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CHAPTER 1: INTRODUCTION 

1.1 The Significance of Carbohydrates in Biological Systems 

Carbohydrates, also known as glycans, saccharides, or simply sugars, represent a family of compounds 

with empirical formula Cm(H2O)n. The term carbohydrate was derived from the French (hydrate de carbone) 

in the nineteenth century, which later extended to polyhydroxylated aldehydes or ketone containing carbons 

varying between 3 and 9.1 Carbohydrates as one of the primary constituents of cells, are the most abundant 

organic molecules on earth. For example, starch and cellulose are polymers of glucose (1), a sugar that 

contains 6 carbon atoms.  DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), the molecules that are 

responsible for the storage and reading of genetic information, are also built with carbohydrates such as 

deoxyribose or ribose (2), which contain 5 carbon atoms. Sialic acid (3), an alpha-keto acid sugar contains 

9 carbon backbone that is typically found attached to the outermost ends of N-glycans, O-glycans, and 

glycosphingolipid. 

 

Figure 1. Examples of carbohydrates in nature 

Carbohydrates play many central roles in the biological system. It has been long recognized that sugars 

are an important energy source and structural building blocks for many living organisms. In addition to 

their participation in metabolism and other intracellular events, carbohydrates also play important roles in 

intercellular communication or recognition by conjugation to lipids and integral membrane proteins. This 

section highlights the essential roles of carbohydrates play in the biological system.  

1.1.1 Metabolism: carbohydrates as an energy source 

Adenosine triphosphate (ATP) 4, a molecule containing a core of ribose, is a rapidly available energy 

source in biological systems. ATP is also referred to as the cell’s energy currency due to its property of 

storing and transferring energy in cells. This energy is stored in the phosphodiester bond. Through cleavage 
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of a phosphodiester bond of ATP, 30.6 kJ/mol of free energy is released in the biological system,1 and 

adenosine diphosphate (ADP) 5 is generated (Scheme 1). Similarly, when a phosphate is removed from 

ADP, energy is also released and leading to the formation of adenosine monophosphate (AMP), which can 

be recycled into ADP or ATP by regeneration of the phosphodiester bond to restore the energy. ATP, ADP, 

and AMP are constantly interconverted in the cell to participate in the biochemical processes. In these 

events, sugars act as carriers during energy storing and transferring.  

 

Scheme 1. ATP as a rapid source of energy 

The regeneration of ADP from AMP requires ATP; therefore, regeneration of ATP becomes necessary. 

The major method to regenerate ATP is through phosphorylation of ADP, in which the energy is supplied 

by the oxidation of glucose. The breakdown of glucose to yield energy-rich ATP involved four stages as 

shown in Scheme 2.1  

Firstly, glucose 1 undergoes a ten-step sequential process to generate two pyruvates 6 in stage (i). This 

process is known as glycolysis, where a 6-carbon sugar is dissected into two 3-carbon fragments. During 

the process of glycolysis, two ATP are generated. In stage (ii), the pyruvates undergo oxidative 

decarboxylation to form a thioester of acetic acid with coenzyme A (CoA), whose product is known as 

acetyl-CoA (7). Similar to acetyl chloride or acetic anhydride, the S-CoA portion of acetyl-CoA is a good 

leaving group. Therefore, hydrolysis of the thioester bond is favorable, allowing the acetyl group to enter 

the stage (iii) – the citric acid cycle (CAC), also known as tricarboxylic acid cycle (TAC) or Krebs’ cycle. 

Through a series of chemical reactions in CAC, the energy stored in the thioester bond is released into 2 

ATP and the reduced compounds nicotinamide adenine dinucleotide (NADH) and flavin adenine 
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dinucleotide (FADH2). Due to their high reductive potential, NADH and FADH2 are also strong electron 

donors. As such, in the oxidative phosphorylation stage (iv), ten NADH and two FADH2 that are generated 

in stages (i)-(iii) are fed into the electron transport chain and produce 34 ATP. In total, one glucose molecule 

produces 36 ATP in the biological system.  

 

Scheme 2. Glucose as a source of energy in the biological system 

1.1.2 Structural building blocks 

Nature utilizes sugars as building blocks in a polymeric fashion, where the sugars are joining each other 

covalently through glycosidic linkages.1-2 For example, starch (8) and cellulose (9) are both polymers of D-

glucose (Figure 2). Yet, the structural properties of these two polysaccharides are different, where starch is 

an easily digestible material with no significant structural utility. Cellulose, on the other hand, provides 

strong structural support to the plant cells, which further developed into materials such as wood and cotton.2 

The difference in the structural properties between starch and cellulose simply arises from the anomeric 

configuration of the glycosidic linkages between the glucose. While starch possesses glycosidic bonds with 

axial () stereochemistry from the C1 anomeric carbon to the C4 oxygen (-(1→4) linkage), cellulose 

Figure 2. The structures of starch and cellulose 
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holds equatorial () glycosidic bonds (-(1→4) linkage). The difference in the anomeric configuration 

causes variations in the glycosidic torsion angles, where cellulose is less helical compared to starch. As a 

result, the cellulose strands can pack and interact with each other to form layers, which further turn into 

fibrils.2 As such, while starch develops into the energy storage for plants, cellulose exists as the main 

construction of cell walls. 

The cell wall (Figure 3) is a complex and heterogeneous matrix of polysaccharides that surrounds the 

plasma membrane of the plant cell, which is the major difference between plant and animal cells (animal 

cells do not have cell walls).2-3 A plant cell wall is a load-bearing network where layers of cellulose are 

cross-linked by hemicellulose and pectins.4-5 Hemicelluloses are polysaccharides that cross-link between 

cellulose layers to primarily increase wall strength. Xyloglucan (XyG, 10) is the most common 

hemicellulose on earth and has been found in almost every land plant species.6 The basic structure of XyG 

includes a backbone of cellulose, with a branch of D-xylose (Xyl) connecting at the C6 oxygen position of 

Figure 3. Constitution of plant cell wall 
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the glucose (Glc) with  anomeric configuration (D-Xyl--(1→6)-Glc). The branching patterns of XyG 

variate their function such as solubility, which is significant in taxonomy.6 The remaining matrix of 

polysaccharides are pectins, the most structurally and functionally complex polysaccharides in plant cell 

wall.4, 7 The structure and chemical composition of pectins are diverse, yet contain a high degree of 

galacturonic acid, in which common structures include homogalacturonan (11), rhamnogalacturonan I and 

II, and xylogalacturonan.7 Galacturonic acid is a sugar acid derived from galactose, which the carboxyl 

group is often methylesterified in nature.7 The partially methylesterified pectins can form complex hydrated 

gels, which contribute strength and flexibility to the cell wall and provide connections to the adjacent cells 

in the middle lamellae (Figure 3).4 

Unlike plant cell walls, bacterial cell walls are constituted of conjugated polysaccharides. In general, 

there are two types of bacteria: Gram-positive and Gram-negative bacteria.8 Their difference can be 

determined by Gram staining, where Gram-positive bacteria adopt the crystal violet color, and Gram-

negative bacteria appear pink or red after treatment with alcohol.9 These staining results are based on the 

difference in the cell wall structures, whereas Gram-positive bacteria have a thick layer of peptidoglycan 

in the cell wall, while Gram-negative bacteria surround the peptidoglycan with an outer membrane (Figure 

4).8 Peptidoglycan (12) is a polysaccharide cross-linked by peptides, consisting of repeating disaccharides 

of N-acetylglucosamine (blue) and N-acetylmuramic acid (green) carrying short peptides.10 In Gram-

positive bacteria, peptidoglycan provides mechanical strength through the construction of tens of 

nanometers thick architecture.11-14 On the other hand, Gram-negative bacteria have a thin layer of 

peptidoglycan surrounded by the plasma membrane and the outer membrane. This double-membrane 

cellular envelop enables the Gram-negative bacteria to colonize harsh environments. Lipopolysaccharide 

(LPS) is the main component of most outer membranes, a macromolecule containing up to hundreds of 

sugars.15 Figure 4 demonstrates LPS of E. coli,16 where the molecule is categorized in three main 

components: lipid A, core, and O-antigen. Lipid A is the hydrophobic phospholipid anchor of 



6 

 

 

 

=========================================================================== 

Figure 4. Constitution of bacterial cell wall 
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LPS containing a -(1→6) linked glucosamine disaccharide, which is also known as endotoxin.15-16 The 6’ 

position of lipid A is glycosylated with a core containing nonrepeating oligosaccharides: a trisaccharide 

consisting of eight-carbon sugar 3-deoxy-D-manno-octulosomic acid (KDO), a trisaccharide involving 

seven-carbon sugar L-glycero-D-manno-heptose, and a pentasaccharide comprising of glucose, galactose, 

and N-acetylglucosamine, whereas the KDO region and the heptose region compose the inner core, and the 

pentasaccharide make up the outer core.16 At the end, a repetitive glycan is attached to the outer core 

oligosaccharide designated as O-antigen. The O-antigens are highly variable in different strains of bacteria, 

which are targets for recognition by host antibodies in the immune system.17 

1.1.3 Cellular communication and recognition: glycocode and the decoders 

In the first half of the 20th century, research on carbohydrates in biological systems is primarily focused 

on metabolism and structural function. Until the 1970s, the studies of glycans lagged far behind other major 

classes of biomolecules such as nucleotides and peptides.18 This was due to the inherent complications in 

the structure of carbohydrates. For example, Figure 5 demonstrates the structure of a pyranose, a six-carbon 

monosaccharide where the six-membered ring consists of five carbon atoms and one oxygen atom. The first 

complication arises from the ring size, where the six-membered ring can be contracted into a five-membered 

ring, which is known as a furanose. Secondly, each carbon on the ring can have an R or S configuration. In 

addition, each hydroxyl group can react with another sugar through glycosylation. Therefore, glycans exist 

in both linear and branch forms, in contrast to the linear nature of nucleotides and peptides. A calculation 

was performed to show 1.05 x 1012 possible oligosaccharides structures for a reducing hexasaccharide, 

whereas a hexamer of DNA (a basis set of 4) may form 4096 different combinations, and a hexapeptide (a 

basis set of 20) may have 6.4 x 107 isomers.1, 19 Asides, each hydroxyl group can be decorated with sulfates, 

Figure 5. Structure of pyranose 
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phosphates, methyls, or acyls, and more than one hydroxyl group can be modified on the same sugar.1 As 

such, the information that the glycans can convey is enormous. Glycomics, a systematic and comprehensive 

study of the total glycan structures (glycome) in the biological system, emerged. The molecular messages 

cracked from this study are called glycocode, also known as sugar code.20  

Given the complexity of many glycans, a schematic glycan representation is necessary. In the late 1970s, 

Kornfeld and colleagues first presented a symbolic representation of vertebrate glycans, which quickly 

gained popularity and was adopted by the community of glycoscience.21-22 Figure 6 demonstrates some 

monosaccharides symbols (the full universal symbol nomenclature for glycans (SNFG) can be found in 

Appendix A),22 where both shapes and colors are utilized to overcome the diversity of carbohydrates. 

Utilizing this SNFG, the structure of lipopolysaccharides in Figure 4 can be simplified (Figure 6). 

PP

 

Figure 6. Symbolic representation of monosaccharides and an example of lipopolysaccharide 

The cell surface was first observed as a polysaccharide coat by electron microscopy.18 These glycans 

on the cell surface exist in the conjugated form, in which the glycans are covalently bonded to non-

carbohydrate molecules (aglycone). Increasing research has shown that these glycoconjugates play crucial 

roles in cellular function, especially in the events on the cell surface.18 Three classes of glycoconjugates 

were found on the cell surface (Figure 7): glycoprotein, glycolipid, and glycoRNA (a new class of 

glycoconjugate discovered recently by Flynn and colleagues23). 
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Figure 7. Glycoconjugates on the cell surface: glycoprotein, glycolipid, and glycoRNA 

A glycoprotein is a glycoconjugate in which a protein covalently carries one or more glycans, usually 

through the side chain of the amino acids such as asparagine (N-linkage) or serine/threonine (O-linkage). 

Similar to O-glycans (O-linked oligosaccharides), glycosaminoglycans (GAG) attached to the core protein 

through glycosylation to the hydroxyl group of a serine residue, and these glycoconjugates are also known 

as proteoglycans. The main difference between an O-linked glycoprotein and a proteoglycan is at the core 

region, where an O-linked glycoprotein links to the glycan via N-acetylgalactosamine (GalNAc), while a 

proteoglycan connects to the protein through a xylose residue.18 These glycans decorated proteins also 

change in their properties such as increasing solubility, altering the antigenicity, and preventing the proteins 

from degradation.1, 24-25 Unlike nucleotides and proteins, the biosynthesis of glycans is non-templated. 

Therefore, glycoproteins naturally occur in forms with different glycosylation, and these various forms are 

known as glycoforms.1, 24  

Glycolipid, also known as glycosphingolipid, consists of a glycan (polar) attached to a nonpolar moiety. 

The nonpolar moiety is ceramide, which is composed of sphingosine (a long chain base) and fatty acid. The 

glucose or galactose from the glycan connects to the terminal primary hydroxyl group of the ceramide 

through a glycosidic linkage.18 Typically, the hydrophobic lipid positions itself at the outer lipid layer to 

allow the hydrophilic glycans to face outside of the cell.1 Consequently, glycolipids can play essential roles 

in cellular recognition, such as mediating cell-cell interactions or modulating activities of proteins in the 

same membrane.26 
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GlycoRNA is a class of glycoconjugate that only appeared in discussion in the past decade. RNA as an 

essential biopolymer participates in many events in the biological system, including coding, decoding, 

regulation, and expression of genes. Until 2011, the first membrane-bound non-coding RNAs were 

discovered in bacteria,27-28 declaring their essential membrane function. As such, associations of membrane 

RNA with glycans seem possible. In 2021, Flynn and colleagues first reported glycoRNA on living cell 

surface,23 opening a new chapter on cell surface glycoconjugates. 

The aforementioned glycoconjugates on the cell surface encrypt an enormous amount of information. 

To crack these encrypted codes on the cell surface, nature has designed specific decoders: the glycan-

binding proteins (GBPs). Two main categories are included in the GBPs: lectins (Figure 8) and sulfated 

GAG-binding proteins.29 Lectins typically recognized the terminal sugar on a glycan by fitting the sugar 

molecule into its shallow but highly specific binding pockets through hydrogen bonding, while sulfated 

GAG-binding proteins bind to sulfated GAGs (negatively charged) through ionic interaction with clusters 

of positively charged residues in the binding pocket.1, 29 To overcome the weak hydrogen bonding 

interaction, many lectins have multiple carbohydrate recognition domains (CRDs). For example, Figure 8 

demonstrates a galactose specific C-type lectin (PDB: 1JZN),30 in which the protein resembles a pentamer 

Figure 8. Structure of a galactose-specific C-type lectin.30 PDB: 1JZN 
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with five CRDs (red boxed). This setting increases the chance of binding and allows multiple glycans 

binding at the same time, consequently increasing its specificity. This avidity effect is also known as the 

multivalent effect.1, 29  

1.2 Carbohydrates and their mimics in drug discovery 

1.2.1 Carbohydrate vaccines 

Vaccines are preparations to stimulate the body’s immune response against one or several diseases, 

typically containing agents that resemble the pathogen such as a deactivated microbe, or its toxins or surface 

proteins.31 The pathogens’ and malignant cells’ surfaces often consist of unique glycan structures, which 

makes carbohydrates an attractive vaccine target.32 The history of carbohydrate vaccines dates back to 1930 

when oligosaccharides decorated proteins were used as a vaccine against pneumonia.1, 33-34 Unfortunately, 

this research was limited due to the complicated process to isolate natural oligosaccharides and the lack of 

synthetic methods.1 Until the 1970s, advances in glycan analysis, synthesis, and structure determination 

contribute significantly to carbohydrate vaccine development, which promoted the first commercialized 

polysaccharide vaccine PNEUMOVAX launching in 1983.1, 32 This vaccine contains capsular 

polysaccharides isolated from 14 pneumonia serotypes, which protect people against approximately 90% 

of infections caused by these pathogens.32 Unfortunately, this unconjugated capsular polysaccharide 

vaccine did not induce sufficient protection to the high-risk group (children under 2-year-old, and 

immunocompromised elderly),35 which is now well understood that these polysaccharides need to be 

conjugated to immunogenic proteins to induce long-lasting protection for the high-risk group.32, 36-37 

The modern design of carbohydrate-based glycoconjugate vaccine consists of four parts: the antigen 

(poly-/oligo saccharide), the linker, the carrier (protein, glycolipids, or nanoparticles), and the adjuvant 

(alum or self-adjuvanting) (Figure 9).38 Traditionally, carbohydrate vaccines are naturally derived. However, 

due to the economic challenges of meeting quality control and safety standards required by the U.S. Food 

and Drug Administration (FDA), movements toward synthetic carbohydrate vaccines are in progress.32, 38 
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Figure 9. The design concept of carbohydrate vaccine 

1.2.2 Carbohydrate drugs targeting the central dogma of biology 

The central dogma of biology explains the flow of genetic information within a biological system, 

which is demonstrated in Scheme 3.39 Therefore, nucleoside/nucleotide mimetics that interrupt the 

replication of pathogens gained lots of spotlight in the antiviral battle. However, it is easy to forget that 

nucleosides/nucleotides are made of carbohydrates, where the core molecule contains the pentose D-ribose 

(Section 1.1). As such, these nucleoside/nucleotide analogs contain carbohydrate moiety in the structures. 

 

Scheme 3. The central dogma of biology 

Human immunodeficiency virus and acquired immunodeficiency syndrome (HIV/AIDS) is an ongoing 

epidemic spread to the U.S. between 1966 and 1972.40-41 Azidothymidine (20, AZT, Figure 10) is the first 

antiretroviral drug for the treatment of AIDS approved by the FDA in March of 1987.42 AZT is a reverse 

transcriptase inhibitor, which stops retroviruses such as HIV from replication. After treatment of AZT, the 

reverse transcriptase incorporates the nucleoside analogs into its DNA during the reverse transcription 

process, which causes termination of the DNA elongation due to the lack of 3’-hydroxyl group (it is azide 

group in AZT).43  

In December 2019, coronavirus disease 2019 (COVID-19), an acute respiratory disease emerged and 

quickly spread globally, which was declared as a pandemic in March 2020 by the World Health 

Organization (WHO).44 This pandemic was caused by a new strain of coronavirus: severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). Remdesivir (21, Figure 10), a nucleotide analog was authorized 
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for emergency use as a post-infection treatment for COVID-19.45 Coronaviruses contain a large family of 

single-stranded RNA viruses that are characterized by their spherical shapes.46 Remdesivir as an RNA-

dependent RNA polymerase inhibitor, causes a decrease in viral RNA production. As such, prior to 

treatment for COVID-19, Remdesivir was used in the investigation of other viral diseases such as Ebola 

virus disease and showed promising therapeutic efficacy.47 In December 2021, the first orally available 

COVID-19 antiviral medication Molnupiravir (22, Figure 10) was approved by the U.S. FDA.48 Unlike 

AZT and Remdesivir, Molnupiravir inhibits viral reproduction by promoting mutation during viral RNA 

replication.49 

 

Figure 10. Nucleoside/nucleotide mimetics as carbohydrate-based drugs 

1.2.3 Glycosidase and glycosyltransferase inhibitors 

Glycosidases and glycosyltransferases are two types of carbohydrate processing enzymes utilized by 

nature to construct all the carbohydrate structures in all biological systems. Through inhibition of these 

enzymes, the biosynthesis or degradation of some carbohydrate structures can be controlled.1 For example, 

Miglustat (23, Figure 11) is a ceramide glucosyltransferase inhibitor that is used to treat Gaucher disease, 

a genetic disorder of glucosylceramide accumulation in cells and organs.50-51 Inhibition of ceramide 

glucosyltransferase might also alter the membrane surface glycoconjugate. Therefore, Miglustat was also 

studied for HIV/AIDS treatment and found reduced infection of white blood cells by HIV due to the 

inefficient binding to gp120 (glycoprotein found on virus surface).52-53 Unfortunately, Miglustat showed 

limited efficacy in phase II clinical trial for HIV/AIDS due to low potency and difficulty to achieve steady-

state therapeutic concentration.54-55 
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Figure 11. Examples of glycosidase and glycosyltransferase inhibitors 

On the other hand, Acarbose (24, Figure 11) is a pseudo-tetrasaccharide consisting of multiple -(1→4) 

linkages that acts as an -glucosidase inhibitor. -Glucosidase is an intestinal enzyme that releases glucose 

from breaking down the large carbohydrates with -(1→4) linkage. Therefore, Acarbose is used as a 

treatment for Type 2 diabetes and showed great efficacy in Asian patients, in which the efficacy is likely 

due to the high carbohydrate diet.56-58 

1.2.4 Glycosaminoglycans and their therapeutic applications 

Today, one of the most widely prescribed drugs is the anticoagulant heparin (25, Figure 12), a highly 

sulfated glycosaminoglycan containing repeating units of glucuronic acid/iduronic acid and glucosamine. 

Antithrombin is a protease inhibitor of the coagulation cascade, which is triggered by tissue trauma or 

vascular injury.59 Activation of antithrombin leads to rapid inhibition of thrombin and factor Xa, shutting 

down the production of fibrin clots, eventually limits the blood’s ability to clot.60 Heparin binds and 

activates antithrombin, therefore, it is often prescribed for patients after surgeries to prevent and treat 

thrombosis (blood clotting).59 Low molecular weight heparin (LMWH) is a fractionated heparin derived by 

chemical or enzymatic cleavage of heparin, which has replaced unfractionated heparin in developed 

countries as a therapeutic of choice due to its fewer secondary complication (thrombocytopenia induced by 

heparin and antibodies).60 To further eliminate the secondary complication, a synthetic heparin mimic 

pentasaccharide fondaparinux (26, Figure 12) was developed. Fondaparinux specifically and irreversibly 

binds to antithrombin and is used to prevent deep-vein thrombosis and pulmonary embolism. Nevertheless, 

the high cost of production has prevented fondaparinux from larger success therapeutic.60 
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Figure 12. Structures of heparin and fondaparinux 

1.3 Chemical Methods of Carbohydrates Synthesis 

Although impressive progress has been achieved in the field of glycoscience, the major bottleneck is 

the lack of homogeneous forms of oligosaccharide as well as scalable methods of oligosaccharide synthesis. 

Unlike nucleic acids and proteins, the biosynthesis of carbohydrates is not templated, which leads to a 

variety of complicated carbohydrates products. As most bioactive carbohydrates used in clinics are isolated 

from natural sources, the inconsistency of natural products becomes problematic. In 2008, heparin was 

contaminated by a heparin-like compound, oversulfated chondroitin sulfate, which caused nearly 100 

deaths61-62. As such, a scalable method that allows us to produce well-defined glycans is currently demanded.  

Glycosylation is the fundamental method for constructing complex glycans, in which a glycosyl donor 

(sugar that donates the anomeric carbon) reacts with a glycosyl acceptor (the molecule that accepts the 

anomeric carbon) to form a glycoside through the newly formed glycosidic linkage. Scheme 4 demonstrates 

the glycosylation of pyranosyl donor and acceptor as well as the formation of two possible glycosides, 

where the glycosidic linkage can be either axial or equatorial.  
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Scheme 4. Concept of glycosylation 

There are two general methods of glycosylation: chemical and chemoenzymatic glycosylation. It is 

envisioned that the combination of chemical and chemoenzymatic tools is a promising solution to the 

construction of complex natural or designed glycans. This section will focus on chemical glycosylation. 

1.3.1 General pathways of chemical glycosylation 

Glycosylation is a substitution reaction at the anomeric (C1) position. Although the concept of 

glycosylation is extremely simple, the operation has been frustrating. The challenges arise from 

carbohydrate molecules' inherent poly-hydroxyl nature, which leads to problems with regioselectivity and 

stereoselectivity. To avoid problems with regioselectivity, protecting groups are often used on the sugar 

molecules. The other main challenge is the stereochemical outcome at the anomeric center, which is 

considered the most challenging in carbohydrate synthesis.1  The stereoselectivity at the anomeric center 

can be viewed in respect to the C2 position (Figure 13), where 1,2-cis and 1,2-trans glycosides could be 

possibly formed in glycosylation. In the case of 2-deoxy glycoside, an  and  mixture of glycosides is 

often found after glycosylation. 

 

Figure 13. Category of glycosides 
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To solve the stereoselectivity problem of glycosylation, it is necessary to consider the possible 

mechanisms, which generally include three pathways: the SN1, SN2, and free radical pathways (Scheme 5). 

Chemical glycosylation is commonly seen as a nucleophilic substitution reaction, where the glycosyl donor 

is an electrophile, and the glycosyl acceptor is a nucleophile. As such, SN1 and SN2 pathways are often 

processed in chemical glycosylation. Yet, the complication of glycosylation rises from the ring oxygen, 

which facilitates the SN1 pathway.1 As demonstrated in Scheme 5a, upon the departure of the leaving group, 

the lone pair on the ring oxygen can stabilize the carbocation through resonance, and generate an 

oxocarbenium ion. A nucleophile can approach the anomeric center from either  or  face, which leads to 

two possible products. On the other hand, glycosylation undergoing the SN2 pathway gives a clean inversion 

of configuration at the anomeric center (Scheme 5b).  

Another less mentioned pathway in glycosylation is the radical pathway (Scheme 5c). Propagation of 

anomeric glycosyl radicals followed by termination with glycosyl acceptor radicals, the radical pathway in 

glycosylation allows efficient access to C-glycosides, sugars with a carbon substituent at the anomeric 

center.  

 

Scheme 5. General pathways of glycosylation 
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1.3.2 Substrate-control of stereochemistry 

The ability to forge glycosidic bonds in a stereoselective fashion is not easily predictable due to the 

reaction’s high degree of variables and shifting SN1-SN2 mechanistic paradigm (Scheme 5a-b).63-65 Many 

factors influence the stereochemical outcome of glycosylation, such as the substrate itself, additives to the 

reaction, the temperature, and even the solvents and the concentration of the reaction.1, 66 Most established 

methods to achieve stereoselective glycosylation reactions have focused on tuning the steric and electronic 

nature of the protecting group on the electrophilic partners67-73. The most reliable approach is based on the 

O-acyl participatory protecting group at C2 of the glycosyl electrophile for construction of the 1,2-trans 

glycosidic linkage (Scheme 6).67, 74 Upon the formation of oxocarbenium ion 27, the C2-O-acyl protecting 

group leads to a more stable 1,2-cis acyloxonium bridged intermediate 28. Subsequent nucleophilic attack 

at the anomeric center leads to 1,2-trans glycoside 29. To achieve 1,2-cis glycoside, Boons and coworkers 

have developed (1S)-phenyl-2-(phenylsulfanyl)ethyl chiral auxiliary as a C2 participatory protecting 

group.68-69 To minimize the steric and electronic interference, a 1,2-trans decalin sulfonium intermediate 

30 is formed. Following the displacement of the sulfonium ion by a nucleophile at the anomeric center leads 

to 1,2-cis glycoside 31.  

 

Scheme 6. Neighboring group participation 

Besides participation in constructing a stable intermediate, the C2-neighboring group is also capable of 

bimodal assistance in stereoselective glycosylation. In 2018, Ding, Ishiwata, and Ito discovered that the C2-

O-(ortho-tosylamido)benzyl (TAB) protecting group enables access to - or -anomeric product under 

specific reaction conditions (Scheme 7).75 TAB group is a functional group designed for anchimeric 

assistance in glycosylation. With a catalytic amount of triflimide in the reaction, and propionitrile as the 

solvent, the TAB protecting group proceeds intramolecular hydrogen bonding between the tosylamido 
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proton and C2-oxygen resembles a phthalimide moiety. Following anchimeric assistance of the sulfonyl 

oxygen leads to the formation of a stable 1,2-cis cyclic intermediate 33. A final nucleophilic substitution 

by the alcohol glycosyl acceptor at the anomeric center on 33 eventually yields 1,2-trans glycoside 34. 

On the other hand, when diethyl ether is used as the solvent, the intramolecular hydrogen bonding that 

resembles the phthalimide moiety is disrupted. After activation by a catalytic amount of triflic acid, an 

oxocarbenium ion 35 is formed, leading to the thermodynamically favored -product 34.  

 

Scheme 7. Bimodal anchimeric assistance 

Apart from functionalization on the C2 position, the remote positions on the sugar molecule could also 

participate in glycosylation. In 2012, Yasomanee and Demchenko utilized O-picolinyl and O-picoloyl 

groups at remote positions to control facial selectivity for the nucleophilic attack of the alcohol glycosyl 

acceptor, which is known as hydrogen bond-mediated aglycone delivery (Scheme 8).70 When a picolinyl 

group is functionalized at the C3 or the C6 position, the formation of the oxocarbenium ion 37 or 39 shifts 

the picolinyl group to the -face. Hydrogen bonding between the picolinyl group and the alcohol delivers 

the glycosyl acceptor to the -face eventually generates the -glycosides 38 or 40. Conversely, 

functionalization of the picolinyl group at the C4 position directs the alcohol glycosyl acceptor to the -

face, leading to -glycoside 42 as the major product.  
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Scheme 8. Hydrogen bonding mediated aglycone delivery 

The utilization of conformationally constraining bicyclic protecting groups is another effective method 

to control the diastereoselectivity of glycosylation. For example, the Crich group demonstrated the use of 

the 4,6-O-benzylidene group on mannosyl sulfoxides (43) give superior -selectivity compared to the 

conformationally mobile donor (46, Scheme 9).76-77 Extensive mechanistic study showed that an -

mannosyl triflate (44) is formed upon activation with triflic anhydride.78 Subsequent displacement by the 

nucleophile leads to the -mannoside product (45). On the other hand, the minor -mannoside product 

arises from an oxocarbenium-like intermediate, which is destabilized due to the conformationally 

constrained 4,6-O-benzylidene protecting group.  

 

Scheme 9. Use of bicyclic protecting group in stereoselective glycosylation 

These substrate-controlled methods, however, are highly specialized for each electrophilic partner. In 

addition, some technical issues are particularly difficult to avoid. For example, low temperature is typically 

required to achieve the desired selectivity. Besides, a dilute concentration of reaction is preferred to allow 

proper hydrogen bonding denoting that more solvent is required in the reaction. Additionally, sterically 

hindered nucleophiles are less effective in the hydrogen bonding mediated aglycone delivery methods.79 
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Furthermore, the undesired byproduct is hard to avoid in some cases. For instance, in C2-O-acyl 

neighboring group participation, the carbocation is competing with the anomeric center leading orthoester 

as a byproduct when a weak nucleophile is used.80 Alternatively, reagent-controlled glycosylation has 

emerged as a way to eliminate the need for specific protecting groups. 

1.3.3 Reagent-control of stereochemistry 

Since the first glycosylation was reported in 1879,81 C2-O-acyl neighboring group participation has 

been utilized to access 1,2-trans glycosides. It was until 2005 that the Boons group have developed the 

sulfanyl chiral auxiliary as a C2-participatory group which allowed access to 1,2-cis glycosides through the 

substrate-controlled method (Scheme 8a).68-69 Aiming to stereoselectively synthesize 1,2-cis glycosides, 

chemists had diversified their focus in controlling the stereochemical outcome of glycosylation.  

The first step to access 1,2-cis glycosides was to eliminate the C2-O-acyl anchimeric assistance. In 

1901, Koenigs and Knorr reported glycosylation through the displacement of glycosyl halide 47 with 

alcohol under excess Ag2CO3 to achieve -1,2-trans glycoside 48 (Scheme 10a).82 The Koenigs-Knorr 

glycosylation has then developed into one of the most common methods to synthesize oligosaccharides and 

glycoconjugates. It was later understood that the silver assisted the bromide to leave and concerted 

nucleophilic substitution of alcohol led to the glycoside product with inversion of configuration at the 

anomeric center. In 1926, Brigl and Keppler demonstrated the first 1,2-cis glycosylation using the Koenig-

Knorr method (Scheme 10b).83 In this reaction, a -glycosyl chloride (49) was used as the glycosyl donor. 

To eliminate the C2-O-acyl anchimeric competition, a trichloroacetyl protecting group, in which the 

carbonyl oxygen is less nucleophilic, was installed at the C2 position. Under the excess amount of Ag2CO3, 

the alcohol successfully displaced -glycosyl chloride 49 resulting in the desired -1,2-cis glycoside 50.  
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Scheme 10. Koenigs-Knorr glycosylation and its development toward 1,2-cis glycosylation 

Breakthrough toward 1,2-cis glycosylation was made in 1975 by Lemieux and coworkers, where 

tetraethylammonium bromide was added to control the diastereoselectivity of glycosylation (Scheme 11).84 

This extraordinary work allowed efficient, and more importantly, reproducible stereoselective synthesis of 

1,2-cis glycoside for the first time.85 The central concept of this work is to anomerize the -glycosyl 

bromide 51 to the more reactive -glycosyl bromide 51 in situ with excess bromide ion, subsequent SN2-

like displacement with alcohol leads to the desired 1,2-cis glycoside 52.  

 

Scheme 11. Halide ion catalyzed 1,2-cis glycosylation 

The concept of in situ anomerization has a strong impact on the chemical synthesis of -1,2-cis 

glycosylation, and it is not limited to glycosyl halide as starting material. For example, Demchenko and 

coworkers employed bromine to activate the inert thioglycoside 53, and the formation of the reactive -

glycosyl bromide 54 leads to -1,2-cis glycoside 55 as the major product (Scheme 12a).86 Lemieux’s 

concept is also applicable to 2-deoxy sugars, which neighboring groups are inherently null. For example, 

Bennett and coworkers generated -2-deoxy glycosyl iodide 57 in situ through activation of the inert 2-
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deoxy glycosyl hemiacetal 56, followed by the addition of tetrabutylammonium iodide (TBAI). Subsequent 

reaction of 57 with alcohol eventually leads to a majority of -selective products 58 (Scheme 12b).87  

 

Scheme 12. Glycosylation through in situ anomerization 

Direct SN2 substitution is an efficient way of controlling the stereochemical outcome of glycosylation, 

as an inversion of configuration is expected at the reaction center. As demonstrated by Arthur Michael in 

1879 (Scheme 13a),81 a phenoxide anion (60) substituted the -glycosyl chloride (59) from the -face, 

resulting in -glycoside 61 as the product. Although the acetyl protecting groups were removed under the 

reaction condition, it was the first successful glycosylation in history.  

 

Scheme 13. Glycosylation through direct SN2 substitution with alkoxide 
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This direct SN2 substitution method at the anomeric center with alkoxide is convenient for 2-deoxy 

sugars, in which the C2 position is free of manipulation. In 2013, the Bennett group developed a dehydrative 

method to access -linked 2-deoxy-sugars (Scheme 13b).88 Firstly, the inert 2-deoxy glycosyl hemiacetal 

56 is converted into -glycosyl tosylate 62 in situ. Subsequent addition of alkoxide or thiolate displaces the 

tosylate leaving group, leading to -2-deoxy glycoside 58 as the glycosylated product. These dehydrative 

protocols together with the in situ anomerization method (Scheme 12b) and the direct SN2 method (Scheme 

13b) allow stereocontrol in the direct synthesis of 2-deoxy glycosides using bench stable glycosyl 

hemiacetals. 

Reagent-controlled glycosylation is an effective method to bias the stereochemical outcome in the 

absence of anchimeric assistance. However, these reagent-controlled methods that require the addition of 

excess reagents are not efficient from the environmental and industrial perspectives. Therefore, catalytic 

glycosylation has emerged to meet the demand for the environment and economy.  

1.4 Catalytic Glycosylation 

1.4.1 Beginning of catalytic glycosylation 

The first catalytic glycosylation was reported in 1893 by Emil Fischer, in which glycosylation was 

carried out through the reaction of aldose (1’) and alcohol (MeOH) in the presence of a catalytic amount of 

acid (Scheme 14).89 This is also known as Fischer glycosylation. Nevertheless, the Fischer glycosylation 

undergoes an equilibrium process which leads to a mixture of ring size isomers such as 63 and 64.  

 

Scheme 14. The first catalytic glycosylation by Emil Fischer 

Although Fischer glycosylation is still the preferred method to make simple glycoside nowadays, it is 

not practical for oligosaccharide synthesis.90 Until 1980, Michel and Schmidt demonstrated catalytic 

activation of the trichloroacetimidate (TCA) in glycosyl donors with either Lewis acid or Brønsted acid 
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(Scheme 15),91 leading to the blooming of catalytic glycosylation. One problem at a time, the early stage of 

catalytic glycosylation focuses on the ability of coupling. For instance, Michel and Schmidt employed 

anchimeric assistance from the C2 acyl protecting group to achieve -glycoside 67 in a practical yield with 

absolute stereocontrol. However, when a non-participatory protecting group was used in donor 68, the 

diastereoselectivity of coupled glycoside 70 reduced to 1:2 (:). Since then, chemists began to take the 

challenge in stereocontrol of glycosylation through the development of catalysts. Nowadays, in addition to 

the coupling ability, the focus on catalyst design in glycosylation has extended into stereocontrol and 

regiocontrol.  

 

Scheme 15. First catalytic glycosylation with TCA donors 

1.4.2 Design of stereoselective catalytic glycosylation 

Despite reaction conditions and substituent effects, three components are considered in catalytic 

glycosylation: the glycosyl donor that donates the anomeric carbon, the glycosyl acceptor that accepts the 

anomeric center, and the catalyst. Aiming at successful glycosylation, the catalyst must interact with either 

the glycosyl donor or the glycosyl acceptor, or both. Considering catalytic O-glycosylation through the 

coupling of alcohol with glycosyl donor bearing a leaving group, it can be simplified as alcohol substitution 

at one reaction center. There are five possible interactions between the catalyst and the glycosyl donor or 

the glycosyl acceptor (Figure 14). Interactions between the catalyst and the glycosyl donor include direct 

displacement, insertion, and induced departure. On the other hand, the catalyst interacts with the glycosyl 
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acceptor through hydrogen bonding or insertion in the OH group. For the outcome of catalytic glycosylation 

to be selective, chemists have elaborated these aforementioned interactions and designed catalysts that 

allow collaboration with both the glycosyl donor and acceptor.  

 

Figure 14. Design concepts for stereoselective catalytic glycosylation 

Another common method of glycosylation is through the coupling of glycal with alcohol (Scheme 16). 

Unlike glycosyl donors with leaving groups, the glycal contains a double bond between the anomeric carbon 

and C2. In other words, there are two reaction centers upon activation of the glycal. This type of glycosyl 

donor is preferred in the synthesis of 2-deoxy glycosides as the ring oxygen bias regioselectivity, and the 

stereochemistry at C2 can be neglected. 

 

Scheme 16. Glycal as glycosyl donor in catalytic glycosylation 

 

1.4.3 Catalyst development in stereoselective glycosylation 

1.4.3.1 From Lewis acid to acid-base catalysis (complexation with nucleophilic acceptor) 

The early approach in catalytic glycosylation began with the activation of glycosyl donors. For example, 

in Schmidt’s first reported catalytic glycosylation (Scheme 17),91 boron trifluoride diethyl etherate 

(BF3·OEt2) acted as a Lewis acid accepting electrons from the imidate nitrogen, which promoted the 

departure of the TCA leaving group, leading to the formation of a carbocation. With the assistance of the 
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C2-acyl protecting group, -glycoside was obtained as the product. Although glycosyl fluorides have been 

detected in this glycosylation,90 the mechanism of BF3 activation of TCA donor is still debatable.  

 

Scheme 17. Boron trifluoride activation of TCA donor 

An interesting phenomenon was observed by the Schmidt group in 1982 when mixing perbenzylated 

glucosyl TCA donor and phosphoric acid mono- or di-esters, where -glucosyl TCA 68 led to -glucosyl 

phosphate 74 with absolute stereocontrol in the absence of a catalyst (Scheme 18a).92 In 1990, a 

cyclohexane-like eight-membered cyclic transition state (73) was proposed for this stereospecific 

glycosylation leading to a new concept of catalysis.93 The Schmidt group proposed that a catalyst (𝐵 = 𝐶) 

would generate an 𝐴 − 𝐵 − 𝐶 − 𝐻 intermediate in situ with an alcohol acceptor (𝐴 − 𝐻), which would 

resemble the 6-membered ring-like transition state (75) and lead to stereospecific glycosylation (Scheme 

18b).  

 

Scheme 18. Synthesis of glycosyl phosphate and inspiration 



28 

 

 

 

After testing a series of carbonyl compounds, chloral (78, Scheme 19) was able to catalyze 

glycosylation with TCA donor and alcohol acceptor.93 Although the temperature, solvent, and catalyst 

concentration affect the rate, yield, and diastereoselectivity of the glycosylation dramatically, the concept 

of acid-base catalysis through complexation with acceptor in stereoselective glycosylation was first 

established. Twenty years later, the Schmidt group reinvestigated the complexation concept and 

demonstrated boron-centered catalysts (79, Scheme 19)94 for stereospecific glycosylation. 

 

Scheme 19. Development of acid-base catalysis 

Several key criteria were listed for the activation through precomplexation: (1). A fast equilibrium 

between the alcohol acceptor and the 𝐴 − 𝐵 − 𝐶 −𝐻  intermediate; (2). Increased acidity of alcohol 

acceptor after complexation; (3). The catalyst cannot react with glycosyl TCA in the absence of the acceptor; 

(4). Increased nucleophilicity of the alcohol after complexation. 

In 2011, the Taylor group demonstrated the utility of commercially available diarylborinic acid 

derivatives in catalyzing regioselective Koenigs-Knorr glycosylation (Scheme 20), in which the 

regioselectivity was accomplished through complexation of acceptor and catalyst.95 The borinate ester 81 

is a precatalyst, as the ethanolamine ligand is replaced by the diol during the reaction. Coordination of a 

1,2-cis diol (80) to the boron catalyst leads to a tetracoordinate boron-acceptor adduct (83), which alternates 

the nucleophilicity of the alcohols. Eventually, the most nucleophilic complexed equatorial alcohol (C3 
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alcohol) leads to the final product 82. This method is a big step forward in chemical glycosylation as it 

allows regioselective glycosylation with the catalytic addition of a simple small molecule. Yet, this 

glycosylation still relies on an equivalent amount of silver oxide to activate the glycosyl bromide 47.  

 

Scheme 20. Regioselective activation of glycosyl acceptor 

Since then, Schmidt and coworkers exercised their acid-based catalysis system on regioselective 

glycosylation (Scheme 21).96-98 In 2012, the Schmidt group successfully coupled the complexed equatorial 

alcohol in a 1,2-cis diol to the TCA donor with a catalytic amount of PhSiF3. Similar to the boron-centered 

catalysts 79, silicon has a higher affinity to fluorine and oxygen than nitrogen. However, unlike the boron-

centered catalyst 77, the silicon-center allows penta- or hexacoordination.96, 99 In other words, the PhSiF3 

catalyst can coordinate to more than one alcohol. Elaborating on this concept, Peng and Schmidt later 

reported gold(III)97 and platinum(IV)98 catalyzed glycosylation allowing regioselective coupling of the 

complexed equatorial alcohol in 1,2-cis diols and 1,2-trans diols (PtCl4 only). 
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Scheme 21. Regioselective glycosylation using acid-base catalysis 

Transition metals are frequently Lewis acid. Previous to Peng and Schmidt’s work on gold(III) and 

platinum(IV), the Nguyen group has reported activation of TCA donors utilizing commercially available 

cationic palladium(II) as the catalyst (Scheme 22).100-101 More importantly, this cationic palladium(II) 

catalyzed glycosylation expressed great stereocontrol, as 1,2-trans glycosides are expected even without 

anchimeric assistance. Furthermore, this chemistry has effectively coupled a wide scope of donors including 

glucose (68), mannose (90), and galactose to a variety of acceptors including primary and secondary 

alcohols, as well as phenols102. Although the mechanism of this palladium(II)-catalyzed glycosylation is 

still unclear, it is believed that the catalyst interacts with both the donor and acceptor. 
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Scheme 22. Cationic palladium(II)-catalyzed stereoselective glycosylation 

Summary: Begin with BF3·OEt2
91, Lewis acids catalyzed glycosylation has elaborated beyond simple 

activation of TCA donor. Through observation from the synthesis of glycosyl phosphates92, the Schmidt 

group hypothesized acid-base catalysis and developed several organo-catalysts allowing stereoselective 

glycosylation.93-94 The stereocontrol arises from the formation of a six-membered ring-like complex during 

the transition state, where the catalyst inserts in the alcohol acceptor leading to simultaneously increased 

acidity and nucleophilicity of the complexed alcohol. Later, the Nguyen group demonstrated stereocontrol 

in glycosylation using TCA donors and transition metal catalyst100-102, along with the Taylor group 

presented regiocontrol in glycosylation using a small molecule catalyst.95 These successful studies have 

eventually led to stereocontrol and regiocontrol in glycosylation through the use of one catalyst. 96-98  

1.4.3.2 From Brønsted acid to chiral acid catalysis (cooperative catalysis) 

Dated back in 1980, Schmidt and coworkers also reported activation of the TCA donor using 20 mol% 

p-toluenesulfonic acid (TsOH).91 In this glycosylation, TsOH acts as a Brønsted acid donating a proton to 

the imidate nitrogen, which promotes the departure of the TCA leaving group, leading to the formation of 

an oxocarbenium ion (Scheme 23). Due to the lack of C2-neighboring group participation, the 

stereochemical outcome of the glycosylation was uncontrollable and led to : at 1:2.  



32 

 

 

 

 

Scheme 23. Brønsted acid-catalyzed glycosylation 

Fast forward to thirty years later, the Fairbanks group revisited the Brønsted acid-catalyzed 

glycosylation and added chirality as an element of diastereocontrol in catalytic glycosylation. Inspired by 

asymmetric synthesis 103-104 and activation of TCA leaving group on a non-carbohydrate compound105 using 

chiral Brønsted acids as catalysts, the Fairbanks group sought solutions for stereoselective glycosylation in 

BINOL-derived phosphoric acid catalysis (Table 1).106 In the glycosylation of galactosyl TCA donor 93 

with alcohol acceptor, the chiral BINOL-derived phosphoric acids 94 (entry 2 and 3) catalyzed 

glycosylation with superior diastereocontrol than TMSOTf (entry 1) and better yield than the achiral 

diphenyl phosphate (PhO)2P(O)OH (entry 4). In addition, the catalyst configuration significantly affects 

the diastereoselectivity of the glycosylation, as (S)-94 catalyzed the glycosylation with : ratio of 7:1, 

while reduced anomeric selectivity was observed with the (R)-enantiomer (: = 2:1). 

Table 1. Chiral Brønsted acid-catalyzed glycosylation 

 

In 2013, Toshima and coworkers extended the work on chiral phosphoric acid-catalyzed glycosylation 

further to kinetic resolution of racemic alcohol acceptors (Scheme 24).107 Taking advantage of the chirality 
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on the catalyst, only the alcohol with R-configuration was recognized by (S)-94. In the glycosylation 

catalyzed by (S)-94, the glucosyl TCA donor 68 and racemic alcohol acceptors 95 lead to coupled 

glycoconjugate 96 with (-R)-selectivity. Based on this observation, the Toshima group proposed a 

cooperative mechanism: while the chiral BINOL-derived phosphoric acid (S)-94 plays its role as a Brønsted 

acid to activate the TCA donor, it also acts as a hydrogen bond acceptor to guide the alcohol acceptor to 

the anomeric carbon (97). Overall, an SN2 mechanism was proposed to explain the high -selective, 

although the mechanism on the diastereoselectivity remains unknown.  

 

Scheme 24. Kinetic resolution in stereoselective glycosylation using chiral Brønsted acid 

In 2017, the Nagorny group reported site-selective glycosylation of 6-deoxyerythronolide B acceptor 

99 through the selection of chiral phosphoric acids as catalysts (Scheme 25).108 While SPINOL-based 

phosphoric acid 100 catalyzes the glycosylation at the C3 position of macrolactone 99, the BINOL-based 

phosphoric acid 94 prefers to catalyze at the C5 position of 99. In the mechanistic study, covalent glycosyl 

phosphate intermediates were observed through NMR. While -glycosyl phosphate 103 was detected in the 

6-deoxy glucosyl substrate 98, -intermediates were found in the D- and L- fucose cases, indicating the 

formation of glycosyl phosphate intermediate may not always be SN2-like (contrasting Scheme 18a). In 

addition, the same stereochemical outcomes of glycosylation were observed despite the anomeric 

compositions of the TCA donor. As the -glycosyl phosphate intermediate led to the -glycoside product 

(vice versa in fucose substrates), it was proposed that the anomeric composition of the glycosyl phosphate 

intermediate was responsible for the stereochemical outcome of the glycosylation.  
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Scheme 25. Site-selective glycosylation by the selection of chiral phosphoric acid 

Although transition metals are often Lewis acid, some of which could be “hidden Brønsted acids”.109-

111 In 2019, the Nguyen group conducted a thorough mechanism investigation on nickel(II) triflate 

(Ni(OTf)2) catalyzed 1,2-cis glycosylation of N-phenyl trifluoroacetimidate donor (104), in which 

experimental evidence pointed toward triflate acid (TfOH) as the active catalyst in the system (Table 2).112 

A correlation was found between the catalytic activity of the metal triflates and their hydrolysis constant 

(pKh). For metal salts with pKh less than 10.1, the cationic metals are generally easy to hydrolyze when the 

anion is weakly coordinating. As such, the catalytic glycosylation proceeded with similar yield and 

selectivity when Ni(OTf)2 (pKh = 9.86), Zn(OTf)2 (pKh = 8.96), and In(OTf)3 (pKh = 4.00) were used as the 

catalyst (entry 1-3). On the other hand, AgOTf cannot catalyze glycosylation since the pKh of Ag(I) is 12 

(entry 4). 19F NMR observation on the mixture of glycosyl donor 104 and Ni(OTf)2 confirmed and 

quantified the formation of TfOH. In the end, the glycosylation was successfully repeated with only 1 mol% 

TfOH added to the reaction (entry 5). In the variable temperature NMR study, glycosyl triflate 106 was 

identified leading to a Curtin-Hammett scenario to explain the high diastereoselectivity of the catalytic 

glycosylation. 
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Table 2. Hidden Brønsted acids catalyzed glycosylation 

 

Summary: The ability of Brønsted acid-catalyzed glycosylation has first been shown in 198091, albeit 

with poor stereoselectivity. Until recently, improved stereoselectivity was observed with chiral Brønsted 

acid.106 Although the role of chirality in stereocontrol remains unclear, the ability of kinetic resolution 

during glycosylation is presented.107 Further NMR observation of glycosyl phosphate intermediate 

suggested the stereocontrol of the chiral Brønsted acid-catalyzed glycosylation arises from the anomeric 

composition of the intermediate.108 Besides the aforementioned chiral Brønsted acids, some metal triflates 

are considered “hidden Brønsted acid”, where TfOH is the active catalyst in the metal-catalyzed 

glycosylation system.112 Although the mechanism of diastereocontrol with TfOH in catalyzing 

glycosylation remains unresolved, a Curtin-Hammett scenario is generally accepted.  

1.4.3.3 From thiourea to bis-thiourea catalysis (cooperative catalysis) 

Similar to phosphoric acid, thiourea is also an important class of small molecule that has successfully 

catalyzed a variety of asymmetric chemical transformations.113 The utilization of thiourea as a catalyst in 

glycosylation was first reported by McGarrigle and coworkers in 2012 (Scheme 26).114 Inspired by Kotke 

and Schreiner’s acetalization,115 McGarrigle and coworkers applied the Schreiner’s thiourea catalyst 108 to 

the synthesis of 2-deoxy galactoside through the coupling of galactal and alcohol. Under the influence of 1 

mol% thiourea 108, the alkyl and silyl ether protected galactals react with a variety of primary and 
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secondary glycosyl alcohols in syn fashion, leading to the formation of -2-deoxygalactosides as the 

products. The originally proposed mechanism involved the formation of an alcohol-thiourea complex (110) 

through double hydrogen bonding, where the thiourea catalyst 108 acted as the hydrogen bond donor. Yet, 

the subsequent mechanistic study in 2019 revealed that the thiourea catalyst played a role as Brønsted acid 

in glycosylation of galactal donor and alcohol acceptor (111).116  

 

Scheme 26. Schreiner's thiourea catalyzed 2-deoxy galactoside synthesis 

Using thiourea derivative as a Brønsted acid in catalyzing glycosylation was reported before 2019. In 

2016, Toshima and coworkers envisioned the conjugate base of aryl thiourea (nitrogen anion) should be 

rather stable due to the resonance effect, which translated into increased acidity of aryl thiourea upon 

photoirradiation. As such, the group demonstrated the use of Schreiner’s thiourea catalyst 108 as an organo 

photoacid in catalyzing glycosylation with glycosyl TCA donor (Scheme 27).117 Upon irradiation at 365 

nm, a proton (H+) was released from the excited thiourea 108* and activated the glycosyl TCA donor. 

Additionally, the Toshima group discovered that this photoinduced catalytic glycosylation proceeded with 

-selectivity at high reaction concentration (1-2 M), indicating the reaction underwent an SN2-type 

mechanism. Conversely, an SN1-type mechanism was expected at low reaction concentration, which led to 
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-selectivity in the stereochemical outcome. As expected, the photoinduced catalytic glycosylation 

proceeded with -selectivity at 0.005-0.1 M.  

 

Scheme 27. Schreiner's thiourea catalyst as an organo photoacid in catalytic glycosylation 

On the other hand, thiourea derivatives as hydrogen bond donors have proven to activate halogenated 

compounds.118 In 2016, Ye and coworkers attempted to activate perbenzylated glucosyl chloride 112 

utilizing thiourea 108 as a catalyst (Table 3).119 However, a diminished yield was collected when using a 

catalytic amount of thiourea 108, where 10 mol% catalyst loading led to an 11% yield (entry 1). In addition, 

the S-glycosylated byproduct 115 was isolated in all reactions with thiourea 108. The urea-derived catalyst 

113was used to avoid this side reaction and led to an excellent yield (95%), albeit poor stereoselective (: 

= 1:1, entry 2). However, this catalytic reaction with galactosyl, mannosyl, rhamnosyl, and glucosaminyl 

donor proceeded with high -selectivity. To solve the stereoselectivity issue with the glucose substrate, a 

phosphine additive (114) was added to the catalytic reaction, and the anomeric selectivity improved to 

12.6:1 / (entry 3). NMR mechanistic study revealed that the glycosyl chloride was activated by urea 113 

through a dual hydrogen bonding as the chemical shift of the urea protons shifted upfield upon mixing with 

glycosyl chloride 112. Although the function of phosphine additive 114 is still unclear, a complex of 

glycosyl chloride with both catalyst 113 and additive 114 was indicated based on the NMR study.  
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Table 3. Urea-catalyzed stereoselective glycosylation 

 

In 2017, the Jacobsen group designed a dimeric, macrocyclic thiourea catalyst to promote stereospecific 

glycosylation with glycosyl chlorides (Scheme 28).120 Aiming to catalyze glycosylation in an SN2 pathway, 

cooperative activation of both glycosyl donor and acceptor through a catalyst was pursued. The cyclic 

design of bis-thiourea 116 weakens the C-Cl bond through quadruple hydrogen bonding. Meanwhile, the 

Lewis base interaction between the alcohol acceptors and the indoline amides adjacent to the thiourea 

increases the acceptors’ nucleophilicity (117). More importantly, the C2 symmetric design of 116 not only 

simplifies the catalyst synthesis but also allows the alcohol nucleophile to approach the anomeric carbon at 

a broader angle. As such, both enantiomers of 116 expressed similar reactivity and diastereoselectivity in 

glycosylation. Through simultaneous activation of -glycosyl chloride and alcohol acceptors, the Jacobsen 

group has successfully demonstrated the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy--glycosides in good 

yield and high stereoselectivity using bis-thiourea catalyst 116.  
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Scheme 28. Macrocyclic bis-thiourea catalyzed stereospecific glycosylation 

Besides glycosyl chlorides, the Jacobsen group later designed another bis-thiourea catalyst enabling the 

activation of glycosyl phosphates (Scheme 29).121-122 Since the phosphate leaving group exhibited a stronger 

Lewis basic character than the chloride, a quadruple hydrogen bonding is no longer needed. As such, the 

new catalyst 118 adopted a linear design to accommodate the spatial need of the phosphate leaving group. 

Kinetic study showed a 16-fold improvement in catalytic efficiency when using glycosyl phosphate as the 

donor compare to that of glycosyl chloride. In addition, since the thiourea catalyst 118 binds stronger to the 

phosphate leaving group, a larger scope of nucleophiles, including thiol and phenol, can be used in the 

reaction. 

Scheme 29. Bis-thiourea activation of glycosyl phosphate 

 

Summary: While thiourea derivatives are commonly known as dual hydrogen bond donors, they can 

serve a role as Brønsted acids, such as activation of galactal using Schreiner’s thiourea catalyst.114 Upon 
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photo-irradiation, the Schreiner’s thiourea catalyst becomes more acidic, which is capable of activating the 

TCA donor.117 Certainly, the Schreiner’s thiourea/urea catalysts serving as dual hydrogen bond donors 

enable activation of glycosyl chlorides, although the diastereoselective depends on the nature of substrates 

or additives in the reaction.119 In the end, Jacobsen’s bis-thiourea catalyst demonstrated simultaneous 

activation of glycosyl donor and nucleophilic displacement, leading to stereospecific glycosylation.120-122 

1.5 Main objectives 

1.5.1. Inspiration and hypothesis 

It has been reported that enzymatic glycosylation undergoes an SN2 pathway. While inverting 

glycosyltransferases (GTs) proceed a direct SN2 displacement to provide the products with inversion of 

anomeric configuration, the retaining GTs proceed a double SN2 mechanism to generate the products with 

net retention of anomeric stereochemistry (Scheme 30)123. The nucleophilic residue of the retaining 

glycosyltransferase reacts with -glycosyl phosphate to generate a covalent -glycosyl-enzyme 

intermediate with inversion of stereochemistry. Inverted substitution by a nucleophile affords the 

corresponding -glycoside product with net retention of anomeric stereochemistry.  

 

Scheme 30. Retaining glycosyltransferases-catalyzed stereoretentive glycosylation 

Hypothesis: Inspired by the effectiveness of retaining GTs, it is envisioned that a small molecule 

catalyst capable of acting like GTs to provide 1,2-cis glycosides, via a double SN2 displacement with 

predictable -selectivity and in high yields, would likely find broad applications. 

It was first reported by Lemieux and Morgan that pyridine could serve as a nucleophile to displace the 

anomeric leaving group to afford a glycosyl pyridinium complex.124-125 To minimize the steric and 

electrostatic interactions, the pyridinium ion intermediate prefers to position at the equatorial face on the 
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glycosyl electrophile. The nucleophilic attack is more likely to take place at the axial position of the 

pyridinium ion complex to provide an axial () glycosidic bond. However, pyridine is not bulky enough to 

form an exclusively equatorial intermediate. As an axial glycosyl pyridinium intermediate could also be 

generated in the reaction124-125, the stereoselectivity of the coupling product would be detrimentally affected. 

To overcome this inherent problem, we sought to identify a catalyst that would be able to form an 

exclusively equatorial intermediate.  

The commercially available pyridine-like compound, phenanthroline, appealed to us with great interest. 

As demonstrated in Scheme 31, it is hypothesized that the first nitrogen atom of phenanthroline (Phen) 

could serve as the nucleophile to displace the anomeric bromide leaving group, generating a covalent -

glycosyl phenanthrolinium intermediate. Meanwhile, the two fused pyridine rings of phenanthroline could 

sterically prevent the formation of -glycosyl phenanthrolinium intermediate. In addition, the second 

nitrogen could cooperate to promote glycosylation, either by directing the alcohol nucleophile to -face or 

non-covalently interacting with the carbohydrate moiety. All these advantages of phenanthroline have 

driven us to explore its ability as the catalyst to promote the reactions that afford high-yielding 1,2-cis 

products with predictable stereoselectivity. 

 

Scheme 31. Phenanthroline-catalyzed -1,2-cis-glycosylation 
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1.5.2. Preliminary results and continuation 

The initial investigation was performed by Dr. Fei Yu utilizing -glycosyl bromide 1 as the model 

electrophile and 1,2:3,4-di-O-isoprolydiene--D-galactopyranose (3) as the nucleophile to afford the 

disaccharide 4. After a series of catalyst screening and reaction optimization, use of 15 mol% 

bathophenanthroline (BPhen) and 2 equivalent of isobutylene oxide (IBO) as an acid scavenger of 

hydrogen bromide (HBr) in tert-butyl methyl ether (MTBE) at 50 oC for 24 h were found to be the most 

effective at promoting the reaction  (Table 4, entry 1, 4: 73% yield, : > 20:1)126. However, when the 

reaction temperature decreased to 25 oC (room temperature), the glycosylation did not proceed (Table 4, 

entry 2). It has been determined that the protecting groups on glycosyl electrophile and nucleophiles could 

affect the efficiency and selectivity of the coupling product64, 73. As such, 2,3,4,6-tetra-O-benzyl--D-

glucopyranosyl bromide (2, entries 3 and 4), which is to promote glycosylation via the SN1 pathway, was 

then explored as part of my Ph.D. work. As expected, under standard conditions at 50 oC, the glycosylation 

proceeded to provide 82% yield of the disaccharide 5 with reduced -selectivity (: = 6:1, entry 3). This 

result suggested that the SN1-SN2 reaction paradigm was slightly shifted. On the other hand, when the 

reaction was conducted at room temperature (entry 4), the coupling product was obtained with excellent 

Table 4. Bathophenanthroline-catalyzed 1,2-cis glycosylation[a] 

[a] All reactions were conducted with 0.1 mmol glycosyl bromide 

and 0.2 mmol glycosyl accepter. [b] Yield of isolated products. [c] 

Diastereoselectivity (:) was determined by 1H NMR. *Result 

from Dr. Fei Yu. 
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selectivity (: = 16:1) albeit in lower yield (55%). The high selectivity with tetrabenzyl glycosyl substrate 

indicates that the ability of the catalyst overrides the inherent substrate’s selectivity preference. The 

coupling of glycosyl nucleophile 3 with electrophilic partner 2 to yield the disaccharide 5 was later 

optimized to 95% yield by using 20 mol% of BPhen catalyst.126  

1.5.3. Major Goals 

My graduate works have mainly focused on exploring the phenanthroline catalysis system. The first 

part was to investigate the utility of BPhen on electron-rich glycosyl donors. As the SN1-SN2 reaction 

paradigm shifts toward the SN1 direction with the electron-rich substrates, a more practical catalyst was 

highly desirable. This has led to the second part of the study: identify an efficient catalyst within and beyond 

the phenanthroline framework allowing stereoselective glycosylation in a shorter time with the electron-

rich electrophilic donors. The successful identification of an efficient catalyst led to the expansion of 

substrate scope. Chapter 2 of this dissertation contains substrate scope and catalyst screening. Another main 

focus of the exploration was to investigate the mechanism of the phenanthroline catalytic system (Chapter 

3), which includes kinetic studies, NMR studies, and computational studies.  

Furanoses are more prone to proceed at the SN1-SN2 boundary than their pyranose counterparts due to 

their conformational flexibility and electronic properties.127 As Dr. Hengfu Xu explored the stereoselective 

1,2-cis furanosylation method promoted by phenanthroline catalyst, the mechanism was unclear. The last 

part of my dissertation is focused on the mechanistic study of phenanthroline-catalyzed stereoselective 1,2-

cis furanosylation (Chapter 4).  
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CHAPTER 2: SCOPE OF PHENANTHROLINE-CATALYZED 1,2-CIS 

PYRANOSYLATION 

2.1 First generation phenanthroline catalysis 

Several underlying factors potentially influence the efficiency and the selectivity of the glycosylated 

products, including the protecting group nature of glycosyl electrophiles,64, 68, 90, 128 the reactivity of 

nucleophiles, and the reaction conditions. To explore the utility of this phenanthroline catalysis system on 

electron-rich donor substrates, a series of glycosylation were performed to prepare a variety of disaccharides 

and glycoconjugate (Table 5). For example, while AgBF4 promoted glycosylation provided the disaccharide 

6 with : ratio of 2.4:1129, or TMSOTf-mediated coupling with trichloroacetimidate electrophiles provided 

6 with marginal a selectivity (: = 1:1.2-4:1)130, our catalysis system generated the coupling product 6 

with : = 14:1. Extremely hindered secondary alcohol nucleophile is also amendable to provide the 

disaccharide 7 with good selectivity (: = 7:1), for which the SN1-SN2 reaction paradigm was slightly 

shifted. 

In addition to glucosyl electrophile 2, a number of different sugar substrates were adapted into glycosyl 

bromide electrophiles to prepare disaccharides 8 – 11 and glycoconjugate 12. It has been reported that D-

galactose favors -product compared to D-glucose.131 Nevertheless, phenanthroline-catalyzed glycosylation 

with galactosyl bromide produced disaccharide 8 with excellent -selectivity (: = 10:1). In contrast, the 

amide-promoted reaction provided 8 with : = 3:1.132 In addition, the phenanthroline catalysis system 

produces disaccharide 9 with excellent diastereoselectivity ( only). 

Arabinose is a more challenging substrate due to its lability with electron-rich protecting groups. Use 

of D- or L-tribenzyl arabinosyl bromide in the phenanthroline catalyzed glycosylation reaction provides 

disaccharide 10 or 11 with excellent diastereoselectivity (: = 9:1 and  only, respectively), albeit with 

low yield (<50%) due to decomposition of the arabinosyl bromide during the reaction. The yield could be 

improved with the use of acetyl protecting groups (10’: 83%, 11’: 84%). Similarly, while tribenzyl L-
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fucosyl bromide afforded 12 with : = 6:1, the use of triacetyl L-fucosyl bromide provided exclusively -

isomer 12’. Both 12 and 12’ are key units of a thrombospondin type 1 compound associated with an 

autosomal recessive disorder.133  

Table 5. Bathophenanthroline-catalyzed 1,2-cis glycosylation with electron-rich substrates[a] 

 

2.2 Second generation phenanthroline catalyst 

2.2.1. Development of a new class of phenanthroline catalyst 

To improve the practicality of this glycosylation on electron-rich substrates, we sought to re-screen the 

commercially available catalyst with the reactive donors. (Table 6). We selected 2,3,4,6-tetra-O-benzyl--

D-glucopyranosyl bromide (2) as an electrophilic donor and 1,2:3,4-di-O-isoprolydiene--D-

galactopyranoside (3) as the nucleophilic model coupling partners in catalyst screening because they are 

the most reactive coupling partners.126 Previously, we reported the reaction of glycosyl bromide 2 and 

hydroxyl nucleophile 2 with 20 mol% 4,7-diphenyl-1,10-phenanthroline (C1 or BPhen) catalyst in the 

[a] All reactions were conducted with 0.1-0.3 mmol glycosyl bromide. Yields of isolated products. 

Diastereoselectivity (:) was determined by 1H NMR analysis.  [b] 20 mol% BPhen at 25 oC. [c] 20 

mol% BPhen at 50 oC. *Result from Dr. Fei Yu, 15-30 mol% BPhen at 50 oC for 24-48 h. 
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presence of IBO as an acid scavenger in MTBE at 25 oC for 24 h yielded disaccharide 5 (95%) with 

outstanding diastereoselectivity (: = 15:1).126 This effective glycosylation model was adapted in this 

investigation. To distinguish the reactivity of different catalysts, we decreased the catalyst loading to 15 

mol% and kept the reaction time at 24 h.  

In the absence of the catalyst, only a trace amount of the product was detected (entry 1), and 98% of 

starting material 3 was recovered. As for the phenanthroline derivatives (C1 – C5), we first investigated 

how the electronic nature of the substituents on the catalyst would vary the reaction outcome. Interestingly, 

use of the non-substituted 1,10-phenanthroline (C2, entry 3) delivered comparable yield (54% vs 55%) and 

selectivity (: = 18:1 vs 16:1) as 4,7-diphenyl-1,10-phenanthroline (C1, entry 2). However, with Dr. Yu’s 

triacetate substrate, the yields of the coupling product with the use of catalysts C1 and C2 differed by 20% 

(73% and 53% yield respectively), while the selectivity was comparable (: >20:1)126. This is probably 

due to the electron-rich nature of the tetrabenzyl glycosyl electrophile overcomes the marginal difference 

in nucleophilicity of the catalyst. Therefore, when we utilized bromine as a substituent on the para-position 

of the catalyst C3 (entry 4), the yield was not affected. The methoxy group is known as an electron-donating 

substituent; however, the use of 4,7-dimethoxyl-1,10-phenanthroline (C4, entry 5) did not further improve 

the yield of the disaccharide 5. This might be due to the inductive effect of the oxygen atom that decreases 

the nucleophilicity of the catalyst. As such, the electron-rich tetramethyl substituted phenanthroline was 

used (C5, entry 6), and the glycosylation proceeded with a significantly higher yield (76%) than those with 

other phenanthroline derivatives (54 – 58%). 

Furthermore, we investigated the necessity of the phenanthroline framework on coupling efficiency 

and selectivity (Table 6, entry 7-13). The performance with the non-phenanthroline-based catalysts varied 

in the glycosylation. For example, when we free the two nitrogen from the planar configuration by using 

2,2’-bipyridine type catalyst (C6 and C7), the yield and selectivity reduced significantly (entries 7 and 8) 

compared to C1 (entry 2). Similarly, increasing the number of pyridines on the catalyst (C8, entry 9) did 

not improve the yield or selectivity (23% yield, : = 8:1). Meanwhile, maintaining the planar structure of 
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the catalyst preserved the glycosylation outcome. In the case of 4,5-diazafluoren-9-one as the catalyst (C9, 

entry 10), the yield of the glycosylation is similar to that of C2, albeit with lower -selectivity, which is 

likely due to the change in the distance and angle between the two nitrogen on the catalyst. 

Table 6. Catalyst screening with electron-rich electrophile [a] 

In addition, 5-membered fused rings were also of interest. Similar to the bi- or tri-pyridine catalysts, 

the imidazole substituted pyridine catalyst (C10, entry 11) did not proceed to completion. Since the tertiary 

amine is more nucleophilic than pyridine, we attempted N,N,N’,N’-tetramethylethylenediamine (TMEDA, 

C11) bearing two tertiary amine groups (entry 12). The yield of TMEDA-catalyzed glycosylation increased 

as expected; however, the reaction did not proceed to completion after 24 hours. In the end, we anticipated 

that dimethylamino substituents on the para-position would drastically improve the glycosylation outcome. 

[a] All reactions were conducted with 0.2 mmol glycosyl bromide 2 and 0.1 mmol 

glycosyl acceptor 3. [b] Yields of isolated products. [c] Diastereoselectivity (:) was 

determined by 1H NMR analysis. 
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As expected, the use of 4-(dimethylamino)pyridine (DMAP, C12) provided the desired disaccharide 5 in 

93% yield (entry 13) with good -selectivity (: = 11:1) in 24 h. This result led to further design on the 

phenanthroline catalyst. 

To further improve the catalyst performance, the dimethylamino substituents were installed onto the 

phenanthroline framework (C13, Table 7). Catalyst C13 was prepared over 2 steps from commercially 

available 4,7-dihydroxy-1,10-phenanthroline. First, treatment of dihydroxyl phenanthroline with 

phosphorus oxychloride (POCl3) at 60 oC for 2 h allowed functional group interconversion to produce the 

4,7-dichloro-1,10-phenanthroline. After removal of excess POCl3, the dichlorophenanthroline was then 

treated with N,N-dimethylformamide (DMF) at 160 oC for 60 h to afford catalyst C13.  

 

Table 7. Catalyst development in phenanthroline framework[a] 

 
[a] All reactions were conducted with 0.2 mmol glycosyl bromide 2 and 0.1 mmol 

glycosyl acceptor 3. [b] Yields of isolated products. [c] Diastereoselectivity (:) 

was determined by 1H NMR analysis. 
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To distinguish the efficiency of the catalysts, the reaction time was reduced to 5 h. As illustrated in 

Table 7, the glycosylation catalyzed by BPhen (C1) only proceeded with a 40% yield of disaccharide 5 at 

5 h, while DMAP (C12) catalyzed the glycosylation with 63% yield. Expectedly, the glycosylation 

catalyzed by catalyst C13 (entry 3) is more efficient than C1 (BPhen, entry 1) and C12 (DMAP, entry 2), 

as the yield of glycosylation with C13 is higher than that with BPhen (61% vs 40%), and the 

diastereocontrol is better than DMAP (15:1 vs 11:1). However, catalyst C13 is not suitable in the synthesis 

of 2-deoxy-2-fluoro glycoside, as only a trace amount of disaccharide was observed in the reaction.134 This 

is likely due to competition of the dimethylamine in the reaction leading to many side products. As such, 

the sterically hindered piperidine substituents (C14) were installed to replace the dimethylamino 

substituents (C13). Gratifyingly, catalyst C14 promoted glycosylation of 2-deoxy-2-fluoro-glycosyl 

electrophile with high yield and excellent levels of diastereoselectivity134, and the effectiveness of C14 with 

the electron-rich glycosyl electrophile remains remarkable (entry 4, 67% yield, : = 12:1).  

2.2.2. Influence of phenanthroline catalyst 

Next, we evaluated the electronic and structural effects of phenanthroline (Table 8). Use of C1 provided 

disaccharide 3 in 40% yield with : = 13:1 (entry 1). Meanwhile, the use of C14 provided 3 in higher high 

yield due to the electron-donating para-piperidine substituents increasing the nucleophilicity of the catalyst 

(67%, entry 3). In contrast, electron-withdrawing para-bromide substituted phenanthroline C3 reduced 

glycosylation reactivity, providing 9% of the desired disaccharide 3 (entry 6). Predictably, the non-

substituted phenanthroline C2 yielded slightly less product compared to C1 (35% vs. 40%, entry 5 vs. 1). 

We next evaluated the mono-piperidine substituted phenanthroline C15, and a reduced yield (24%, entry 7) 

was obtained in comparison to the symmetrical catalysts C14 (entry 3) and C2 (entry 5), confirming the 

C2-symmetry of phenanthroline plays a critical role in glycosylation reactivity. Benzo[h]quinoline (C16, 

entry 8) catalyst containing only one pyridine ring is less reactive and -selective compared with the two 

fused pyridine C2 catalyst (entry 5), suggesting the importance of the second nitrogen atom on the 

phenanthroline framework. Further exploration revealed that replacement of IBO with 2,6-di-tert-butyl-4-
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methypyridine (DTBMP) as acid scavenger resulted in improved -selectivity while maintaining 

comparable yield (entries 2 and 4 vs 1 and 3). We rationalized that utilizing DTBMP as an acid scavenger 

would preserve bromide ion in the reaction, which further facilitates the equilibrium between the glycosyl 

phenanthrolinium ion intermediate and the -glycosyl bromide (Scheme 31).134  

Table 8. Influence of phenanthroline catalyst[a] 

 

 

[a] All reactions were conducted with 0.2 mmol glycosyl bromide 2 and 

0.1 mmol glycosyl acceptor 3. [b] Yields of isolated products. [c] 

Diastereoselectivity (:) was determined by 1H NMR analysis. 
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Overall, we have identified that increasing nucleophilicity on phenanthroline facilitates the 

glycosylation reaction, as well as the critical role of the symmetrical phenanthroline framework in 

catalyzing glycosylation.  

2.3. Reaction scope with phenanthroline catalysis 

2.3.1. Stereoselective glycosylation and limitation 

Previously, we focused on 4,7-diphenyl-1,10-phenanthroline (C1)-catalyzed glycosylation reactions 

with electron-withdrawing glycosyl bromides, providing -1,2-cis products in good yield with high levels 

of -selectivity (Section 2.1).126 This C1 catalyst, however, is not effective at promoting the glycosylation 

of the highly hindered C4-hydroxyls of D-glucoside and L-rhamnoside acceptors 16 – 18 (Table 9) with 

electron-donating glycosyl bromide donors. For instance, coupling of 16 with 2,3,4,6-tetra-O-benzyl--D-

glucosyl bromide 2, under the influence of C1, provided disaccharide 7 in 55% yield with moderate -

selectivity (: = 7:1, entry 1).126 This result suggests that the SN1-SN2 reaction paradigm is slightly shifted 

in the presence of the hindered alcohol 16. The use of DTBMP as an acid scavenger led to a slight increase 

in yield (55%→71%) and -selectivity (7:1→ 10:1) in favor of -1,2-cis glycoside 7. The use of C14 as 

the catalyst maintained the yield and diastereoselectivity (entry 1). Although the / selectivity of the 

resulting disaccharide 7 was determined by the standard 1H NMR analysis, it can be challenging due to the 

overlap of the anomeric protons with the benzyl protons. This issue was overcome by introducing the 4-

fluorobenzyl group onto C6 of glucoside acceptor 17, wherein the / selectivity of the resulting 

disaccharide 22 was determined using 19F NMR (entry 2).135 The ArF-resonance of -isomer 22 appeared 

at δF = -115.07 ppm while -isomer counterpart appeared at δF = -114.49 ppm. The diastereoselectivity of 

product 22 through coupling of 17 with glucosyl bromide 2 was significantly improved using C14 catalyst 

(10:1 → 20:1, entry 2). Notably, when we coupled galactosyl bromide 13 to C4-hydroxyl nucleophile 17 

under the influence of both C1 and C14 catalysts, the yield of the coupling product 23 increased while -

selectivity remained excellent compared to glucosyl bromide 2 (entry 3). Again, the C14 catalyst is more 

-selective than the C1 catalyst. 
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Table 9. Stereoselective glycosylation using C1 and C14 catalyst [a] 

 
[a] All reactions were conducted with glycosyl bromide (0.2 mmol) and glycosyl acceptor (0.1 

mmol) in MTBE (0.5 M). [b] Reaction complete at 24 h. [c] Reaction was allowed to stir for 48 h. [d] 

Yields of isolated products. [e] Diastereoselectivity (:) was determined either by 1H or 19F NMR 

analysis. [f] Reaction was run in CH2Cl2. 
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Next, we examined the glycosylation of challenging C4-hydroxyl rhamnose acceptor 18 with L-fucosyl 

bromide 14 (Table 9, entry 4). Under the influence of C1 catalysts, the coupling product 24 (entry 4) was 

obtained in moderate -selectivity (: = 5:1). The diastereoselectivity of disaccharide 24 significantly 

improved (5:1 → 12:1) with the use of C14 catalyst. An important consequence of C14 catalyst is its 

effectiveness with many different coupling partners. For example, C1-catalyzed glycosylation of serine 

residue 19 with fucosyl bromide 14 provided glycoconjugate 12 with moderate -selectivity (: = 6:1, 

entry 5). In contrast, the use of C14 in the analogous reaction substantially increased in selectivity from 6:1 

to 11:1 in favor of -1,2-cis glycoside 12. We also noted that C14 catalyst is more selective with electron-

withdrawing acceptor 21 (: = 16:1, entry 7) than with electron-donating acceptor 20 (: = 8:1, entry 6). 

We rationalized that the less reactive nucleophile 21 allows the equilibrium of the reactive glycosyl 

intermediates shifts toward -glycosyl phenanthrolinium ion, further enhancing the diastereoselectivity of 

the final product 25. Unfortunately, the phenanthroline system proved to be less robust with the combination 

of highly unreactive donor 15 and highly hindered C4-hydroxyl acceptor 16 (entry 8). Although C14 was 

found more efficient to promote the coupling of 16 with 15 than that of C1, the glycosylated product 26 

was isolated in only 27% yield, albeit with excellent levels of -selectivity (: > 20:1). 

2.3.2. Site-selective glycosylation 

Next, we sought to evaluate the performance of functionally complex nucleophiles under C14- 

catalyzed site-selective reaction (Scheme 32). Dexamethasone 26, bearing a variety of functional groups 

and three hydroxyls, is an anti-inflammatory and immunosuppressive corticosteroid that has been used 

as the drug to treat severe COVID-19 patients.136-137 Although there are three potential coupling sites in 

dexamethasone 26, we hypothesized that a primary hydroxyl would be the preferred site. As expected, a 

58% yield of the coupling product 27 was obtained with high -diastereoselectivity (: = 10:1) and 

complete site-selectivity (Scheme 32A) when C14 was applied to the glycosylation of 26 with glucosyl 

bromide 2. Estriol 28, bearing three hydroxyl groups at the C3, C16, and C17 positions, was then 

evaluated to furnish a 6:1 mixture of regioisomers 29 and 30 (Scheme 32B) in 60% yield with almost 
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exclusive -selectivity. In this reaction, the C16-hydroxyl is the preferred site for glycosylation forming 

29 as a major product while the more hindered C17-hydroxyl site afforded minor product 30. Importantly, 

the glycosylation at the C3-phenol site was not observed in the reaction, suggesting that an alkyl hydroxyl 

can be site-selectively coupled in the presence of a phenol nucleophile. These results demonstrate the 

applicability of C14 catalyst in the site-selective -1,2-cis glycosylation to afford synthetically useful 

yields of complex carbohydrates. 

 

Scheme 32. C14-catalyzed site-selective coupling of functionally diverse substrates 

2.3.3. Chemoselective glycosylation 

In typical approaches to the synthesis of oligosaccharides, a glycosyl electrophile is glycosylated with 

a nucleophile in the presence of external reagents or catalysts, and the resulting disaccharide then undergoes 

additional steps for selective anomeric deprotection followed by installation of an anomeric latent leaving 

group after each glycosylation. In principle, the C14-controlled approach could streamline the needs for 

anomeric deprotection and protecting group manipulations. We envisioned that a glycosyl bromide is 

activated by C14 catalyst and subsequently coupled to a carbohydrate acceptor incorporated with an alkyl 

hydroxyl as well as an unprotected C1-hemiacetal functionality. Ideally, the primary or secondary alkyl 
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hydroxyl is chemoselectively glycosylated in the presence of the C1-hydroxyl to generate the hemiacetal-

terminated disaccharide, which can be directly converted into a glycosyl donor or is directly used as a 

glycosyl donor for another coupling iteration to selectively furnish the corresponding oligosaccharide. The 

key issue of glycosylation chemoselectivity relies on the nucleophilic difference between the alkyl 

hydroxyls and the C1-hydroxyl within the carbohydrate acceptor itself. Due to the inductive effect of the 

pyranose ring oxygen, we hypothesized that an alkyl hydroxyl is likely to be more nucleophilic than a C1-

hydroxyl functionality. The influence of donor reactivity in chemoselective glycosylation reactions has 

been well-documented.138 In contrast, our chemoselective strategy focuses on the effect of acceptor 

nucleophilicity, which has been underdeveloped.139 Although the chemoselective coupling of an alkyl 

hydroxyl in the presence of a free C1-hydroxyl within a carbohydrate acceptor has been reported using 

dehydrative glycosylation method,140 the process is neither catalytic nor diastereoselective.  

We aimed to address these limitations by examining the efficacy of the C14 catalyst to promote both 

stereo- and chemoselective coupling of carbohydrate diol acceptors. Furthermore, the concept of 

chemoselectivity can only be realized under conditions that do not promote oligomerization of the 

carbohydrate diol acceptor. To validate the critical questions of stereo- and chemoselectivity, a coupling of 

1,6-diol acceptor 32 with glycosyl bromide 2 was examined under the influence of C14 catalyst (Table 10, 

entry 1). We selected diol 32 to test the feasibility of the chemoselective concept because it incorporates a 

relatively unhindered C6-hydroxyl as the preferred site for glycosylation. In addition, the aryl fluorine helps 

to determine the chemoselectivity and diastereoselectivity of the final product via 19F NMR. Under optimal 

C14-catalyzed conditions, the desired hemiacetal-terminated disaccharide 34 was obtained in 63% yield 

with excellent diastereoselectivity (: = 11:1) and complete chemoselectivity (entry 1). Importantly, self-

coupling of diol acceptor 32 to form 1,1’-linked disaccharide was not observed in the reaction. We next 

examined fluorinated diol acceptor 32 in glycosylation with glycosyl bromide donors 31 and 14 (entries 2 

and 3), the yields and -diastereoselectivities of these reactions were excellent (80%, : ≥ 20:1). Notably, 

these reactions proceeded with complete chemoselectivity. 
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Table 10. C14-catalyzed chemoselective glycosylation[a] 

 

Having demonstrated that the C14-catalyzed stereo- and chemoselective couplings of primary alcohols 

within carbohydrate acceptors in the presence of free C1-hydroxyls, this chemistry was further explored 

with secondary alcohol within carbohydrate acceptor 33 (Table 10, entries 4). The diol 33 incorporates a 

highly hindered C4-hydroxyl as the preferred site for the coupling to take place. To our excitement, coupling 

of diol acceptor 33 with electron-withdrawing glycosyl bromide 1 (entry 4) also proceeded with complete 

chemoselectivity to afford the corresponding 1,4-linked disaccharide 37 in 70% yield with high levels of 

[a] All reactions were conducted with glycosyl bromide (0.1 mmol) and diol acceptor 

(0.15 mmol) in MTBE (0.5 M). [b] Reaction were conducted with 0.3 mmol diol 

acceptor. [c] Yields of isolated products. [d] Diastereoselectivity (:) was determined 

either by 1H or 19F NMR analysis.  
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diastereoselectivity (: = 11:1). More importantly, self-coupling of 1,4-diol acceptor 33 to form 1,1-linked 

disaccharide was also not observed in the reactions. Overall, these results demonstrate that the C14 catalyst 

effectively promotes the stereo- and chemoselective coupling of an alkyl hydroxyl in the presence of a free 

C1-hydroxyl functionality within a carbohydrate acceptor.  

2.3.4. Orthogonal glycosylation 

The concept of orthogonal glycosylation reaction focuses on the relative reactivities of glycosyl donors, 

which can be modulated by protecting groups and anomeric latent leaving groups. Successful glycosylation 

requires the anomeric leaving group of each carbohydrate coupling partner to be chemically distinct and 

activated by different reagents.141-143 The orthogonal glycosylation strategy streamlines the need for 

anomeric derivatization steps as the coupling products are directly used as glycosyl donors for subsequent 

glycosylation. In addition, it has been illustrated to provide solutions for the synthesis of complex 

oligosaccharides.141-143 However, subtle changes to the structures of carbohydrate coupling partners and 

protecting groups could impact glycosylation selectivity and reactivity. In addition, the process is not 

catalytic. We sought to assess the efficiency of C14 catalyst to promote the couplings of carbohydrate 

coupling partners possessing chemically distinct anomeric leaving groups. Thioglycoside 38 and glycosyl 

bromide 2 was used in the first combination (Scheme 33A) as their anomeric leaving groups can be 

activated by different sets of external reagent and catalyst. The C14 catalyzed orthogonal reaction was 

evaluated under optimized standard conditions with the use of dichloromethane as a solvent because 

thioglycoside 38 was partially soluble in MTBE. The disaccharide product 39 (Scheme 33A) was obtained 

in 89% yield with good -selectivity (: = 8:1). Similarly, the combination of glycosyl fluoride 40 and 

glycosyl bromide 2 under the influence of C14 catalyst provided disaccharide 41 (Scheme 33B) in good 

yield and diastereoselectivity.   
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Scheme 33. C14-catalyzed orthogonal glycosylation 

2.4. Summary 

Several trends were obtained from this phenanthroline catalysis: (1) while reactions with -glycosyl 

bromide donors containing the electron-withdrawing groups require to be conducted at 50 oC, their electron-

donating counterparts can proceed at 25 oC; (2) reactions with primary alcohols proceeds faster than 

sterically hindered secondary alcohols. Furthermore, while primary alcohols could couple to reactive 

glycosyl donors at 25 oC, the sterically hindered secondary alcohol needs to proceed at 50 oC for the 

coupling to occur; (3) phenanthroline derived catalysts are more efficient compared to pyridine derived 

catalysts, and (4) C4- and C7-heterocyclic nitrogen substituted phenanthroline catalysts increase the 

reaction reactivity and improve diastereomeric outcome. 

Limitations of the phenanthroline catalysis on coupling of highly unreactive glycosyl bromide and 

sterically hindered C4-hydroxyl acceptors was overcome by introducing piperidine substituents on the C4- 

and C7 position on the phenanthroline. The utility of this phenanthroline catalysis is expanded to sterically 

hindered hydroxyl nucleophiles and chemoselective coupling of an alkyl hydroxyl group in the presence of 

free C1-hemiacetal functionality. The phenanthroline-based catalyst also has a pronounced effect on site-

selective couplings of triol motifs and orthogonally activates the anomeric bromide leaving group over the 

fluoride and sulfide counterparts. 
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CHAPTER 3: MECHANISM OF PHENANTHROLINE-CATALYZED 1,2-

CIS PYRANOSYLATION 

Phenanthroline has been utilized extensively as a powerful ligand for metals and a binding agent for 

DNA/RNA.144-145 However, there was no report on the use of phenanthroline as a nucleophilic catalyst in 

organic reactions or stereoselective glycosylation until our recent discovery.126 Our initial proposed 

mechanism evolved from a basic principle: two pyridine nitrogen atoms are positioned to act cooperatively 

(Scheme 31, Chapter 2). The first nitrogen atom acts as a catalytic nucleophile to displace the C1-anomeric 

bromide leaving group of a glycosyl donor, via an SN2-like pathway, to generate an equatorial () 

phenanthrolinium ion intermediate preferentially to avoid the steric interactions associated with positioning 

that group in the axial () orientation. The second nitrogen atom could interact with carbohydrate moiety 

to further stabilize the phenanthrolinium ion intermediate. Subsequent SN2-like substitution by a hydroxyl 

nucleophile leads to the formation of -1,2-cis glycosides. 

3.1. -Glycosyl bromide driven glycosylation? 

The preferential formation of -glucosides from -glucosyl bromide in the presence of added bromide 

ion (Bu4NBr) was first described by Lemieux and attributed to the enhanced reactivity of the higher energy 

-glycosyl bromide.84 As such, we evaluated if the stereochemistry of the -1,2-cis product would be 

dictated by the configuration of glycosyl bromide at the anomeric carbon.126 Because it is difficult to obtain 

-isomer of glycosyl bromide in a pure form, a 5:1 mixture of - and -isomers of glycosyl bromide 1/ 

with -isomer being a major diastereomer was used as a model substrate (Scheme 34).126 We observed that 

a 5:1 / mixture of starting material 1/ slowly anomerized to the corresponding a 2:1 / mixture in 

the absence of the phenanthroline catalyst after 24 h. However, a 5:1 / mixture 1/ converted 

exclusively to the corresponding -isomer 1 in the presence of 15 mol% of C1 catalyst within 1 h at 25 

oC (Scheme 34A). We also performed the reaction of a 5:1 / mixture 1/ with galactoside acceptor 3 

under the influence of C1 catalyst at 25 oC. We observed isomerization of this 5:1 / mixture to -isomer 
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1 is faster than formation of the coupling product 4 at 25 oC (Scheme 34B). On the other hand, coupling 

of 3 with this 5:1 / mixture 1/ under standard C1-catalyzed conditions provided 4 (Scheme 34C) in 

comparable yield and -selectivity to that obtained with -isomer 1 (Scheme 34D). Collectively, these 

results suggest that -isomer of glycosyl bromide is not the reacting partner in the phenanthroline-catalyzed 

reaction. This catalysis, which derives its -stereoselectivity from the highly reactive -covalent 

phenanthrolinium ion intermediate, is different from the Lemieux system.84  

 

Scheme 34. Effect of the configuration of glycosyl bromide 

3.2. Double SN2 mechanism? (Kinetic study) 

To further verify the glycosylation reaction undergoes double SN2-like mechanism, we conducted 

kinetic investigation based on the mechanism outlined for phenanthroline-catalyzed glycosylation in 

Scheme 31 (Chapter 2), the overall reaction can be described as equation (1), wherein k1 and k-1 defined 

the pre-equilibrium in the first nucleophilic substitution between the reactants, glycosyl bromide donor 

(D) and catalyst (C), and the intermediate (I). An irreversible nucleophilic attack (k2) by a hydroxyl 

acceptor (A) then leads to formation of the coupling product (P) and regeneration of catalyst. 
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D + C
𝑘1
⇄
𝑘−1
I
𝑘2[A]
→   P + C   (1) 

Applying steady-state approximation, the rate of product formation can be derived as equation (2). 

d[P]

dt
=

𝑘1𝑘2[D][A][C]0

𝑘−1+𝑘1[D]+𝑘2[A]
   (2) 

For fixed donor and acceptor concentration, the rate of product formation in respect to catalyst 

concentration is simplified in equation (3): 

d[P]

dt
= 𝑘′[𝐶]0    (3) 

where k′ = 𝑘1𝑘2[D][A]

𝑘−1+𝑘1[D]+𝑘2[A]
. 

For fixed donor and catalyst concentration, the rate of product formation in respect to acceptor 

concentration is illustrated in equation (4): 

d[P]

dt
=

𝑘𝑎[A]

𝑘𝑏+𝑘2[A]
    (4) 

where 𝑘𝑎 = 𝑘1𝑘2[𝐷][𝐶]0, and 𝑘𝑏 = 𝑘−1 + 𝑘1[𝐷]. 

In the end, for fixed acceptor and catalyst concentration, the rate of product formation in respect to donor 

concentration is shown in equation (5): 

d[P]

dt
=

𝑘𝑐[D]

𝑘𝑑+𝑘1[D]
    (5) 

where 𝑘𝑐 = 𝑘1𝑘2[𝐴][𝐶]0, and 𝑘𝑑 = 𝑘−1 + 𝑘2[𝐴]. 

The kinetic studies were conducted at 50 oC, using C6D6 as the reaction solvent and toluene as a 

quantitative internal standard, with 3,4,6-tri-acetyl-2-O-benzyl--glucopyranosyl bromide (1) and 2-

propanol (1A) as coupling partners in the presence of IBO and C1. The product (1P) formation was 

monitored by 1H NMR over the course of 60 h. The rates of reaction were then plotted as functions of the 

concentration of C1 (Figure 15a) and 2-propanol (Figure 15b). 
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Overall, the rate of the reaction is both catalyst- and acceptor-dependent. At fixed donor and acceptor 

concentration (Figure 15a), a linear correlation was observed in the plot of rate vs catalyst concentration, 

which was predicted by equation (3). On the other hand, a biphasic kinetic was observed from the plot of 

rate vs acceptor concentration (Figure 15b). This biphasic kinetic suggests a shift in the rate-determining 

step (RDS) at different concentrations of 2-propanol. At high concentration of 2-propanol, the RDS is 

formation of the phenanthrolinium ion (first step in Scheme 31), and is further supported by the linear 

dependence of rate on catalyst concentration (Figure 15a). At low concentration of 2-propanol, nucleophilic 

attack (second step in Scheme 31) is the RDS. The biphasic kinetic is also predicted by equation (4).  
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Figure 15. Kinetics of the reaction of 2-propanol with glucosyl bromide 1 in C6D6 at 50 oC: (a) Initial rate 

of reaction vs C1; reaction condition: glucosyl bromide 1 (0.5 M), 2-propanol (1.5 M), IBO (1 M), catalyst 

C1 (0-20 mol%); (b) Initial rate of reaction vs 2-propanol; reaction condition: glucosyl bromide 1 (0.5 M), 

2-propanol (0.25 – 3.5 M), IBO (1 M), catalyst C1 (15mol%). 

However, due to solubility issue, we were not able to conduct the kinetic study with high concentration 

of glycosyl bromide 1. In addition, we were not able to lower the glycosyl bromide concentration as the 

experiment required 60 h to obtain sufficient data under standard C1-catalyzed conditions. 

To verify the glycosylation is first-order dependent in the concentration of glycosyl bromide, we 

adapted the optimal reagent system in Table 8, and conducted kinetic experiment at varying glycosyl 

bromide concentration. To obtain a clear view on the product anomeric region (4.5 – 5.0 ppm) in 1H NMR, 
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2,3,4,6-tetra-benzyl-d7-glucopyranosyl bromide 2* was used as the model electrophile. The kinetic 

experiments were carried at 25 oC in CD2Cl2, with glucosyl bromide 2* and glycosyl nucleophile 3 as the 

coupling partners, using phenanthroline C14 as the catalyst, DTBMP as acid scavenger, and mesitylene as 

internal standard. As illustrated in Figure 16a, the coupling product concentration appeared linear 

relationship to time (apparent zero-order kinetics in substrates), and induction period was not observed. In 

addition, the rate of product formation increases as the concentration of glucosyl bromide 2* increases. The 

initial rate of reaction in Figure 16b showed first-order dependence on glycosyl bromide 2*. Unfortunately, 

due to limiting amount of 2*, we were not able to observe the saturation behavior in glucosyl bromide 

concentration. However, the collective kinetic studies suggest that the phenanthroline catalyzed -selective 

glycosylation undergoes associative mechanisms (likely double SN2). 

 

Figure 16. Kinetic study in respect to donor concentration: (a) Product concentration versus time for 

phenanthroline-catalyzed (C14, 0.02M) glycosylation with varying donor concentration: 0.2 M 2* (●, 

green), 0.4 M 2* (▲, red) and 0.6 M 2* (♦, blue). Reaction conditions: donor 2* (0.2 – 0.6 M), acceptor 3 

(0.2 M), C14 (0.02 M), DTBMP (0.4 M), CD2Cl2 (0.5 mL), 25 oC; (b) the initial rate of reaction is dependent 

on the concentration of 2*. 
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The rates of phenanthroline-catalyzed reactions with different substituents on the phenanthroline 

framework were also investigated. As illustrated in Figure 17, all three phenanthroline catalysts provide 

similar rate profile, where the overall rates are apparent zero-order kinetics in substrates and showing no 

induction period. Due to the electron donating effect of the piperidine substituents, the rate of C14-catalyzed 

glycosylation should be faster than that of C1 and C2. As predicted, the C14-catalyzed reaction is more 

rapid than both C1- and C2-catalyzed reaction. On the other hand, both C1 and C2 showed similar rate, 

complementary to the observation in Table 8 (Chapter 2). 

 

Figure 17. Product concentration versus time for the phenanthroline-catalyzed glycosylation with three 

different phenanthroline catalysts: C1 (●, orange), C2 (◆, dark blue) and C14 (▲, red). Reaction condition: 

2* (0.4 M), 3 (0.2 M), catalyst (0.02 M), DTBMP (0.4 M), CD2Cl2 (0.5 mL), 25 oC 

3.3. Detection of pyranosyl phenanthrolinium ion intermediates 

For the phenanthroline-catalyzed glycosylation to yield -1,2-cis product, the catalyst must associate 

with either or both substrates in the reaction. In our proposed mechanism (Scheme 31), phenanthroline 

displaces the bromide leaving group to form a glycosyl phenanthrolinium ion intermediate. Unlike sugars, 

phenanthroline is a rigid and planar organic compound with a C2 symmetry. However, if phenanthroline is 

coupled with a sugar molecule, the symmetry will be destroyed. As a result, our first objective was to 

perform 1H NMR study to observe the symmetry on phenanthroline (Figure 18). To obtain a clear view on 

the aromatic region in 1H NMR, 2,3,4,6-tetra-benzyl-d7-glucopyranosyl bromide 2* was used as an 
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electrophile, wherein the chemical shift of anomeric proton (H1) resonance appeared at H = 6.55 ppm in 

CD2Cl2 (Figure 18a). Piperidine substituted phenanthroline C14 was chosen for our NMR study because it 

is the most effective catalyst134 compared to other catalysts,126 implying formation of the reactive glycosyl 

intermediates is more favorable. In addition, the chemical shift of the piperidyl substituents would not 

appear in the aromatic region. To avoid any possible side reaction with by-product of isobutyl oxide 

(IBO),134 di-tert-butylmethylpyridine (DTBMP) was chosen as the acid scavenger in the later NMR 

experiment (Figure 18). 

 

Figure 18. Detection of phenanthrolinium intermediate by 1H NMR: (a) Deuterated tetra-benzyl glucosyl 

bromide 2* in CD2Cl2; (b) 2* and 10 mol% C14 at 0 min; (c) 2* and C14 at 30 min, new signals emerging 

around phenanthroline aromatic region; (d) 2*, 3, C14 at 30 min, disaccharide 5* emerging; and (e) 2*, 3, 

C14 at 300 min, more disaccharide 5* formed in the reaction. See Section 5.3.2 for full spectrum. 
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Upon addition of 10 mol% of C14 to the deuterated glycosyl bromide 2*, three new signals appeared 

at H = 8.88 ppm (Ha, d, J = 5.0 Hz) and H = 7.07 ppm (Hb, d, J = 5.1 Hz) and the singlet at H = 7.98 ppm 

(Hc) represented the symmetry of C14 catalyst (Figure 18b). Within 30 min, new signals emerged around 

the phenanthroline region (Figure 18c). These new signals were not detected in the mixture of nucleophile 

3 and C14 (Figure 19). An aliquot of the reaction mixture was subjected to electrospray ionization (ESI) 

mass spectrometry and returned m/z ratio of 897.6393 (Figure 46), confirming the presence of the 

intermediate Int* (Figure 18) which resembled a phenanthrolinium ion. Hydroxyl nucleophile 3 was 

subsequently added to the reaction mixture along with DTBMP and mesitylene (internal standard). After 

30 min, new signals still surrounded the aromatic region (Figure 18d) along with the appearance of the 

disaccharide product whose anomeric proton appeared at H = 5.03 ppm (d, J = 3.6 Hz, Figure 18d). At 5 

h, more product was formed and the new peaks remained at the aromatic region (Figure 18e). The reaction 

mixture was allowed to stir overnight at 25 oC. The product 5* was isolated in comparable yield (80%) and 

selectivity (: = 10:1) to that of disaccharide 5 (Table 8, entry 4). Several key observations were obtained 

Figure 19. Mixture of nucleophile 3 and 10 mol% C14 with DTBMP in CD2Cl2, and mesitylene as 

internal standard 
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from this NMR experiment: (1) the new signals appeared to be doublets, indicating the newly-formed 

phenanthroline species did not maintain their symmetry; (2) the number of signals suggests that there are 

two possible phenanthroline species (Int1 and Int2) present in the solution (Figure 20); (3) the population 

of unbound phenanthroline C14 and the two phenanthroline species (Int1 and Int2) shifted from 76:14:10 

(C14: Int1: Int2) to  81:12:7 upon addition of alcohol 2, suggesting the equilibrium of the catalyst states 

had shifted toward regeneration of C14, likely through formation of the coupling product; and (4) the 

integration of the signals suggested that an extra hydrogen atom appeared on the phenanthroline aromatic 

region for each newly-formed species, which was subsequently identified as a C1-proton of the sugar unit 

(Figure 20). 

To further identify the presence of the two newly-formed species upon mixing deuterated glycosyl 

bromide 2* with C14, a 1:1 stoichiometry ratio of 2* and C14 catalyst was employed. As the concentration 

of C14 increased, the equilibrium shifted toward the two new intermediates, wherein the population of 

unbound C14 catalyst, Int1 and Int2 became 55%, 30%, and 15%, respectively (see Section 5.3.2 for 1H 

Figure 20. Conformation of the glycosyl phenanthrolinium ion intermediates: 1H-1H 2D COSY (red) and 

ROESY (blue) NMR evidence as well as DFT calculation structures. 
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NMR spectra). Variable temperature 1H, 1H-1H 2D COSY and ROESY NMR spectra at 0 oC were 

subsequently obtained. density functional theory (DFT) calculations were employed to assist the 

deconvolution of these intermediates. The geometries of possible intermediates’ structures were optimized 

and vibrational frequencies were calculated at the B3LYP/6-31+G(d,p) level146-156 with the SMD implicit 

solvent model157 and the GD3BJ empirical dispersion correction158-159. All calculations were carried out 

with Gaussian 09.160 In our DFT calculations, tetramethyl glucosyl bromide was used as a model 

electrophile to reduce computational cost (Figure 20). The DFT calculation results are consistent with our 

NMR data.  

Employing 2D COSY NMR, the newly formed protons in the phenanthroline aromatic region resided 

at H = 8.68 ppm (d, J = 8.1 Hz) and H = 8.36 ppm (d, J = 3.6 Hz) were identified to be the C1 protons of 

the anomeric mixture of Int1 () and Int2 (), in a ratio of 2:1 (:) (Figure 20 and Figure 21c). Suggested 

Figure 21. Conformation of glycosyl phenanthrolinium intermediates and NMR evidence: (a) 

Conformation of - and -phenanthrolinium intermediates; (b) 1H-1H 2D ROESY NMR spectrum; (c) 1H-
1H 2D COSY NMR spectrum. 
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by DFT calculations (Figure 20), while Ha proton on the phenanthroline is spatially closed to the C2 proton 

for the -isomer Int1 (2.646 Å), the Ha proton for the -isomer Int2 is closed to the C5 proton (2.700 Å) on 

the sugar ring. These spatial interactions were also observed through 2D ROESY NMR (Figure 21b), which 

consolidate the anomeric configurations for the two detected intermediates. Similar to the glycosyl 

pyridinium ion,161-163 the major phenanthrolinium ion intermediate is a -configured isomer (Int1) and exists 

in the 4C1 chair conformation while the minor -isomer (Int2) exists in the B2,5 boat conformation to avoid 

stereo- and electronic effect from the ring.  

 

3.4. Hydrogen bonding in the pyranosyl phenanthrolinium ion intermediates 

Several NMR evidences were found below to support hydrogen bonding (H-bonding) interaction 

between the second nitrogen of phenanthroline and the C1 anomeric proton. In general, for H-bonding 

involving an electronegative acceptor such as oxygen or nitrogen, the donor nucleus experiences a 

deshielding effect.164 Conversely, if the C1 anomeric proton is hydrogen bonding to the second nitrogen of 

phenanthroline, the chemical shift should appear more downfield in the 1H NMR. It has been reported that 

the anomeric proton of -glucosyl pyridinium bromide resonances at H = 6.10 ppm in D2O.165 In addition, 

Gin and coworker established anomeric mixture of glycosyl pyridinium species, wherein the anomeric 

protons resonance at H = 6.63 and 6.49 ppm in CD2Cl2 at -60 oC.166 However, the 1H NMR spectra of a 1:1 

mixture of glycosyl bromide 2* and C14 taken at -60 oC (Figure 22) showed the anomeric protons of the 

intermediates, Int1 () and Int2 (), resonance at H = 8.44 and 8.18 ppm, respectively. The downfield shift 

of the anomeric protons of glycosyl phenanthrolinium ion intermediates compare to that of the reported 

glycosyl pyridinium species is likely due to an intramolecular hydrogen bonding between the anomeric 

proton and second nitrogen on phenanthroline. 

A more direct hydrogen bonding observation is through hydrogen bond scalar coupling.164 The scalar 

interaction arises from electron cloud between nuclei, such as covalent bonds. Upon formation of H-

bonding, the redistribution of electron density of the nuclei associate with H-bonding allows us to observe 
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the scalar coupling using COSY experiment.164 As shown in Figure 21, scalar couplings (h3JHH) between 

the anomeric proton and Ha’ on the phenanthroline were observed for both intermediates Int1 and Int2. 

These scalar interactions mediated by the lone pair electrons on the second pyridine nitrogen of 

phenanthroline and the conjugated system are evidential for H-bonding between the anomeric proton and 

the second nitrogen of phenanthroline. In order to obtain a clear view of the hydrogen bond coupling in 1H 

NMR, a rigid H-bonding network is required.167-168 As hydrogen bond formation is highly dependent on 

Figure 22. Variable-temperature 1H NMR spectra and proposed intermediates internal hydrogen bondings: 

(a) VT-NMR spectra of glucosyl bromide 2* and C14 (1 equiv.) in CD2Cl2 with mesitylene as internal 

standard; (b). Zoomed-in spectra of anomeric protons for Int1 and (c) Int2. 
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temperature,169 we cooled the 1:1 mixture of glucosyl bromide 2* and C14 in CD2Cl2 to -60 oC and gradually 

warm to room temperature. The 1H NMR spectra were taken at 10 oC interval and combined (Figure 22a). 

The 1H NMR spectrum was at highest resolution at -10 oC. The C1-anomeric proton of Int1 () showed a 

defined allylic splitting at -10 oC (Figure 22b). Further, DFT optimized structures (Figure 20) for anomeric 

mixtures of the phenanthrolinium intermediates are consistent with the NMR observation: for Int1 () the 

H1–N’ distance is 1.958 Å and the C1–H1---N angle is 133, while those for Int2 () are 2.089 Å and 117. 

3.5. Proposed mechanism 

Based on the NMR study and DFT calculations,134 a proposed mechanism for the phenanthroline-

catalyzed -1,2-cis glycosylation is illustrated in Figure 3.  We hypothesize that the first pyridine nitrogen 

atom of the phenanthroline catalyst C14 displaces the anomeric -bromide leaving group of glycosyl donor 

to form the -phenanthrolinium ion intermediate. This phenanthrolinium ion positions equatorially to avoid 

the steric and electrostatic interactions.  Our recent DFT calculations suggest that formation of the -

covalent phenanthrolinium ion intermediate is reversible.134 The -covalent glycosyl intermediate adopts 

the 4C1 chair conformation and is in equilibrium with the -glycosyl intermediate whose exists in the B2,5 

boat conformation. Our NMR study showed that these two key intermediates, a major 4C1 -

phenanthrolinium ion conformer (Int1) and a minor B2,5 -phenanthrolinium ion conformer (Int2) were 

formed in the reaction (Figure 20). To obtain high levels of diastereoselectivity, a Curtin-Hammett situation 

must be established: interconversion of the 4C1 chair-like -conformer and B2,5 boat-like -conformer via 

an oxocarbenium ion intermediate is rapid and much faster than the subsequent nucleophilic attack (Figure 

23). In the NMR study, these two intermediates were formed and equilibrated within 30 min while the 

product formation typically required more than 1 h to be observable. To rationalize the diastereoselectivity 

for the major -1,2-cis product, hydroxyl acceptor preferentially approaches to the -face of the 4C1 chair 

conformation of the -glycosyl phenanthrolinium ion intermediate via an SN2 pathway. This would the 
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reaction proceeding through a disfavored B2,5 boat conformation of the  intermediate, which leads to the 

minor -1,2-trans product. preclude  

 

Figure 23. Possible mechanism of phenanthroline-catalyzed glycosylation 

To further verify that the 4C1 chair-like -glycosyl phenanthrolinium is indeed the reactive intermediate, 

we sought to detect the intermediates for 2-deoxy-2-fluoro glycosyl bromide donor. The highly reactive 

tribenzyl 2-fluoro galactosyl bromide 31 was chosen as a model electrophile (Figure 24). The transient 

glycosyl phenanthrolinium ion intermediate (Int3) was detected by 1H NMR within several minutes using 

Figure 24. Conformation of the 2-deoxy-2-fluoro glycosyl phenanthrolinium ion and ROESY (blue) 

NMR evidence (see Section 5.3.2 for full spectrum). 
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a 1:1 mixture of 2-fluoro glycosyl bromide 31 and C14 catalyst at 25 oC. Importantly, only the -glycosyl 

phenanthrolinium ion intermediate Int3 (Figure 24) existing in the 4C1 chair conformation was observed. In 

addition, more than 90% of 31 were converted to the Int3 intermediate within 2 h. Unlike the tetrabenzyl 

glycosyl bromide donor 2*, which produces highly interconvertible intermediates (Int1 and Int2, Figure 20), 

the 2-fluoro galactosyl bromide 31 generates a more stable intermediate (Int3), which results in either 

formation of the products or reverts to the reactant 31. This observation was further supported by DFT 

calculations.134 

3.6. Conclusion 

A systematic mechanistic investigation of the 4,7-dipiperidine substituted phenanthroline C14 

catalyzed-stereoselective -1,2-cis glycosylation reaction with -glycosyl bromide donor was performed 

employing variable temperature NMR (1H, COSY, and ROESY) experiments. In this respect, NMR studies 

have showed that activation of deuterated tetrabenzyl glucosyl bromide with C14 catalyst can readily form 

the two phenanthrolinium ion intermediates: the -isomer adopts a 4C1 chair conformation while the -

isomer adopts a B2,5 boat conformation. These two glycosyl intermediates exist in a ratio of 2:1 favoring 

the 4C1 chair-like -phenanthrolinium ion. The 1H and COSY NMR studies indicate that there is an 

intramolecular hydrogen bonding between the anomeric C1- proton of the carbohydrate moiety and the 

second pyridine nitrogen of phenanthroline framework for the two glycosyl phenanthrolinium ion 

intermediates. The coupling is governed by Curtin-Hammett principles and proceeds through the more 

reactive 4C1 chair-like -phenanthrolinium ion. The -anomeric selectivity is rationalized by a model in 

which nucleophilic attack takes place from the -face of the -covalent glycosyl phenanthrolinium ion 

intermediate. Kinetic study suggested that the phenanthroline-catalyzed reaction operates by associative 

mechanisms. 

  



74 

 

 

 

CHAPTER 4: EXPLORATION OF PHENANTHROLINE-CATALYZED 

1,2-CIS FURANOSYLATION 

4.1. Introduction 

The interest in the stereoselective synthesis of furanose‐containing glycans has been growing rapidly 

over the past decade170-175 as furanoses are key constituents of many pathogenic microorganisms and 

plants.176-179 Oligosaccharides and polysaccharides containing 1,2-trans and 1,2-cis furanosidic linkages 

(Figure 25) are generally present in the cell walls of the microorganisms and play critical roles in disease 

progression and interaction with the host immune system.176-179 As a result, they are targets for therapeutic 

intervention.180-181 The 1,2-trans furanosides are obtained through neighboring group participation of the 

C2-O-acyl protecting group. On the other hand, the ability to access 1,2-cis furanosides requires furanosyl 

donors with a non-assisting functionality at C2. The use of these electrophilic donors often leads to the 

formation of a mixture of two stereoisomers that differ in the configuration of the anomeric center.170-175 

 

Figure 25. Hexasaccharide motifs found in the cell wall complex of mycobacterial arabinogalactan (AG) 

and lipoarabinomannan (LAM). 

The furanosides react closer to the SN1 end of the SN1-SN2 boundary than their pyranoside counterparts 

due to their conformational flexibility and electronic properties.127 To overcome these inherent challenges, 
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several groups have employed conformationally blocked furanosyl donors that provide 1,2-cis furanosides 

with high levels of selectivity.182-187 The introduction of 1,2-cis-furanosidic,188-190 remote participation of 

the acyl protecting group at C3 or C5,191-192 hydrogen bonding-assisted coupling,193 and regioselective 

opening of the 2,3-anhydrofuransoyl donor.194-195 While these substrate-controlled methods have been 

successful to provide solutions to a number of 1,2-cis furanosylation challenges in the oligosaccharide 

synthesis,196-202 achieving the desired stereoselectivity remains system-dependent. Subtle changes to the 

structure of carbohydrate coupling partners have pronounced effects on the furanosylation selectivity and 

reactivity. 

Methods that enable catalytic stereoselective glycosylation are a powerful means of rapidly introducing 

1,2-cis furanosidic linkages into biologically relevant oligosaccharides, obviating the need to rely on 

substrate control. The catalysis with small organic molecules to expand the chemical space of 

stereoselective 1,2-cis furanosylation reaction is of interest. The area of organocatalysis has become a 

highly dynamic area of research as small organic molecules are capable of catalyzing a wide range of 

organic reactions.203-214 Recently, Jacobsen and coworkers reported the use of small molecule catalysts,  bis-

thiourea hydrogen-bond donors, to mediate the formation of 1,2-cis furanosides in high yields and 

diastereoselectivities.215 In their investigation, 1,2-trans furanosyl phosphate donors undergo substitution 

with a variety of hydroxyl acceptors to provide access to 1,2-cis products.215 However, when -1,2-trans 

xylofuranosyl phosphate donor (42, cis:trans = 1:11) was employed in the reaction (Scheme 35A), the -

1,2-trans product 44 was obtained as the major product with the net retention of anomeric configuration 

(cis:trans = 1:13).215 This is a unique case when compared to other furanosyl phosphates under bis-thiourea-

catalyzed selective furanosylation conditions.  

Our group recently discovered that phenanthroline, a rigid and planar organic compound with two 

pyridine rings fused to a benzene ring, effectively acts as a nucleophilic catalyst to promote the 

stereoselective glycosylation with -pyranosyl bromide donors providing -1,2-cis pyranosides with net 

retention of anomeric configuration.126, 134, 216 The reaction is governed by Curtin-Hammett principles and 
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proceeds through the more reactive -pyranosyl phenanthrolinium ion intermediate. The -1,2-cis 

selectivity is rationalized by a model in which nucleophilic attack takes place from the -face of the -

glycosyl phenanthrolinium ion.216 Given the paucity of catalytic stereoselective 1,2-cis furanosylation 

reports, we saw an opportunity to demonstrate the utility of our catalytic strategy toward furanose substrates. 

Dr. Hengfu Xu has investigated the commercially available phenanthroline-catalyzed stereoselective 

glycosylation of a variety of hydroxyl nucleophiles with furanosyl bromide donors to provide access to the 

challenging 1,2-cis furanoside products with high levels of anomeric selectivity. Unlike the pyranose 

substrates, the reaction with furanose substrates proceeds with inversion of stereochemistry. 

 

Scheme 35. Catalytic stereoselective xylofuranosylation 

As illustrated in Scheme 35B, reaction of 1,2:3,4-di-O-isopropylidene--D-galactopyranoside 3 with 

-1,2-trans xylofuranosyl bromide donor (43, cis:trans  = 1:10) using 15 mol% 4,7-diphenyl-1,10-

phenanthroline (C1) provided the -1,2-cis product 44 with excellent selectivity (cis:trans = 15:1). This 

result is the opposite of Jacobsen’s observation (Scheme 35A).215 This catalysis system has also been 

extended to a number of furanosyl bromide donors. While arabinofuranosyl bromide provides -1,2-cis 

products as the major stereoisomers, xylo- and ribofuranosyl donors favor -1,2-cis products (Scheme 36). 
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To understand the behavior of phenanthroline in the furanosylation system, an extensive mechanistic 

investigation was initiated.  

 

Scheme 36. Overview of reaction outcome of phenanthroline catalysis in furanosylation system 

4.2. Effects of donor anomeric composition 

Jacobsen and coworkers have reported that the anomeric composition of the furanosyl phosphate donors 

had a pronounced effect on the reaction outcome under bis-thiourea-catalyzed furanosylation conditions.215 

For example, the coupling of alcohol acceptor 3 with -arabinofuranosyl phosphate 45 provided 

disaccharide 47 with : = 1:25 (Scheme 37A).215 In contrast, the use of an 8:1 / mixture of 

arabinofuranosyl phosphate donor led to a decrease in selectivity, affording 47 with : = 1:10 which is 

comparable with our C1 catalysis conditions (: = 1:7, Scheme 37B).  
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Scheme 37. Catalytic stereoselective arabinofuranosylation 

Since we were unable to obtain -D-arabinofuranosyl bromide 46 in a high -form, it is unclear how 

the anomeric composition of this donor could impact the stereochemical outcome under phenanthroline-

catalyzed furanosylation conditions and whether the furanosylation operates by associative mechanisms.126, 

134, 216 To determine if the stereochemical outcome of the reaction is dependent on the anomeric 

configuration of the electrophilic partner, we proposed to replace the C2-oxygen of arabinose with a 

fluorine atom to generate 2-fluoro-arabinofuranosyl bromide since this donor has been obtained with high 

-selectivity.217  As anticipated, 2-fluoro arabinosyl bromide 48 (Scheme 38A) was primarily isolated as 

the -furanosyl donor (: = 20:1). Although the reaction of donor 48 with primary alcohol acceptor 3 

provided disaccharide 49 in 71% yield (Scheme 38A), a decrease in -1,2-cis selectivity (: = 1:5) was 

observed in comparison to the result obtained for a 7:1 / mixture of arabinofuranosyl bromide donor 46 

(: = 1:7, Scheme 37B). Interestingly, similar anomeric selectivity (: = 1:5) was also obtained for 1,2-

cis product 49 in the coupling of alcohol 3 with 2-fluoro arabinosyl phosphate mediated by the bis-thiourea 

catalyst.215 Next, we replace C2-oxygen of xylose with a fluorine atom to form 2-fluoro xylofuranosyl 

bromide donor 50 (Scheme 38B). Interestingly, while donor 50 was primarily isolated as a 1:1 / mixture, 

the coupling product 51 was obtained with excellent levels of cis/trans diastereoselectivity (: = 17:1). 
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Taken together, the data obtained in Scheme 38 suggest that furanosyl donor anomeric composition is not 

responsible for the reaction anomeric selectivity.  

 

Scheme 38. Effect of donor anomeric composition in C1-catalyzed furanosylation 

The use of 2-fluorofuranosyl bromide donors 48 and 50 (Scheme 38) also allows to study the effect of 

C2-fluorine atom on the reaction selectivity as the directing role of fluorine at C2 on l,2-trans glycosylation 

with pyranosyl donors has been reported.218 Two mechanistic SN1 and SN2 scenarios have been proposed.218 

For the SN1 pathway, the C2-F bond of pyranosyl donor adopts a quasi-axial arrangement to allow 

maximum orbital overlap for C-F* and the incoming alcohol nucleophile in the transition state.218 As such, 

if the C2-fluorine directs furanosylation, 1,2-trans products should be obtained as the major products. 

However, in both the phenanthroline system and the bis-thiourea system215, 1,2-cis products 49 and 51 

(Scheme 38) were observed as the major products, suggesting either the reaction did not undergo SN1 

pathway or the catalyst overrides the C2-fluorine directing effect. For the SN2 pathway, it has been proposed 

that the C2-fluorine may induce an electrostatic attraction between the pyranosyl donors and alcohol 

nucleophiles.218 If the reaction proceeds through SN2 pathway, the final coupling product should be in the 

opposite stereochemistry of the glycosyl electrophile. In the 2-fluoro-arabinofuranosylation case, we used 

furanosyl bromide 48 with 20:1 of : ratio, but only obtained 1:5 of : ratio for the coupling products 
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49 (Scheme 38A). On the other hand, in the 2-fluoro-xylofuranosylation case, although a 1:1 anomeric 

mixture of furanosyl bromide 50 was used in the reaction, a high : ratio (17:1) of the coupling product 

51 (Scheme 38B) was obtained. These results suggest that the furanosylation does not undergo direct SN2 

pathway. The data are also consistent with our recent report on the  phenanthroline-catalyzed stereoselective 

construction of 2-fluoroglycosides, in which phenanthroline catalyst overrides the C2-fluorine directing 

effect and gives access to the corresponding 1,2-cis-2-fluoro glycosides.134 

 

4.3. Detection of furanosyl phenanthrolinium ion intermediates 

With the possibility that the reaction goes through covalent phenanthrolinium ion intermediates, NMR 

spectroscopy was employed to detect the putative intermediates. To minimize the proton signals on the 

aromatic region, C14 was chosen as a catalyst of choice. In addition, both 2-fluoro xylosyl 50 and arabinosyl 

48 bromides were chosen as model donors in our NMR study as we have established their anomeric 

composition (see Scheme 38).  

With the previous knowledge that the covalent phenanthrolinium ion intermediates form within 30 min 

upon combining the pyranosyl donor with C14,216 the first step in our study was to add C14 (0.13 mmol) 

to the 1:1.25 / mixture of 2-fluoro xylofuranosyl bromide 50 (0.10 mmol) at 25 oC. Within 1 h, new 

signals appeared around the phenanthroline region (7.0 – 9.1 ppm) and the sugar region (5.4 – 6.0 ppm) 

(Figure 26). An aliquot of the reaction mixture was then analyzed by electrospray ionization (ESI) mass 

spectrometry with an m/z ratio of 661.3548 (Figure 26 and Figure 58), confirming the formation of the 

phenanthrolinium ion. Furthermore, the number of new signals in both 1H and 19F NMR indicates that there 

are two possible intermediates, Int4 and Int5, present in a ratio of 2:1 in the reaction (Figure 26, Figure 53 

and Figure 54). In 1H-1H COSY (Figure 56) and ROESY (Figure 57) NMR analysis, the C1 protons of the 

anomeric mixture of Int4 and Int5 were identified to reside at H = 7.63 ppm and H = 8.02 ppm, respectively. 

On the other hand, the C2-fluorine of Int4 and Int5 resides at F = -188.01 ppm (ddd, J = 45.7, 16.1, 8.4 Hz) 

and F = -189.64 ppm (ddd, J = 52.2, 17.9, 14.0 Hz), respectively, in the 19F NMR (Figure 54). Through 2D 
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ROESY NMR analysis, the major Int4 was identified as a -phenanthrolinium ion and exists in the 3E 

envelop conformation while the minor Int5 was an -phenanthrolinium ion and adopts the E3 envelop 

conformation (Figure 26, Figure 55 and Figure 57).  

 

Figure 26. Detection of xylofuranosyl phenanthrolinium intermediates 

In the case of 2-fluoro arabinofuranosyl bromide 48 (: = 20:1, Figure 27), our NMR study of the 1:1 

stoichiometry ratio of donor 48 and C14 mixture shows that two key intermediates, a major 3E -

phenanthrolinium ion conformer (Int6) and a minor E3 -phenanthrolinium ion conformer (Int7), were also 

formed in a ratio of 2:1 / mixture (Figure 27, Figure 59 and Figure 60). The formation of the arabinosyl 
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phenanthrolinium ion intermediate was also confirmed using electrospray ionization (ESI) with an m/z ratio 

of 661.3541 (Figure 27 and Figure 66). From the 2D NMR study (Figure 64 and Figure 65), the C1 protons 

of the anomeric mixture of Int6 and Int7 were identified to reside at H = 7.99 ppm and H = 8.05 ppm, 

whereas the C2-fluorine resides at F = -192.53 ppm (ddd, J = 51.3, 20.5, 11.8 Hz) and F = -186.34 ppm 

(dt, J = 46.0, 13.3 Hz), respectively (Figure 62).  

 

Figure 27. Detection of arabinofuranosyl phenanthrolinium intermediates 

Collectively, the discovery of both / intermediates in the NMR study further illustrated that the 

phenanthroline-catalyzed furanosylation does not proceed through a stereospecific substitution. However, 
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to obtain high levels of 1,2-cis selectivity, the reaction is likely to proceed through a Curtin-Hammett 

scenario, wherein interconversion of the β-phenanthrolinium intermediate and its corresponding -

conformer must be more rapid than nucleophilic addition of alcohol acceptor. To further investigate this 

potential mechanism, we next performed reaction progress analysis using NMR spectroscopy. 

4.4. Reaction progress analysis of phenanthroline-catalyzed furanosylation 

In the reaction progress analysis, both 2-fluoro xylose 50 and arabinose 48 were again chosen as 

furanosyl bromide donors (0.3 M), and primary alcohol 3 (0.1 M) was chosen as the acceptor since we have 

established the / selectivity of the resulting products 51 and 49 (Scheme 38). The reactions were carried 

in deuterated chloroform (CDCl3) with 15 mol% C14 and 1.5 equivalent of DTBMP as the acid scavenger. 

Taking advantage of the C2-fluorine, the reaction progress was monitored using 19F NMR for 20 – 24 h, 

and the relative concentrations of furanosyl bromide, covalent phenanthrolinium intermediates, and the 

disaccharide products were then determined (Figure 28 and Figure 29). 

Firstly, we monitored the reaction progress for 2-fluoro xylofuranosyl bromide donor 50 (: = 1:1) 

30 minutes after mixing 50 with 5 mol% C14 using both 1H (Figure 51) and 19F (Figure 52) NMR. 

Interestingly, Int4() and Int5 () appeared with a ratio of 1:8 (Figure 52). After alcohol acceptor 3 had 

been added to the reaction mixture for 1 h, a new sharp fluorine signal resided at F = -204.18 ppm (dd, J = 

52.9, 16.2 Hz) was verified to be the disaccharide 51 (-isomer, Figure 52). Meanwhile, an indistinct 

fluorine peak located at F = -193.02 ppm (ddd, J = 50.2, 17.5, 14.3 Hz) was later confirmed to be the -

isomer of 51 (Figure 52). Overall, the / selectivity of the disaccharides 51 was determined to be 21:1 

after 24 h. The reaction progress analysis of xylofuranosyl donor 51 and alcohol acceptor 3 was also 

quantified as a kinetic profile in a concentration vs time graph (Figure 28). The linear relationship in Figure 

28a between the concentrations and time in the kinetic profile revealed that the xylofuranosylation was in 

apparent zero-order kinetics in the first 7 h. Interestingly, although the anomeric mixture of xylofuranosyl 

bromides disappeared at similar rates, the two products appeared at significantly different rates – the rate 

of 51 formation was 16 times faster than that of 51 (Figure 28a). Meanwhile, increasing concentration 
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of Int5() was also observed in the kinetic profile of the xylofuranosyl phenanthrolinium intermediates 

(Figure 28b) while Int4() concentration maintained at a low level. These kinetic profiles suggested that 

the consumption rate of Int4(), which led to the major product 51, was much faster than that of Int5(). 

As more products were formed in the reaction, the consumption rate of Int4() decreased, and a slight 

downward slope of product formation was observed at 7 h. This ratio of Int4() and Int5() maintained at 

1:16 until the end of the reaction course (24 h), likely due to hydrolysis in the reaction. 

 

Figure 28. Reaction progress for phenanthroline-catalyzed xylofuranosylation of alcohol acceptor 3 using 
19F NMR: (a) xylofuranosyl bromide 50 and products 51; (b). xylofuranosyl-phenanthrolinium 

intermediates Int4() and Int5() 

 

On the other hand, in the reaction progress of 2-fluoro arabinofuranosyl bromide 48 (Figure 29), the 

ratio of intermediates Int6() and Int7() only increased to 3:1 upon addition of primary alcohol 3 (Figure 

60). Meanwhile, the / selectivity of the disaccharides 49 slowly decreased from 1:7 at 1 h to 1:5 at 6 h 
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(Figure 29a, Figure 59 and Figure 60). This 1:5 / ratio maintained until the end of the course of the 

reaction (20 h). Like the 2-fluoro-xylofuranosylation reaction, the kinetic profile of the 2-fluoro 

arabinofuranosylation also expressed apparent zero-order kinetics in the first 6 h. The disappearance rate 

of 48 was 24 times faster than that of 48 (Figure 29a), likely due to the higher concentration of starting 

material 48, which further resulted in the higher concentration of Int6(). However, unlike 

xylofuranosylation, the consumption rates of the two intermediates (Int6() and Int7(), Figure 29b) in the 

arbinofuranosylation were similar, which eventually led to a lower selectivity in the coupling products 49. 

 

Figure 29. Reaction progress for phenanthroline-catalyzed arabinofuranosylation of alcohol acceptor 3 

using 19F NMR: (a) arabinofuranosyl bromide 48 and coupling products 49; (b) arabinofuranosyl-

phenanthrolinium intermediates Int6() and Int7(). 
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4.5. Proposed mechanism of phenanthroline-catalyzed furanosylation 

To obtain high levels of 1,2-cis selectivity, a Curtin-Hammett situation must be established such that 

equilibration of Int() and Int() is rapid and much faster than the subsequent nucleophilic attack. The 

hypothesis, that the rate-determining step takes place after the phenanthrolinium intermediates are formed, 

was confirmed by kinetic analysis (Figure 28b and Figure 29b), as the kinetic profiles for both xylose and 

arabinose showed an accumulation (positive slope) of the intermediates.  

To provide further insight into the mechanism and selectivity, Dr. Richard N. Schaugaard performed 

density functional theory (DFT) calculations to examine the key transition states and intermediates along 

the reaction pathway. DFT calculations indicate that the second transition state (Figure 30) – the 

nucleophilic attack of alcohol onto the faster reacting phenanthrolinium ion intermediate – determines the 

stereochemistry of the product. As illustrated in Figure 30, TS2 indicates the second transition state that 

leads to the major product, while TS2’ represents the route to the minor product. The difference between 

TS2 and TS2’ (G͘‡) of xylofuranosylation was calculated as 4.0 kcal/mol, which results in a high product 

ratio (51:51 = 21:1, Figure 30a). Meanwhile, the G͘‡ of arabinofuranosylation was only 1.6 kcal/mol, 

which leads to a moderate product ratio as 49:49 = 1:5 (Figure 30b).  

 

Figure 30. Energy diagram of phenanthroline-catalyzed furanosylation for the second nucleophilic 

substitution: (a) xylofuranosylation (b) arabinofuranosylation 
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Based on the NMR data, kinetic profile (Figure 28), and computational results (Figure 30a) for 

xylofuranosyl bromide donor 50, we propose the following mechanistic rationale for the observed -1,2-

cis stereochemistry (Figure 31). Since - and -isomers of xylofuranosyl bromide 50 exist as a 1:1.25 

mixture, displacement of their anomeric bromide leaving group with NPhen via an SN2-like pathway would 

generate 3E -phenanthrolinium ion conformer Int4() and E3 -phenanthrolinium ion conformer Int5(), 

respectively, with the preference of the Int4() intermediate. Calculations predict that Int5() is 0.4 

kcal/mol less stable than Int4(), likely due to eclipsing interaction between C2-F and C1-N in Int5(). 

Nucleophilic attack of alcohol acceptor 3 onto Int4(), via an SN2-like pathway, would provide the -

xylofuranoside product 51. To obtain high levels of 1,2-cis selectivity, a Curtin-Hammett situation must 

be established such that equilibration of Int4() and Int5() is rapid and much faster than the subsequent 

nucleophilic attack. The hypothesis, that the rate-determining step takes place after the phenanthrolinium 

Figure 31. Possible mechanism for phenanthroline-catalyzed xylofuranosylation 
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intermediates are formed, was confirmed by kinetic analysis (Figure 28b) and computational observation 

(Figure 30a). It is also observed that Int4() is not only the more stable intermediate than Int5() by 0.4 

kcal/mol, but also is the faster-reacting conformer (Figure 30a). Indeed, the calculated TS2 transition state 

for the formation of the -xyloside product resulted from Int4() is 4.0 kcal/mol more favorable than the 

analogous formation of the -xyloside product (Figure 30a). Collectively, the -1,2-cis xyloside product 

51 resulted from the nucleophilic attack of alcohol 3 onto the major intermediate Int4() should prevail 

and will not reflect the equilibrium distribution of Int4() and Int5(). 

In the case of arabinose (Figure 32), the kinetic profile (Figure 29), and DFT calculations (Figure 30b) 

for arabinofuranosyl bromide suggest that (1) the donor anomeric composition would not reflect the 

intermediate distribution; and (2) although Int7() is the minor intermediate observed by both NMR study 

(Figure 29b) and DFT calculation (Figure 30b), it is the fast-reacting conformer that reacts with alcohol 

Figure 32. Possible mechanism for phenanthroline-catalyzed arabinofuranosylation 
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acceptor to form the major -1,2-cis-arabinoside product (see the proposed mechanism in Figure 32). 

Kinetic analysis (Figure 29b) shows that the rate of the nucleophilic substitution of Int7() is also faster 

than that of the more stable one Int6(). As a result, as soon as Int7() is consumed, it is replenished from 

Int6() as the energy barrier for interconversion of Int6 and Int7 is low. The difference of the energy barrier 

for the two transition states (G͘‡) is about 1.6 kcal/mol (Figure 30b), further supporting the experimental 

result that a mixture of 1,2-cis- and 1,2-trans-arabinoside products (5:1) was obtained in the reaction. 

4.5. Conclusion 

A phenanthroline-catalyzed stereoselective furanosylation is developed to achieve access to the 

challenging 1,2-cis furanosidic linkages. Substitution of xylofuranosyl bromide donor with a variety of 

primary and secondary hydroxyl acceptors affords -1,2-cis linked products in high yields and with 

excellent levels of cis/trans diastereoselectivity. This phenanthroline catalysis method is also applicable to 

other furanosyl donors. Experiments with 2-fluoro-xylofuranosyl and -arabinofuranosyl bromide donors 

indicate that furanosyl donor anomeric composition is not responsible for the reaction selectivity. 

Importantly, the furanosylation reaction is unlikely to proceed through a stereospecific substitution. NMR 

experiments, kinetic profile, and DFT calculations indicate that the second transition state – the nucleophilic 

attack of alcohol onto the faster reacting phenanthrolinium ion intermediate – determines the 

stereochemistry of the product. Collectively, the results obtained highlight the unique features of 

phenanthroline to catalyze the highly stereoselective furanosylation reactions. The utility of this new 

method is currently extending to other carbohydrate electrophiles as well as nitrogen and sulfur 

carbohydrate nucleophiles. 
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CHAPTER 5: EXPERIMENTAL SECTION 

5.1. General Information 

Methods and Reagents. All reactions were performed in oven-dried flasks fitted with septa under a 

positive pressure of nitrogen atmosphere. Organic solutions were concentrated using a Buchi rotary 

evaporator below 40 °C at 25 torr. Analytical thin-layer chromatography was routinely utilized to monitor 

the progress of the reactions and performed using pre-coated glass plates with 230-400 mesh silica gel 

impregnated with a fluorescent indicator (250 nm). Visualization was then achieved using UV light, iodine, 

or ceric ammonium molybdate. Flash column chromatography was performed using 40-63 m silica gel 

(SiliaFlash F60 from Silicycle) or a Biotage Isolera One system using normal phase pre-column cartridges 

and SNAP Ultra 10g column. Purifications were performed using ethyl acetate/n-hexanes eluting with a 

step gradient method starting from 0% ethyl acetate and ending at 30% ethyl acetate. Dry solvents were 

obtained from a SG Waters solvent system utilizing activated alumina columns under an argon pressure. 

All other commercial reagents were used as received from Sigma Aldrich, Alfa Aesar, Acros Organics, 

TCI, and Combi-Blocks, unless otherwise noted.  

Instrumentation. All new compounds were characterized by Nuclear Magnetic Resonance (NMR) 

spectroscopy and High-Resolution Mass spectrometry (HRMS). All 1H NMR spectra were recorded on 

either Agilent 400 or 600 MHz spectrometers. All 13C NMR spectra were recorded on either Agilent 100 

or 150 MHz spectrometer. All 19F NMR spectra were recorded on either Agilent 376 or 564 MHz 

spectrometer. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane 

and are referenced to the residual proton in the NMR solvent (CDCl3: δ 7.26 ppm, δ 77.00 ppm; CD2Cl2: δ 

5.20 ppm, δ 54.00 ppm). Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, 

t = triplet, q = quartet, m = multiplet, and bs = broad singlet), integration, and coupling constant in hertz 

(Hz).  

High resolution (ESI-TOF) mass spectrometry was performed at Wayne State University Chemistry 

Lumigen Center. 



91 

 

 

 

5.2. Chapter 2 experimental section 

5.2.1. General procedure and condition in Table 5 

 

Condition A: A 10 mL Schlenk flask was charged with glycosyl bromide (0.4 mmol, 2.0 equiv), 

alcohol (0.2 mmol, 1.0 equiv), catalyst C1 (0.06 mmol, 30 mol%), IBO (0.4 mmol, 2.0 equiv.) and MTBE 

(0.4 mL). The resulting solution was stirred at 50 oC for 24 h, diluted with toluene, and purified by silica 

gel flash chromatography (toluene/ethyl acetate: 9/1→4/1) to give the desired product.   

Condition B: A 10 mL Schlenk flask was charged with glycosyl bromide (0.2 mmol, 2.0 equiv), alcohol 

(0.1 mmol, 1.0 equiv), catalyst C1 (0.02 mmol, 20 mol%), IBO (0.2 mmol, 2.0 equiv.) and MTBE (0.2 mL). 

The resulting solution was stirred at 25 oC for 24 h, diluted with toluene, and purified by silica gel flash 

chromatography (toluene/ethyl acetate: 9/1→4/1) to give the desired product.   

Condition C: A 10 mL Schlenk flask was charged with glycosyl bromide (0.2 mmol, 2.0 equiv), 

alcohol (0.1 mmol, 1.0 equiv), catalyst C1 (0.02 mmol, 20 mol%), IBO (0.2 mmol, 2.0 equiv.) and MTBE 

(0.2 mL). The resulting solution was stirred at 25 oC for 48 h, diluted with toluene, and purified by silica 

gel flash chromatography (toluene/ethyl acetate: 9/1→4/1) to give the desired product.   

Condition D: A 10 mL Schlenk flask was charged with glycosyl bromide (0.2 mmol, 1.0 equiv), 

alcohol (0.6 mmol, 3.0 equiv), catalyst C1 (0.04 mmol, 20 mol%), IBO (0.4 mmol, 2.0 equiv.) and MTBE 

(0.4 mL). The resulting solution was stirred at 25 oC for 24 h, diluted with toluene, and purified by silica 

gel flash chromatography (toluene/ethyl acetate: 9/1→4/1) to give the desired product.   

Condition E: A 10 mL Schlenk flask was charged with glycosyl bromide (0.2 mmol, 1.0 equiv), alcohol 

(0.6 mmol, 3.0 equiv), catalyst C1 (0.04 mmol, 20 mol%), IBO (0.4 mmol, 2.0 equiv.) and MTBE (0.4 mL). 

The resulting solution was stirred at 50 oC for 24 h, diluted with toluene, and purified by silica gel flash 

chromatography (toluene/ethyl acetate: 9/1→4/1) to give the desired product.   
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Note: The / ratio of the desired products were determined by 1H NMR analysis based on the ratio of 

the anomeric protons of both - and -anomers. When the anomeric protons are overlapped, other protons 

of both anomers were analyzed. In some cases, we utilized prep-TLC to separate the -anomer from the -

anomer so that we can accurately determine the / ratio of the mixture. 

 

 

Conditions D: 63% (124.2 mg), : = 14:1  

1H and 13C NMR of disaccharide 6 has been reported.219 

1H NMR (400 MHz, CDCl3): δ 7.44 – 7.16 (m, 35H), 5.08 – 4.97 (m, 4H), 4.93 – 4.83 (m, 3H), 4.81 – 4.70 

(m, 4H), 4.67 – 4.61 (m, 3H), 4.56 – 4.46 (m, 2H), 4.10 – 4.01 (m, 2H), 3.93 – 3.83 (m, 3H), 3.82 – 3.66 

(m, 4H), 3.65 – 3.58 (m, 2H), 3.52 (dd, J = 9.6, 3.6 Hz, 1H), 3.43 (s, 3H). 1H NMR matches with the 

literature report.219 

 

 

Conditions A: 55% (54.3mg), : = 7:1  

1H and 13C NMR of disaccharide 7 has been reported.219 

1H NMR (400 MHz, CDCl3): δ 7.37 – 7.05 (m, 35H), 5.69 (d, J = 3.5 Hz, 1H), 5.03 (d, J = 11.6 Hz, 1H), 

4.91 – 4.39 (m, 13H), 4.27 (d, J = 12.2 Hz, 1H), 4.11 – 4.01 (m, 2H), 3.93 – 3.80 (m, 3H), 3.74 – 3.69 (m, 

1H), 3.67 – 3.56 (m, 3H), 3.51 – 3.46 (m, 2H), 3.41 – 3.39 (m, 1H), 3.37 (s, 3H). 1H NMR matches with 

the literature report.219 
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Conditions D: 77% (120.4mg), : = 10:1 

1H and 13C NMR of disaccharide 8 has been reported.220 

1H NMR (400 MHz, CDCl3): δ 7.43 – 7.10 (m, 20H), 5.53 (d, J = 5.0 Hz, 1H), 5.03 (d, J = 3.6 Hz, 1H), 

4.95 (d, J = 11.4 Hz, 1H), 4.85 (d, J = 11.7 Hz, 1H), 4.78 – 4.72 (m, 3H), 4.62 – 4.56 (m, 2H), 4.52 – 4.40 

(m, 2H), 4.35 – 4.29 (m, 2H), 4.10 – 3.95 (m, 5H), 3.84 – 3.73 (m, 2H), 3.62 – 3.51 (m, 2H), 1.54 (s, 3H), 

1.45 (s, 3H), 1.35 – 1.29 (m, 6H). 1H NMR matches with the literature report.220 

 

 

Conditions E: 58% (86.4mg),  only 

1H and 13C NMR of disaccharide 9 has been reported.219 

1H NMR (CDCl3, 400 MHz):  = 7.39 – 7.21 (m, 20H), 4.98 – 4.92 (m, 2H), 4.87 – 4.81 (m, 2H), 4.75 – 

4.68 (m, 3H), 4.59 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.9 Hz, 1H), 4.39 (d, J = 11.9 Hz, 1H), 4.24 (dd, J = 

9.2, 4.5 Hz, 1H), 4.16 – 4.04 (m, 4H), 3.96 (dd, J = 10.2, 2.7 Hz, 1H), 3.77 – 3.60 (m, 2H), 3.50 (dd, J = 

8.3, 4.6 Hz, 1H), 3.36 – 3.27 (m, 4H), 1.37 (s, 3H), 1.30 (d, J = 6.3 Hz, 3H), 1.25 (s, 3H). 1H NMR matches 

with the literature report.219 
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Conditions C: 48% (62mg), : = 9:1 

1H NMR (CDCl3, 400 MHz):  = 7.42-7.22 (m, 30 H), 5.00-4.60 (m, 14 H), 4.03-3.56 (m, 10 H), 3.50 (dd, 

J = 8.0, 4.0 Hz, 1 H), 3.32 (s, 3 H). 

13C NMR (CDCl3, 100 MHz):  = 138.7, 138.62, 138.58, 138.4, 138.3, 138.2, 128.4, 128.31, 128.28, 128.2, 

128.1, 1287.94, 127.90, 127.83, 127.75, 127.7, 127.6, 127.5, 98,.3, 97.9, 82.0, 80.0, 77.7, 76.2, 75.7, 74.9, 

73.7, 73.4, 73.2, 72.3, 71.7, 70.0, 66.4, 60.4, 55.0. 

HRMS (ESI): calc. for C54H58O10Na (M+Na): 889.3922; found: 889.3959. 

 

 

Conditions C: 47% (61mg),  only 

1H NMR (CDCl3, 400 MHz):  = 7.42-7.22 (m, 30 H), 5.00-4.60 (m, 14 H), 4.03-3.96 (m, 2 H), 3.88-3.58 

(m, 8 H), 3.46 (dd, J = 12.0, 4.0 Hz, 1 H), 3.32 (s, 3 H). 

13C NMR (CDCl3, 100 MHz):  = 138.82, 138.76, 138.6, 138.4, 138.3, 138.1, 128.32, 128.26, 128.24, 

128.18, 127.91, 127.89, 127.8, 127.6, 127.4, 98.3, 97.8, 82.0, 80.0, 77.9, 76.3, 76.2, 75.6, 74.9, 73.9, 73.3, 

72.8, 72.4, 71.6, 70.2, 66.4, 60.5, 54.9. 

HRMS (ESI): calc. for C54H58O10Na (M+Na): 889.3922; found: 889.3943. 
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Conditions B: 80% (55.7 mg), : = 6:1 

1H NMR (400 MHz, CDCl3): δ = 7.42 – 7.19 (m, 20H), 6.08 (d, J = 9.0 Hz, 1H), 5.90 – 5.80 (m, 1H), 5.29 

(d, J = 17.2 Hz, 1H), 5.21 – 5.12 (m, 3H), 4.97 (d, J = 11.6 Hz, 1H), 4.85 – 4.77 (m, 2H), 4.73 – 4.53 (m, 

7H), 4.20 (dd, J = 9.9, 2.2 Hz, 1H), 4.01 (dd, J = 10.1, 3.6 Hz, 1H), 3.80 (dd, J = 10.1, 2.7 Hz, 1H), 3.73 

(q, J = 6.4 Hz, 1H), 3.60 – 3.52 (m, 2H), 1.07 (d, J = 6.4 Hz, 3H). 

13C NMR (CDCl3, 100 MHz):  = 170.0, 156.2, 138.8, 138.5, 138.4, 136.3, 131.6, 128.5, 128.4, 128.3, 

128.2, 128.1, 127.8, 127.6, 127.5, 118.6, 98.9, 79.0, 77.6, 76.4, 74.8, 73.3, 73.2, 69.0, 67.0, 66.8, 66.0, 54.4, 

16.5.  

5.2.2. Standard procedure for catalyst screening 

 

To a 10 mL oven-dried Schlenk flask, added alcohol 3 (0.1 mmol, 1.0 equiv.), catalyst (0.015 mmol, 

15 mol%), acid scavenger (IBO or DTBMP, 0.2 mmol, 2.0 equiv.), then transferred glycosyl bromide 2 

(0.2 mmol, 2 equiv.) with MTBE (0.2 mL). The resulting solution was stirred at 25 oC for 5 - 24 h, then 

directly subjected to Biotage Isolera One purification system to give 5 as a colorless syrup. 

1H and 13C NMR of disaccharide 5 has been reported. 219 

1H NMR (600 MHz, CDCl3) δ 7.38 – 7.23 (m, 18H), 7.15 – 7.11 (m, 2H), 5.51 (d, J = 5.0 Hz, 1H), 4.99 

(d, J = 3.5 Hz, 1H), 4.97 (d, J = 10.9 Hz, 1H), 4.80 (dd, J = 12.5, 11.1 Hz, 2H), 4.74 (d, J = 11.9 Hz, 1H), 

4.68 (d, J = 11.9 Hz, 1H), 4.62 (d, J = 12.1 Hz, 1H), 4.59 (dd, J = 7.9, 2.2 Hz, 1H), 4.48 (d, J = 7.9 Hz, 1H), 
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4.46 (d, J = 9.3 Hz, 1H), 4.35 (dd, J = 7.9, 1.6 Hz, 1H), 4.30 (dd, J = 5.0, 2.3 Hz, 1H), 4.05 – 4.01 (m, 1H), 

3.98 (t, J = 9.3 Hz, 1H), 3.84 – 3.80 (m, 1H), 3.80 – 3.72 (m, 3H), 3.69 – 3.62 (m, 2H), 3.58 (dd, J = 9.6, 

3.6 Hz, 1H), 1.53 (s, 3H), 1.44 (s, 3H), 1.32 (s, 3H), 1.30 (s, 3H). 

1H NMR matches with the literature report. 219 

5.2.3. Preparation of monosaccharide 

Preparation of Methyl 6-O-(4-Fluorobenzyl)-2,3-bis-O-Benzyl--D-Glucopyranoside (17) 

 

 

4-Fluorobenzaldehyde dimethyl acetal (S1) was prepared according to literature procedure.221 

To a 250 mL round-bottom flask, added CH2Cl2 (40mL), 4-fluorobenzaldehyde (2.2 mL, 21 mmol) and 

trimethyl orthoformate (4.6 mL, 42 mmol), then stirred the mixture at room temperature. 5 minutes later, 

indium triflate (59 mg, 0.105 mmol) was added to the flask, and stirred for 10 minutes. Upon completion 

(monitored by TLC), the mixture was passed through a short plug of neutral alumina which was washed 

with additional CH2Cl2 (2 x 50 mL). The combined solution was concentrated in vacuo, and the resulting 

residue (S1) was directly used in the next step. 

1H NMR (400 MHz, CDCl3): δ 7.38 (dd, J = 8.5, 5.6 Hz, 2H), 7.00 (t, J = 8.7 Hz, 1H), 5.32 (s, 1H), 3.26 

(s, 3H). 

19F NMR (376 MHz, CDCl3): δ -114.11 (tt, J = 8.8, 5.5 Hz). 

1H NMR matches with the literature report.222 
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To a 250 mL round-bottom flask with S1 residue (21 mmol) in it, added methyl -D-glucopyranoside 

(2g, 10.3 mmol), DMF (50 mL) and p-toluenesulfonic acid monohydrate (1 g, 5.15 mmol). The mixture 

was stirred at room temperature overnight, and then put on rotary evaporators to remove byproduct (MeOH) 

and excess solvent. Upon completion (monitored by TLC), the mixture was diluted with 300 mL ethyl 

acetate, and then washed with 100 mL deionized water, followed by 100 mL saturated sodium bicarbonate 

solution twice, and 100 mL brine. The organic solution was then dried over sodium sulfate, and 

concentrated in vacuo overnight to give S2 as a white solid. The resulting residue (S2) was directly used in 

the next step. 

1H NMR (400 MHz, CDCl3): of crude δ 4.81 (d, J = 3.9 Hz, 1H-). 

The white residue S2was charged to a 500 ml round-bottom flask, and then DMF (75 mL) and benzyl 

bromide (3.7 mL, 31 mmol) were added to the flask. The solution was then cooled to 0 oC in an ice bath 

and sodium hydride (60% in mineral oil) (1.24 g, 31 mmol) was added in 3 portions. The mixture was 

stirred in ice bath overnight. The resulting solution was poured into chipped ice (~ 200 mL), and extracted 

with 300 mL ethyl acetate. The organic solution was washed with brine, dried over sodium sulfate, and then 

concentrated in vacuo. The residue was then subjected to Biotage Isolera One purification system to give 

3.56 g (72% over two steps) of S3 as a white solid. 

1H NMR (600 MHz, CDCl3): δ 7.44 (dd, J = 8.4, 5.6 Hz, 2H), 7.38 – 7.24 (m, 10H), 7.04 (t, J = 8.6 Hz, 

2H), 5.50 (s, 1H), 4.89 – 4.81 (m, 3H), 4.69 (d, J = 12.1 Hz, 1H), 4.58 (d, J = 3.6 Hz, 1H), 4.24 (dd, J = 

10.2, 4.8 Hz, 1H), 4.02 (t, J = 9.3 Hz, 1H), 3.80 (td, J = 10.0, 4.8 Hz, 1H), 3.68 (t, J = 10.3 Hz, 1H), 3.57 

(d, J = 9.6 Hz, 1H), 3.54 (dd, J = 9.5, 3.9 Hz, 1H), 3.39 (s, 3H). 
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13C NMR (151 MHz, CDCl3): δ 138.65, 138.08, 128.42, 128.28, 128.09, 127.95, 127.94, 127.90, 127.89, 

127.57, 115.13, 114.99, 100.65, 99.20, 81.99, 79.20, 78.53, 75.31, 73.76, 69.01, 62.23, 55.35. 

19F NMR (376 MHz, CDCl3): δ -113.01 (tt, J = 8.7, 5.5 Hz). 

 

Methyl 6-O-(4-Fluorobenzyl)-2,3-bis-O-Benzyl--D-Glucopyranoside (17) was prepared according to 

literature procedure.223 

To a 100 mL round-bottom flask, added S3 (1 g, 2.08 mmol), THF (15 mL), and 4Å molecular sieves 

(1.5 g), stirred at room temperature for 30 minutes. Then sodium cyanoborohydride (1.3 g, 20.8 mmol) was 

added to the solution. Upon all solid dissolved (~ 15 min), hydrogen chloride solution (2.0 M in diethyl 

ether) was added dropwise until the evolution of gas ceased (~ 10 mL). Upon completion (~5 min, 

monitored by TLC), the mixture was diluted with 150 mL ethyl acetate, and then washed with 50 mL 

saturated sodium bicarbonate solution three times. The organic solution was dried over sodium sulfate, and 

concentrated in vacuo. The residue was then subjected to Biotage Isolera One purification system to give 

17 as a colorless syrup. 

1H NMR (600 MHz, CDCl3): δ 7.37 – 7.24 (m, 12H), 6.99 (t, J = 8.7 Hz, 2H), 5.00 (d, J = 11.5 Hz, 1H), 

4.76 (d, J = 12.1 Hz, 1H), 4.72 (d, J = 11.5 Hz, 1H), 4.65 (d, J = 12.1 Hz, 1H), 4.63 (d, J = 3.5 Hz, 1H), 

4.53 (d, J = 12.0 Hz, 1H), 4.49 (d, J = 12.0 Hz, 1H), 3.77 (t, J = 9.2 Hz, 1H), 3.69 (dt, J = 9.6, 3.7 Hz, 1H), 

3.65 (d, J = 3.8 Hz, 2H), 3.57 (t, J = 9.3 Hz, 1H), 3.52 (dd, J = 9.6, 3.5 Hz, 1H), 3.37 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 163.23, 161.60, 138.87, 138.13, 133.90, 133.88, 129.45, 129.40, 128.71, 

128.58, 128.22, 128.10, 128.07, 127.98, 115.36, 115.22, 98.29, 81.54, 79.74, 75.52, 73.24, 72.96, 70.63, 

70.03, 69.52. 

19F NMR (564 MHz, CDCl3): δ -114.91 – -114.97 (m). 

HRMS (ESI): calc. for C28H31O6FNa (M+Na): 505.1997; found: 505.1999. 
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Preparation of 2,3-bis-O-Benzyl-4-O-(4-Fluorobenzyl)-D-Glucopyranose (32) 

 

 

Methyl 2,3-bis-O-Benzyl-4-(4-Fluorobenzyl)--D-Glucopyranoside (S4) was prepared according to 

literature procedure.224 

To a 25 mL Schlenk flask, under nitrogen, added S3 (500 mg, 1.04 mmol) and borane tetrahydrofuran 

complex solution (1 M in THF), and then stirred at room temperature for 10 minutes. Next, copper(II) 

trifluoromethanesulfonate (18 mg, 0.05mmol) was added to the flask. Upon completion (monitored by 

TLC), the reaction was cooled to 0 oC, and sequentially quenched with triethylamine and methanol (Caution: 

hydrogen gas evolved!). The solution was then concentrated in vacuo and subjected to Biotage Isolera One 

purification system to give 483.4 mg (96%) of S4 as a colorless syrup. 

1H NMR (400 MHz, CDCl3) δ 7.39 – 7.19 (m, 12H), 6.99 (t, J = 8.7 Hz, 2H), 5.00 (d, J = 11.0 Hz, 1H), 

4.85 – 4.76 (m, 3H), 4.66 (d, J = 12.1 Hz, 1H), 4.59 (d, J = 12.8 Hz, 1H), 4.57 (d, J = 3.7 Hz, 1H, H-1), 

3.99 (t, J = 9.3 Hz, 1H), 3.78 (d, J = 11.4 Hz, 1H), 3.72 – 3.62 (m, 2H), 3.54 – 3.47 (m, 2H), 3.37 (s, 3H), 

1.70 (brs, 1H, -OH). 

13C NMR (101 MHz, CDCl3) δ 138.70, 138.05, 129.73, 129.65, 128.47, 128.40, 128.11, 127.95, 127.85, 

127.62, 115.38, 115.17, 98.14, 81.86, 79.99, 77.39, 75.70, 74.26, 73.40, 70.58, 61.85, 55.20. 

19F NMR (376 MHz, CDCl3) δ -114.26 – -114.77 (m). 

 

 

To a 50 mL round-bottom flask, added S4 (483.4 mg, 1 mmol), acetic acid (2.5 mL), and acetic 

anhydride (2.5 mL). The mixture was cooled to 0 oC in an ice bath, and then concentrated sulfuric acid 
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(0.11 mL, 2 mmol) was added to the reaction. Upon completion (~15 min, monitored by TLC), the mixture 

was diluted with 150 mL ethyl acetate, and then washed with 50 mL saturated sodium bicarbonate solution 

three times, followed by 50 mL brine. The organic solution was dried over sodium sulfate, and concentrated 

in vacuo overnight to give S5 a colorless syrup. The resulting residue (S5) was directly used in the next 

step. 

1H NMR (499 MHz, CDCl3) of / () mixture (crude) δ 6.32 (d, J = 3.5 Hz, 1H-), 5.61 (d, J = 8.2 Hz, 

1H-). 

To a 50 mL round-bottom flask with S5 inside, added dry methanol (5 mL) and sodium methoxide (27 

mg, 0.5 mmol). The mixture was stirred at room temperature overnight. Upon completion (monitored by 

TLC), the reaction was neutralized with Amberlyst® 15 hydrogen form, then filtered. The resulting solution 

was then concentrated in vacuo and subjected to Biotage Isolera One purification system to give 320.1 mg 

(66% over two steps) of 32 as a white solid. 

1H NMR (600 MHz, CDCl3) of : = 2:1 mixture δ 7.37 – 7.26 (m, 28H), 7.24 – 7.18 (m, 6H), 7.02 – 6.95 

(m, 6H), 5.18 (d, J = 3.5 Hz, 2H, H-1), 4.96 – 4.90 (m, 4H), 4.84 – 4.73 (m, 10H), 4.68 (d, J = 11.7 Hz, 

2H), 4.63 – 4.57 (m, 3H), 3.95 (t, J = 9.2 Hz, 2H), 3.93 – 3.89 (m, 2H), 3.85 (dd, J = 12.0, 2.4 Hz, 1H), 

3.79 (dd, J = 11.9, 2.5 Hz, 2H), 3.73 – 3.64 (m, J = 18.2, 14.1, 6.4 Hz, 4H), 3.58 – 3.50 (m, 5H), 3.42 – 

3.38 (m, 1H), 3.36 (dd, J = 9.1, 7.8 Hz, 1H), 3.32 (brs, 1H, -OH, hemiacetal), 3.00 (brs, 2H, -OH, 

hemiacetal), 2.02 (brs, 1H, -OH), 1.74 (brs, 2H, -OH). 

13C NMR (151 MHz, CDCl3) δ 138.52, 138.36, 138.13, 137.63, 133.89, 133.87, 129.75, 129.70, 129.65, 

128.54, 128.44, 128.41, 128.10, 128.07, 128.02, 127.82, 127.77, 127.72, 127.68, 127.67, 115.38, 115.35, 

115.24, 115.21, 97.38, 91.24, 84.36, 83.14, 81.47, 80.15, 77.35, 75.63, 75.29, 74.82, 74.25, 73.34, 70.97, 

61.88, 61.75. 

19F NMR (376 MHz, CDCl3, 1H decoupled) δ -114.32 (s, ), -114.44 (s, ). 

HRMS (ESI): calc. for C27H29O6FNa (M+Na): 491.1840; found: 491.1846 
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Preparation of 6-Deoxy-2,3-O-(4-Fluorobenzylidene)-L-Mannopyranose (33) 

 

Procedures of S6 → S7 refer to synthesis of S2. 

1H NMR (400 MHz, CDCl3) of diastereomer mixture (~1:1.5) δ 7.53 – 7.39 (m, 11H), 7.36 – 7.28 (m, 8H), 

6.14 (s, 2H), 5.93 (s, 1H), 5.87 (s, 1H), 5.78 (s, 2H), 4.43 (dd, J = 7.0, 4.8 Hz, 3H), 4.33 (d, J = 5.3 Hz, 2H), 

4.29 – 4.24 (m, 1H), 4.22 – 4.09 (m, 3H), 3.62 (dd, J = 9.8, 7.6 Hz, 2H), 3.45 (dd, J = 9.7, 7.3 Hz, 1H), 2.24 

(s, 2H), 1.30 (d, J = 6.2 Hz, 5H), 1.24 (d, J = 6.2 Hz, 3H). 

19F NMR (376 MHz, CDCl3) δ -111.94 (tt, J = 8.5, 5.4 Hz), -112.34 (tt, J = 8.7, 5.4 Hz). 

 

 

To a 100 mL round-bottom flask with S7 (2.07 g, 5.7 mmol) inside, added acetone (50 mL), deionized 

water (7 mL), N-bromosuccinimide (2.03 g, 11.4 mmol) and potassium carbonate (3.93 g, 28.5 mmol). The 

mixture was stirred at room temperature overnight. Upon completion (monitored by TLC), the mixture was 

diluted with 250 mL ethyl acetate, and then washed with 100 mL saturated sodium bicarbonate solution 

three times. The organic solution was dried over sodium sulfate, and concentrated in vacuo. The residue 

was then subjected to Biotage Isolera One purification system to give 33 as a white solid.  

1H NMR (400 MHz, CDCl3) δ 7.44 (dd, J = 8.6, 5.4 Hz, 2H), 7.07 (t, J = 8.6 Hz, 2H), 5.93 (s, 1H), 5.57 (s, 

1H), 5.00 (dd, J = 5.4, 3.9 Hz, 1H), 4.77 (d, J = 5.6 Hz, 1H), 4.13 (td, J = 12.6, 6.3 Hz, 1H), 4.00 (dd, J = 

8.0, 3.7 Hz, 1H), 2.45 (s, 1H), 2.35 (s, 1H), 1.39 (d, J = 6.3 Hz, 3H). 



102 

 

 

 

13C NMR (151 MHz, CDCl3) δ 128.65, 128.59, 115.51, 115.36, 105.02, 101.28, 85.05, 84.15, 80.03, 66.22, 

20.32. 

19F NMR (376 MHz, CDCl3) δ -111.46 (tt, J = 8.7, 5.4 Hz). 

HRMS (ESI): calc. for C13H16O5F (M+H): 271.0976; found: 271.0975. 

5.2.4. Standard procedures for C1 or C14-catalyzed glycosylation (Table 9 and Scheme 33) 

 

To a 10 mL oven-dried Schlenk flask, added alcohol 2 (0.1 mmol, 1.0 equiv.), catalyst (C1 or C14, 

0.015 – 0.03 mmol, 15 – 30 mol%), acid scavenger (IBO or DTBMP, 0.2 mmol, 2.0 equiv.), then transferred 

glycosyl bromide (0.2 mmol, 2 equiv.) with MTBE or CH2Cl2 (0.2 mL). The resulting solution was stirred 

at 25 - 50 oC for 24 - 48 h, then directly subjected to Biotage Isolera One purification system to give desired 

products.  

 

 

Reaction was conducted with 30 mol% catalyst at 50 oC. 

1H and 13C NMR of disaccharide 7 has been reported. 219 

1H NMR (600 MHz, CDCl3) δ 7.35 – 7.25 (m, 33H), 7.17 – 7.13 (m, 2H), 5.74 (d, J = 3.6 Hz, 1H), 5.08 

(d, J = 11.6 Hz, 1H), 4.93 (d, J = 10.8 Hz, 1H), 4.87 – 4.80 (m, 3H), 4.74 (d, J = 12.1 Hz, 1H), 4.66 – 4.53 

(m, 7H), 4.47 (d, J = 10.9 Hz, 1H), 4.33 (d, J = 12.2 Hz, 1H), 4.14 (t, J = 9.0 Hz, 1H), 4.10 (t, J = 9.0 Hz, 

1H), 3.96 (t, J = 9.3 Hz, 1H), 3.92 – 3.87 (m, 2H), 3.79 – 3.75 (m, 1H), 3.73 – 3.67 (m, 2H), 3.64 (dd, J = 

9.3, 3.5 Hz, 2H), 3.56 – 3.53 (m, 2H), 3.46 – 3.43 (m, 1H), 3.42 (s, 3H). 

1H NMR matches with the literature report. 219 
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Reaction was conducted with 30 mol% catalyst at 50 oC. 

1H NMR (600 MHz, CDCl3) δ 7.31 – 7.15 (m, 30H), 7.11 – 7.08 (m, 2H), 6.90 (t, J = 8.6 Hz, 2H), 5.67 (d, 

J = 3.5 Hz, 1H), 5.02 (d, J = 11.6 Hz, 1H), 4.88 (d, J = 10.8 Hz, 1H), 4.80 (d, J = 3.4 Hz, 1H), 4.77 (d, J = 

10.6 Hz, 2H), 4.69 (d, J = 12.1 Hz, 1H), 4.60 – 4.50 (m, 5H), 4.43 – 4.41 (m, 3H), 4.31 (d, J = 12.2 Hz, 

1H), 4.07 (t, J = 9.1 Hz, 1H), 4.01 (t, J = 9.2 Hz, 1H), 3.89 (t, J = 9.3 Hz, 1H), 3.85 – 3.79 (m, 2H), 3.70 

(d, J = 10.0 Hz, 1H), 3.66 – 3.60 (m, 2H), 3.58 (dd, J = 9.5, 3.5 Hz, 1H), 3.50 – 3.45 (m, 2H), 3.39 – 3.37 

(m, 1H), 3.37 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 162.92, 161.29, 138.92, 138.72, 138.43, 137.95, 137.88, 133.86, 128.96, 

128.91, 128.40, 128.30, 128.27, 128.25, 128.20, 128.17, 127.95, 127.90, 127.85, 127.76, 127.69, 127.64, 

127.60, 127.56, 127.47, 127.07, 126.73, 115.08, 114.94, 97.76, 96.59, 82.01, 81.97, 80.19, 79.46, 77.64, 

75.50, 74.97, 74.41, 73.47, 73.35, 73.22, 72.43, 72.29, 70.98, 69.47, 69.04, 68.19, 55.13. 

19F NMR (564 MHz, CDCl3) δ -115.15 – -115.24 (m). 

HRMS (ESI): calc. for C62H65O11FNa (M+Na): 1027.4403; found: 1027.4436. 

 

 

Reaction was conducted with 30 mol% catalyst at 50 oC. 

1H NMR (600 MHz, CDCl3) δ 7.35 – 7.18 (m, 32H), 6.95 (t, J = 8.6 Hz, 2H), 5.76 (d, J = 3.8 Hz, 1H), 4.98 

(d, J = 11.5 Hz, 1H), 4.89 (d, J = 11.4 Hz, 1H), 4.84 (d, J = 11.4 Hz, 1H), 4.73 (d, J = 11.7 Hz, 1H), 4.71 – 

4.66 (m, 3H), 4.59 – 4.53 (m, 5H), 4.38 (d, J = 12.1 Hz, 1H), 4.30 (dd, J = 27.2, 11.6 Hz, 3H), 4.08 (t, J = 

9.1 Hz, 1H), 4.02 (dd, J = 10.3, 3.8 Hz, 1H), 3.98 – 3.93 (m, 2H), 3.89 – 3.82 (m, 3H), 3.71 (dd, J = 10.6, 
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4.7 Hz, 1H), 3.63 (dd, J = 10.6, 1.9 Hz, 1H), 3.56 (dd, J = 9.6, 3.5 Hz, 1H), 3.51 (t, J = 8.2 Hz, 1H), 3.44 

(dd, J = 8.8, 5.5 Hz, 1H), 3.39 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 162.95, 161.33, 138.97, 138.56, 138.55, 138.27, 137.99, 137.95, 134.11, 

134.09, 129.26, 129.20, 128.40, 128.36, 128.32, 128.30, 128.23, 128.23, 128.18, 128.17, 127.89, 127.84, 

127.77, 127.73, 127.61, 127.46, 127.38, 127.04, 126.74, 115.09, 114.95, 97.75, 97.57, 81.97, 80.16, 79.18, 

75.61, 74.77, 74.53, 74.37, 73.84, 73.46, 73.37, 72.92, 72.71, 72.36, 69.93, 69.47, 69.39, 68.75, 55.11. 

19F NMR (564 MHz, CDCl3) δ -115.03 – -115.11 (m). 

HRMS (ESI): calc. for C62H65O11FNa (M+Na): 1027.4403; found: 1027.4434. 

 

 

Reaction was conducted with 30 mol% catalyst at 25 oC. 

1H NMR (600 MHz, CDCl3) δ 7.43 – 7.23 (m, 15H), 5.66 (d, J = 3.9 Hz, 1H), 4.97 (d, J = 11.6 Hz, 1H), 

4.89 (d, J = 11.7 Hz, 1H), 4.85 (s, 1H), 4.81 (d, J = 11.5 Hz, 1H), 4.76 – 4.70 (m, 2H), 4.66 (d, J = 11.6 Hz, 

1H), 4.31 (dd, J = 7.2, 5.9 Hz, 1H), 4.11 – 4.03 (m, 2H), 3.91 (q, J = 6.5 Hz, 1H), 3.86 (dd, J = 10.2, 2.8 

Hz, 1H), 3.74 (dq, J = 12.4, 6.2 Hz, 1H), 3.69 – 3.65 (m, 1H), 3.56 (dd, J = 9.9, 7.4 Hz, 1H), 3.34 (s, 3H), 

1.51 (s, 3H), 1.35 (s, 3H), 1.24 (d, J = 6.2 Hz, 4H), 1.10 (d, J = 6.5 Hz, 3H). 

13C NMR (151 MHz, CDCl3) δ 139.01, 138.55, 138.48, 128.51, 128.31, 128.23, 128.13, 127.54, 127.54, 

127.41, 127.39, 109.26, 98.02, 95.92, 79.27, 78.68, 77.55, 77.38, 76.13, 76.06, 74.69, 73.39, 72.91, 66.56, 

63.82, 54.63, 27.96, 26.42, 18.03, 16.60. 
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Reaction was conducted with 20 mol% catalyst at 25 oC. 

1H and 13C NMR of 20 has been reported.225 

1H NMR (600 MHz, CDCl3) δ 7.42 – 7.19 (m, 20H), 6.05 (d, J = 9.0 Hz, 1H), 5.85 (dq, J = 10.9, 5.7 Hz, 

1H), 5.28 (d, J = 17.2 Hz, 1H), 5.18 (d, J = 10.4 Hz, 1H), 5.16 – 5.11 (m, 2H), 4.96 (d, J = 11.6 Hz, 1H), 

4.80 (t, J = 12.2 Hz, 2H), 4.70 (d, J = 11.8 Hz, 1H), 4.68 (d, J = 3.4 Hz, 1H), 4.64 – 4.59 (m, 4H), 4.58 – 

4.54 (m, 1H), 4.19 (dd, J = 9.9, 2.0 Hz, 1H), 4.00 (dd, J = 10.1, 3.6 Hz, 1H), 3.80 (dd, J = 10.1, 2.7 Hz, 

1H), 3.72 (q, J = 6.3 Hz, 1H), 3.58 – 3.54 (m, 2H), 1.07 (d, J = 6.5 Hz, 3H). 

1H NMR matches with the literature report. 225 

 

 

Reaction was conducted with 20 mol% catalyst at 25 oC. 

1H and 13C NMR of disaccharide 6 has been reported. 219 

1H NMR (600 MHz, CDCl3) δ 7.40 – 7.24 (m, 33H), 7.19 – 7.16 (m, 2H), 5.04 (d, J = 3.4 Hz, 1H), 5.02 

(d, J = 10.9 Hz, 1H), 4.99 (t, J = 6.7 Hz, 1H), 4.97 (d, J = 11.1 Hz, 1H), 4.87 (dd, J = 10.8, 8.4 Hz, 2H), 

4.83 (d, J = 10.9 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.72 – 4.68 (m, 3H), 4.64 – 4.60 (m, 3H), 4.51 (d, J = 

11.0 Hz, 1H), 4.47 (d, J = 12.1 Hz, 1H), 4.04 (t, J = 7.2 Hz, 1H), 4.01 (t, J = 7.2 Hz, 1H), 3.88 (dd, J = 11.6, 

4.5 Hz, 1H), 3.85 – 3.81 (m, 2H), 3.79 – 3.75 (m, 1H), 3.73 – 3.66 (m, 3H), 3.62 – 3.58 (m, 2H), 3.49 (dd, 

J = 9.6, 3.5 Hz, 1H), 3.40 (s, 3H). 

1H NMR matches with the literature report. 219 
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Reaction was conducted with 20 mol% catalyst at 25 oC. 

1H and 13C NMR of disaccharide 25 has been reported.226 

1H NMR (600 MHz, CDCl3) δ 8.03 – 8.00 (m, 2H), 7.99 – 7.97 (m, 2H), 7.91 – 7.88 (m, 2H), 7.51 (q, J = 

7.6 Hz, 2H), 7.45 – 7.21 (m, 25H), 7.17 (d, J = 6.6 Hz, 2H), 6.19 (t, J = 9.7 Hz, 1H), 5.58 (t, J = 9.9 Hz, 

1H), 5.28 – 5.23 (m, 2H), 4.95 (d, J = 10.9 Hz, 1H), 4.86 (d, J = 11.0 Hz, 1H), 4.83 – 4.77 (m, 3H), 4.66 

(d, J = 12.2 Hz, 1H), 4.58 (d, J = 12.1 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.41 (d, J = 12.1 Hz, 1H), 4.38 – 

4.33 (m, 1H), 4.01 (t, J = 9.3 Hz, 1H), 3.92 – 3.86 (m, 2H), 3.70 – 3.65 (m, 2H), 3.63 (dd, J = 11.0, 1.9 Hz, 

1H), 3.58 (dd, J = 9.7, 3.5 Hz, 1H), 3.54 (dd, J = 10.6, 1.7 Hz, 1H), 3.47 (s, 3H). 

1H NMR matches with the literature report. 226 

 

 

Reaction was conducted with 30 mol% catalyst at 50 oC. 

1H NMR (600 MHz, CDCl3) δ 7.34 – 7.15 (m, 30H), 5.75 (d, J = 3.6 Hz, 1H), 5.02 (d, J = 11.7 Hz, 1H), 

4.85 (d, J = 10.9 Hz, 1H), 4.80 – 4.75 (m, 3H), 4.68 (d, J = 12.1 Hz, 1H), 4.65 (d, J = 12.3 Hz, 1H), 4.61 

(d, J = 3.4 Hz, 1H), 4.60 (d, J = 8.6 Hz, 1H), 4.57 – 4.54 (m, 2H), 4.52 (d, J = 9.1 Hz, 1H), 4.50 (d, J = 8.8 

Hz, 1H), 4.30 (d, J = 9.9 Hz, 1H), 4.11 – 4.05 (m, 2H), 3.94 (t, J = 9.3 Hz, 1H), 3.89 – 3.83 (m, 2H), 3.72 

(t, J = 9.5 Hz, 2H), 3.59 (dd, J = 8.7, 2.9 Hz, 1H), 3.52 (dd, J = 9.7, 3.6 Hz, 1H), 3.46 (s, 3H), 3.39 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 170.31, 139.06, 138.55, 138.44, 138.11, 138.03, 137.89, 128.54, 128.46, 

128.44, 128.42, 128.34, 128.32, 128.30, 128.04, 127.91, 127.88, 127.74, 127.73, 127.72, 127.41, 127.35, 
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127.18, 126.72, 97.87, 97.29, 81.87, 81.26, 80.30, 79.89, 78.88, 77.37, 77.16, 76.95, 75.71, 75.19, 74.42, 

73.55, 73.45, 73.31, 71.24, 69.44, 69.09, 55.33, 52.29. 

 

Reaction was conducted with 15 mol% catalyst at 25 oC. 

1H and 13C NMR of disaccharide 39 has been reported.227 

1H NMR (600 MHz, CDCl3) δ 7.63 – 7.60 (m, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.44 – 7.27 (m, 32H), 7.25 – 

7.18 (m, 4H), 5.11 (d, J = 3.5 Hz, 1H), 5.06 (d, J = 10.9 Hz, 1H), 4.95 (dd, J = 11.1, 3.7 Hz, 2H), 4.93 – 

4.85 (m, 5H), 4.81 (d, J = 12.1 Hz, 1H), 4.75 (d, J = 11.1 Hz, 1H), 4.71 (d, J = 9.9 Hz, 1H), 4.68 (d, J = 5.3 

Hz, 1H), 4.67 (d, J = 7.2 Hz, 1H), 4.55 (d, J = 11.0 Hz, 1H), 4.51 (d, J = 12.1 Hz, 1H), 4.06 (t, J = 9.3 Hz, 

1H), 3.96 – 3.90 (m, 2H), 3.87 – 3.84 (m, 1H), 3.80 – 3.71 (m, 4H), 3.70 – 3.65 (m, 2H), 3.57 (ddd, J = 9.8, 

4.7, 1.5 Hz, 1H), 3.34 (dd, J = 9.7, 8.8 Hz, 1H). 

1H NMR matches with the literature report.227 

 

 

Reaction was conducted with 15 mol% catalyst at 25 oC. 

1H and 13C NMR of disaccharide 41 has been reported.228 

1H NMR (600 MHz, CDCl3) δ 7.54 – 7.09 (m, 35H), 5.28 (dd, J = 52.9, 6.8 Hz, 1H), 5.08 (d, J = 3.5 Hz, 

1H), 5.04 (d, J = 10.9 Hz, 1H), 4.93 (dd, J = 11.1, 4.7 Hz, 2H), 4.90 (d, J = 10.9 Hz, 1H), 4.86 (d, J = 10.9 

Hz, 1H), 4.82 (d, J = 11.1 Hz, 2H), 4.82 (d, J = 11.1 Hz, 2H), 4.79 (d, J = 7.6 Hz, 2H), 4.72 (d, J = 11.2 Hz, 

1H), 4.65 (d, J = 12.3 Hz, 2H), 4.54 (d, J = 10.9 Hz, 1H), 4.50 (d, J = 12.1 Hz, 1H), 4.05 (t, J = 9.3 Hz, 
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1H), 3.92 (dd, J = 12.0, 4.2 Hz, 1H), 3.86 (dd, J = 18.5, 9.5 Hz, 3H), 3.75 (dd, J = 10.7, 3.6 Hz, 1H), 3.71 

(t, J = 9.3 Hz, 2H), 3.67 – 3.63 (m, 3H), 3.51 – 3.45 (m, 1H). 

19F NMR (564 MHz, CDCl3) δ -136.94 (dd, J = 52.9, 11.7 Hz, -isomer), -138.06 (dd, J = 53.0, 12.3 Hz, 

-isomer). 

1H NMR matches with the literature report. 228 

5.2.5. Standard procedures for C14-catalyzed site-selective glycosylation (Scheme 32) 

 

To a 10 mL oven-dried Schlenk flask, added Steroid-triol (0.1 mmol, 1.0 equiv.), catalyst (C14, 0.03 

mmol, 30 mol%), DTBMP (0.2 mmol, 2.0 equiv.), then transferred glycosyl bromide 2 (0.2 mmol, 2 equiv.) 

with THF (0.2 mL). The resulting solution was stirred at 25 - 50 oC for 48 - 96 h, then directly subjected to 

Biotage Isolera One purification system to give desired products.  

 

 

Reaction was conducted at 25 oC for 96 h. 

1H NMR (600 MHz, C6D6) δ 7.45 (d, J = 7.5 Hz, 2H), 7.35 (d, J = 7.4 Hz, 2H), 7.30 (d, J = 7.5 Hz, 2H), 

7.23 (d, J = 7.4 Hz, 2H), 7.21 – 7.13 (m, 7H), 7.12 – 7.06 (m, 5H), 6.91 (d, J = 10.1 Hz, 1H), 6.48 (dd, J = 

10.1, 1.6 Hz, 1H), 6.23 (s, 1H), 5.27 (d, J = 3.4 Hz, 1H, H-1), 5.05 (d, J = 11.4 Hz, 1H), 4.95 (d, J = 11.3 

Hz, 1H), 4.86 (d, J = 11.4 Hz, 1H), 4.82 (d, J = 11.4 Hz, 1H), 4.79 (d, J = 17.1 Hz, 1H), 4.63 (d, J = 11.5 

Hz, 1H), 4.60 (d, J = 11.3 Hz, 1H), 4.54 (d, J = 17.0 Hz, 1H), 4.42 (d, J = 12.2 Hz, 1H), 4.38 (d, J = 12.2 

Hz, 1H), 4.34 (t, J = 9.3 Hz, 1H), 4.21 – 4.16 (m, 1H), 4.00 – 9.98 (m, 1H), 3.75 – 3.67 (m, 3H), 3.65 (dd, 
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J = 9.6, 3.5 Hz, 1H), 3.21 – 3.10 (m, 2H), 2.41 – 2.39 (m, 1H), 2.25 – 2.15 (m, 1H), 2.11 – 1.92 (m, 2H), 

1.91 – 1.84 (m, 2H), 1.46 – 1.30 (m, 4H), 1.28 (s, 3H), 1.27 – 1.20 (m, 1H), 1.06 (s, 3H), 1.03 – 0.94 (m, 

2H), 0.83 (d, J = 7.2 Hz, 3H).  

13C NMR (151 MHz, C6D6) δ 207.62, 186.09, 165.50, 151.88, 139.72, 139.20, 138.99, 138.86, 130.28, 

128.70, 128.65, 128.57, 128.56, 128.53, 128.35, 128.14, 127.98, 127.76, 127.61, 101.00, 99.83, 97.31, 

91.57, 88.88, 82.19, 80.73, 78.39, 75.61, 75.17, 73.70, 72.89, 72.34, 72.08, 71.84, 71.07, 69.93, 48.68, 

48.44, 48.28, 44.12, 37.03, 36.28, 34.99, 34.48, 34.35, 32.45, 31.02, 30.49, 30.23, 29.43, 27.58, 25.65, 

23.07,18.96, 17.32, 14.91,11.67. 

19F NMR (564 MHz, C6D6) δ -165.18 (dd, J = 28.9, 10.1 Hz). 

HRMS (ESI): calc. for C56H63O10FNa (M+Na): 937.4297; found: 937.4327. 

 

 

Reaction was conducted at 50 oC for 48 h. 

29: 1H NMR (600 MHz, CDCl3) δ 7.42 – 7.26 (m, 18H), 7.17 – 7.13 (m, 2H), 7.10 (d, J = 8.6 Hz, 1H), 

6.59 (dd, J = 8.3, 2.4 Hz, 1H), 6.53 (d, J = 2.4 Hz, 1H), 5.71 (brs, 1H, phenol-OH), 5.11 (d, J = 3.6 Hz, 1H), 

5.02 (d, J = 10.9 Hz, 1H, H-1), 4.85 (d, J = 11.4 Hz, 2H), 4.81 (d, J = 11.9 Hz, 1H), 4.72 (d, J = 11.9 Hz, 

1H), 4.62 (d, J = 12.1 Hz, 1H), 4.50 (dd, J = 11.3, 9.0 Hz, 2H), 4.08 (dd, J = 11.8, 6.0 Hz, 1H, H-16), 4.03 

(t, J = 9.3 Hz, 1H), 3.92 – 3.89 (m, 1H), 3.74 (d, J = 5.9 Hz, 1H, H-17), 3.71 (dd, J = 10.5, 4.3 Hz, 1H), 

3.67 (dd, J = 10.4, 1.8 Hz, 1H), 3.64 – 3.59 (m, 2H), 2.77 – 2.73 (m, 2H), 2.29 – 2.23 (m, 1H), 2.18 – 2.12 

(m, 1H), 1.91 – 1.87 (m, 1H), 1.79 – 1.71 (m, 3H), 1.50 – 1.40 (m, 2H), 1.37 – 1.22 (m, 4H), 0.76 (s, 3H). 
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13C NMR (151 MHz, CDCl3) δ 153.41, 138.85, 138.13, 138.10, 137.88, 137.84, 132.39, 129.01, 128.52, 

128.39, 128.38, 128.34, 128.22, 128.20, 127.98, 127.96, 127.88, 127.86, 127.74, 127.67, 127.56, 126.34, 

125.27, 115.25, 112.69, 96.79, 87.84, 84.40, 82.00, 80.12, 77.96, 75.67, 75.16, 73.46, 73.18, 70.45, 68.69, 

47.90, 43.79, 43.33, 38.24, 36.38, 31.25, 29.53, 27.06, 25.84, 21.43, 12.13. 

Distinguished peak for 30: 1H NMR (600 MHz, CDCl3) δ 4.31 – 4.27 (m, 1H, H-16), 3.98 – 3.95 (m, 1H, 

H-5), 3.51 (d, J = 5.6 Hz, 1H, H-17), 0.79 (s, 3H). 

 

5.2.5. Standard procedures for C14-catalyzed chemoselective glycosylation (Table 10) 

 

To a 10 mL oven-dried Schlenk flask, added Steroid-triol (0.15 – 0.3 mmol, 1.5 - 3 equiv.), catalyst 

(C14, 0.015 – 0.02 mmol, 15 - 20 mol%), DTBMP (0.2 mmol, 2.0 equiv.), then transferred glycosyl 

bromide (0.1 mmol, 1 equiv.) with MTBE (0.2 mL). The resulting solution was stirred at 25 - 50 oC for 24 

h, then directly subjected to Biotage Isolera One purification system to give desired products.  

 

 

Reaction was conducted with 15 mol% catalyst at 25 oC. 

1H NMR (499 MHz, CDCl3) δ 7.44 – 7.18 (m, 45H), 7.17 – 7.11 (m, 3H), 7.00 – 6.91 (m, 3H), 5.17 (d, J 

= 3.4 Hz, 1H), 5.06 – 4.93 (m, 4H), 4.93 – 4.79 (m, 6H), 4.79 – 4.66 (m, 6H), 4.65 – 4.56 (m, J = 18.8, 6.7 

Hz, 4H), 4.52 – 4.44 (m, 3H), 4.08 (dd, J = 9.8, 2.6 Hz, 1H), 3.99 (t, J = 9.0 Hz, 2H), 3.87 – 3.76 (m, 4H), 

3.70 – 3.52 (m, 9H), 3.46 (dd, J = 9.4, 3.5 Hz, 1H), 3.33 (t, J = 7.8 Hz, 1H). 
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13C NMR (126 MHz, CDCl3) δ 138.79, 138.76, 138.71, 138.58, 138.36, 138.25, 138.16, 137.89, 137.79, 

137.77, 134.15, 134.12, 134.06, 134.03, 129.57, 129.53, 129.51, 129.47, 128.50, 128.49, 128.43, 128.39, 

128.36, 128.34, 128.09, 127.99, 127.98, 127.97, 127.95, 127.91, 127.84, 127.82, 127.78, 127.74, 127.69, 

127.66, 127.62, 127.59, 127.55, 115.29, 115.27, 115.12, 115.10, 97.56, 97.30, 91.05, 84.48, 83.33,  

81.74, 81.69, 80.34, 80.08, 77.79, 77.70, 77.47, 75.63, 75.58, 75.55, 75.40, 75.14, 75.06, 74.65, 74.52, 

74.16, 74.11, 73.46, 73.43, 73.19, 72.74, 72.45, 70.55, 70.34, 68.68, 67.04, 66.87. 

19F NMR (376 MHz, CDCl3, 1H decoupled) δ -114.60, -114.74. 

HRMS (ESI): calc. for C61H63O11FNa (M+Na): 1013.4247; found: 1013.4277. 

 

 

1H NMR (600 MHz, CDCl3) δ 7.39 – 7.21 (m, 60H), 7.17 (dd, J = 13.9, 6.9 Hz, 5H), 6.95 (td, J = 8.6, 3.8 

Hz, 4H), 5.17 – 5.12 (m, 4H), 5.01 – 4.87 (m, 8H), 4.81 – 4.71 (m, 9H), 4.68 (dd, J = 14.0, 6.0 Hz, 5H), 

4.55 – 4.48 (m, 4H), 4.46 (d, J = 12.8 Hz, 1H), 4.44 (d, J = 11.9 Hz, 2H), 4.37 (d, J = 11.9 Hz, 2H), 4.34 

(d, J = 11.7 Hz, 1H), 4.07 (t, J = 6.1 Hz, 1H), 4.01 (dd, J = 10.3, 4.4 Hz, 2H), 3.99 – 3.85 (m, 11H), 3.79 – 

3.71 (m, 3H), 3.63 (t, J = 8.9 Hz, 1H), 3.58 – 3.43 (m, 10H), 3.37 – 3.32 (m, 1H). 

13C NMR (151 MHz, CDCl3) δ 163.10, 161.47, 138.64, 138.50, 138.36, 138.29, 138.26, 138.24, 138.20, 

137.87, 137.59, 137.45, 134.06, 134.04, 133.86, 133.83, 129.61, 129.56, 129.51, 128.49, 128.44, 128.42, 

128.40, 128.37, 128.33, 128.28, 128.24, 128.11, 128.07, 127.95, 127.93, 127.89, 127.86, 127.84, 127.76, 

127.72, 127.69, 127.67, 127.65, 127.53, 127.49, 115.30, 115.27, 115.16, 115.13, 97.62, 97.48, 97.40, 90.95, 

89.91, 89.86, 88.61, 88.60, 84.49, 83.47, 81.75, 80.36, 77.73, 77.68, 76.58, 76.48, 75.69, 75.57, 75.55, 

75.51, 75.44, 75.39, 74.89, 74.86, 74.82, 74.53, 74.16, 74.11, 73.57, 73.48, 73.21, 72.89, 72.88, 72.77, 

72.75, 70.83, 69.67, 68.91, 68.88, 67.65, 67.45. 
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19F NMR (564 MHz, CDCl3) δ -114.47 – -114.54 (m), -114.62 – -114.69 (m), -207.04 (ddd, J = 50.4, 10.0, 

4.1 Hz), -207.25 (ddd, J = 50.3, 10.2, 4.1 Hz). 

HRMS (ESI): calc. for C54H56O10F2Na (M+Na): 925.3734; found: 925.3761. 

 

 

1H NMR (600 MHz, CDCl3) δ 7.45 – 7.26 (m, 36H), 7.25 – 7.18 (m, 5H), 7.17 – 7.12 (m, 3H), 6.96 (t, J = 

8.6 Hz, 3H), 5.22 (d, J = 3.2 Hz, 1H), 5.00 (t, J = 9.9 Hz, 2H), 4.95 (d, J = 11.5 Hz, 1H), 4.91 (dd, J = 8.5, 

3.2 Hz, 2H), 4.89 – 4.61 (m, 17H), 4.11 – 4.05 (m, 3H), 4.05 – 3.93 (m, 4H), 3.89 (dd, J = 26.3, 10.9 Hz, 

2H), 3.72 – 3.60 (m, 6H), 3.55 (dd, J = 9.4, 3.3 Hz, 1H), 3.53 – 3.47 (m, 1H), 3.40 (t, J = 8.1 Hz, 1H), 1.14 

(d, J = 7.2 Hz, 3H), 1.13 (d, J = 6.8 Hz, 3H). 

13C NMR (151 MHz, CDCl3) δ 163.11, 163.06, 161.48, 161.44, 138.86, 138.84, 138.70, 138.67, 138.65, 

138.63, 138.61, 138.56, 138.41, 138.00, 134.31, 134.29, 134.14, 134.12, 129.59, 129.53, 129.49, 129.44, 

128.52, 128.42, 128.39, 128.27, 128.24, 128.22, 128.21, 128.09, 127.95, 127.91, 127.88, 127.81, 127.67, 

127.61, 127.60, 127.49, 127.48, 115.26, 115.22, 115.12, 115.08, 98.04, 97.90, 97.47, 91.11, 84.50, 83.26, 

81.72, 80.34, 79.32, 77.76, 77.72, 77.54, 76.42, 76.35, 75.75, 75.68, 74.89, 74.86, 74.73, 74.53, 74.15, 

73.32, 73.25, 73.13, 72.93, 72.91, 70.20, 66.68, 66.49, 66.41, 66.30, 16.65, 16.63. 

19F NMR (564 MHz, CDCl3) δ -114.62 – -114.69 (m), -114.80 – -114.88 (m). 

HRMS (ESI): calc. for C54H57O10FNa (M+Na): 907.3828; found: 907.3853. 

 

 

Reaction was conducted with 15 mol% catalyst at 50 oC. 
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1H NMR (500 MHz, CDCl3) δ 7.45 – 7.37 (m, 2H), 7.36 – 7.25 (m, 6H), 7.10 – 7.01 (m, 2H), 5.85 (s, 1H), 

5.49 (s, 1H), 5.39 (t, J = 9.7 Hz, 1H), 5.03 (d, J = 3.6 Hz, 1H), 5.00 (dd, J = 5.2, 2.4 Hz, 1H), 4.93 (t, J = 

9.9 Hz, 1H), 4.75 (d, J = 5.5 Hz, 1H), 4.59 (dd, J = 23.2, 12.3 Hz, 2H), 4.31 – 4.25 (m, 1H), 4.20 – 4.11 (m, 

2H), 3.97 (dd, J = 12.5, 3.2 Hz, 1H), 3.63 (dd, J = 12.5, 1.9 Hz, 1H), 3.58 (dd, J = 10.0, 3.7 Hz, 1H), 3.04 

(brs, 1H), 2.01 (s, 3H), 1.97 – 1.95 (m, 6H), 1.31 (d, J = 5.0 Hz, 2H). 

13C NMR (126 MHz, CDCl3) δ 170.48, 170.13, 169.76, 164.48, 162.50, 137.50, 132.41, 132.39, 128.52, 

128.45, 128.11, 127.92, 115.48, 115.30, 104.65, 100.98, 92.77, 85.22, 82.44, 79.36, 76.49, 72.98, 72.04, 

69.02, 68.36, 67.27, 61.44, 20.83, 20.63, 20.61, 15.89. 

19F NMR (376 MHz, CDCl3, 1H decoupled) δ -111.53. 

HRMS (ESI): calc. for C32H37O13FNa (M+Na): 671.2110; found: 671.2124. 
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5.3. Chapter 3 experimental section 

5.3.1. Kinetic study 

Rate equation derivation 

Based on the mechanism outlined for phenanthroline-catalyzed glycosylation in Scheme 31, the 

overall reaction can be described as equation (1), wherein k1 and k-1 defined the pre-equilibrium in the 

first nucleophilic substitution between the reactants, glycosyl bromide donor (D) and catalyst (C), and 

the intermediate (I). An irreversible nucleophilic attack (k2) by a hydroxyl acceptor (A) then leads to 

formation of the coupling product (P) and regeneration of catalyst. Based on the assumption of steady-

state approximation, the complete rate law can be derived as equation (2). 

D + C
𝑘1
⇄
𝑘−1
I
𝑘2[A]
→   P + C    (1) 

Therefore,  

d[P]

dt
= 𝑘2[𝐼][𝐴]    (S1) 

d[I]

dt
= 𝑘1[𝐷][𝐶] − 𝑘−1[𝐼] − 𝑘2[𝐼][𝐴]  (S2) 

In addition,  

[𝐶] = [𝐶]0 − [𝐼]    (S3) 

Applying steady-state approximation,  

d[I]

dt
= 0     (S4) 

After incorporation of equation (S3): 

[𝐼] =
𝑘1[D][C]0

𝑘−1+𝑘2[D]+𝑘2[A]
    (S5) 

Substitute [I] into rate equation (S1), the rate of product formation can be derived as: 

d[P]

dt
=

𝑘1𝑘2[D][A][C]0

𝑘−1+𝑘1[D]+𝑘2[A]
    (2) 
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General experimental procedure for kinetic study with 1 as donor 

 

A 10 mL scintillation vial was charged with glycosyl bromide 1 (fixed amount, 0.25 mmol, 1.0 equiv), 

isopropanol acceptor 1A (vary amount from 0.5 to 5 equiv), catalyst C1 (vary amount from 2 to 20 mol%), 

IBO (vary amount from 1.5 to 3 equiv), toluene (internal standard, 0.083mmol, 0.33 equiv), and C6D6 (0.5 

mL). The resulting solution was then transferred to a 5 mm NMR tube. 1H NMR spectrum was acquired on 

a 400 MHz instrument before heating. Then the mixture in NMR tube was then consistently shaken and 

heated in a 50 oC water bath. Between 3 and 60 hours, spectra were obtained depending on the experiment. 

Example spectra and example rate plot were based on standard condition: 0.25 mmol glycosyl bromide 1 

(1.0 equiv), 0.75 mmol acceptor (3.0 equiv), 15 mol% catalyst C1, 0.5 mmol IBO (2 equiv), 0.083 mmol 

toluene (0.33 equiv) as an internal standard, and 0.5 mL C6D6 (0.5 M).  

Spectra processing 

The spectra for each kinetic experiment were processed using MestReNova (v. 6.0.2, Mestrelab 

Research S.L.). The concentrations of product were measured by integration of its H-1 proton against the 

toluene internal standard,  = 2.1 ppm. Peak fitting or deconvolution algorithms were not used for 

integration. An example of 1H NMR spectra array is shown in Figure 33. 
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Figure 33. Example spectra array for a kinetic experiment with 1 as donor 

Graphing 

For each kinetic experiment, the concentration of product versus time were plotted on Excel 2016. 

Linear regression was obtained by best fitting with all points (Figure 34). Slope of the best-fit line represents 

the initial rate of reaction for each kinetic experiment. The initial rate was then graphed against catalyst 

concentration for fixed acceptor concentration (Figure 15a), and against acceptor concentration for fixed 

catalyst concentration (Figure 15b).  

 

Figure 34. Example rate plot: product concentration versus time for a kinetic experiment 
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The product formation versus time was also compared at different equivalent of IBO (Figure 35). As 

shown in Figure 35, the rate of reactions does not change significantly with varying amounts of IBO.  

 

 

Figure 35. Product formation versus time at different equivalent of IBO 

A control kinetic experiment was performed in the absence of catalyst (Figure 36). As shown in Figure 

36, the desired product was not observed even after 24 h in the absence of catalyst. This result is consistent 

with our control experiment.126 After 24 h, the desired product was slowly formed in the reaction. Until 60 

h, only 3% conversion was observed. Collectively, these results suggest that the background reaction only 

takes place after a long period, and it would not affect the aforementioned kinetic experiment. 

 

Figure 36. Product formation versus time at 0 mol% catalyst 
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General experimental procedure for kinetic study with 2* as donor 

 

All reagents were prepared into three stock solutions: 

Solution A: 1 M donor 2* stock solution. (1.2 mmol 2* in 1.2 mL CDCl2) 

Solution B: 0.1 M Catalyst stock solution. (20.8mg (0.06 mmol) C14 in 0.6 mL CDCl2) 

Solution C: 1 M acceptor 3 solution. (156 mg (0.6 mmol) 3, 246.4 mg (1.2 mmol) DTBMP, and 27.8 L 

(0.2 mmol) mesitylene in 0.6 mL CDCl2) 

0.1 mL of solution B and 0.1 mL of solution C were charged to a 1-dram scintillation, then added 

0.1-0.3 mL solution A (vary amount of donor from 1 to 3 equiv.). CD2Cl2 was then added to the vial to 

bring the final volume to 0.5 mL. The reaction mixture was then transferred to an NMR tube, and 

immediately subjected to 1H NMR to obtain spectrum at t = 0. Then a 1H NMR spectrum was recorded 

every 30 minutes until 300 minutes. 

For kinetic experiment with different catalyst, solution B was switched to 0.1 M stock solution with 

corresponding catalyst.  

Spectra processing 

The spectra for each kinetic experiment were processed using MestReNova (v. 6.0.2, Mestrelab 

Research S.L.). The concentrations of product were measured by integration of its H-1 proton against the 

mesitylene internal standard,  = 6.85 ppm. Peak fitting or deconvolution algorithms were not used for 

integration. An example of 1H NMR spectra array is shown in Figure 37. 
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Figure 37. Example spectra array for a kinetic experiment with 2* as donor 
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5.3.2. Mechanistic study 

Preparation of 2,3,4,6-Tera-O-Benzyl-d7--D-Glucopyranosyl Bromide (1*).  

 

Ethyl 1-thio--D-Glucpyranoside (1.14 g, 5.08 mmol) was dissolved in 25 mL dry DMF in a 100 mL 

round-bottom flask, then benzyl bromide-d7 (2.66 mL, 22.35 mmol, 4.4 equiv.) was added to the flask. The 

solution was then cooled to 0 oC in an ice bath and sodium hydride (60% in mineral oil) (894 mg, 22.35 

mmol, 4.4 equiv.) was added in 2 portions. The mixture was stirred in ice bath overnight. The resulting 

solution was poured into chipped ice (~ 100 mL), and extracted with 200 mL ethyl acetate. The organic 

solution was washed with brine, dried over sodium sulfate, and then concentrated in vacuo. The residue 

was then subjected to Biotage Isolera One purification system to give 1.37 g (46%) of S2* as a white solid. 

1H NMR (600 MHz, CDCl3) δ 4.45 (d, J = 9.8 Hz, 1H, H-1), 3.73 (dd, J = 10.9, 1.8 Hz, 1H), 3.69 – 3.63 

(m, 2H), 3.59 (t, J = 9.4 Hz, 1H), 3.49 – 3.39 (m, 2H), 2.83 – 2.68 (m, 2H), 1.32 (t, J = 7.4 Hz, 3H). 

S2* (711.4 mg, 1.2 mmol) was charged to a 50 mL round-bottom flask equipped with nitrogen balloon, 

then 12 mL dry CH2Cl2 was added. The solution was cooled to 0 oC in an ice bath, and Br2 (0.12 mL, 2.4 

mmol, 2 equiv.) was added. The reaction was stirred in ice bath, and monitored by TLC. Upon completion 

(~ 15 minutes), the reaction was quenched with cyclohexene. The resulting residue was concentrated in 

vacuo, and yielded 2* as pale-yellow syrup. This crude product was directly used for NMR study without 

further purification. 

1H NMR (600 MHz, CD2Cl2) δ 6.53 (d, J = 3.7 Hz, 1H, H-1), 4.05 – 4.01 (m, 1H), 3.97 (t, J = 

9.1 Hz, 1H), 3.76 (dd, J = 11.0, 3.6 Hz, 1H), 3.72 (t, J = 9.6 Hz, 1H), 3.65 (dd, J = 11.0, 1.5 Hz, 

1H), 3.53 (dd, J = 9.2, 3.7 Hz, 1H). HR ESI-TOF MS (m/z): calcd for C34H7D28BrO5Na [M + Na]+, 

653.3333; found, 653.3325. 
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Preparation of NMR samples. 

All reagents were prepared into three stock solutions: 

Solution A: 1 M donor 2* stock solution. (1.2 mmol 2* in 1.2 mL CDCl2) 

Solution B: 0.1 M Catalyst stock solution. (20.8mg (0.06 mmol) C14 in 0.6 mL CDCl2) 

Solution C: 1 M acceptor 3 solution. (156 mg (0.6 mmol) 3, 246.4 mg (1.2 mmol) DTBMP, and 27.8 L 

(0.2 mmol) mesitylene in 0.6 mL CDCl2) 

Detection of Glycosyl Phenanthrolinium Intermediate. 0.1 mL solution A, 0.1 mL solution B and 

0.3 mL CD2Cl2 was mixed in a 1-dram scintillation vial, then transferred to an oven-dried NMR tube, and 

sealed with a septum. The NMR tube was then purged with nitrogen. The tube was immediately placed into 

the NMR probe and the sample was locked and shimmed properly. 1H NMR was taken at t = 0, then every 

5 minutes. At t = 30 minutes, after the 1H NMR was taken, 1 mL solution C was added to the NMR tube 

through the septum, and then purged with nitrogen. The solution was carefully mixed in the NMR tube by 

tightening the NMR tube to a stir bar retriever and stirred on a stir plate. 1H NMR was then taken at t = 30 

minutes and 300 minutes upon the addition of solution C. The full 1H NMR spectra are shown in Figure 38 

- Figure 42.  
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Figure 38. 1H NMR of deuterated tetrabenzyl glucosyl bromide 2* 

 

 

Figure 39. 1H NMR of deuterated tetrabenzyl glucosyl bromide 2* and C14 at 0 min 
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Figure 40. 1H NMR of deuterated tetrabenzyl glucosyl bromide 2* and C14 at 30 min 

 

 

Figure 41. 1H NMR of deuterated tetrabenzyl glucosyl bromide 2* and C14 with acceptor 3 at 30 min 
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Figure 42. 1H NMR of deuterated tetrabenzyl glucosyl bromide 2* and C14 with acceptor 3 at 300 min 

 

Conformation of glycosyl phenanthrolinium intermediates. 0.15 mmol of 2* was prepared freshly 

from S2*, then dissolved in 0.75 mL CD2Cl2 to make 0.2 M donor solution. C14 (41.5 mg, 0.12 mmol) and 

mesitylene (5.6 L, 0.04 mmol) was charged to a 1-dram scintillation vial, then 0.6 mL of the 0.2 M donor 

solution was added to the vial. After mixing, the solution was transferred to an oven-dried NMR tube, and 

purged with nitrogen. The tube was immediately placed into the NMR probe and the sample was locked 

and shimmed properly. Control 1H NMR was taken every 5 minutes to ensure the intermediates was formed. 

Upon formation of intermediates (30 minutes), the NMR probe was cooled to -60 oC using liquid nitrogen 

and the sample was reshimmed, retuned, and the 1H NMR spectrum was then recorded. The sample was 

warmed at intervals of 10 oC and allowed to equilibrate for 10 minutes. A 1H NMR spectrum was recorded 

at every interval. The collected spectra array was then combined using MestReNova 6.0.2 (Figure 22). As 

hydrogen bond scalar coupling were observable at 0 oC, 1H-1H 2D COSY and ROESY spectra were 

recorded at 0 oC. The full spectra are shown in Figure 43 - Figure 49. 
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Figure 43. 1H NMR of glucosyl phenanthrolinium intermediates (Int1 and Int2) 

 

 

Figure 44. 1H-1H 2D COSY NMR of glucosyl phenanthrolinium intermediates (Int1 and Int2) 
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Figure 45. 1H-1H 2D ROESY NMR of glucosyl phenanthrolinium intermediates (Int1 and Int2) 

 

 

Figure 46. Mass spectrum detection of glucosyl phenanthrolinium intermediates (Int1 and Int2) 
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Figure 47. 1H NMR of 2-deoxy-2-fluoro glucosyl phenanthrolinium intermediate (Int3) 

 

 

Figure 48. 1H-1H 2D COSY NMR of 2-deoxy-2-fluoro glucosyl phenanthrolinium intermediate (Int3) 
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Figure 49. 1H-1H 2D ROESY NMR of 2-deoxy-2-fluoro glucosyl phenanthrolinium intermediate (Int3) 

 

5.3.3. Density Functional Theory (DFT) Calculations 

Based on the observation from NMR studies, the -glycosyl phenanthrolinium ion was at 4C1 chair 

conformation. However, both B2,5 and B1,4 boat conformations were fitted with the NMR observation for 

-glycosyl phenanthrolinium ion. As such, DFT calcualtions were performed to compare their energy level. 

All calculations were carried out with Gaussian 09.160 Geometry optimization and vibrational frequency for 

these intermediates was computed at the B3LYP/6-31+G(d,p) level of theory 146-156 with the SMD implicit 

solvation model 157 in diethyl ether and the GD3BJ empirical dispersion correction229-230. There is no 

imaginary frequency for these intermediates. The free energy of each optimized structure was in comparison 

with the -glycosyl phenanthrolinium ion. As shown in Figure 50, -glycosyl phenanthrolinium ion is more 

likely to be at B2,5 boat conformation since its free energy is 7.9 kcal/mol lower than that of the B1,4 boat 

conformation. 
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Figure 50. Optimized structures of - and possible -glycosyl phenanthrolinium intermediates 

The cartesian coordinates of these three structures was reported in the literature.216 

 

5.4. Chapter 4 experimental section 

5.4.1. Preparation of 2-deoxy-2-fluro-3,5-di-O-benzyl-D-furanosyl bromide donors 

 

A solution of 1-acetate-2-deoxy-2-fluoro-3,5-bis-O-benzyl-D-furanose (1.0 equiv.) in dry CH2Cl2 (2.0 

ml,) was placed in an ice bath to cool to 0°C and HBr (33% in acetic acid, 5.0 equiv.) was added in a 

dropwise manner. Then, the ice was removed and the mixture was allowed to warm up to ambient 

temperature while stirring, and continued reacting at this temperature for 1 h. The reaction mixture was 

then diluted with cold CH2Cl2 (50 mL) and washed with cold water (1 x 50 ml), cold saturated NaHCO3 

solution (2 x 50 ml), dried over Na2SO4, filtered, and evaporated to yield the product as a brown oil. The 

product was immediately used without additional purification or characterization. 
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5.4.2. NMR study with 2-fluoro xylofuranosyl donor 

NMR course of glycosylation with 2-fluoro xylofuranosyl bromide 50 

 

A 5 mm NMR tube was charged with 2-fluoro xylofuranosyl bromide 50 (3.0 equiv) and CDCl3 (0.6 

mL) (1H and 19F NMR were acquired). Then 5 mol% (according to donor) phenanthroline C14 was added, 

1H and 19F NMR were acquired after mixing for 30 min. After the NMR was taken, then the mixture in the 

NMR tube was added with acceptor 3 (1.0 equiv.) and DTBMP (1.5 equiv.). 1H (Figure 51) and 19F (Figure 

52) NMR spectra were obtained at the given time (10 min -24 h) depending on the experiment.  

 

Figure 51. 1H NMR course of furanosylation with 2-fluoro xylofuranosyl bromide 50 
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Figure 52. 19F NMR course of furanosylation with 2-fluoro xylofuranosyl bromide 50 

 

NMR detection of xylofuranosyl phenanthrolinium intermediates 

 

A 5 mm NMR tube was charged with 2-fluoro xylofuranosyl bromide 50 (1.5 equiv.) and CDCl3 (0.6 

mL), 1H and 19F NMR were acquired. Then phenanthroline C14 (1.0 equiv.) was added to the NMR tube.1H 

(Figure 53) and 19F (Figure 54) NMR spectra were obtained at the given time (10 min -16 h) depending on 

the experiment. The full spectra of 1H, 1H-1H 2D COSY and ROESY NMR and mass spectrum are shown 

in Figure 55 - Figure 58. 
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Figure 53. 1H NMR detection of xylofuranosyl phenanthrolinium intermediates (Int4 and Int5) 

 

 

Figure 54. 19F NMR detection of xylofuranosyl phenanthrolinium intermediates (Int4 and Int5) 
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Figure 55. 1H NMR of xylofuranosyl phenanthrolinium intermediates (Int4 and Int5) 

 

 

Figure 56. 1H-1H COSY NMR of xylofuranosyl phenanthrolinium intermediates (Int4 and Int5) 
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Figure 57. 1H-1H ROESY NMR of xylofuranosyl phenanthrolinium intermediates (Int4 and Int5) 

 

 

Figure 58. Mass Spectrum of xylofuranosyl phenanthrolinium intermediates (Int4 and Int5) 
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5.4.3. NMR study with 2-fluoro arabinofuranosyl donor 

NMR course of glycosylation with 2-fluoro arabinofuranosyl bromide 48 

 

A 5 mm NMR tube was charged with 2-fluoro arabinosyl bromide 48 (3.0 equiv) and CDCl3 (0.6 mL) 

(1H and 19F NMR were acquired). Then 5 mol% phenanthroline C14 (with respect to donor) was added, 1H 

and 19F NMR were acquired after 30 min. After the NMR was taken, then the mixture in the NMR tube was 

added with acceptor 3 (1.0 equiv.) and DTBMP (1.5 equiv.). 1H (Figure 59) and 19F (Figure 60) NMR 

spectra were obtained at the given time (10 min -20 h) depending on the experiment.  

 

Figure 59. 1H NMR course of furanosylation with 2-fluoro arabinofuranosyl bromide 48 
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Figure 60. 19F NMR course of furanosylation with 2-fluoro arabinofuranosyl bromide 48 

 

NMR detection of arabinofuranosyl phenanthrolinium intermediates 

 

A 5 mm NMR tube was charged with 2-fluoro arabinosyl bromide 48 (1.5 equiv.) and CDCl3 (0.6 mL), 

1H and 19F NMR were acquired. Then phenanthroline C14 (1.0 equiv.) was added to the NMR tube. 1H 

(Figure 61) and 19F (Figure 62) NMR spectra were obtained at the given time (10 min -16 h) depending on 

the experiment. The full spectra of 1H, 1H-1H 2D COSY and NOESY NMR and mass spectrum are shown 

in Figure 63 - Figure 66. 
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Figure 61. 1H NMR detection of arabinofuranosyl phenanthrolinium intermediates (Int6 and Int7) 

 

 

Figure 62. 19F NMR detection of arabinofuranosyl phenanthrolinium intermediates (Int6 and Int7) 
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Figure 63. 1H NMR of arabinofuranosyl phenanthrolinium intermediates (Int6 and Int7) 

 

 

Figure 64. 1H-1H COSY NMR of arabinofuranosyl phenanthrolinium intermediates (Int6 and Int7) 
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Figure 65. 1H-1H NOESY NMR of arabinofuranosyl phenanthrolinium intermediates (Int6 and Int7) 

 

 

 

 

 

Figure 66. Mass Spectrum of xylofuranosyl phenanthrolinium intermediates (Int6 and Int7) 
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APPENDIX A: SYMBOL NOMENCLATURE FOR GLYCANS22 
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APPENDIX B: 1H, 13C AND 19F NMR SPECTRA 
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ABSTRACT 

PHENANTHROLINE-CATALYZED 1,2-CIS GLYCOSYLATION: SCOPE AND MECHANISM 

by 

JIAYI LI 
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Advisor: Dr. Hien M. Nguyen 

Major: Organic Chemistry 

Degree: Doctor of Philosophy 

Phenanthroline, a rigid and planar organic compound with two fused pyridine rings, has been used as 

a powerful ligand for metals and a binding agent for DNA/RNA. We recently discovered that 

phenanthroline could be used as a nucleophilic catalyst to access high yielding and diastereoselective -

1,2-cis glycosides through the coupling of hydroxyl acceptors with -glycosyl bromide donors. The utility 

of the phenanthroline catalysis is expanded to sterically hindered hydroxyl nucleophiles and chemoselective 

coupling of an alkyl hydroxyl group in the presence of a free C1-hemiacetal functionality. In addition, the 

phenanthroline-based catalyst has a pronounced effect on site-selective couplings of triol motifs and 

orthogonally activates the anomeric bromide leaving group over the anomeric fluoride and sulfide 

counterparts. 

An extensive mechanistic investigation showed two glycosyl phenanthrolinium ion intermediates, a 4C1 

chair-liked -conformer and a B2,5 boat-like -conformer, in a ratio of 2:1 (:). Further, NMR studies 

show that a hydrogen bonding is formed between the second nitrogen atom of phenanthroline and the C1-

anomeric hydrogen of sugar moiety to stabilize the phenanthrolinium ion intermediates. To obtain high 

levels of -1,2-cis stereoselectivity, a Curtin-Hammett scenario was proposed wherein interconversion of 

the 4C1 -conformer and B2,5 -conformer is more rapid than nucleophilic addition. Hydroxyl attack takes 
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place from the -face of the more reactive 4C1 chair-like -phenanthrolinium intermediate to give an -

anomeric product.  

The phenanthroline catalysis system is applicable to a number of furanosyl bromide donors to provide 

the challenging 1,2-cis substitution products in good yield with high anomeric selectivity. While 

arabinofuranosyl bromide provides -1,2-cis products, xylo- and ribofuranosyl bromides favor -1,2-cis 

products. NMR experiments and density-functional theory calculations support an associative mechanism 

in which the rate-determining step occurs from an invertive displacement of the faster reacting 

phenanthrolinium ion intermediate with alcohol nucleophile. 
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