the lenses, and a is

the periodicity of the array. For the computing part of the system, we assume four input

and four output ports and invoke as a requirement that the input-output matrix is equal to

the Haar matrix in Eq. (B.24). The structure obtained through this procedure is shown in

Fig. 14(a) and exhibits a transmission matrix

H̃0 =
1

2



0.956ei0
◦

0.934e−i2
◦

0.940e−i3
◦

0.920e−i2
◦

0.936e−i2
◦

0.959e−i2
◦

0.923ei178
◦

0.929ei178
◦

0.908
√
2e−i2

◦
0.916

√
2ei179

◦
0.072ei48

◦
0.088e−i90

◦

0.082ei111
◦

0.093e−i71
◦

0.918
√
2e−i1

◦
0.929

√
2ei178

◦


, (3.4)

which is very close to the Haar DWT matrix. Fig. 13 shows filed distribution of simulated

Figure 13: Field distribution of combined lens array and Haar transformer metamaterials.
Lens are individually excited by Gaussian beams of unitary power.
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Figure 14: Constituent block of the optical implementation of the two-level Haar trans-
form. (a) Structure of the block. (b) Simulation results for excitation with Gaussian beams
for a different lens at a time. The bar diagrams compare the output power from simulations
and from the ideal Haar matrix (Eq. (B.24)). (c) Simulation results for an incident wave
modeling a 4-pixel image with a pixel vector [1 1 − 1 − 1]. The bar diagram compares the
power from simulations and the one calculated from the Haar matrix in Eq. (3.4) for an in-
put vector calculated as the weighted average of the incident wave according to Eq. (3.3).
(d) The same as (c), but for a sinusoidal incident wave representing a smoothened version
of the same input image.

metamaterial. Intensity routing to output waveguides and phase difference desired to

implement Haar transformations can be understood here.

To assess the efficacy of the system, we perform full-wave simulations for excitation

from one lens at a time with incident waves the Gaussian beams used in the design of

the lenses. The results are presented in Fig. 14(b). The output signals for excitation from
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the i-th lens are expected to match the i-th column of the Haar matrix, which can be

seen to be the case. As a more realistic case, we consider an incident wave spanning the

entire structure with a square-pulse profile representing a 4-pixel image with a pixel vector

[1 1−1−1] as in Fig. 14(c). The output power is compared with the output power obtained

from the ideal Haar matrix in Eq. (B.24) for an input vector obtained through weighted

averaging of the incident wave according to Eq. (3.3). The agreement between the two

results is excellent. Finally, Fig. 14(d) presents a similar analysis as Fig. 14(c), but with a

smoothed out profile for the incident wave, as expected in reality. The results match the

ideal result even in this case, with the exception of lower output power due to the smaller

overlap of the incident wave with the weighting function that results in a smaller efficiency

for the lenses.

To better see the compression capabilities of the system, we analyze its effect on a

two-dimensional image as in Fig. 15(a). For this analysis it is assumed that the structure

is a two-dimensional array of blocks, like the ones in Fig. 14a, with Nx/4 and Ny blocks

in the x and y directions, with Nx and Ny the numbers of pixels of the input image in

these directions. The analysis assumes that the incident wave is a superposition of non-

overlapping square pulses with widths equal to the widths of the lenses and amplitudes

proportional to the grey-scale levels of the input image’s pixels. Although in reality the

incident wave is expected to have a smooth profile, as discussed earlier this has no effect

on the output of the structure, other than a constant reduction of all outputs signals. The

output of the structure is obtained by applying the simulated matrix in Eq. (3.4) to the

weighted-average of the incident wave, considering that as demonstrated earlier such a

procedure leads to results fairly close to full-wave simulations. The output image obtained



39

Figure 15: Operation of the optical implementation of the Haar transform on an image.
(a) Input image. (b) Histogram of the input image. (c) Output image. (d) Histogram of
the output image. The Haar transform is applied to the rows of the input image.

through this procedure is shown in Fig. 15b, where for visualization purposes the output

signals from different blocks have been grouped according to the output port of each

block, i.e., ports I, II, III, and IV as defined in Fig. 14a. Note that the output image, i.e.,

the four sub-images combined, is of the same size as the input one. A visual inspection

of the output image immediately reveals that it contains a larger number of low-intensity

levels, which require a smaller number of information bits for their encoding, than the

input image. This fact is better understood by inspecting the histograms of the input and
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output images, representing the number of times each intensity level appears in the image.

An image with a narrower histogram can be encoded with a smaller number of bits than

one with a broader histogram. Therefore, the effect of image compression can be assessed

by looking at the width of the histogram before and after the transformation. This is the

case in Fig. 15, where the output histogram is narrower than the input one. For a more

quantitative assessment of the system’s compression capability we use the information

entropy, defined as

H = −
n∑
i=1

pi log2(pi), (3.5)

where pi is the probability of the i-th intensity level to be found in an image. For the

original and compressed images in Fig. 15 the information entropy is 4.74 bits/pixel and

3.58 bits/pixel, respectively, representing a 24% reduction of spatial redundancy after the

Haar transformation. Larger degrees of compression can be achieved by increasing the

scale of the transform or through two-dimensional transforms.

In addition to their significance as the first optical implementation of image compres-

sion, the results presented here constitute a significant leap forward in the area of OSP,

since they demonstrate the feasibility of optical implementation of advanced imaging op-

erations beyond those that are possible through the innate nonlocal responses of optical

structures. Such a task is made possible by combining concepts from filter theory, signal

processing and photonic network design, together with the flexibility offered by topology

optimization for the design of arbitrary photonic networks. The framework presented here

is general, can in principle be applied to any imaging operation that can be described

through a linear matrix operation, and is suitable for realization with additive manufac-
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turing. Furthermore, it can be directly integrated in the architecture of imaging systems

without affecting their size. We believe that the results presented here can inspire a new

class of smart cameras with advanced computational capabilities, high speeds and low

power consumption.
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CHAPTER 4 RGB TO YUV ALL-OPTICAL COLOR ENCODING

RGB is a color encoding method where a colored image is made of red, green, and

blue images. Each individual pixel color is expressed by proper weighting coefficients

of these colors. Many electronic devices we use every day use RGB to record or display

colored images. RGB while being significantly useful, does not offer direct control over

brightness and is not the most reliable when it comes to telecommunication bandwidth.

YUV color encoding model is another popular method to represent colored images. Unlike

RGB, YUV provides brightness control by devoting one dimension to brightness and the

other two dimensions to the color component of an image. For example, a black and

white screen can properly work by only controlling the brightness dimension (Y) of this

encoding. Fig. 16 shows the mapping between the U and V dimensions of this scheme

and color, and an example of a YUV decomposition of a sample image. In digital image

processing, the RGB to YUV transformation is defined as


Y

U

V

 =


0.299 0.587 0.114

−0.14713 −0.28886 0.436

0.615 −0.51499 −0.10001



R

G

B

 (4.1)

The YUV dimensions have upper and lower bounds as 0 ≤ Y ≤ 1, |U | ≤ Umax and |V | ≤

Vmax, where Umax = 0.436 and Vmax = 0.615.

Inspired by this digital transformation, we apply the discrete-space approach to color

encoding. The idea is to implement the transfer function on a photonic platform. Due

to the complexity of the transfer function, once again we reflect back to inverse topology

optimization as our designer method. However, there is a complication with an optical
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(a)

(b)

Figure 16: (a) Representation of chromatic dimensions of YUV color encoding model. V-U
plane colorcode distribution changes with Y variation. Here, V-U is plotted at Y=0.5. (b)
A sample image encoded in YUV model. Credit to Wikipedia

implementation of the YUV transformation, nameley the fact that it does not satisfy power

conservation. Therefore, we make slight manipulation to the matrix to accomplish power

conservation. First we scale the output Y, U, and V components of the transformation by

coefficients γ1, γ2, and γ3, respectively. Such a scaling does not alter the essense of the

transformation, since it can be incorporated in the measurement protocol of the output

signals. Furthermore, since a measurement is usually performed on power, we translate

the U and V components of the transformation matrix (second and third row of the matrix)
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by Umax and Vmax. Then, the modified transfer function is

Hmod = S =


0.299γ1 0.587γ1 0.114γ1

(−0.14713 + Umax)γ2 (−0.28886 + Umax)γ2 (0.436 + Umax)γ2

0.615 + Vmax)γ3 (−0.51499 + Vmax)γ3 (−0.10001 + Vmax)γ3

 .
(4.2)

This matrix is defined for power at different wavelengths and as a result power conserva-

tion needs to be applied independently at each wavelength. Specifically, assuming three in-

dependent excitations at the wavelengths of the R, G and B components, described through

the input vectors
( R
G
B

)
=
( 1
0
0

)
,
( R
G
B

)
=
( 0
1
0

)
and

( R
G
B

)
=
( 0
0
1

)
, we ask that |Y |2 + |U |2 + |V |2 = 1

for each excitation. Then, the γ coefficients are determined as

γ =


1.45782

0.79571

0.27175

 (4.3)

and the modified transfer function which is given by

S =


0.660 0.925 0.408

0.479 0.342 0.833

0.578 0.165 0.374

 . (4.4)

Again, it is important to stress that this matrix is defined with respect to the moduli of

waves at different frequencies and therefore it does not need to satisfy the conventional

unitarity condition of scattering matrices defined for complex amplitudes at the same fre-

quency.
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To realize the matrix in Eq. (4.4) we follow a two-step approach. First, the R, G, and

B frequency components of an incident wave first are demultiplexed to signals at three

different ports. The design of the demultiplexer was performed by assuming wavelengths

1948 nm, 1648 nm and 1500 nm for the R, G and B components and using topology opti-

mization to route each wavelength component of an input wave to a different port. Note

that our design procedure is salable regarding the frequency and the metamaterial can

be redesigned at any other part of the electromagnetic spectrum. Fig 17 presents the ob-

tained design and simulations for each of the targeted wavelengths. At each iteration of

the inverse-design, the metamaterial is excited with three Gaussian beams of the targetted

wavelengths. Excitation Gaussian beams all contain unitary power and a 3λ/π width. The

optimization objective is set to achieve close to unitary output power for each wavelength

at its assigned waveguide port and nezr-zero transmission at the other ports. The demulti-

plexer is capable of wavelength separation at all three of wavelengths of our interest with

more that 84% transmission efficiency.

Once the demultiplexer is designed, we shift our focus to network implementing the

RGB to YUV transformation. To gain a better understanding of objective output waveguide

Figure 17: 1 to 3 Gaussian beam to waveguide mode wavelength demultiplexer. Input
Gaussian beams share the same beam opening with respect to λ. That is the reason the
actual beam opening in the simulations look to have different lengths. Color Separation
efficient for 1948nm, 1648nm and 1500nm are %85, %87 and %87, respectively.
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Figure 18: RGB to YUV transformer metamaterial. Wavveguide modes at 1948nm, 1648nm
and 1500nm with unitary powers excite the metamaterial while outputs are optimized to
converge to columns of matrix P at each wavelength. The metamaterial shows overall
efficiency of %89, %87 and %90 at each wavelength respectively. The binary material takes
ϵr = 1 and ϵr = 2.26.

powers for each wavelength excitation, the scattering matrix in Eq. 4.4 is converted to a

power transmission matrix as

P =


0.43589 0.85574 0.16619

0.22986 0.11708 0.69386

0.33425 0.02717 0.13995

 . (4.5)

where each column adds up to one, in accordance with power conservation. Columns show

how power is distributed among output wavegudes at each wavelength. P is introduced

to the topology optimization as an objective goal and results are shown in Fig. 18. For this

block, the inputs are the same waveguide modes as the outputs of frequency multiplexer

metamaterial. This RGB to YUV metamaterial block reaches a power distribution matrix of

Pmeta =


0.38511 0.74464 0.15069

0.20527 0.09702 0.62365

0.29545 0.02393 0.12657

 . (4.6)

To provide a better insight into the metamaterial operation, a comparison of ideal YUV
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color encoding and encoding realized by the proposed metamaterial is shown in Fig. 19.

Fig. 19a and b show the original image in its RGB decomposition. Fig. 19n and c are YUV

decomposition for ideal case and transmission through the metamaterial. Note that all

colorbars follow gray scale representation. Comparing results, there is a good agreement

between ideal and metamaterial results indicating proper color encoding performance of

the proposed metamaterial.

Red Green Blue

Y U V

(a)

(a)

(c)

Metamaterial

Y U V

(b) Ideal

Figure 19: (a) Original image. (b) RGB representation. (c) Ideal YUV components. (d)
Transformed YUV obtained from the inverse-designed metamaterial.
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CHAPTER 5 HIGH IMPEDANCE MATCHING METAMATERIALS WITH
TOPOLOGY OPTIMIZATION

Receive and transmission ends are essential units of any Radio Frequency (RF) wire-

less communication system. Due to the nature of propagating waves in air over long

distances along with environmental conditions such as buildings, geographical obstacles

and extreme weather conditions, RF receivers often are exposed with information signals

with weak amplitude at the antenna front end. Therefore, use of a Low Noise Amplifier

(LNA) right after the antenna is inevitable. Careful design of the receiving antenna along

with proper matching network between the antenna and LNA play a significant role in

maximizing the receiver efficiency. As we already deal with weak signals, any reflection

at the LNA input is highly undesirable. This is important when we know low efficiency

of every single block in a communication system may result in efficiency decrease of the

entire system. Antenna design engineering with variety of efficient techniques is capable

of offering devices with high receiving efficiency. Unfortunately, that is not the case for

the matching network in between. LNAs often have matching circuits and transistors as

LNA

LNA

Antenna

Impedance Matching Metamaterial

(a) (b)

Antenna

Figure 20: (a) Receiver front end of a conventional communication system. (b) Proposed
idea to maximize high impedance matching with inverse-design metamaterials.
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their first internal block. It is well-known that transistors in general have significantly high

input impedance (Zin > 104 Ω) for small signals, which causes significant mismatch to

the antenna output which has a 50 − 100 Ω impedance. A schematic representation of

conventional RF receivers is shown in Fig. 20a. With the great potential inverse topology

optimization has brought to metamaterial design, we were curious whether it is possible

to propose a metamaterial to maximize wave coupling between an antenna and a high

impedance load. With that in mind, we propose the idea of warping the LNA in a match-

ing inverse-designed metamaterial. Fig. 20b illustrates the proposed matching block. This

specific design configuration is chosen since usually the LNA input has a coaxial cable

shape, and therefore, the metamaterial surrounding the cable is expected to show higher

efficiency to occupying area ratio.

Unlike previous inverse-design projects in this thesis, here the desired parameter is not

the intensity and/or phase of some output waveguides. Here, the input power should

be focused on a single lossy point with a fixed impedance, modeling for example the

end of a metallic probe to which a circuit is connected. To keep the analysis simple,

we assume a two-dimensional environment, that is one that is uniform along one axis,

e.g., the y-axis. To understand the form of a metallic probe in such a case we invoke

the equivalence between a two-dimensional environment with the physically-realizable

environment of a parallel plate waveguide under operation with the fundamental mode

only, which is know to have an electric field perpendicular to the plates of the waveguide.

A metallic probe in such a case takes the form of a metallic wire connecting the plates

of the waveguide with a small gap in the middle where the impedance is connected. By

applying image theory we can convert this wire to one that is infinite along the z-axis, as in
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Fig. 21. The current flowing through such a wire is given by I = V/Z, where Z is the load

impedance and V the voltage across the gap where the load is connected, which is equal

to V =
∫
gap

Egap · dl ≈ Eδ, where Egap is the electric field across the gap and δ the width

of the gap. If the periodicity h of the periodically loaded wire, which is obviously equal

to the height of the parallel-plate waveguide mode, is much smaller than the wavelength,

the electric field is parallel to the wire (this statement is equivalent to claiming that the

parallel-plate waveguide supports only the fundamental mode) and V = Eeffh, where

Eeff is the average vertical electric field parallel to the wire. Then, we can express the

current with respect to the electric field as

I =
hEeff
Z

. (5.1)

The power received by the wire can be obtained through the general formula for the power

absorbed by a volumetric current density

P =

∮
V

Re{J̄ .Ē∗}dv (5.2)

Applying this formula to the periodically loaded wire with the current obtained above, we

find

P =
h

2

Re{Z}
|Z|2

|Eeff |2. (5.3)

A tricky point in the preceding analysis is the computation Eeff in a two-dimensional

formulation of the problem. We know that Eeff is the average electric field parallel to the

wire, but this definition requires knowledge of the field in three-dimensional space, which
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𝑍𝐿

𝑍𝐿

𝑍𝐿

A

B

𝛿

Figure 21: Circuit model of coaxial cable input impedance penetrating a parallel plate
waveguide to harvest input power. The actual electric field has a non-zero value only
along δ. Effective electric field used to make the connection between the physical and
numerical model is and average electric field over the waveguide cross-section with length
h.

we want to avoid, since that would make necessary a three-dimensional analysis. The

answer to this problem is provided by Eq. (5.1). In a numerical analysis with the FDTD

method, the two-dimensional space is discretized to elements with dimensions ∆x and ∆z

in the x and z directions. In the case of a TE mode, the electric field has a z component

and the magnetic field has components in both x and y directions. Fig. 22 shows how

those components are arranged in a Yee grid arrangement. According to Ampere’s law,

integration of the magnetic field components along the boundary of a unit cell surrounding

the wire results in

I =

∮
C

H̄ · dl̄ = hEeff
Z

(5.4)
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Δ𝑥

Δ𝑧

y

Figure 22: FDFD discretization grid and TE field components arrangement. Lossy ϵeff is
a fixed boundary condition only at point (i, k) while permittivty at other ponts of the grid
go through inverse topology optimization with no impedance constraint.

On the other hand, from the integral form of Maxwell equations we have

I = jωϵeff SĒ · dS̄ = jωϵeffEeff∆x∆z, (5.5)

where ϵeff is an effective permittivity for the unit cell that contains the wire. Compar-

ing the above equations we find that in a two-dimensional environment the wire can be

modeled through an effective permittivity

ϵeff =
h

jωZ∆x∆z
. (5.6)

The effective permittivity model derived above is used in an inverse design algorithm to
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design metamaterials that are able to convert an incident wave to a signal at the load with

the highest possible efficiency. Specifically, an impedance loaded wire, modeled through

Eq. (5.6), is surrounded by a square domain on which topology optimization is applied.

max max

min min
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min
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Efficiency=%90

Efficiency=%34
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Figure 23: Field, intensity and topology comparison of impedance matching metamaterial
for loads Z = 5kΩ and Z = 20kΩ. Topology optimization is performed for two sizes of
optimization domain (2.64λ0 and 1.17λ0) to illustrate fundamental limits.
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Figure 24: Gaussian input to load impedance coupling efficiency vs dimensions of rectan-
gular optimization domain. The study minimized a proper cost function for 3000 iterations
or stops each loop upon reaching %90 efficiency.

For the excitation of the domain we use a Gaussian beam with a width of 3λ0/π and unitary

power. As a first example, we aim at designing a structure for matching the input beam

to a load with Z = 5 kΩ and Z = 20 kΩ for square optimization domains with 1.17λ0 and

2.64λ0 side lengths. The optimization is performed for a material permittivity of ϵr = 2.26

(n = 1.5). Fig. 23 provides a comparison among these four possible cases. Results

indicate that although the topology optimization may reach high efficiencies (%90), the

optimization area is obviously a restrictive factor reducing efficiencies to %65 and %34 for

Z = 5 kΩ and Z = 20 kΩ, respectively.

While the results here look promising, it may not be the most optimum with lowest

dimensions possible metastructure to provide matching. We were interested to explore

fundamental limitations that dimensions of optimization domain impose to the efficiency

of the metamaterial. In order to study these limitations, a two dimensional parametric

sweep is run on dimensions of the rectangular optimization domain while inverse-design

attempts to converge. The procedure is done for load impedances of 50Ω, 5kΩ, and 20kΩ.

Fig. 24 shows results of the study on different dimensions of the optimization domain. The
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plots visualize the amount of maximum obtained received power by the LNA for different

optimization box sizes. Therefore, we accomplished our initial goal to find a metamate-

rial topology to minimize reflections from LNA with inverse-designed metamaterials with

a comprehensive study on the impact of optimization area dimensions on matching effi-

ciency of the metamaterial for three impedances with distant scales from each other. We

explored minimum optimization domain size needed to reach various levels of impedance

matching which may come significantly helpful for RF design applications.
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CHAPTER A APPENDIX A

A.1 Calculation of the output signal of the full system

Here, we show how to calculate the transmission coefficient of the full (antenna array

and waveguide) system. We assume that the incident wave is polarized out of plane (TE

polarization) with electric field intensity Einc and incident angle θ. Then, the incident

power over a period W is given by

Pinc =
|Einc|2

2ZTE

W, (A.1)

where ZTE = η/ cos θ and η = 120π Ω is the wave impedance in free space. The col-

lected power at the output channel is found by multiplying the incident power with the

receiving efficiency of the antenna array in (2.18) and the transmission coefficient of the

differentiating waveguide in (2.44) as

Pout = TarrayTwgPinc. (A.2)

Therefore, the total transmission coefficient with respect to power is given by

Tpower =
Pout

Pinc

= TarrayTwg (A.3)

The output power is also given by

Pout =
|Eout|2

2Zc

∫ w

0

e2(x)dx =
|Eout|2

4Zc

w, (A.4)
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where

Zc =
η

√
ϵr
√

1− (fc/f)2
(A.5)

is the characteristic impedance of the output channel, fc = c/(2w) is its cutoff frequency,

Eout is the electric field intensity at the middle of the channel, e(x) = sin(πx/w) is the

electric field profile and w the channel’s width. In addition to the power transmission

coefficient, we can define a transmission coefficient with respect to the incident and output

fields as

Tfield =
Eout

Einc

. (A.6)

The magnitude of this transmission coefficient is found by dividing (A.1) and (A.4) as

|Tfield| =
|Eout|
|Einc|

=

√
Pout

Pinc

√
2ZTE

Zc

W

w
. (A.7)

It is evident that Tfield and Tpower are related through

|Tfield| =
√
Tpower

√
2ZTE

Zc

W

w
. (A.8)

The phase of the transmission coefficient is found by simply subtracting the phases of the

output and incident fields. Knowing T , the output signals are calculated as

yn = TfieldEince
−jktnW , (A.9)

where kt = k sin θ is the transverse wavenumber of the incident wave, k being the wavenum-

ber in free space.
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Assume now that the incident field has a general profile Einc(x). By using the inverse

Fourier transform, we can write

Einc(x) =
1

2π

∫ k

−k
Ẽinc(kt)e

−jktxdkt, (A.10)

where

Ẽinc(kt) =

∫ ∞

−∞
Einc(x)e

jktxdx (A.11)

is the direct Fourier transform. The limits in (A.10) are from −k to k since the incident field

is assumed to be generated by a source at far distance and therefore it does not contain

evanescent components. (A.10) indicates that the incident field is a superposition of plane

waves with electric field intensities (1/2π)Ẽinc(kt) and wavenumbers kt. Combining this

fact with (A.9) leads to

yn =
1

2π

∫ k

−k
Tfield(kt)Ẽinc(kt)e

−jktnWdkt. (A.12)

(A.12) is the one used to derive the results in Fig. 5 of the main text.

A.2 Lens Antenna Design

Utilizing the Fermat’s principle, one can easily show that a dielectric elliptical lens with

a proper eccentricity collimates illuminating plane waves into the focus point of the ellipse.

Fig. 25 shows the design evolution of a lens of this kind. Having experimental limitations

in mind, the elliptical lens is usually replaced with an extended hemispherical lens, as in

Fig. 26 [30]. A quarter-wevelength coating layer is also essential to minimize reflections.

An air-filled leaky-wave cavity is also added between the extended hemispherical lens
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and the feed to confine the feed’s radiation pattern into the hemispherical part of the

lens and avoid spill-over losses [31]. The leaky-wave cavity also helps with impedance

matching between the feed and the lens. In order to achieve a directive beam in the

broadside direction, the height of the leaky-wave cavity should approximately be half a

wavelength. The beamwidth of the leaky-wave cavity’s radiation pattern is determined by

Figure 25: Left, middle and right lenses show ellptical configuration derived from Fermat’s
law, trancated lens and leaky-wave cavity embedded lens, respectively.

R

L

Feed

W

Leaky-wave cavity

Figure 26: Lens design illustration. The dotted black and solid blue lines show the elliptical
and extended hemispherical lenses, respectively. The orange dashed lines indicated the
truncated region for the case of a periodic array. The solid red lines depict the radiated
field.



60

the contrast between the lens’s and cavity’s permittivities. For example, for the parameters

used in the paper, the beamwidth of the leaky-wave cavity is approximately 24◦. Therefore,

in order to achieve alignment between the hemispherical lens and the leaky-wave cavity’s

beam, it might be necessary to adjust the height L of the region between the lens and the

cavity.

For the case of an antenna array, it might be necessary to truncate the lens along the

horizontal direction by a distance equal to the distance between the array’s antennas. In

this case, the leaky-wave cavity should create a beam that fits within the truncated part of

the lens (between the orange dashed lines in Fig. 26). For the material parameters and the

periodicity used in our analysis, we found through numerical optimization with respect

to R and L that the best response is achieved for R = 2.111W and L = 0.02R. These

parameters lead to a broadside gain of 14.2 dB, which is fairly close to the optimum value

of 17.7 dB from (2.22).
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CHAPTER B APPENDIX B

B.1 Wavelet transform matrix

In signal processing the discrete wavelet transform (DWT) is defined through a series

of successive low- and high-pass filtering operations, followed by down-sampling opera-

tions. If this process is applied P times, the DWT is said to have a scale P . Assuming

a one-dimensional discrete signal xn of length N = 2J , this procedure is mathematically

expressed through the relations [62]

Sj+1,n =
1√
2

2J−j−1∑
m=0

cm−2nSj,m, (B.1)

Tj+1,n =
1√
2

2J−j−1∑
m=0

bm−2nSj,m, (B.2)

with S0,n = xn, and cn and bn the so-called scaling and wavelet coefficients associated

with a low-pass and a high-pass filtering operation, respectively. Eq. (B.1) and (B.2) are

recursively applied from j = 0 to j = P − 1. The output of the transform consists of the

coefficients SP,n, with 0 ≤ n < 2J−P , and Tj,n, with 1 ≤ j ≤ P and 0 ≤ n < 2J−j, and is of

the same size as the input vector. The DWT coefficients also satisfy the equation [62]

2J−1∑
n=0

xnϕ0,n(x) =
2J−P−1∑
n=0

SP,nϕP,n(x) +
P∑
j=1

2J−j−1∑
n=0

Tj,nψm,n(x), (B.3)

where ϕj,n(t) and ψj,n(t) are the scaling and wavelet functions, respectively, of scale j and

translation parameter n. The scaling and wavelet functions in the right side of Eq. (B.3)

form an orthonormal set, allowing us to take the inner product of Eq. (B.3) with each of
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these functions and find the DWT coefficients as

SP,n =
2J−1∑
m=0

(ϕP,n, ϕ0,m)xm, (B.4)

Tj,n =
2J−1∑
m=0

(ψj,n, ϕ0,m)xm, (B.5)

where (ϕ, ψ) =
∫∞
−∞ ϕ(x)ψ(x)dx. The DTW coefficients can be ordered in the output vector

in any way. Here, we choose to order them as

y =



y0

y1

...

y2N−M−1


, (B.6)

where yi are vectors of length 2P defined as

y0 = [ SP,0 TP,0 TP−1,0 TP−1,1 TP−2,0 . . . TP−2,3 . . . ]T

y1 = [ SP,1 TP,1 TP−1,2 TP−1,3 TP−2,4 . . . TP−2,7 . . . ]T

y2 = [ SP,2 TP,2 TP−1,4 TP−1,5 TP−2,8 . . . TP−2,11 . . . ]T

...

. (B.7)

From these definitions and Eqs. (B.4) and (B.5) we find

yi =
2J−P−1∑
j=0

Hijxj, (B.8)
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where

x0 = [ x0 x1 x2 . . . x2P−1 ]T

x1 = [ x2P x2P+1 x2P+2 . . . x2P+1−1 ]T

x2 = [ x2P+1 x2P+1+1 x2P+1+2 . . . x2P+1−1 ]T

...

. (B.9)

and

Hij =



(ϕP,i, ϕ0,j2P ) (ϕP,i, ϕ0,j2P+1) (ϕP,i, ϕ0,j2P+2) . . .

(ψP,i, ϕ0,j2P ) (ψP,i, ϕ0,j2P+1) (ψP,i, ϕ0,j2P+2) . . .

(ψP−1,i2, ϕ0,j2P ) (ψP−1,i2, ϕ0,j2P+1) (ψP−1,i2, ϕ0,j2P+2) . . .

(ψP−1,i2+1, ϕ0,j2P ) (ψP−1,i2+1, ϕ0,j2P+1) (ψP−1,i2+1, ϕ0,j2P+2) . . .

...
...

... . . .


. (B.10)

From the translation and scaling properties of the scaling and wavelet functions we know

ϕj,n(x) = 2−j/2ϕ(2−jx− n), (B.11)

ψj,n(x) = 2−j/2ψ(2−jx− n), (B.12)

where ϕ(x) and ψ(x) are the mother scaling and wavelet functions, respectively. Then, it

follows

ϕP,i(x) = ϕP,0
(
x− i2P

)
(B.13)
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and

(ϕP,i, ϕ0,j2P+n) =
(
ϕP,0

(
x− i2P

)
, ϕ0,j2P+n(x)

)
(B.14)

=
(
ϕP,0(x), ϕ0,j2P+n

(
x+ i2P

))
= (ϕP,0, ϕ0,(j−i)2P+n). (B.15)

Furthermore, if k ≤ P ,

ψk,i2P−k+n(x) = ψk,n
(
x− i2P

)
(B.16)

and

(ψk,i2P−k+n, ϕ0,j2P ) =
(
ψk,n

(
x− i2P

)
, ϕ0,j2P (x)

)
(B.17)

=
(
ψk,n(x), ϕ0,j2P

(
x+ i2P

))
=

(
ψk,n, ϕ0,(j−i)2P

)
. (B.18)

Applying Eqs. (B.15) and (B.18) on Eq. (B.10) gives Hij = H0,j−i, Then, Eq. (B.8) can be

written as

yi =
2J−P−1∑
j=0

Hj−ixj, (B.19)
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Figure 27: Scaling and wavelet functions of the Haar transform for scales 0 to 2.

where Hi ≡ H0,i. We conclude that the DWT can be expressed in the block-matrix form



y0

y1

y2

...


=



H0 H1 H2 . . .

H−1 H0 H1 . . .

H−2 H−1 H0 . . .

...
...

... . . .





x0

x1

x2

...


. (B.20)
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For the Haar wavelet transform the mother scaling and wavelet functions are given by

ϕ(x) =


1, 0 ≤ x < 1,

0, elsewhere

, (B.21)

ψ(x) =



1, 0 ≤ x < 0.5,

−1, 0.5 ≤ x < 1,

0, elsewhere

. (B.22)

The scaling and wavelet functions for scales 0 to 2 and zero translation are depicted in

Fig. 27. For a transform of scale P = 2 the elements of the transform’s block matrix are

given by

Hi =



(ϕ2,0, ϕ0,4i) (ϕ2,0, ϕ0,4i+1) (ϕ2,0, ϕ0,4i+2) (ϕ2,0, ϕ0,4i+3)

(ψ2,0, ϕ0,4i) (ψ2,0, ϕ0,4i+1) (ψ2,0, ϕ0,4i+2) (ψ2,0, ϕ0,4i+3)

(ψ1,0, ϕ0,4i) (ψ1,0, ϕ0,4i+1) (ψ1,0, ϕ0,4i+2) (ψ1,0, ϕ0,4i+3)

(ψ1,1, ϕ0,4i) (ψ1,1, ϕ0,4i+1) (ψ1,1, ϕ0,4i+2) (ψ1,1, ϕ0,4i+3)


. (B.23)

By replacing into this equation the scaling and wavelet functions of Fig. 27 we find

H0 =
1

2



1 1 1 1

1 1 −1 −1
√
2 −

√
2 0 0

0 0
√
2 −

√
2


. (B.24)

Furthermore, since ϕ0,0(x), ψ2,0(t), ψ1,0(x) and ψ0,1(x) have a limited support between 0

and 4, they have zero overlap with ϕ0,4i(x), ϕ0,4i+1(x), ϕ0,4i+2(x) and ϕ0,4i+3(x) for i ̸= 0,
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resulting in Hi = 0 for i ̸= 0. Although shown here for a transform of scale 2, this fact

applies to any scale P .

B.2 Output signals of the lenses

Consider a lens as in Fig. 28 converting an incident beam to a waveguide mode. The

electric field is assumed to be polarized parallel to the z-axis. The lens is designed to

perfectly convert an incident beam on its front face S1 with a real-valued profile W (x) for

the electric field to a waveguide mode with electric field x0e0(x), where e0(x) is the modal

field and x0 its amplitude. The incident beam is assumed to have unitary power, i.e.,

∫
W 2(x)

2η0
dx = 1. (B.25)

Furthermore, the mode field is selected such that |x0|2 is equal to the power, which requires

[64]

β

2ωµ0

∫
[e0(x)]

2dx = 1, (B.26)

where β is the modal wavenumber. Power conservation requires |x0| = 1. The phase of

x0 can be cancelled through appropriate selection of the reference plane of the waveguide

port, so from now on we take x0 = 1. From time reversal it follows that applying an input

field e0(x) to the waveguide port results in a wave with profile W (x) at the front face of

the lens.

Now consider excitation of the lens with an incident wave with profile Einc(x) at its

front face. To find the output signal at the waveguide we apply the Lorentz reciprocity
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Figure 28: Contour around a lens for the application of the reciprocity theorem.

theorem on the volume defined by S1–S4 in Fig. 28. Specifically, we have [64]

∮
S

(Ea ×Hb − Eb ×Ha) · dS = 0, (B.27)

where Ea, Ha and Eb, Hb are two pairs of electric and magnetic fields that satisfy Maxwell

equations. Let the a-indexed fields be those associated with the incident wave and the

b-index fields be the fields for excitation from the waveguide port with a mode of unitary

amplitude. Since S2 and S4 can be taken arbitrarily far from the structure, their contribu-

tion in the integral can be neglected. On S1 the electric fields are Ea(x) = Einc(x)ẑ and

Eb(x) = W (x)ẑ. A rigorous computation of the magnetic fields would have been based

on Faraday’s law. However, if the variation of the electric field is much slower than the
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wavelength, we can approximate the magnetic fields as

Ha(x) ≈ (−ŷ)× Ea(x)

η0
= −Einc(x)

η0
x̂, (B.28)

Hb(x) ≈ ŷ × Eb(x)

η0
=
W (x)

η0
x̂. (B.29)

Then, the integral on S1 is written as

∫
S1

(Ea ×Hb − Eb ×Ha) · dS =
2

η0

∫
Einc(x)W (x)dx. (B.30)

On S2 the electric fields are Ea(x) = xe0(x)ẑ and Eb(x) = e0(x)ẑ, where x is the signal at the

waveguide port due to the incident wave Einc(x). To determine the transverse component

of the magnetic field we invoke Faraday’s law with e±jβy for the field dependence along

the y-axis, from which we find

Hx(x) = ± β

ωµ0

Ez(x), (B.31)

with the positive and negative signs holding for modes propagating parallel to the positive

and negative y-axis, respectively. It follows

Ha
x(x) = − β

ωµ0

xe0(x) (B.32)

Hb
x(x) =

β

ωµ0

e0(x). (B.33)
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Then, the integral on S2 is found

∫
S2

(Ea ×Hb − Eb ×Ha) · dS = −x 2β

ωµ0

∫
[e0(x)]

2dx. (B.34)

Replacing Eqs. (B.30) and (B.34) into Eq. (B.27) and using Eq. (B.26) yields

x =
1

2η0

∫
Einc(x)W (x)dx. (B.35)

Dividing this equation with Eq. (B.25) gives

x =

∫
Einc(x)W (x)dx∫
[W (x)]2dx

. (B.36)
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As digital circuits are approaching the limits of Moore’s law, a great deal of effort has

been directed to alternative computing approaches. Among them, the old concept of opti-

cal signal processing (OSP) has attracted attention, revisited in the light of metamaterials

and nano-photonics. This approach has been successful in realizing basic mathematical

operations, such as derivatives and integrals, but it is difficult to be applied to more com-

plex ones. Inspired by digital filters, we propose a radically new OSP approach, able to

realize arbitrary mathematical operations over a nano-photonic platform. We demonstrate

this concept for the case of spatial differentiation, image compression and color encod-

ing through a heuristic design based on a waveguide with periodic arrays of input/output

channels at its opposite walls.
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