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CONVENTIONS

We will employ the following conventions and notations:

Character and representation will be used interchangeably.

ζp = exp(2πi/p).

ε and Ωp denote the quadratic Gauss sum for an odd prime p.

ε = (−1)(q−1)/2 where q is a prime power. ε = ±1.

δi is the Kronecker delta function.

δL is the discriminant of a lattice L.

Fq denotes a finite field of prime power order q = pn.

Fp and Z/pZ denote a finite field of order p.

Cp is the additive cyclic group of order p.

Kp is the group Cp × Cp.

Hp or H(G, p) is the Heisenberg group of order p3.

s is the matrix [ 0 −1
1 0 ]. Other definitions of this matrix will also be given.

t is the matrix [ 1 0
0 1 ]. Other definitions of this matrix will also be given.

AT and Aᵀ denote the transpose of a matrix or vector A.

νp is the cyclic group of the roots of unity: νp := {ζ ∈ C : ζN = 1}.

R(1,+), R(n,+), and ξ are the Principal Series Weil Characters.

R(1,−), R(n,−), and ζ are the Cuspidal Series Weil Characters.

St is the Steinberg representation.

VQ is the Vandermonde matrix associated to the quadratic form Q.

xi



1

INTRODUCTION

Issai Schur and Herbert Edwin Jordan computed the character tables of the special

linear group of order two over a finite field, SL2(Fq), over a hundred years ago. The

irreducible representations came a little later and while there are several techniques,

we will employ the Weil representation to compute the irreducible representations of

SL2(Z/nZ) as well as SL2(Fq). The Weil representation is a beautiful construct that has

many other applications. It is used to study theta functions (modular forms). When

generalized to a Grassmann algebra, it appears in quantum field theory. There are also

many number theoretic applications as well. We will cite and extend results pertaining

to the integrality of the irreducible representations by Wang[36] and Gilmer et al[13].

These results were proven in the context of topological quantum field theory (TQFT).

TQFT is related to knot theory, theory of four-manifolds in algebraic topology, and

theory of modulii spaces in algebraic geometry.

The Weil representation was originally motivated by theoretical physics, namely by

quantization[15]. It was firstly defined on the level of Lie algebra by L. van Hove in

1951, then on the level of Lie group by I. E. Segal and D. Shale in the 1960’s. On

the arithmetical side, in 1964, A. Weil generalized this machinery to include all local

fields. This is the main ingredient of Weil’s representation-theoretic approach to theta

functions. In fact, the theta functions can be interpreted as automorphic forms of a

subgroup of certain metaplectic group[15]. We fully concur with H.N. Ward’s statement

“I have a strong fondness for the Weil representation.” It is our desire that the reader

will also develop a fondness for it.

This document contains six chapters. In the first chapter, we construct the Weil

representation using a Heisenberg group. This treatment, while not new, is explicit

enough and is suitable for advanced undergraduates and those interested in learning

about the Weil representation. It also contains examples of the representations which are
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lacking in all the other treatments of the construction. In the second chapter, we define

and discuss integral representations and provide alternate proofs regarding integrality

that are more accessible.

In Chapter 3, we construct all the irreducible representations of SL2(Z/3Z) with the

exception of the Steinberg (which will be covered in Chapter 4). We use the methods

we learned from Nobs and Wolfart’s methods[23],[24]. Nothing is left to the imagina-

tion in the construction of these representations. The calculations are long and drawn

out to illustrate the nontriviality of the computations. We use the larger format of

matrices/vectors for the delta functions’ indicies for greater legibility and to accommo-

date those that may be vision-impaired. It does increase the page count but legibility

was the priority. Due to formatting requirements, we use smaller matrices for some of

the calculations. We do regret that compromise. In Chapter 4, we construct the six-

dimensional irreducible representation of SL2(Z/5Z) and the Steinberg representation.

We also construct the reducible 1 + St representation. We show that the Steinberg rep-

resentation is integral over Z and give an explicit basis for it. This is a well-known fact

and we learned of the integral basis from Reeder[25]. We then construct the reducible

six-dimensional representation that is the direct sum of two irreducible principal series

Weil representations. Samuel Wilson and Yilong Wang have created a GAP package

that computes ALL of the irreducible representations of SL2(Z/nZ). The GAP package

resides at https://snw-0.github.io/sl2-reps/. In Chapter 5, we discuss the integrality re-

sults of Wang and Zemel and ponder a conjecture by Candelori. We also attempt to

prove Wang’s basis/method yields the smallest ring of definition for the principal series

Weil characters directly. It fails spectacularly because no method exists to ascertain the

values of Legendre symbols for an arbitrary prime.

The notion of a minimal integral model is introduced in Chapter 6. Using SAGE

to compute the principal series Weil representations of many primes, we noticed that

https://snw-0.github.io/sl2-reps/
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the representations lie in the ring conjectured by Riese. We prove Wang’s basis/method

yields the minimal integral model for these representations. This is the central result of

this document. The proofs require only material that is generally covered in the first

year of a graduate program in mathematics. The quadratic Gauss sum and Wang’s basis

play pivotal roles.
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CHAPTER 1 A Construction of The Weil Representation

1.1 The Groups Hp

We will use the Heisenberg group to construct the Weil representation of SL2(Fp).

We provide the necessary background material and discuss the Heisenberg group.

1.1.1 Quadratic forms on an abelian group

We begin with several definitions.

Definition 1.1.1. A bilinear form or bicharacter on an abelian group G with values

in another abelian group E is a function b : G×G→ E satisfying:

b(x, y + z) = b(x, y) + b(x, z) and b(x+ y, z) = b(x, z) + b(y, z).

It is symmetric if b(x, y) = b(y, x). It is nondegenerate if b(x, y) = 0 for all y ∈ G

implies that x = 0 and if b(x, y) = 0 for all x ∈ G implies that y = 0.

Definition 1.1.2. Let G be a finite abelian group. A quadratic form on a finite abelian

group G is a function q : G → E such that q(−x) = q(x) and the form assigned to it

b(x, y) := q(x+ y)− q(x)− q(y) is bilinear.

Definition 1.1.3. Let G be an finite abelian group and q : G → Q/Z be a quadratic

form. The level of q is the smallest integer N such that Nq(x) ∈ Z for all x ∈ G.

The following examples illustrate the definitions.

Example 1.1.4. Let p > 2. Consider the map q : G = Z/pZ → Q/Z that sends

x 7→ x2/p. The form b(x, y)

q(x+ y)− q(x)− q(y) =
(x+ y)2

p
− x2

p
− y2

p
=

2xy

p
= b(x, y)

is bilinear since

b(x, y + a) =
2x(y + a)

p
=

2xy

p
+

2xa

p
= b(x, y) + b(x, a)
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and

b(x+ c, y) =
2(x+ c)y

p
=

2xy

p
+

2cy

p
= b(x, y) + b(c, y).

It is symmetric since

b(x, y) =
2xy

p
=

2yx

p
= b(y, x).

It is nondegenerate since if b(x, y) = 0 for all y, then x = 0 and if b(x, y) = 0 for all

x, then y = 0. q(x) is a quadratic form since b(x, y) is bilinear and q(−x) = (−x2)/p =

x2/p = q(x). q(x) is of level p.

Example 1.1.5. Let p = 2. Consider the map q : G = Z/2Z → Q/Z that sends

x 7→ x2/4.

q(x+ y)− q(x)− q(y) =
(x+ y)2

4
− x2

4
− y2

4
=

2xy

4
=
xy

2
= b(x, y).

We are in characteristic two. If x 6= y, then b(1, 0) = b(0, 1) = 0. If x = y, then

b(0, 0) = 0 and b(1, 1) = 1− 1/4− 1/4 = 1/2. So b(x, y) = xy/2 is a is a symmetric and

nondegenerate bilinear form. So q is a quadratic from of level 4.

We would like to explain why Definition 1.1.3 is compatible with the standard defi-

nition of a quadratic form:[27]:

Definition 1.1.6. Let V be a module over a commutative ring A. A function Q : V → A

is called a quadratic form on V if:

1. Q(ax) = a2Q(x) for a ∈ A and x ∈ V .

2. the function (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is a bilinear form.

We have to restrict a to ±1 because otherwise a2Q(x) is not defined if the codomain

is a group.

1.1.2 The Heisenberg group H(G, q)

We now provide a more general definition of the Heisenberg group.

Definition 1.1.7. Let N > 1 be an integer and νN = {ζ ∈ C : ζN = 1}), G be an
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abelian group and let q be a quadratic form on G. The Heisenberg group H(G, q) is the

set νN ×G×G together with the group law

(ζ1, x1, y1)(ζ2, x2, y2) = (ζ1ζ2 exp(2πib(x1, y2)), x1 + x2, y1 + y2).

Example 1.1.8. Let p > 2, G = Z/pZ and q be the quadratic form defined by x 7→ x2/p.

Then Hp (or H(G, q)) has the group law

(ζ1, x1, y1)(ζ2, x2, y2) = (ζ1ζ2 exp(2πi(2x1y2/p), x1 + x2, y1 + y2)

= (ζ1ζ2ζ
2x1y2
p , x1 + x2, y1 + y2).

1.1.3 The Heisenberg group Hp

Let p be a prime. Let Cp be the cyclic group of order p. Let

Kp := Cp × Cp.

This is a two dimensional Fp-vector space, so that Aut(Kp) = GL2(Fp). Let

νp = {ζ ∈ C : ζp = 1}

be set of the p-th roots of unity. Define the group Hp to be the set νp×Kp with product

(λ1, x1, y1)(λ2, x2, y2) = (λ1λ2ζ
2x1y2
p , x1 + x2, y1 + y2).

1.1.4 Important facts about Hp

We will do the following:

1) Prove Hp is a group.

2) Prove

a) Hp is a non-trivial group extension 1→ νp → Hp → Kp → 0.

b) νp = Z(Hp) (i.e., Hp is a central extension).

c) calculate the commutator in Hp of two elements of the form (1, x1, y1) and

(1, x2, y2).
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3) Find the conjugacy classes of Hp.

4) Compute the character table of Hp by starting with the known subgroup and

induce characters from those. Also, we consider quotients and inflate characters

from those.

5) Determine the p-dimensional representations.

(1): Hp is a group

We now show that Hp is a group.

Well-defined: It is clear that the group operation is well-defined. Let (λ1, x1, y1) =

(λ2, x2, y2). Then for any other element of Hp, (λ, x, y), we have

(λ1, x1, y1)(λ, x, y) = (λ1λζ
2x1y
p , x1 + x, y1 + y)

and

(λ2, x2, y2)(λ, x, y) = (λ2λζ
2x2y
p , x2 + x, y2 + y)

implying

(λ1λζ
2x1y
p , x1 + x, y1 + y) = (λ2λζ

2x2y
p , x2 + x, y2 + y).

Even though Hp is not commutative, we still see that

(λ, x, y)(λ1, x1, y1) = (λλ1ζ
2xy1
p , x+ x1, y + y1)

and

(λ, x, y)(λ2, x2, y2) = (λλ2ζ
2xy2
p , x+ x2, y + y2)

imply

(λ1λζ
2x1y
p , x1 + x, y1 + y) = (λ2λζ

2x2y
p , x2 + x, y2 + y).

Closure: The group operation, product, is well-defined. We need to show that the
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set is closed under the operation. For λ1, λ2 ∈ νp and x1, x2, y1, y2 ∈ Cp, we need

to show λ1λ2ζ
2x1y2
p ∈ νp.

λ1λ2ζ
2x1y2
p = ζap · ζbp · ζ2x1y2

p for some a, b ∈ Cp

= ζa+b+2x1y2
p

= ζcp where c = a+ b+ 2x1y2

∈ νp,

Under modulo addition, Cp is closed, so x1 + x2 ∈ Cp and y1 + y2 ∈ Cp. So the set

under the operation, product, is closed.

Associativity: Straightforward calculations show that

(λ1, x1, y1)[(λ2, x2, y2)(λ3, x3, y3)] = (λ1, x1, y1)[(λ2λ3ζ
2x2y3
p , x2 + x3, y2 + y3)]

= (λ1λ2λ3ζ
2x2y3
p ζ2x1(y2+y3),

x1 + x2 + x3, y1 + y2 + y3)

= (λ1λ2λ3ζ
2(x2y3+x1y2+x1y3)
p ,

x1 + x2 + x3, y1 + y2 + y3)

and

[(λ1, x1, y1)(λ2, x2, y2)](λ3, x3, y3) = (λ1λ2ζ
2x1y2
p , x1 + x2, y1 + y2)](λ3, x3, y3)

= (λ1λ2λ3ζ
2x1y2
p ζ2(x1+x2)y3 ,

x1 + x2 + x3, y1 + y2 + y3)

= (λ1λ2λ3ζ
2(x1y2+x1y3+x2y3)
p ,

x1 + x2 + x3, y1 + y2 + y3)

= (λ1λ2λ3ζ
2(x2y3+x1y2+x1y3)
p ,

x1 + x2 + x3, y1 + y2 + y3)
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are equal. Therefore associativity holds.

Identity: In order for

(λ1, x1, y1)(a, b, c) = (λ1aζ
2x1c
p , x1 + b, y1 + c)

= (λ1, x1, y1)

to be true, a = 1, b = c = 0. So the identity is (1, 0, 0). Verification is straightfor-

ward.

(1, 0, 0)(λ1, x1, y1) = (1 · λ1 · ζ2·0·y1
p , 0 + x1, 0 + y1) = (λ1, x1, y1),

(λ1, x1, y1)(1, 0, 0) = (λ1 · 1 · ζ2·x1·0
p , x1 + 0, y1 + 0) = (λ1, x1, y1).

Inverses: For

(λ1, x1, y1)(λ2, x2, y2) = (λ1λ2ζ
2x1y2
p , x1 + x2, y1 + y2) = (1, 0, 0),

we require x1 = −x2, y1 = −y2, and λ1λ2ζ
2x1y2
p = 1. So, 1 = λ1λ2ζ

2x1y2
p implies

λ2 = λ−1
1 ζ−2x1y2

p = λ−1
1 ζ2x1y1

p .

Therefore, the inverse of (λ1, x1, y1) is (λ−1
1 ζ2x1y1

p ,−x1,−y1). Verification is straight-

forward.

(λ1, x1, y1)(λ−1
1 ζ2x1y1

p ,−x1,−y1) = (λ1·λ−1
1 ζ2x1y1

p ·ζ2x1(−y1)
p , x1−x1, y1−y1) = (1, 0, 0).

(λ−1
1 ζ2x1y1

p ,−x1,−y1)(λ1, x1, y1) = (λ−1
1 ζ2x1y1λ1ζ

2(−x1)·(y1),−x1 + x1,−y1 + y1)

= (1, 0, 0).

So, Hp is a group under the product operation.
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(2): Properties of Hp

a) A TRIVIAL group extension is an extension

1→ K → G→ H → 1

that is equivalent to the extension

1→ K → K ×H → H → 1.

Since we want a non-trivial one, we could consider the semi-direct product of

νp oφ Kp. Hp is isomorphic to a semidirect product of νp and Kp if and only if

there exists a short exact sequence

1→ νp
β→ Hp

α→ Kp → 0

and a group homomorphism γ : Kp → Hp such that α ◦ γ = 1Kp .

φ : Kp → Aut(νp) is given by φ(k) = φk, where φk(n) = β−1(γ(k)β(n)γ(h−1)).

It’s easier to directly construct the map Hp → Kp. We use the “coordinates”

given, compute its kernel, and then show that the exact sequence we obtain is

a non-trivial central extension. We need to kill off the first “coordinate” of Hp.

That’s readily done by a projection. That is, for an element (λ, x, y) ∈ Hp,

(λ, x, y) 7→ (x, y) ∈ Kp.

The projection is a homomorphism. α(1, 0, 0) = (0, 0) so it sends the identity to the

identity. Second, we need to verify that α(h1 · h2) = α(h1) +α(h2) for h1, h2 ∈ Hp.

Let h1 = (λ1, x1, y1), h2 = (λ2, x2, y2). Then

h1h2 = (λ1λ2ζ
2x1y2
p , x1 + x2, y1 + y2).

So α(h1h2) = (x1 + x2, y1 + y2). Since α(λ1, x1, y1) = (x1, y1) and α(λ2, x2, y2) =
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(x2, y2), we have

α(λ1, x1, y1) + α(λ2, x2, y2) = (x1 + x2, y1 + y2).

Hence it satisfies the homomorphic property. Since νp and Kp are both commuta-

tive, the trivial extension ν × Kp would also be commutative. To see that Hp is

a non-trivial extension, we need to verify that the product operation in Hp is not

commutative.

Let h1 = (λ1, x1, y1), h2 = (λ2, x2, y2). Then

h1h2 = (λ1λ2ζ
2x1y2
p , x1 + x2, y1 + y2)

and

h2h1 = (λ2λ1ζ
2x2y1
p , x1 + x2, y1 + y2).

So h1h2 6= h2h1 if x1y2 6= x2y1. Since Kp and νp are both abelian, their direct

product is abelian. The given product is not abelian so the extension is not trivial.

b) An extension is called a central extension if the subgroup νp lies in the center

of Hp. To show that νp is in the center of Hp, we need to find elements that

commute with all elements of Hp. Z(Hp) is not empty as it contains the identity.

Let z = (a, b, c) ∈ Z(Hp). Let h = (λ, x, y) ∈ Hp. Then zh = hz so

(aλζ2by
p , b+ x, c+ y) = (λaζ2xc

p , x+ b, y + c).

This implies that for fixed b, c, ζ2by
p = ζ2xc

p for all x, y ∈ Cp. Hence, b = c = 0 and

Z(Hp) = νp. We have that Hp is a central extension.

c) Let h1 = (1, x1, y1), h2 = (1, x2, y2). The commutator of h1, h2 is given by

[h1, h2] = h−1
1 h−1

2 h1h2

= (1−1 · ζ2x1y1
p ,−x1,−y1) · (1−1 · ζ2x2y2

p ,−x2,−y2) · (1, x1, y1) · (1, x2, y2)
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= (ζ2x1y1+2x2y2ζ2(−x1)(−y2),−x1 − x2,−y1 − y2)

· (1 · 1 · ζ2x1y2 , x1 + x2, y1 + y2)

= (ζ2x1y1+2x2y2+2x1y2 ,−x1 − x2,−y1 − y2) · (ζ2x1y2 , x1 + x2, y1 + y2)

= (ζ2x1y1+2x2y2+2x1y2ζx1y2ζ−2(x1+x2)(y1+y2), 0, 0)

= (ζ2x1y1+2x2y2+2x1y2+2x1y2ζ−2(x1y1+x1y2+x2y1+x2y2), 0, 0)

= (ζ2x1y2ζ−2(x2y1), 0, 0)

= (ζ2(x1y2−x2y1), 0, 0).

(3): Conjugacy classes of Hp

Lets find the conjugate of an arbitrary element of Hp. For (λ, x, y), (a, b, c) ∈ Hp, we

have

(λ, x, y)−1 = (λ−1ζ2xy
p ,−x,−y)

and

(λ, x, y)−1(a, b, c)(λ, x, y) = (λ−1ζ2xy
p ,−x,−y)(a, b, c)(λ, x, y)

= (λ−1ζ2xy
p aζ−2xc

p ,−x+ b,−y + c)(λ, x, y)

= (λ−1ζ2xy
p aζ−2xc

p λζ2(−x+b)y
p , b, c)

= (aζ2(by−xc)
p , b, c)

Now lets consider some cases.

Case 1. Fix a and let b = c = 0. Then (a, 0, 0) is conjugate to only itself as it

should since it is in the center of Hp.

Case 2. Fix a, c, c 6= 0 and take b = 0. Then (a, 0, c) is conjugate to (aζ−2xc
p , 0, c).

The centralizer of (a, 0, c) consists of all elements of the form (λ, 0, y) since

(a, 0, c)(λ, 0, y) = (aλζ2·0·y
p , 0 + 0, c+ y) = (aλ, 0, c+ y)
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and

(λ, 0, y)(a, 0, c) = (λaζ2·0·c
p , 0 + 0, y + c) = (aλ, 0, y + c).

So the centralizer of (a, 0, c) contains p2 elements. By the orbit-stabilizer theorem,

there are p elements in the orbit of (a, 0, c) (since |Hp| = p3, |C(a,0,c)| = p2). The

conjugacy class of (a, 0, c) is

{(aζ−0·2c
p , 0, c), (aζ−2c

p , 0, c), (aζ−4c
p , 0, c), (aζ−6c

p , 0, c), . . . , (aζ−2(p−1)c
p , 0, c)}

Since a = ζkp for 0 ≤ k ≤ p− 1, we have

{(ζkp , 0, c), (ζk−2c
p , 0, c), (ζk−4c

p , 0, c), (ζk−6c
p , 0, c), . . . , (ζk−2(p−1)c

p , 0, c)}

Or in simplified form

{(1, 0, c), (ζp, 0, c), (ζ2
p , 0, c), . . . , (ζ

p−1
p , 0, c).

Fix a, b, b 6= 0 and take c = 0. Then (a, b, 0) is conjugate to (aζ2by
p , b, 0).

Case 3. Fix a, b, b 6= 0 and take c = 0. The centralizer of (a, b, 0) consists of all

elements of the form (λ, x, 0) since

(a, b, 0)(λ, x, 0) = (aλζ2b·0
p , b+ x, 0 + 0) = (aλ, b+ x, 0)

and

(λ, x, 0)(a, b, 0) = (λaζ2x·0
p , x+ b, 0 + 0) = (aλ, b+ x, 0).

So the centralizer of (a, b, 0) contains p2 elements. By the orbit-stabilizer theorem,

there are p elements in the orbit of (a, b, 0) (since |Hp| = p3, |C(a,b,0)| = p2). The

conjugacy class of (a, b, 0) is

{(aζ2·0b
p , b, 0), (aζ2·1b

p , b, 0), (aζ2·2b
p , b, 0), (aζ2·3b

p , b, 0), . . . , (aζ2(p−1)b
p , 0, c)}.
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Since a = ζkp for 0 ≤ k ≤ p− 1, we have

{(ζkp , b, 0), (ζk+2b
p , b, 0), (ζk+4b

p , 0, b), (ζk+6b
p , b, 0), . . . , (ζk+2(p−1)b

p , b, 0)}.

Or in simplified form

{(1, b, 0), (ζp, b, 0), (ζ2
p , b, 0), . . . , (ζp−1

p , b, 0).

Case 4. Now for the last case. Fix a, b, c such that b 6= 0 and c 6= 0. Then (a, b, c)

is conjugate to (aζ
2(by−xc)
p , b, c). The centralizer of (a, b, c) consists of all elements

of the form (λ, x, y) where only by ≡ cx mod p:

(a, b, c)(λ, x, y) = (aλζ2by
p , b+ x, c+ y)

and

(λ, x, y)(a, b, c) = (λaζ2xc
p , x+ b, y + c).

Once x is chosen, y’s value is determined. This implies there are p2 elements in the

centralizer: p values for λ and p values for x. So the size of the orbit is p.

A partitioning of Hp that “agrees” with the conjugacy classes. There are p(p−1) elements

of the form (a, 0, c) that are not in the center of Hp. There are p(p− 1) elements of the

form (a, b, 0) that are not in the center of Hp. There are p elements of the form (a, 0, 0)

that comprise the center of Hp. There are p(p−1)(p−1) of the form (a, b, c) where b 6= 0

and c 6= 0. So,

p(p− 1) + p(p− 1) + p+ p(p− 1)(p− 1) = 2p2 − 2p+ p+ p(p2 − 2p+ 1)

= 2p2 + 2p− p+ p3 − 2p2 + p

= p3

= |Hp|.

There are p conjugacy classes in the center of size 1. There are p− 1 conjugacy classes



15

of the form (a, b, 0), b 6= 0; one for each b. There are p− 1 conjugacy classes of the form

(a, 0, c), c 6= 0, one for each c. There are (p − 1)(p − 1) conjugacy classes of the form

(a, b, c), b 6= 0 and c 6= 0. We can further simplify to stating that there are p conjugacy

classes in the center of size 1 and p2−1 conjugacy classes of size p with the form (a, b, c),

with a ∈ νp, b, c ∈ Cp with b 6= 0 AND c 6= 0. We will use this simplification in the

construction of the character table.

(4): The char. table of Hp obtained by induction of the modulation subgroup

The subgroup of Kp that is generated by (x, 0) where x ∈ Fp is the called the

modulation subgroup. To compute the character table for Hp, we need to determine the

number of conjugacy classes. We recall that the number of irreducible representations of

Hp (up to isomorphism) is equal to the number of conjugacy classes of Hp. The number

of conjugacy classes for Hp is given by

p+ (p− 1) + (p− 1) + (p− 1)(p− 1) = p+ 2p− 2 + p2 − 2p+ 1 = p2 + p− 1.

So our character table has p2 + p− 1 rows and columns.

We computed the commutator earlier and now we use it with the fact that the degree

1 representations of Hp are in bijective correspondence with the degree 1 representations

of the abelian group Hp/H
′
p = Hp/[Hp, Hp]. That gives us Hp/[Hp, Hp] ∼= Cp × Cp.

Cp × Cp is abelian with order p2. This implies there are p2 distinct one dimensional

representations of Hp. Let φ1 and φ2 be one-dimensional characters of Cp. Then the one

dimensional character of an element (λ, x, y) of Hp is given by

ξ(λ, x, y) = φ1(x)φ2(y).

One dimensional representations are irreducible and we have p2 of them. That leaves

p − 1 of them to find. Using the fact that the sums of squares of the dimensions of

the irreducible representations equals the order of the group and that we obtained p2
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representations of dimension 1, we have

|Hp| − p2 = p3 − p2 = p2(p− 1).

So we have p− 1 representations of degree p. We consider a subgroup of Hp of index p:

A = {(λ, x, 0), λ ∈ νp, x ∈ Cp}.

A is abelian, has order p2 and A ∼= F2
p. (it is clear that νp ∼= Cp ∼= Fp). Given characters

φ1 and φ2 of Fp, we fix a one-dimensional character of A and call it ψ. ψ is defined as

ψ(λ, x, 0) = φ1(x)φ2(λ).

We induce the representation of the subgroup A to obtain a p-dimensional representation

ρ = Ind
Hp
A (ψ).

Now we need to show that this representation is irreducible. Let B be the set of repre-

sentatives of Hp/A. So

B = {(1, 0, y), y ∈ Fp}.

The character of ρ is given by

χρ((a, b, c)) =
∑

y ∈ Fp

(1, 0, y) · (a, b, c) · (1, 0, y)−1 ∈ A

ψ((1, 0, y) · (a, b, c) · (1, 0, y)−1).

Since

(1, 0, y)(a, b, c)(1, 0, y)−1 = (1, 0, y)(a, b, c)(1, 0,−y)

= (aζ2·0·c, 0 + b, c+ y)(1, 0,−y)

= (a, b, c+ y)(1, 0,−y)

= (aζ−2by, b, c),
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if c 6= 0 then χρ((a, b, c)) = 0. This implies (for c = 0)

χρ((a, b, c)) =
∑

y ∈ Fp

(1, 0, y) · (a, b, c) · (1, 0, y)−1 ∈ A

ψ((1, 0, y) · (a, b, c) · (1, 0, y)−1)

=
∑

y ∈ Fp

(aζ−2by, b, c) ∈ A

ψ((aζ−2by, b, c))

=
∑

y ∈ Fp

ψ((aζ−2by, b, 0)) (c = 0)

=
∑

y ∈ Fp

φ1(b)φ2(aζ−2by)

= φ1(b)
∑

y ∈ Fp

φ2(aζ−2by).

If b 6= 0 and φ2 = 1, we have χρ(a, b, 0) = pφ1(b). If b 6= 0, and φ2 is not the trivial

character, then aζ−2by runs through all of the elements of Fp. This implies χρ(a, b, 0) = 0.

If b = 0, then our element is of the form (a, 0, 0) and that lies in the center of Hp. So,

χρ(a, 0, 0) = φ1(0) · p · φ2(a) = pφ2(a). Consider the following grouping of the conjugacy

classes:

(1) p conjugacy classes of size 1 in the center.

(2) p− 1 conjugacy classes of size p of the form (∗, 0, c) with c 6= 0.

(3) p(p− 1) = p2 − p classes of size p of the form (∗, b, c) with b 6= 0.

We have two cases to check for the irreducibility of χρ: φ2 = 1 and φ2 6= 1. We

compute the inner product to determine irreducibility:
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Case φ2 = 1 :

1

|Hp|
∑
t∈Hp

χ̄ρ(t)χρ(t) =
1

p3

[
p · p2 + p(p− 1) · (p · |φ1(c)|)2 + (p2 − p) · p · 03

]
=

1

p3

[
p3 + (p2 − p)p2 + 0

]
=

1

p3

[
p3 + p4 − p3

]
=

1

p3
· p4

= p

6= 1.

Case φ2 6= 1 :

1

|Hp|
∑
t∈Hp

χ̄ρ(t)χρ(t) =
1

p3

[
p · [p · |φ2(a)|]2 + p(p− 1) · 02 + (p2 − p) · p · 03

]
=

1

p3

[
p · p2 · 1

]
=

1

p3

[
p3
]

= 1.

So only for the case φ2 6= 1, χρ is irreducible.

χρ((a, b, c)) =

 pφ2(a) (a, b, c) ∈ Z(Hp)

otherwise.

Recalling that the one dimensional character ξ of Hp was determined to be ξ(a, b, c) =

φ1(b)φ2(c) where φ1 and φ2 are the one-dimensional characters of Fp, we can now sum-

marize the character table for Hp:

(5): p-dim. representation ρ from induction of modulation subgroup

Fix a character φ2. Then there exists a unique p-dimensional irreducible charac-

ter representation ρ : Hp → GLp corresponding to φ2 (according to the Table 1.1.1).
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(a, 0, 0) (a, b, c), (b, c) 6= (0, 0)

Trivial 1 1

ξ 1 φ1(b)φ2(c)

χρ pφ2(a) 0

Table 1.1.1: Character Table for Hp

We write an explicit model for this representation ρ. That is, given the generators

(ζ, 0, 0), (1, 1, 0), (1, 0, 1) ofHp, we find the matrices for each generator g. We do this using

the standard procedure. Recall the set of representatives of Hp/A as B = {(1, 0, y), y ∈

Fp}. Also, we note that

(1, 0, y1)−1(a, b, c)(1, 0, y2) = (1, 0,−y1)(a, b, c)(1, 0, y2)

= (1 · a · ζ2·0·c
p , 0 + b, c− y1)(1, 0, y2)

= (a, b, c− y1)(1, 0, y2)

= (aζ2by2 , b, c− y1 + y2)

Then ψ(aζ2by2 , b, c− y1 + y2) = 0 if c− y1 + y2 6= 0. Let yi = (1, 0, νi) for νi ∈ Fp. That

is, νi = i, i ∈ Fp. Then for g = (a, b, c) ∈ Hp,

ρ((a, b, c)) =



ψ
(
y−1

0 gy0

)
ψ
(
y−1

0 gy1

)
· · · ψ

(
y−1

0 gyp−1

)
ψ
(
y−1

1 gy0

)
ψ
(
y−1

1 gy1

)
· · · ψ

(
y−1

1 gyp−1

)
...

...
...

...

ψ
(
y−1
p−1gy0

)
ψ
(
y−1
p−1gy1

)
· · · ψ

(
y−1
p−1gyp−1

)



=



ψ(aζ2b·0, b, c− 0 + 0) · · · ψ(aζ2b·(p−1), b, c− 0 + (p− 1)

ψ(aζ2b·0, b, c− 1 + 0) · · · ψ(aζ2b(̇p−1), b, c− 1 + (p− 1))

...
...

...

ψ(aζ2b·0, b, c− (p− 1) + 0) · · · ψ(aζ2b(p−1), b, c− (p− 1) + (p− 1))
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=



ψ(a, b, c) · · · ψ(aζ2b(p−1), b, c+ (p− 1))

ψ(a, b, c− 1) · · · ψ(aζ2b(p−1), b, c− 1 + (p− 1))

...
...

...

ψ(a, b, c− (p− 1)) · · · ψ(aζ2b(p−1), b, c− (p− 1) + (p+ 1)



=



ψ(a, b, c) · · · ψ(aζ2b(p−1), b, c+ (p− 1))

ψ(a, b, c− 1) · · · ψ(aζ2b(p−1), b, c− 1 + (p− 1))

...
...

...

ψ(a, b, c− (p− 1)) · · · ψ(aζ2b(p−1), b, c)


.

Since ψ(a, b, c) = 0 for c 6= 0,

ρ((ζ, 0, 0)) =



ψ(a, b, c) · · · ψ(aζ2b(p−1), b, c+ (p− 1))

ψ(a, b, c− 1) · · · ψ(aζ2b(p−1), b, c− 1 + (p− 1))

...
...

...

ψ(a, b, c− (p− 1)) · · · ψ(aζ2b(p−1), b, c)



=



ψ(ζ, 0, 0) ψ(ζ, 0, 1) · · · ψ(ζ, 0, (p− 1))

ψ(ζ, 0, 0− 1) ψ(ζ, 0, 0) · · · ψ(ζ, 0, 0− 1 + (p− 1))

...
...

...
...

ψ(ζ, 0, 0− (p− 1)) ψ(ζ, 0,−(p− 1) + 1) · · · ψ(ζ, 0, 0)
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=



ψ(ζ, 0, 0) 0 · · · 0)

0 ψ(ζ, 0, 0) · · · 0

...
...

. . .
...

0 0 · · · ψ(ζ, 0, 0)



=



φ2(ζ) 0 · · · 0

0 φ2(ζ) · · · 0

...
...

. . .
...

0 0 · · · φ2(ζ)


.

Tr(ρ(ζ, 0, 0)) = pφ2(ζ) as required.

ρ((1, 1, 0)) =



ψ(a, b, c) · · · ψ(aζ2b(p−1), b, c+ (p− 1))

ψ(a, b, c− 1) · · · ψ(aζ2b(p−1), b, c− 1 + (p− 1))

...
...

...

ψ(a, b, c− (p− 1)) · · · ψ(aζ2b(p−1), b, c)



=



ψ(1, 1, 0) · · · ψ(1ζ2(p−1), 1, 0 + p− 1)

ψ(1, 1, 0− 1) · · · ψ(1ζ2(p−1), 1, 0− 1 + (p− 1))

...
...

...

ψ(1, 1, 0− (p− 1)) · · · ψ(1ζ2(p−1), 1, 0)
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=



ψ(1, 1, 0) · · · ψ(ζ2(p−1), 1, p− 1)

ψ(1, 1,−1) · · · ψ(ζ2(p−1), 1, p− 1)

ψ(1, 1,−2) · · · ψ(ζ2(p−1), 1, p− 1)

...
...

...

ψ(1, 1,−(p− 1)) · · · ψ(ζ2(p−1), 1, (p− 1)− (p− 1))



=



ψ(1, 1, 0) 0 0 · · · 0

0 ψ(ζ2, 1, 0) 0 · · · 0

0 0 ψ(ζ4, 1, 0) · · · 0

...
...

...
...

...

0 0 0 · · · ψ(ζ2(p−1), 1, 0)



ρ((1, 1, 0)) =



φ2(1) 0 0 · · · 0 0

0 φ2(ζ2) 0 · · · 0 0

0 0 φ2(ζ4) · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 0 φ2(ζ2(p−1))



=



1 0 0 · · · 0 0

0 ζ2 0 · · · 0 0

0 0 ζ4 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 0 ζ2(p−1)


.

Tr(ρ(1, 1, 0)) =
∑p−1

n=0 φ2(ζ2n) =
∑p−1

n=0 ζ
2n = 0 is as required.



23

ρ((1, 0, 1)) =



ψ(a, b, c) · · · ψ(aζ2b(p−1), b, c+ (p− 1))

ψ(a, b, c− 1) · · · ψ(aζ2b(p−1), b, c− 1 + (p− 1))

...
...

...

ψ(a, b, c− (p− 1)) · · · ψ(aζ2b(p−1), b, c)



=



ψ(1, 0, 1) · · · ψ(1ζ2·0·(p−1), 0, 1 + (p− 1))

ψ(1, 0, 1− 1) · · · ψ(1ζ2·0·(p−1), 0, 0− 1 + (p− 1))

...
...

...

ψ(1, 0, 1− (p− 1)) · · · ψ(1ζ2·0·(p−1), 0, 1)



ρ((1, 0, 1)) =



ψ(1, 0, 1) · · · ψ(1, 0, 1 + (p− 1))

ψ(1, 0, 0) · · · ψ(1, 0, 1− 1 + (p− 1))

...
...

...

ψ(1, 0, 1− (p− 1)) · · · ψ(1, 0, 1)



=



ψ(1, 0, 1) ψ(1, 0, 2) · · · ψ(1, 0, 0)

ψ(1, 0, 0) ψ(1, 0, 1) · · · ψ(1, 0, (p− 1))

...
...

...
...

ψ(1, 0, 1− (p− 1)) ψ(1, 0, 2− (p− 1)) · · · ψ(1, 0, 1)
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=



0 0 0 · · · 0 φ2(1)

φ2(1) 0 0 · · · 0 0

0 φ2(1) 0 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · φ2(1) 0



=



0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 1 0


.

Tr(ρ(1, 0, 1)) = 0 is as required.

1.1.5 Summary

A “natural character’ of νp is defined to be the inclusion of νp into C that corresponds

to φ2 = 1, the identity. So we proved for each prime p, there exists a unique (up to

isomorphism) irreducible representation of Hp such that νp acts by its natural character.

This is the so-called “Stone-von-Neumann-Mackey Theorem” [12]:

Theorem 1.1.9 (Mackey-Stone-von Neumann). For fixed non-trivial (unitary) central

character, up to isomorphism there is a unique irreducible (unitary) representation of

the Heisenberg group with that central character. Further, any (unitary) representation

with that central character is a multiple of that irreducible.

We have proven the following theorem.

Theorem 1.1.10. All irreducible representations of Hp can be realized over the ring

Z[ζp].

Since Hp is solvable of exponent p, this falls under the integrality cited by Riese[26,
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Thm 1.], so the result is not new, but we provided explicit models for all the represen-

tations.

1.1.6 Examples for the rep. induced by the translation subgroup

To make things even more explicit, we take p = 2 and p = 3 and write down the

matrices of the 2,3- dimensional representations with φ2 = 1.

Two Dimensional Representations with φ2 = 1

Take p = 2. |H2| = 8. ζ2 = −1. The generators are (−1, 0, 0), (1, 1, 0), are (1, 0, 1).

The eight elements of H2 and their representations are

(−1, 0, 0) 7→

φ2(−1) 0

0 φ2(−1)

 =

1 0

0 1



(1, 0, 1) 7→

 0 φ2(1)

φ2(1) 0

 =

0 1

1 0



(1, 1, 0) 7→

φ2(1) 0

0 φ2(ζ2
2 )

 =

1 0

0 1



(−1, 0, 0)(−1, 0, 0) = ((−1)(−1)ζ2·0·0
2 , 0 + 0, 0 + 0) = (1, 0, 0)

(1, 0, 0) 7→

φ2(1) 0

0 φ2(1)

 =

1 0

0 1



(1, 0, 1)(1, 1, 0) = ((1)(1)ζ2·0·0
2 , 0 + 1, 1 + 0) = (1, 1, 1)

(1, 1, 1) 7→

0 1

1 0


1 0

0 1

 =

0 1

1 0



(−1, 0, 0)(1, 1, 0) = ((−1)(1)ζ2·0·0, 0 + 1, 0 + 0) = (−1, 1, 0)
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(−1, 1, 0) 7→

1 0

0 1


1 0

0 1

 =

1 0

0 1



(−1, 0, 0)(1, 0, 1) = ((−1)(1)ζ2·0·1, 0 + 0, 0 + 1) = (−1, 0, 1)

(−1, 0, 1) 7→

1 0

0 1


0 1

1 0

 =

0 1

1 0


and

(−1, 1, 0)(1, 0, 1) = ((−1)(1)ζ2·1·1, 1 + 0, 0 + 1) = (−1, 1, 1)

(−1, 1, 1) 7→

1 0

0 1


0 1

1 0

 =

0 1

1 0

 .
Table 1.1.2 summarizes the results.

Element Representation

(1, 0, 0) (−1, 0, 0)
(1, 1, 0) (−1, 1, 0)

[
1 0
0 1

]

(−1, 1, 1) (−1, 0, 1)
(1, 1, 1) (1, 0, 1)

[
0 1
1 0

]

Table 1.1.2: Table of representations for H2 with φ2 = 1

Three Dimensional Representations with φ2 = 1

Take p = 3. |H3| = 27. ζ3 = exp(2πi/3) = 1
2
(−1 +

√
3). The generators are (ζ3, 0, 0),

(1, 1, 0), are (1, 0, 1). The 27 elements of H3 and their representations with φ2 = 1:



27

(ζ3, 0, 0) 7→


ζ3 0 0

0 ζ3 0

0 0 ζ3

 , (ζ2
3 , 0, 0) 7→


ζ2

3 0 0

0 ζ2
3 0

0 0 ζ2
3

 , (ζ3
3 , 0, 0) 7→


1 0 0

0 1 0

0 0 1

 ,

(1, 0, 1) 7→


0 0 1

1 0 0

0 1 0

 , (1, 1, 0) 7→


1 0 0

0 ζ2
3 0

0 0 ζ4
3

 =


1 0 0

0 ζ2
3 0

0 0 ζ3

 ,

(ζ3, 0, 0)(1, 0, 1) = (ζ3(1)ζ2·0·1
3 , 0, 1) = (ζ3, 0, 1)

(ζ3, 0, 1) 7→


ζ3 0 0

0 ζ3 0

0 0 ζ3




0 0 1

1 0 0

0 1 0

 =


0 0 ζ3

ζ3 0 0

0 ζ3 0

 ,

(ζ3, 0, 1)(1, 0, 1) = (ζ3(1)ζ2·0·1
3 , 0 + 0, 1 + 1) = (ζ3, 0, 2)

(ζ3, 0, 2) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0




0 0 1

1 0 0

0 1 0

 =


0 ζ3 0

0 0 ζ3

ζ3 0 0

 ,

(ζ2
3 , 0, 0)(1, 0, 1) = (ζ2

3 (1)ζ2·0·1
3 , 0, 1) = (ζ2

3 , 0, 1)

(ζ2
3 , 0, 1) 7→


ζ2

3 0 0

0 ζ2
3 0

0 0 ζ2
3




0 0 1

1 0 0

0 1 0

 =


0 0 ζ2

3

ζ2
3 0 0

0 ζ2
3 0

 ,

(ζ3, 0, 0)(1, 1, 0) = (ζ3(1)ζ2·0·0
3 , 1, 0) = (ζ3, 1, 0)
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(ζ3, 1, 0) 7→


ζ3 0 0

0 ζ3 0

0 0 ζ3




1 0 0

0 ζ2
3 0

0 0 ζ3

 =


ζ3 0 0

0 1 0

0 0 ζ2
3

 ,

(ζ2
3 , 0, 0)(1, 1, 0) = (ζ2

3 (1)ζ2·0·0
3 , 1, 0) = (ζ2

3 , 1, 0)

(ζ2
3 , 1, 0) 7→


ζ2

3 0 0

0 ζ2
3 0

0 0 ζ2
3




1 0 0

0 ζ2
3 0

0 0 ζ3

 =


ζ2

3 0 0

0 ζ3 0

0 0 1

 ,

(1, 0, 1)(ζ3, 1, 0) = ((1)ζ3 · ζ2·0·0
3 , 1, 1) = (ζ3, 1, 1)

(ζ3, 1, 1) 7→


0 0 1

1 0 0

0 1 0



ζ3 0 0

0 1 0

0 0 ζ2
3

 =


0 0 ζ2

3

ζ3 0 0

0 1 0

 ,

(1, 0, 1)(1, 0, 1) = ((1)(1)ζ2·0·1
3 , 0, 2) = (1, 0, 2)

(1, 0, 2) 7→


0 0 1

1 0 0

0 1 0




0 0 1

1 0 0

0 1 0

 =


0 1 0

0 0 1

1 0 0

 ,

(1, 1, 0)(1, 1, 0) = ((1)(1)ζ2·1·0
3 , 2, 0) = (1, 2, 0)

(1, 2, 0) 7→


1 0 0

0 ζ2
3 0

0 0 ζ3




1 0 0

0 ζ2
3 0

0 0 ζ3

 =


1 0 0

0 ζ3 0

0 0 ζ2
3

 ,

(1, 0, 1)(1, 1, 0) = ((1)(1)ζ2·0·0
3 , 1, 1) = (1, 1, 1)
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(1, 1, 1) 7→


0 0 1

1 0 0

0 1 0




1 0 0

0 ζ2
3 0

0 0 ζ3

 =


0 0 ζ3

1 0 0

0 ζ2
3 0

 ,

(ζ3, 0, 1)(1, 1, 1) = (ζ3(1)ζ2·0·1
3 , 0 + 1, 1 + 1) = (ζ3, 1, 2)

(ζ3, 1, 2) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0




0 0 ζ3

1 0 0

0 ζ2
3 0

 =


0 1 0

0 0 ζ2
3

ζ3 0 0

 ,

(1, 0, 2)(1, 1, 0) = ((1)(1)ζ2·0·0, 1, 2) = (1, 1, 2)

(1, 1, 2) 7→


0 1 0

0 0 1

1 0 0




1 0 0

0 ζ2
3 0

0 0 ζ3

 =


0 ζ2

3 0

0 0 ζ3

1 0 0

 ,

(1, 0, 1)(1, 2, 0) = ((1)(1)ζ2·0·0
3 , 2, 1) = (1, 2, 1)

(1, 2, 1) 7→


0 0 1

1 0 0

0 1 0




1 0 0

0 ζ3 0

0 0 ζ2
3

 =


0 0 ζ2

3

1 0 0

0 ζ3 0

 ,

(1, 1, 2)(1, 1, 0) = ((1)(1)ζ2·1·0, 2, 2) = (1, 2, 2)

(1, 2, 2) 7→


0 ζ2

3 0

0 0 ζ3

1 0 0




1 0 0

0 ζ2
3 0

0 0 ζ3

 =


0 ζ3 0

0 0 ζ2
3

1 0 0

 ,

(ζ3, 1, 0)(ζ3, 1, 0) = (ζ3 · ζ3 · ζ2·1·0
3 , 1 + 1, 0) = (ζ2

3 , 2, 0)
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(ζ2
3 , 2, 0) 7→


ζ3 0 0

0 1 0

0 0 ζ2
3



ζ3 0 0

0 1 0

0 0 ζ2
3

 =


ζ2

3 0 0

0 1 0

0 0 ζ3

 ,

(ζ3, 0, 1)(ζ3, 0, 1) = (ζ3 · ζ3 · ζ2·0·1
3 , 0 + 0, 1 + 1) = (ζ2

3 , 0, 2)

(ζ2
3 , 0, 2) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0




0 0 ζ3

ζ3 0 0

0 ζ3 0

 =


0 ζ2

3 0

0 0 ζ2
3

ζ2
3 0 0

 ,

(ζ2
3 , 2, 0)(ζ3, 0, 1) = (ζ2

3 · ζ3 · ζ2·2·1
3 , 2 + 0, 0 + 1) = (ζ2

3 , 2, 1)

(ζ2
3 , 2, 1) 7→


ζ2

3 0 0

0 1 0

0 0 ζ3




0 0 ζ3

ζ3 0 0

0 ζ3 0

 =


0 0 1

ζ3 0 0

0 ζ2
3 0

 ,
(duplicate and it agrees with the previous result: )

(ζ3, 0, 1)(1, 1, 0) = (ζ3(1)ζ0·0
3 , 0 + 1, 1 + 1) = (ζ3, 1, 1)

(ζ3, 1, 1) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0




1 0 0

0 ζ2
3 0

0 0 ζ3

 =


0 0 ζ2

3

ζ3 0 0

0 1 0

 ,

(ζ2
3 , 1, 0)(ζ3, 1, 1) = (ζ2

3 · ζ3 · ζ2·1·1
3 , 1 + 1, 0 + 1) = (ζ3, 2, 1)

(ζ3, 2, 1) 7→


ζ2

3 0 0

0 ζ3 0

0 0 1




0 0 ζ2
3

ζ3 0 0

0 1 0

 =


0 0 ζ3

ζ2
3 0 0

0 1 0

 ,

(ζ3, 2, 1)(ζ3, 0, 2) = (ζ3 · ζ3 · ·ζ2·2·2
3 , 2 + 0, 1 + 2) = (ζ3, 2, 0)
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(ζ3, 2, 0) 7→


0 0 ζ3

ζ2
3 0 1

0 1 0




0 ζ3 0

0 0 ζ3

ζ3 0 0

 =


ζ2

3 0 0

0 1 0

0 0 ζ3

 ,

(ζ3, 0, 1)(ζ3, 1, 1) = (ζ3 · ζ3 · ζ2·0·1
3 , 0 + 1, 1 + 1) = (ζ2

3 , 1, 2)

(ζ2
3 , 1, 2) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0




0 0 ζ2
3

ζ3 0 0

0 1 0

 =


0 ζ3 0

0 0 1

ζ2
3 0 0

 ,

(ζ3, 0, 1)(ζ3, 2, 1) = (ζ3 · ζ3 · ζ2·0·1
3 , 0 + 2, 1 + 1) = (ζ2

3 , 2, 2)

(ζ2
3 , 2, 2) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0




0 0 ζ3

ζ2
3 0 0

0 1 0

 =


0 ζ3 0

0 0 ζ2
3

1 0 0

 ,

(ζ3, 0, 1)(ζ3, 1, 0) = (ζ3 · ζ3 · ζ2·0·0
3 , 0 + 1, 1 + 0) = (ζ2

3 , 1, 1)

(ζ2
3 , 1, 1) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0



ζ3 0 0

0 1 0

0 0 ζ2
3

 =


0 0 1

ζ2
3 0 0

0 ζ3 0

 ,
and

(ζ3, 1, 1)(ζ2
3 , 1, 1) = (ζ3 · ζ2

3 · ζ2·1·1
3 , 1 + 1, 1 + 1) = (ζ3, 2, 2)

(ζ3, 2, 2) 7→


0 0 ζ2

3

ζ3 0 0

0 1 0




0 0 1

ζ2
3 0 0

0 ζ3 0

 =


0 1 0

0 0 ζ3

ζ2
3 0 0

 .

The following table, Table 1.1.3, summarizes the representations.
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(ζ3, 0, 0) 7→


ζ3 0 0

0 ζ3 0

0 0 ζ3

 (ζ3, 0, 1) 7→


0 0 ζ3

ζ3 0 0

0 ζ3 0

 (ζ3, 0, 2) 7→


0 ζ3 0

0 0 ζ3

ζ3 0 0



(ζ3, 1, 0) 7→


ζ3 0 0

0 1 0

0 0 ζ2
3

 (ζ3, 1, 1) 7→


0 0 ζ2

3

ζ3 0 0

0 1 0

 (ζ3, 1, 2) 7→


0 1 0

0 0 ζ2
3

ζ3 0 0



(ζ3, 2, 0) 7→


ζ2

3 0 0

0 1 0

0 0 ζ3

 (ζ3, 2, 1) 7→


0 0 ζ3

ζ2
3 0 0

0 1 0

 (ζ3, 2, 2) 7→


0 1 0

0 0 ζ3

ζ2
3 0 0



(ζ2
3 , 0, 0) 7→


ζ2

3 0 0

0 ζ2
3 0

0 0 ζ2
3

 (ζ2
3 , 0, 1) 7→


0 0 ζ2

3

ζ2
3 0 0

0 ζ2
3 0

 (ζ2
3 , 0, 2) 7→


0 ζ2

3 0

0 0 ζ2
3

ζ2
3 0 0



(ζ2
3 , 1, 0) 7→


ζ2

3 0 0

0 ζ3 0

0 0 1

 (ζ2
3 , 1, 1) 7→


0 0 1

ζ2
3 0 0

0 ζ3 0

 (ζ2
3 , 1, 2) 7→


0 ζ3 0

0 0 1

ζ2
3 0 0
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(ζ2
3 , 2, 0) 7→


ζ2

3 0 0

0 1 0

0 0 ζ3

 (ζ2
3 , 2, 1) 7→


0 0 1

ζ3 0 0

0 ζ2
3 0

 (ζ2
3 , 2, 2) 7→


0 ζ3 0

0 0 ζ2
3

1 0 0



(1, 0, 0) 7→


1 0 0

0 1 0

0 0 1

 (1, 0, 1) 7→


0 0 1

1 0 0

0 1 0

 (1, 0, 2) 7→


0 1 0

0 0 1

1 0 0



(1, 1, 0) 7→


1 0 0

1 ζ2
3 0

0 0 ζ3

 (1, 1, 1) 7→


0 0 ζ3

1 0 0

0 ζ2
3 0

 (1, 1, 2) 7→


0 ζ2

3 0

0 0 ζ3

1 0 0



(1, 2, 0) 7→


1 0 0

0 ζ3 0

0 0 ζ2
3

 (1, 2, 1) 7→


0 0 ζ2

3

1 0 0

0 ζ3 0

 (1, 2, 2) 7→


0 ζ3 0

0 0 ζ2
3

1 0 0



Table 1.1.3: Table of representations for H3 with φ2 = 1.
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1.2 Automorphism group of Hp

What is the automorphism group of Hp? Let AutSym
νp (Hp) denote the group of auto-

morphisms of Hp that fix the center, νp, of Hp. The claim is that for φ′ ∈ Aut(Hp),

Aut(Hp) SL2(Z/pZ)

φ′ φ ∈ [ a b
c d ]

.

Given

νp ⊆ Hp GLp(C)

νp 3 ζp


ζp 0

. . .

0 ζp



ρ

where µp → C× and ζp → ζp, we have

Hp Hp GLp(C)σ ρ
.

ρσ := ρ ◦ σ is an irreducible representation of dimension p such that νp acts naturally.

This implies ρσ ∼= ρ. Call this isomorphism W(σ) ∈ PGLp(C). Recall that PGL(C) ∼=

GL(C)/Z(GL(C)). By Schur’s Lemma, W(σ)ρσ = ρW(σ). We would like to prove the

following: σ 7→W(σ) gives a representation

AutSym
νp (Hp) ∼= SL2(Z/pZ) PGLp(C).

In order to do so, we will require additional definitions and concepts.

Symplectic Group

From Wikipedia[41] we have the following definitions and facts regarding the sym-

plectic group.

Definition 1.2.1. A symplectic matrix is a 2n × 2n matrix M with entries from
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a field F that satisfies the condition MTΩM = Ω, where Ω is a non-singular, skew-

symmetric matrix. Typically, Ω is chosen to be the block matrix

Ω =

 0 In

−In 0

 ,
where In is the n × n identity matrix. The matrix Ω has determinant +1 and Ω−1 =

ΩT = −Ω. Every symplectic matrix has determinant +1.

Definition 1.2.2. A symplectic vector space vector space over a field F equipped

with a symplectic bilinear form. A symplectic bilinear form is a mapping ω : V ×V →

F that is

� bilinear

� alternating: ω(v, v) = 0 holds for all v ∈ V , and

� nondegenerate: ω(u, v) = 0 for all v ∈ V implies that u = 0.

For fields whose characteristic is not 2, alternation is equivalent to skew-symmetric.

The abstract analog of a symplectic matrix is a symplectic transformation of a

symplectic vector space. A symplectic transformation is then a linear transformation

L : V → V which preserves ω: ω(Lu, Lv) = ω(u, v).

The symplectic group is a classical group defined as the set of transformations of

a 2n-dimensional vector space over the field F which preserve a non-degenerate skew-

symmetric bilinear form. Such a vector space is called a symplectic vector space, and

the symplectic group of an abstract symplectic vector space V is denoted Sp(V ). Upon

fixing a basis for V , the symplectic group becomes the group of symplectic 2n × 2n

matrices with entries in F under the operation of matrix multiplication.

The symplectic group Sp(2,Fp) is isomorphic to SL2(Fp). To show this we use the

matrix form of the symplectic group with n = 1. Then for matrices M with entries from
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0 νp Hp Kp 0

0 νp Hp Kp 0

ψ ψ

Figure 1.2.1: Commutative diagram for the construction of Aut(Hp)

Fp, we solve the equation MTΩM = Ω with Ω = [ 0 1
−1 0 ] and letting M = [ a bc d ], we have

MTΩM =

a c

b d


 0 1

−1 0


a b

c d

 =

a c

b d


 c d

−a −b


=

ac− ac ad− bc

bc− ad bd− bd

 =

 0 ad− bc

bc− ad 0


= Ω

=

 0 1

−1 0

 .
This implies that ad − bc = 1. So detM = 1 and that implies M ∈ SL2(Fp) and every

element of SL2(Fp) satisfies the equation. So SL2(Fp) ∼= Sp(2,Fp).

1.2.1 Constructing Aut(Hp)

We rewrite the material from [11] to construct the Aut(Hp). Some notational refer-

ence for [11]: Gm,k is νp, δ is p and H(δ) is Hp. We denote by Autνp(Hp) the group of

automorphisms ψ of Hp inducing the identity on νp (that fix νp), that is, the group of

automorphisms ψ fitting in a diagram, Figure 1.2.1, [11] of the form
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The commutator pairing ep : Kp × Kp → νp sends (x1, x2) 7→ [x1, x2]. The com-

mutator pairing is a map that does not appear to be mentioned outside of Weil

Representations. The commutativity of the diagram shows that the induced automor-

phism φ is symplectic with respect to the commutator pairing. For all x1, x2 ∈ Kp,

ep(ψ(x1), ψ(x2)) = ep(x1, x2). Denote by Sp(Kp) the group of symplectic automorphisms

of Kp. In order to study the possible extensions of ψ ∈ Sp(Kp) to an element of Autνp(Hp)

it is convenient to introduce the following definition [11, Def. 13]:

Definition 1.2.3. [11, Def. 13] Let ψ ∈ Sp(Kp). A ψ-semi-character (or a semi-

character if no confusion is possible) for the canonical pairing is a map χψ : Kp → νp

such that for (x1, x2), (x′1, x
′
2) ∈ Kp,

χψ(x1 + x′1, x2 + x′2) = χψ((x1, x2) · χψ(x′1, x
′
2)) · [(ψ(x′1, x

′
2)2(ψ(x1, x2)1)] · x′2(x1)−1),

where we write ψ(x1, x2) = (ψ(x1, x2)1, ψ(x1, x2)2) (respectively ψ(x′1, x
′
2) =

(ψ(x′1, x
′
2)1, ψ(x′1, x

′
2)2)). in the canonical decomposition of Kp. A semi-character χψ is

said to be symmetric if for all (x1, x2) ∈ Kp, χψ(−(x1, x2)) = χψ(x1, x2).

1.2.2 Semi-characters

The definition, [11, Def. 13], needs to be modified for our application.

General Case

Let A ∈ SL2(Z/pZ) and let A = [ a bc d ] . For ψA ∈ AutSym
νp (Hp), we are interested in

the mapping

AutSym
νp (Hp) → SL2(Z/pZ)

ψA 7→ A.

Let ψA be the image of ψA and let χψA denote its semi-character. Then

ψA(λ1, x1, y1) = ψA(λ1, 0, 0) · ψA(1, x1, y1)

= (λ1, 0, 0) · (1 · χψA(x1, y1), ax1 + by1, cx1 + dy1)
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= (λ1, 0, 0) · (χψA(x1, y1), ax1 + by1, cx1 + dy1)

= (λχψA(x1, y1), ax1 + by1, cx1 + dy1).

For general elements, we have

ψA(λ1, x1, y1)ψA(λ2, x2, y2) = ψA(λ1λ2 · ζ2x1y2
p , x1 + x2, y1 + y2).

Since

ψA(λ1λ2 · ζ2x1y2
p , x1 + x2, y1 + y2) = (λ1λ2ζ

2x1y2
p χψA(x1 + x2, y1 + y2),

a(x1 + x2) + b(y1 + y2), c(x1 + x2) + d(y1 + y2))

and

ψA(λ1, x1, y1)ψA(λ2, x2, y2) = (λ1χψA(x1, y1), ax1 + by1, cx1 + dy1)·

(λ2χψS(x2, y2), ax2 + by2, cx2 + dy2)

= (λ1λ2χψA(x1, y1)χψA(x2, y2) · ζ2(ax1+by1)(cx2+dy2)
p ,

a(x1 + x2) + b(y1 + y2), c(x1 + x2) + d(y1 + y2)),

it is required that

λ1λ2 · ζ2x1y2
p χψA(x1 + x2, y1 + y2) = λ1λ2 · χψA(x1, y1) · χψS(x2, y2) · ζ2(ax1+by1)(cx2+dy2)

p

= λ1λ2 · χψA(x1, y1) · χψS(x2, y2)

· ζ2(acx1x2+bcy1x2+adx1y2+bdy1y2)
p .

This requires

χψA(x1 + x2, y1 + y2) = χψA(x1, y1) · χψS(x2, y2) · ζ2(acx1x2+bcy1x2+adx1y2+bdy1y2−x1y2)
p

= χψA(x1, y1) · χψS(x2, y2) · ζ2(acx1x2+bcy1x2+(ad−1)x1y2+bdy1y2)
p

= χψA(x1, y1) · χψS(x2, y2) · ζ2(acx1x2+bcy1x2+(bc)x1y2+bdy1y2)
p

= χψA(x1, y1) · χψS(x2, y2) · ζ2(acx1x2+bc(y1x2+x1y2)+bdy1y2)
p .
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So our modified definition of a semi-character is

Definition 1.2.4 (Semi-Character). Let ψ = [ a bc d ] ∈ Sp(Kp) = SL2(Z/pZ). A ψ-semi-

character for the canonical pairing is a map χψ : Kp → νp such that for (x1, x2), (x′1, x
′
2) ∈

Kp,

χψ(x1 + x′1, x2 + x′2) = χψ(x1, x2) · χψ(x′1, x
′
2) · ζ2(acx1x2+bc(y1x2+x1y2)+bdy1y2)

p .

A semi-character χψ is said to be symmetric if for all (x1, x2) ∈ Kp, χψ(−(x1, x2)) =

χψ(x1, x2).

For the generator S, ζ−2xy
p is a symmetric semi-character.

Let S ∈ SL2(Z/pZ) and let S = [ 0 −1
1 0 ] . For ψS ∈ AutSym

νp (Hp), we are interested in

the mapping

AutSym
νp (Hp) 7→ SL2(Z/pZ),

ψS → S.

Let ψS be the image of ψS and let χψS denote its semi-character. Then

ψS(λ1, x1, y1) = ψS(λ1, 0, 0) · ψS(1, x1, y1)

= (λ1, 0, 0) · (1 · χψS(x1, y1),−y1, x1)

= (λ1, 0, 0) · (χψS(x1, y1),−y1, x1)

= (λχψS(x1, y1),−y1, x1).

For general elements, we have

ψS(λ1, x1, y1)ψS(λ2, x2, y2) = ψS(λ1λ2 · ζ2x1y2
p , x1 + x2, y1 + y2).

Since

ψS(λ1λ2 · ζ2x1y2
p , x1 + x2, y1 + y2) = (λ1λ2 · ζ2x1y2

p χψS(x1 + x2, y1 + y2),

− (y1 + y2), (x1 + x2))



40

and

ψS(λ1, x1, y1)ψS(λ2, x2, y2) = (λ1χψS(x1, y1),−y1, x1)(λ2χψS(x2, y2),−y2, x2)

= (λ1λ2 · χψS(x1, y1) · χψS(x2, y2) · ζ−2y1x2
p ,

− (y1 + y2), (x1 + x2)),

it is required that

λ1λ2 · ζ2x1y2
p χψS(x1 + x2, y1 + y2) = λ1λ2 · χψS(x1, y1) · χψS(x2, y2) · ζ−2y1x2

p .

This requires

χψS(x1 + x2, y1 + y2) = χψS(x1, y1) · χψS(x2, y2) · ζ−2y1x2−2x1y2
p .

Substituting the a = 0, b = −1, c = 1, d = 0 in our definition,

ζ2(acx1x2+bc(y1x2+x1y2)+bdy1y2)
p = ζ−2(y1x2+x1y2)

p

we verify the calculation agrees with the definition. So what is χψS(x, y)? Let’s verify

that χψS(x, y) = ζ−2xy
p is a semi-character.

χψS(x1, y1)χψS(x2, y2) · ζ−2x1y1−2x2y2
p = ζ−2x1y1

p · ζ−2x2y2
p · ζ−2x2y1−2x1y2

p

= ζ−2(x1+x2)(y1+y2)
p

= χψS(x1 + x2, y1 + y2).

χψS(x, y) = ζ−2xy
p is also symmetric since

χψS(−(x, y)) = χψS(−x,−y)

= ζ−2(−x)(−y)
p

= ζ−2xy
p

= χψS(x, y).
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For the generator T , ζy
2

p is a symmetric semi-character.

Let T ∈ SL2(Z/pZ) and let T = [ 1 1
0 1 ] . For ψT ∈ AutSym

νp (Hp), we are interested in

the mapping

AutSym
νp (Hp) 7→ SL2(Z/pZ),

ψT → T.

Let ψT be the image of ψT and let χψT denote its semi-character. Then

ψT (λ1, x1, y1) = ψT (λ1, 0, 0) · ψT (1, x1, y1)

= (λ1, 0, 0) · (1 · χψT (x1, y1), x1 + y1, y1)

= (λ1, 0, 0) · (χψT (x1, y1), x1 + y1, y1)

= (λχψT (x1, y1), x1 + y1, y1).

For general elements, we have

ψT (λ1, x1, y1)ψT (λ2, x2, y2) = ψT (λ1λ2 · ζ2x1y2
p , x1 + x2, y1 + y2).

Since

ψT (λ1λ2 · ζx1y2p , x1 + x2, y1 + y2) = (λ1λ2 · ζx1y2p χψT (x1 + x2, y1 + y2),

(x1 + y1 + x2 + y2), (y1 + y2))

and

ψT (λ1, x1, y1)ψT (λ2, x2, y2) = (λ1χψT (x1, y1), x1 + y1, y1)(λ2χψT (x2, y2), x2 + y2, y2)

= (λ1λ2 · χψT (x1, y1) · χψT (x2, y2) · ζ2(x1+y1)y2
p ,

(x1 + y1 + x2 + y2), (y1 + y2)),

it is required that

λ1λ2 · ζ2x1y2
p χψT (x1 + x2, y1 + y2) = λ1λ2 · χψT (x1, y1) · χψT (x2, y2) · ζ2(x1+y1)y2

p .
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This requires

χψT (x1 + x2, y1 + y2) = χψT (x1, y1) · χψT (x2, y2) · ζ2y1y2
p .

Letting a = 1, b = 1, c = 0, and d = 1, we see that for χψT , letting

ζ2(acx1x2+bc(y1x2+x1y2)+bdy1y2)
p = ζ2y1y2

p

meets the definition of a semi-character. Lets determine if χψT (x, y) = ζx
2

p is a semi-

character.

χψT (x1, y1)χψT (x2, y2) · ζ2y1y2
p = ζx

2
1

p · ζx
2
2

p · ζ2y1y2
p = ζ(x21+x22+2y1y2)

p

and

χψT (x1 + x2, y1 + y2) = ζ(x1+x2)2

p = ζ(x21+2x1x2+x22)
p

show that χψT (x, y) = ζx
2

p is NOT a semi-character.

Lets determine if χψT (x, y) = ζy
2

p is a semi-character.

χψT (x1, y1)χψT (x2, y2) · ζ2y1y2
p = ζy

2
1
p · ζy

2
2
p · ζ2y1y2

p = ζ(y21+y22+2y1y2)
p = ζ(y1+y2)2

p

and

χψT (x1 + x2, y1 + y2) = ζ(y1+y2)2

p = ζ(y21+2y1y2+y22)
p

show that χψT (x, y) = ζy
2

p is a semi-character. χψT (x, y) = ζy
2

p is also symmetric since

χψT (−(x, y)) = χψT (−x,−y) = ζ(−y)2

p = ζy
2

p = χψT (x, y).

The ST and its semicharacter

Can we determine semicharacters of an arbitrary element of SL2(Z/pZ)? We have

ST =

0 −1

1 0


1 1

0 1

 =

0 −1

1 1
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and

ψST (λ, x, y) = (ψS ◦ ψT )(λ, x, y)

= ψS(λχψ(x, y), x+ y, y))

= ψS(λζy
2

p , x+ y, y))

= (λζy
2

p ζ
−2(x+y)(y)
p ,−y, (x+ y))

= (λζy
2−2xy−2y2

p ,−y, (x+ y))

= (λζ−y
2−2xy

p ,−y, (x+ y)).

Is ζ−y
2−2xy

p a semicharacter for ST? We have

χψST (x1 + x2, y1 + y2) = ζ−(y1+y2)2−2(x1+y1)(y1+y2)
p

= ζ−y
2
1−2y1y2−y22−2x1y1−2x1y2−2x2y1−2x2y2

p

and

χψST (x1, y1)χψST (x2, y2)ζ2(acx1x2+bc(y1x2+x1y2)+bdy1y2)
p =

= χψST (x1, y1)χψST (x2, y2)ζ2(0cx1x2+(−1)(1)(y1x2+x1y2)+(−1)(1)y1y2)
p

= χψST (x1, y1)χψST (x2, y2)ζ2(−y1x2−x1y2−y1y2)
p

= ζ−y
2
1−2x1y1

p ζ−y
2
2−2x2y2

p ζ−2y1x2−2x1y2−2y1y2
p

= ζ−y
2
1−2x1y1−y22−2x2y2−2y1x2−2x1y2−2y1y2

p

= ζ−y
2
1−2y1y2−y22−2x1y1−2x1y2−2x2y1−2x2y2

p .

So it is a semi-character and it is also symmetric:

χψST (−(x, y)) = χψST (−x,−y) = ζ(−y)2−2(−x)(−y)
p = ζ−y

2−2xy
p = χψST (x, y).

The above illustrates how to obtain the semi-character for a given element of SL2(Z/pZ).

Definition 1.2.3 and its modification 1.2.4 were motivated by the following lemma[11,

Lem. 14].
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Lemma 1.2.5. [11, Lem. 14] Let ψ ∈ Autνp Hp and let ψ be the associated symplectic

automorphism of Kp. Then there exists a unique semi-character χψ such that for all

(α, (x1, x2)) ∈ Hp,

ψ : (α, (x1, x2)) 7→ (αχψ((x1, x2), ψ((x1, x2)). (1.2.1)

As a consequence, if ψ ∈ Sp(Kp) there is a one on one correspondence between the set

of extensions of ψ to Autνp Hp and the set of semi-characters.

Proof. Note that (1.2.1) uniquely defines a map χψ given ψ, and conversely also uniquely

defines a map ψ and given ψ. Moreover, by writing out the definitions χψ is a semichar-

acter if and only if ψ is a homomorphism.

1.2.3 ψc is an automorphism

Switching notations for convenience, let

Kp := Z/pZ× Z/pZ,

and define the map

ep : Kp ×Kp → νp ⊂ C×

where

(x1, y1, x2, y2) 7→ ζ2(x1y2−y1x2)
p .

Proposition 1.2.6. Let c ∈ Kp and ψc((λ, x, y)) := (λep(c, (x, y)), x, y). Then ψc is an

automorphism that fixes the center of Hp.

Proof. It is clear that the image of ψc lies in Hp. We next verify that ψc is a homomor-

phism. Fix c = (c1, c2) ∈ Kp.

ψc((λ1, x1, y1))ψc((λ2, x2, y2)) = (λ1ep(c, (x1, y1)), x1, y1)(λ2ep(c, (x2, y2)), x2, y2)
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= (λ1ep((c1, c2), (x1, y1)), x1, y1)·

(λ2ep((c1, c2), (x2, y2)), x2, y2)

= (λ1ζ
2c1y1−2c2x1
p , x1, y1)(λ2ζ

2c1y2−2c2x2
p , x2, y2)

= (λ1λ2ζ
2(c1y1−c2x1)
p ζ2(c1y2−c2x2)

p ζ2x1y2 , x1 + x2, y1 + y2)

= (λ1λ2ζ
(2c1y1−2c2x1+2c1y2−2c2x2+2x1y2)
p , x1 + x2, y1 + y2).

ψc((λ1, x1, y1)(λ2, x2, y2)) = ψc(λ1λ2ζ
2x1y2
p , x1 + x2, y1 + y2)

= (λ1λ2ζ
2x1y2
p ep((c1, c2), (x1 + x2), (y1 + y2)

= (λ1λ2ζ
2x1y2
p ζ2c1(y1+y2)−2c2(x1+x2)

p

= (λ1λ2ζ
2x1y2
p ζ2c1y1+2c1y2−2c2x1−2c2x2

p

= (λ1λ2ζ
2x1y2+2c1y1+2c1y2−2c2x1−2c2x2
p , x1 + x2, y1 + y2)

= (λ1λ2ζ
2c1y1−2c2x1+2c1y2−2c2x2+2x1y2
p , x1 + x2, y1 + y2)

= ψc((λ1, x1, y1))ψc((λ2, x2, y2)).

Since Hp is finite, it suffices to show that ψc is injective for ψc to be bijective. We have

ψc((λ1, x1, y1)) = (λ1ζ
2c1y1−2c2x1
p , x1, y1),

and

ψc((λ2, x2, y2)) = (λ2ζ
2c1y2−2c2x2
p , x2, y2).

If ψc((λ1, x1, y1)) = ψc((λ2, x2, y2)) then (λ1ζ
2c1y1−2c2x1
p , x1, y1) = (λ2ζ

2c1y2−2c2x2
p , x2, y2).

This implies x1 = x2 and y1 = y2. So we now have

(λ1ζ
2(c1y1−c2x1)
p , x1, y1) = (λ2ζ

2(c1y1−c2x1)
p , x1, y1)

which implies λ1 = λ2. So, ψc is an automorphism since it is a bijective endomorphism
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of Hp. It also fixes the center since for any element (λ, 0, 0) ∈ Z(Hp), we have

ψc((λ, 0, 0)) = (λζ2(c1·0−c2·0)
p , 0, 0) = (λ, 0, 0).

1.2.4 Kernel of Φ

Consider the map Φ from the group of automorphisms of Hp that fix the center to

the automorphisms of Kp:

Φ : Autνp(Hp)→ Aut(Kp) ∼= GL2(Z/pZ).

We would like to determine its kernel. To do this, we will need to apply a finite dimen-

sional version of the Riesz Representation Theorem.

Theorem 1.2.7 (Riesz Representation Theorem). Let V be a finite dimensional inner

product space whose inner product 〈·, ·〉 is non-degenerate and bilinear and sends

v 7→ (w 7→ 〈v, w〉).

Denote this map f . Then f is an isomorphism: f : V
∼=→ V ∗.

It is clear that Kp = Z/pZ× Z/pZ is 2-dim vector space over Fp. The map

ep : Kp ×Kp → C×

that sends

(a, b)× (c, d) 7→ ζ2(ad−bc)
p

is a symplectic bi-linear form. In other words, it is a bi-linear form (character) sometimes

called a bi-character that is non-degenerate and alternating. Let (a, b), (c, d), (m,n) ∈

Kp. Then

ep((a, b) + (c, d), (m,n)) = ep((a+ c, b+ d), (m,n))
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= ζ2((a+c)n−(b+d)m)
p

= ζ2an+2cn−2bm−2dm
p

= ζ2(an−bm)
p ζ2(cn−dm)

p

= ep((a, b), (m,n)) · ep((c, d), (m,n)),

ep(λ · (a, b), (c, d)) = ep((λa, λb), (c, d))

= ζ2λad−2λbc
p

= ζ2aλd−2bλc
p

= ep((a, b), (λc, λd))

= ep((a, b), λ · (c, d)),

and

ζλ2(ad−bc)
p =

(
ζ2(ad−bc)
p

)λ
= (ep((a, b), (c, d)))λ .

verifies bilinearity. It is non-degenerate since if ep((a, b), (c, d)) = ζ
2(ad−bc)
p = 1 for all

(c, d) ∈ Kp, then (a, b) = (0, 0) and if ep((a, b), (c, d)) = ζ
2(ad−bc)
p = 1 for all (a, b) ∈

Kp, then (c, d) = (0, 0). It is alternating since ep((a, b), (a, b)) = ζ
2(ab−ba)
p = 1 for all

(a, b) ∈ Kp. If p 6= 2, then alternation is equivalent to skew-symmetric. Recall Figure

1.2.1 diagram[11]:

1 νp Hp Kp 0

1 νp Hp Kp 0

ψ ψ .

If ψ is an automorphism of Hp, it induces an automorphism ψ of Kp. The commutativity

of the diagram shows that ψ is symplectic with respect to the commutator pairing[11].

That is, for all x, y ∈ Kp, ep(ψ(x), ψ(y)) = ep(x, y). It is a straightforward verification.
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Let a b

c d

 ∈ SL2(Z/pZ) ∼= Sp(Kp)

Let x = (u1, u2) and y = (v1, v2). Then

ψ(x) =

a b

c d


u1

u2

 =

au1 + bu2

cu1 + du2


and

ψ(y) =

a b

c d


u1

u2

 =

av1 + bv2

cv1 + dv2

 .

ep(ψ(x), ψ(y)) = ζ2(au1+bu2)(cv1+dv2)−2(cu1+du2)(av1+bv2)
p

simplifying the exponent and noting that if ψ is symplectic,

2(au1 + bu2)(cv1 + dv2)

−2(cu1 + du2)(av1 + bv2) = 2(acu1v1 + bcu2v1 + adu1v2 + bdu2v2)

− 2(cau1v1 + dau2v1 + cbu1v2 + dbu2v2)

= 2(acu1v1 + bcu2v1 + adu1v2 + dbu2v2)

− 2(acu1v1 + adu2v1 + bcu1v2 + dbu2v2)

= 2(bcu2v1 + adu1v2)− 2(adu2v1 + bcu1v2)

= 2u2v1(bc− ad) + 2u1v2(ad− bc)

= −2u2v1(ad− bc) + 2u1v2(ad− bc))

= −2u2v1 + 2u1v2

= 2u1v2 − 2u2v1

= 2(u1v2 − u2v1).
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So,

ep(ψ(x), ψ(y)) = ζ2(u1v2−u2v1)
p

= ep(x, y).

Another way to see this is to note that the commutativity of the diagram implies the

commutator map of the upper row is the pullback via ψ of the commutator map of the

lower row[3][Lem 6.6.3, page 161]. But

(α, u1, u2)(β, v1, v2)(α, u1, u2)−1(β, v1, v2)−1

= (α, u1, u2)(β, v1, v2)((α−1ζ2u1u2
p ,−u1,−u2)(β−1ζ2v1v2

p ,−v1,−v2)

= (αβζ2u1v2
p , u1 + v1, u1 + v2)(α−1β−1ζ2u1u2+2v1v2

p ζ2(−u1)(−v2)
p ,−u1 − v1,−u2 − v2)

= (ζ2u1u2+4u1v2+2v1v2
p · ζ2(u1+v1)(−u2−v2)

p , 0, 0)

= (ζ2u1u2+4u1v2+2v1v2
p · ζ−2(u1u2+v1u2+u1v2+v1v2)

p , 0, 0)

= (ζ2u1u2+4u1v2+2v1v2−2u1u2−2v1u2−2u1v2−2v1v2)
p , 0, 0)

= (ζ2(u1v2−v1u2)
p , 0, 0)

= (ζ2(u1v2−u2v1)
p , 0, 0)

= (ep(x, y), 0, 0).

for all (α, u1, u2)(β, v1, v2) ∈ Hp. So the induced isomorphism (automorphism) ψ is a

symplectic isormorphism with respect to the form ep.

In order to study Autνp(Hp), we consider the symplectic group Sp(Kp) consist-

ing of all automorphims of Kp which preserve the alternating form ep[3]. Every ele-

ment of Autνp(Hp) induces a symplectic isomorphism of Kp. This gives a homomor-

phism Φ : Autνp(Hp) → Sp(Kp). One the other hand, any c ∈ Kp defines an au-

tomorphism ψc ∈ Autνp(Hp), namely ψc(λ, x1, x2) = (λep(c, (x1, x2), x1, x2)) for all

(λ, x1, x2) ∈ Hp. Since ep is nondegenerate, the assignment c 7→ ψc is an injective
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homomorphism Ψ : Kp → Autνp(Hp). Any ϕ ∈ ker Φ is necessarily of the form

ϕ(λ, x1, x2) = (λg(x1, x2), x1, x2). The function g : Kp → C× is linear since ϕ is a ho-

momorphism. By the Riesz representation theorem, g(x1, x2) = ep(c, (x1, x2)) for some

c ∈ Kp. Let ψc denote these automorphisms instead of ϕ.

So the number of such automorphisms ψc is p2. We will show this set is a group with

the operation being composition. It is clear that the operation is closed. The operation

is associative since function composition is associative. Lets verify. For a, b, c ∈ Kp, we

have

((ψa ◦ ψb) ◦ ψc)(λ, x, y) = ((ψa ◦ ψb)(ψc(λ, x, y)

= ((ψa ◦ ψb)(λζ2(c1y−c2x)
p , x, y)

= ψa(ψb((λζ
2(c1y−c2x)
p , x, y))

= ψa((λζ
2(c1y−c2x)
p ζ2(b1y−b2x

p ), x, y))

= (λζ2(c1y−c2x)
p ζ2(b1y−b2x)

p ζ2(a1y−a2x)
p , x, y))

and

((ψa ◦ ψb) ◦ ψc)(λ, x, y) = (ψa(ψb(ψc(λ, x, y)))

= ψa(ψb((λζ
2(c1y−c2x)
p , x, y))

= ψa((λζ
2(c1y−c2x)
p ζ2(b1y−b2x)

p , x, y))

= (λζ2(c1y−c2x)
p ζ2(b1y−b2x)

p ζ2(a1y−a2x)
p , x, y))

which shows associativity holds. It has the identity, taking c = (0, 0) gives us the identity

automorphism. ψ(0,0)(λ, x, y) = (λ · ζ2·(0y−0x)
p , x, y) = (λ, x, y) for all (λ, x, y) ∈ Hp.

ψc has an inverse namely ψ−c.

(ψc ◦ ψ−c)(λ, x, y) = ψc(ψ−c)(λ, x, y))

= ψc(λζ
−2c1y1+2c2x1
p , x1, y1)
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= (λζ−2c1y1+2c2x1
p ζ2c1y1−2c2x1

p , x1, y1)

= (λ, x, y)

shows that ψc has an inverse. That inverse is also unique.

So the set of ψc forms a group. Its order is p2. So it is isomorphic to either Z/p2Z

or Z/pZ× Z/pZ. Since Z/p2Z is cyclic it has a generator but our group of ψc does not.

Fixing a c = (c1, c2) ∈ Kp,

(ψc)
n(λ, x, y) = (λζ2n(c1y−c2x)

p , x, y) = (λζ2nc1y−2nc2x
p , x, y).

As n ranges from 0 to p2 − 1, (2nc1, 2nc2) will not generate every element of Kp. There

are p − 1 multiples of p in this range. So there will be p − 1 values of n that send

(2nc1, 2nc2) to (0, 0). Therefore it will not generate the group.

Since c ∈ Kp and Kp is not cyclic (because gcd(p, p) = p 6= 1), our group of ψc is not

cyclic. So it must be that it is isomorphic to Z/pZ× Z/pZ = Kp.

So we have our desired result:

Theorem 1.2.8. Given

Φ : Autνp(Hp)→ Sp(Kp) ∼= SL2(Fp),

ker(Φ) ∼= Kp and ψc ∈ Autνp(Hp) is mapped to c ∈ Kp.

An automorphism ψ ∈ Autνp(Hp) is symmetric if it commutes with the action

(α, x, y) 7→ (α,−x,−y) on Hp. We also have a theorem for symmetric automorphisms.

Theorem 1.2.9. For symmetric automorphisms,

Φ : AutSym
νp (Hp)→ Sp(Kp) ∼= SL2(Fp),

ker(Φ) ∼= Kp[2], the subgroup of 2-torsion of Kp.



52

Proof. Let c = (c1, c2). By definition of a symmetric automorphism, we must have

ψc(λ,−x,−y) = ψc(λ, x, y).

Since

ψc(λ,−x,−y) = (λζ−2c1y+2c2x
p ,−x,−y)

and

ψc(λ, x, y) = (λζ2c1y−2c2x
p , x, y),

we have

ep(c, (−x,−y)) = ep(c, (x, y)).

Since

ep(c, (x, y))−1 = (ζ2(c1y−c2x)
p )−1 = ζ−2c1y+2c2x

p = ep(−c, (x, y)),

we have that

ep(c, x, y) = ep(−c, x, y)

which implies c = −c. In field whose characteristic is not two, i.e., p ≥ 3, c = 0. For

p = 2, we have ker(Φ) ∼= Kp[2].

1.3 Explicit Weil Rep. for induction by the modulation subgroup

We have Hp as our Heisenberg group. There is a unique map

σ : Hp → GLp(C) = GL(V )

such that it is irreducible and νp ⊂ Hp acts by scalar multiplication. Explicitly,

V = { functions: Z/pZ→ C}
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where dimC V = p has a canonical basis of “delta functions”: δx : Z/pZ → C where

0 7→ 0, 1 7→ 0, · · · , x 7→ 1,
..., p− 1 7→ 0. So σ : Hp → GL(V ) has three types of maps:

(1) Scaling: (ζ, 0, 0) 7→ (δν 7→ ζδν) where (δν 7→ ζδν) in matrix form is

ζ 0 0 · · · 0

0 ζ 0 · · · 0

...
... · · · ...

...

0 0 0 · · · ζ


.

(2) Translation: (1, 0, y) 7→ (δν 7→ δν−y). To see how translation works, take p = 5 and

y = 1. Then

(1, 0, 1) 7→ (δν 7→ δν−1)

What is it in matrix form? σ(1, 0, 1)δν = δν−1. In matrix form, the action is given

by 

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


(3) Modulation: (1, x, 0) 7→ (δν 7→ ζ−2νxδν). To see how modulation works, take p = 5

and y = 3. Then since (1, 3, 0) = (1, 1, 0)3. So the action in matrix form is

1 0 0 1 0

0 ζ−2 0 0 0

0 0 ζ−4 0 0

0 0 0 ζ−6 0

0 0 0 0 ζ−8



3

=



1 0 0 1 0

0 ζ−6 0 0 0

0 0 ζ−12 0 0

0 0 0 ζ−18 0

0 0 0 0 ζ−24


=



1 0 0 1 0

0 ζ4 0 0 0

0 0 ζ3 0 0

0 0 0 ζ2 0

0 0 0 0 ζ1
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For p > 2 take ψ ∈ AutSym
C× . Consider the commutative diagram

Hp GLp(C)

Hp GLp(C)

σ

ψ M(ψ)

σψ

Since ψ fixes the center, σψ is irreducible, and νp acts by scalars, this implies that σ ∼= σψ.

In turn this implies there exists a matrix M(ψ) ∈ GL2(C) such that

M(ψ)σ = σψM(ψ).

1.3.1 Case S

Take S = [ 0 −1
1 0 ] and let ψS be the lift of S, a := (1, x, 0) and b := (1, 0, y) the two

squares commute:

V V

V V

σ(a)

M(ψS) M(ψS)

σψS (a)

,
V V

V V

σ(b)

M(ψS) M(ψS)

σψS (b)

We note that

σ((1, x, 0))δν = ζ−2νxδν and σ((1, 0, y))δν = δν−y.

Recall that ψS((λ, x, y) = (λζ−2xy,−y, x). Making the following definitions

σψS((1, x, 0)) := σ(ψS(1, x, 0)) = σ((1, 0, x)),

σψS((1, 0, y)) := σ(ψS(1, 0, y)) = σ((1,−y, 0)),

we see that

M(ψS)σ((1, x, 0)) = σ((1, 0, x))M(ψS)

and

M(ψS)σ((1, 0, y)) = σ((1,−y, 0))M(ψS).
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So, what is M(ψS)? We claim that is a discrete Fourier transform. The discrete Fourier

transform, DFT, is defined to be

DFT (δν) =

p−1∑
µ=0

ζ−2νµδµ,

satisfies these two conditions. That is, taking M(ψS) to be the discrete Fourier transform

satisfies this property.

Explicitly,

M(ψS) =



1 1 1 · · · 1

1 ζ−2 ζ−4 · · · ζ−2(p−1)

1 ζ−4 (ζ−8) · · · (ζ−4(p−1))

...
...

...
. . .

...

1 ζ−2(p−1) (ζ−4(p−1) · · · (ζ−2(p−1)(p−1))


.

Lets verify that this is indeed the case. Take a basis vector δν . Then

M(ψS)σ((1, x, 0))δν = M(ψS)ζ−2νxδν

=

p−1∑
µ=0

ζ−2νµζ−2µxδµ

=

p−1∑
µ=0

ζ(ν+x)(−2µ)δµ

= DFT (δν+x),

which is the Discrete Fourier transform of δν shifted by x and so is

σ((1, 0, x))M(ψS)δν = σ((1, 0, x))

p−1∑
µ=0

ζ−2νµδµ

= DFT (δν+x).
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Also, we have

M(ψS)σ((1, 0, y))δν = M(ψS)δν−y

=

p−1∑
µ=0

ζ−2νµδµ−y

=
∑
µ∈Fp

ζ−2ν(µ+y)δµ

=
∑
µ∈Fp

ζ−2νyζ−2νµδµ

= ζ−2νyDFT (δν),

and

σ(1,−y, 0)M(ψS)δν = σ(1,−y, 0)

p−1∑
µ=0

ζ−2νµδµ

= ζ−2νyDFT (δν).

1.3.2 Case action of modulation negative and translation positive for S

Take S = [ 0 −1
1 0 ] and let ψS be the lift of S, a := (1, x, 0) and b := (1, 0, y) the two

squares commute:

V V

V V

σ(a)

M(ψS) M(ψS)

σψS (a)

,
V V

V V

σ(b)

M(ψS) M(ψS)

σψS (b)

We note that

σ((1, x, 0))δν = ζ−2νxδν and σ((1, 0, y))δν = δν+y.

Recall that ψS((λ, x, y) = (λζ−2xy,−y, x). Making the following definitions

σψS((1, x, 0)) := σ(ψS(1, x, 0)) = σ((1, 0, x)),

σψS((1, 0, y)) := σ(ψS(1, 0, y)) = σ((1,−y, 0)),
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we see that

M(ψS)σ((1, x, 0)) = σ((1, 0, x))M(ψS)

and

M(ψS)σ((1, 0, y)) = σ((1,−y, 0))M(ψS).

So, what is M(ψS)? We claim that is a discrete Fourier transform. The discrete Fourier

transform, DFT, is defined to be

DFT (δν) =

p−1∑
µ=0

ζ−2νµδµ,

satisfies these two conditions. That is, taking M(ψS) to be the discrete Fourier transform

satisfies this property. Explicitly,

M(ψS) =



1 1 1 · · · 1

1 ζ−2 ζ−4 · · · ζ−2(p−1)

1 ζ−4 (ζ−8) · · · (ζ−4(p−1))

...
...

...
. . .

...

1 ζ−2(p−1) (ζ−4(p−1) · · · (ζ−2(p−1)(p−1))


.

Lets verify that this is indeed the case. Take a basis vector δν . Then

M(ψS)σ((1, x, 0))δν = M(ψS)ζ−2νxδν

=

p−1∑
µ=0

ζ−2νµζ−2µxδµ

=

p−1∑
µ=0

ζ(ν+x)(−2µ)δµ

= DFT (δν+x),
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which is the Discrete Fourier transform of δν shifted by x but

σ((1, 0, x))M(ψS)δν = σ((1, 0, x))

p−1∑
µ=0

ζ−2νµδµ

=
∑
µ∈Fp

ζ−2νµδµ+x

=
∑
µ∈Fp

ζ−2ν(µ−x)δµ

= DFT (δν−x)

is shifted by −x. It does not work. Also, we have

M(ψS)σ((1, 0, y))δν = M(ψS)δν−y

=

p−1∑
µ=0

ζ−2νµδµ−y

=
∑
µ∈Fp

ζ−2ν(µ+y)δµ

=
∑
µ∈Fp

ζ−2νyζ−2νµδµ

= ζ−2νyDFT (δν),

and it does not agree with

σ(1,−y, 0)M(ψS)δν = σ(1,−y, 0)

p−1∑
µ=0

ζ−2νµδµ

= ζ2νyDFT (δν).
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1.3.3 Case T

Now for the case T = [ 1 1
0 1 ]. Let ψT be the lift of T , a := (1, x, 0) and b := (1, 0, y)

the two squares commute:

V V

V V

σ(a)

M(ψT ) M(ψT )

σψT (a)

,
V V

V V

σ(b)

M(ψT ) M(ψT )

σψT (b)

Recall that ψT ((λ, x, y)) = (λζy
2
, x+y, y). So ψT ((1, x, 0)) = (1, x, 0) and ψT ((1, 0, y)) =

(ζy
2
, y, y). Making the following definitions

σψT ((1, x, 0)) := σ(ψT (1, x, 0)) = σ((1, x, 0)),

σψT ((1, 0, y)) := σ(ψT (1, 0, y)) = σ((ζy
2

, y, y))

and noting the commutativity of the squares we see that

M(ψT )σ((1, x, 0)) = σ((1, x, 0))M(ψT )

and

M(ψT )σ((1, 0, y)) = σ((ζy
2

, y, y))M(ψT ).

So, what is M(ψT )? Since σ(1, x, 0)δ0 = ζ−2·x·0δ0 = δ0, we have

M(ψT )σ(1, x, 0)δ0 = M(ψT )δ0.

Since the square commutes, we have

σψT ((1, x, 0))M(ψT )δ0 = σ((1, x, 0))M(ψT )δ0

= M(ψT )σ(1, x, 0)δ0

= M(ψT )δ0
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implies that M(ψT )δ0 is an eigenvector of ALL the operators σ((1, x, 0)) of eigenvalue

1. This implies that M(ψT )δ0 = c · δ0. Take c = 1. So the first column of M(ψT ) is[
1 0 · · · 0

]ᵀ
.

We can write δν = δ0−(−ν) = σ((1, 0,−ν))δ0. Then we have

M(ψT )δν = M(ψT )σ((1, 0,−ν))δ0

= σψT ((1, 0,−ν))M(ψT )δ0

= σ((ζ(−ν)2 ,−ν,−ν))M(ψT )δ0

= σ((ζν
2

, 0, 0))σ((1, 0,−ν))σ((1,−ν, 0))M(ψT )δ0

= σ((ζν
2

, 0, 0))σ((1, 0,−ν))σ((1,−ν, 0)) · c · δ0

= σ((ζν
2

, 0, 0))σ((1, 0,−ν)) · c · σ((1,−ν, 0))δ0

= σ((ζν
2

, 0, 0))σ((1, 0,−ν)) · c · δ0

= σ((ζν
2

, 0, 0))σ((1, 0,−ν)) · 1 · δ0

= σ((ζν
2

, 0, 0))σ((1, 0,−ν))δ0

= σ((ζν
2

, 0, 0))δν

= ζν
2

δν ,

which shows that M(ψT ) is a diagonal matrix:

M(ψT ) =



1 0 0 · · · 0 0

0 ζ1 0 · · · 0 0

0 0 ζ22 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 ζ(p−1)2


.
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1.3.4 Summary for S and T

For ψS, M(ψS) a modified DFTp and for ψT , M(ψT ) is diagonal. We know that

S2 = −1 = (ST )3. Letting M ′(ψS) := (Ω(p))−1 ·M(ψS), we have the equality

(M ′(ψS))2 = (M ′(ψS)(M(ψT ))3.
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CHAPTER 2 Integral Representations

Nobs and Wolfart[23][24] show us how to construct all of the irreducible representa-

tions of SL2(Z/pλZ). We will compute them for primes 3 and 5 in the following chapters.

Our goal is to find the smallest rings of integers for which we can write these representa-

tions. Riese[26] characterizes those rings. We will attempt to explain those results in this

chapter. For the computation of those integral representations of the Weil characters, we

will use results of Wang[36] and Zemel[44]. Using Nobs and Wolfart’s methods, we can

construct integral representations that have “denominators”, that is, Z[ζp,
1
p
]. In this sec-

tion, we explain how those integral representations with denominators, e.g. over Z[ζp,
1
p
],

tell us the existence of that integral representations over Z[ζp]. We then compute the

integral representation of the p-dimensional irreducible principal series representation

of SL2(Fp) for p an odd prime. Last we construct the reducible integral representation

1 + St.

Let G be a finite group of exponent exp(G) = g. Riese[26] proves the following:

Theorem 2.0.1 (Thm 1, Riese). Let G = SL(2, q) for some prime power q = pf . Every

irreducible complex character χ of G can be written in R = Z[µn] with n = n(χ) being

a proper divisor of exp(G), except possibly when χ is a (cuspidal) character of degree

q − 1. In the exceptional case χ can be realized over R[1
p
] with n = 1

p
exp(G).

In the case of q = p, we have a tight bound for those rings.

Corollary 2.0.2 (Riese). Every character of SL(2, p) can be realized over the ring of

integers of the exp(G)th cyclotomic field.

2.1 Definitions and useful facts

We provide the definitions of terms[10] that we will use along with some useful facts

and examples.

Definition 2.1.1 (Ring of Integers). The ring of integers[42] of an algebraic number
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field K is the ring of all integral elements contained in K. An integral element is a root

of a monic polynomial with integer coefficients,

xn + cn−1xn−1 + · · ·+ c0.

This ring is often denoted by OK or OK.

Since any integer number belongs to K and is an integral element of K, the ring Z

is always a subring of OK .

Example 2.1.2 (Z). The ring Z is the simplest possible ring of integers. Namely, Z =

OQ where Q is the field of rational numbers. In algebraic number theory the elements of

Z are often called the “rational integers” because of this.

Definition 2.1.3 (Lattice). For any finite dimensional K-space V , a full R-lattice in

V is a finitely generated R-submodule M in V such that K ·M = V , where

K ·M =
{∑

αimi(finite sum) : αi ∈ K,mi ∈M
}

In ring theory, a lattice is a module over a ring which is embedded in a vector space

over a field, giving an algebraic generalization of the way a lattice group is embedded in

a real vector space.

Definition 2.1.4 (Order). An R-order in the K-algebra A is a subring Λ of A, having

the same unity element as A, and such that Λ is a full R-lattice in A. Λ is both left and

right noetherian, since Λ is finitely generated over the noetherian domain R.

An order in the sense of ring theory is a subring O of a ring A, such that

(1) A is a finite-dimensional algebra over the rational number field Q

(2) O spans A over Q , and

(3) O is a Z-lattice in A.

Example 2.1.5 (Maximal Z-order). Let τ be the golden ratio (1 +
√

5)/2. For any

positive integer n, Λn = Z + Z · n
√

5 is a Z-order in Q(
√

5), and Z + Z · τ is the unique
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maximal Z-order.

The ring of integers of an algebraic number field is the unique maximal order in the

field.

Property 2.1.6 (OK). The ring of integers OK is a finitely generated Z-module. It is a

free Z-module and therefore has an integral basis: b1, . . . , bn ∈ OK of the Q-vector space

K such that each element x in OK can be uniquely represented as

x =
n∑
i−1

aibi

with ai ∈ Z. The rank n of OK as a free Z-module is equal to the degree of K over Q.

The rings of integers in number fields are Dedekind domains.

Example 2.1.7 (Integral Basis). If p is a prime ζ a pth root of unity and K = Q(ζ)

is the corresponding cyclotomic field, then an integral basis of OK = Z[ζ] is given by

(1, ζ, ζ2, . . . , ζp−2).

Let K = Q(
√
p), where p is an odd prime. The minimal polynomial of

√
d over Q

is X2 − p which has roots ±√p. The extension K/Q is Galois and the Galois group

has order two: it consists of the identity automorphism and automorphism σ that maps

a+ b
√
p to a− b√p.

Lemma 2.1.8. [2, Lem 7.2.1] If a and b are rational numbers (in Q), then a+ b
√
p is

an algebraic integer if and only if 2a and a2 − pb2 belong to Z. In this case 2b is also in

Z.

Proof. Let x = a+ b
√
p and then σ(x) = a− b√p. This implies x+ σ(x) = 2a ∈ Q and

xσ(x) = a2−pb2 ∈ Q. If x is an algebraic integer, then x is a root of a monic polynomial

f ∈ Z[X]. Since σ is an automorphism, f(σ(x)) = σ(f(x)), σ(x) is also a root of f and

hence an algebraic integer. 2a and a2− pb2 are also algebraic integers as well as rational

numbers. Since Z is integrally closed, 2a and a2 − pb2 belong to Z. The converse holds

because a+ b
√
p is a root of (X − a)2 = pb2 or equivalently, X2 − 2aX + a2 − pb2 = 0.
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If 2a and a2 − pb2 are rational integers, then (2a)2 − p(2b)2 = 4(a2 − pb2) ∈ Z. If

2b 6∈ Z, then its denominator would include a prime factor p1, which would appear as p2
1

in the denominator of (2b)2. Multiplication by (2b)2 by p cannot cancel the p2
1 because

p is a prime, and the result follows.

We modify an argument from [2, Ch. 7] to obtain the following proposition which we

will require later.

Proposition 2.1.9. Let p ≡ 1 mod 4 be a prime. Then 1 and 1
2
(1 +

√
p)] form an

integral basis of the algebraic integers of Q(
√
p).

Proof. We claim that if p ≡ 1 mod 4 the set of algebraic integers of Q(
√
p) consists of

all u
2

+ v
2

√
p, u, v ∈ Z, where u and v have the same parity (both even or both odd).

Lemma 2.1.8 tells the algebraic integers of Q(
√
p) are of the form u

2
+ v

2

√
p where u, v ∈ Z

and u2

4
− pv2

4
∈ Z. So we have u2 − pv2 ≡ 0 mod 4 and that implies u and v have the

same parity because the square of an even number is congruent to 0 mod 4 and the

square of an odd number is congruent to 1 mod 4. The case where both u and v are

odd can only occur when p ≡ mod 4. The case where both are even is equivalent to u
2

and v
2

are in Z.

To see that 1 and 1
2
(1 +

√
p) span the set of algebraic integers of Q(

√
p), consider

1
2
(u+ v

√
p) where u and v have the same parity. Then

1

2
(u+

√
p) =

(
u− v

2

)
(1) + v ·

(
1

2
(1 +

√
p)

)
with (u− v)/2 and v ∈ Z. Next to show linear independence, assume that a, b ∈ Z and

a+ b

(
1

2
(1 +

√
p)

)
= 0.

Then 2a+ b+ b
√
p = 0 which forces a = b = 0.

Remark 2.1.10. Proposition 2.1.9 gives us the ring of integers O of Q(
√
p) to be Z[1

2
(1+
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√
p) for p ≡ 1 mod 4. If p ≡ 3 mod 4 then −p ≡ 1 mod 4. So for p ≡ 3 mod 4, the

ring of integers of Q(
√
−p) is 1

2
(1 +

√
−p). We will need this observation later.

Proposition 2.1.9 can be modified to for any square-free integer d as illustrated by

the next example.

Example 2.1.11 (Integral basis for a ring of quadratic integers). If d is a square free

integer and K = Q(
√
d) is the corresponding quadratic field, then OK is a ring of

quadratic integers and its integral basis is given by (1, (1 +
√
d)/2) if d ≡ 1 (mod) 4

and by (1,
√
d) if d ≡ 2, 3 (mod) 4.

Definition 2.1.12 (Realizable Character). χ ∈ Irr(G) is “realizable” over a ring R if

χ is the character of a representation ρχ : G→ GL(R).

Definition 2.1.13 (R-lattice). K is field, Fix W a vector space over K. An R-lattice

for W is an R-module U such that U ⊗R K ∼= W .

Let G be a group of finite order g, and let K be a commutative ring. We denote by

K[G], the group algebra over K[28]; this algebra has a basis indexed by the elements

of G, and most of the time we identify this basis with G. Each element f of K[G] can

then be uniquely written in the form

f =
∑
s∈G

ass, with as ∈ K,

and multiplication in K[G] extends that in G.

Let V be a K-module and let ρ : G→ GL(V ) be a linear representation of G in V . For

s ∈ G and x ∈ V , set sx = ρsx; by linearity this defines fx for f ∈ K[G] and x ∈ V . Thus

V is endowed with the structure of a left K[G]-module; conversely, such a structure

defines a linear representation of G in V . In what follows we will indiscriminately use

the terminology “linear representation” or “module”.

Definition 2.1.14 (Algebra over a field). [43] Let F be a field. An algebra A over F

is a ring which has a structure of a F -vector space which is compatible with the ring
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multiplication in the following sense: (λa)b = λ(ab) = a(λb) for all λ ∈ F and a, b ∈ A.

An algebra is finite dimensional (one also says of finite rank) if its dimension as F -

vector spaces is finite. A homomorphism of algebras is naturally a ring homomorphism

which is also a linear transformation.

As an algebra over a field is a ring, we can look at modules over it, which will be

automatically endowed with the structure of an F -vector space.

Definition 2.1.15 (Ideal Class Group (or Class Group)). In number theory, the ideal

class group (or class group) of an algebraic number field K is the quotient group

JK/PK where JK is the group of fractional ideals of the ring of integers of K and PK

is its subgroup of principal ideals. The class group is a measure of the extent to which

unique factorization fails in the ring of integers of K. The order of the group, which is

finite, is called the class number of K.

If R is a Dedekind domain and M is a finitely generated R-module, then M has no

torsion iff M is projective ( = a direct summand of a free R-module), iff M is a direct

sum of a free R-module and a fractional ideal J of R. The class of J in the class group

Cl(R) is an invariant called the Steinitz class of M .

The following material is from Conrad[7]. The ring of integers of a number field is

free as a Z-module. It is a module not just over Z, but also over any intermediate ring

of integers. That is, if E ⊃ F ⊃ Q we can consider OE as an OF -module. Since OE

is finitely generated over Z, it is also finitely generated over OF (just a larger ring of

scalars), but OE may or may not have a basis over OF .

When we treat OE as a module over OxF , rather than over Z, we speak about a

relative extension of integers. If OF is a PID, then OE will be a free OF -module, so OE

will have a basis over OF . Such a basis is called a relative integral basis for E over

F .

What we are after is a classification of finitely generated torsion-free modules over a
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Dedekind domain, which will then be applied in a number field setting to describe OE

as an OF module. The extent to which OE could fail to have an OF -basis will be related

to ideal classes in F . A technical concept we need to describe modules over a Dedekind

domain is projective modules.

Definition 2.1.16 (Projective Module). Let A be any commutative ring. An A-module

P is called projective if every surjective linear map f : M � P from any A-module

M onto P looks like a projection out of a direct sum: there is an isomorphism h : M ∼=

P ⊕N for some A-module N such that h(m) = (f(m), ∗) for all m ∈M . The condition

h(m) = (f(m), ∗) means f(m) = 0 if and only if h(m) is in {0} ⊕ N , which means h

restricts to an isomorphism between ker f and {0} ⊕N ∼= N .

When A is a domain, any submodule of An is torsion-free, so a finitely generated

projective module over a domain is torsion-free. Therefore, a finitely generated module

over a domain that has torsion is not projective. The important thing for us is that

fractional ideals in a Dedekind domain are projective modules.

Lemma 2.1.17. [7, Lem. 5] For a domain A, any invertible fractional A-ideal is a

projective A-module. In particular, when A is a Dedekind domain all fractional A-ideals

are projective A-modules.

Theorem 2.1.18. [7, Thm. 6] Every finitely generated torsion-free module over a

Dedekind domain A is isomorphic to a direct sum of ideals in A.

Remark 2.1.19. [7, Rem. 7] Using equations rather than isomorphisms, Theorem 6

says M = M1 ⊕ · · · ⊕Md where each Mi is isomorphic to an ideal in A. Those ideals

need not be principal, so Mi need not have the form Ami. If M is inside a vector space

over the fraction field of A, then M =
⊕d

i=1 aiei for some linearly independent ei’s,but

be careful: If ai is a proper ideal in A then ei is is not in M since 1 6∈ ai. The ei’s are

not a spanning set for M as a module since their coefficients are not running through

A.



69

Lemma 2.1.20. [7, Lem. 8] Let A be a Dedekind domain. For fractional A-ideals a and

b, there is an A-module isomorphism a⊕ b ∼= A⊕ ab.

Example 2.1.21. [7, Ex. 5] For A = Z[
√
−5], let p2 = (2, 1 +

√
−5), so p2 is not

principal but p2
2 = 2A is principal. Then there is an A-module isomorphism p2 ⊕ p2

∼=

A ⊕ p2
2
∼= A ⊕ A. This is intriguing: p2 does not have an A-basis but p2 ⊕ p2 does!.

Working through the proof of Lemma 2.1.20 will show one how to write down a basis of

p2 ⊕ p2 explicitly.

Recall that the definition of an A-module homomorphism: Let A be a ring and let M

and N be A-modules. A map f : M → N is an A-module homomorphism if it respects

the A-module structures of M and N :

(a) f(x+ y) = f(x) + f(y) for all x, y ∈M and

(b) f(ax) = af(x) for all a ∈ A, x ∈M .

An A-module homomorphism is an isomorphism of A-modules if it is both injective

and surjective.

We claim that f : A ⊕ A → A ⊕ 2A defined by (a, b) 7→ (a, 2b) a, b ∈ A, is an

A-module isomorphism. Let x = (a1, b1) and y = (a2, b2). Then f(x + y) = f(a1 +

a2, b1 + b2) = (a1 + a2, 2(b1 + b2) = (a1, 2b1) + (a2, 2b2) = f(x) + f(y). Let c ∈ A,

Then f(cx) = f(ca1, cb1) = ca1 + 2cb2 = c(a1 + 2b2) = cf(x). So f is an A-module

homomorphism. Next, f is clearly surjective. Since it sends only (0, 0) to (0, 0), that

is, since ker f = 0, it is injective. So f is a bijection A-module homomorphism. We are

done.

Theorem 2.1.22. [7, Thm. 10] Let A be a Dedekind domain. For fractional A-ideals

a1, . . . , ad, there is an A-module isomorphism a1 ⊕ · · · ⊕ ad ∼= Ad−1 ⊕ a1 · · · ad.

Corollary 2.1.23. [7, Cor. 11] Let E/F be a finite extension of number fields with

[E : F ] = n. As an OF -module, OE
∼= On−1

F ⊕ a for some non-zero ideal a in OF .

Proof. Since OE is a finitely generated Z-module it is a finitely generated OF -module
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and obviously has no torsion, so Theorems 6 and 10 imply OE
∼= Oxd−1

F ⊕ a for some

d ≥ 1 and nonzero ideal a in OF . Letting m = [F : Q], both OF and a are free of rank

m over Z while OE is free of rank mn over Z. Computing the rank of OE and Od−1
F ⊕ a

over Z, mn = m(d− 1) +m = md, so d = n.

Thus OE is almost a free OF -module. If a is principal then OE is free. As an OF -

module up to isomorphism, On−1
F ⊕a only depends on a through its ideal class, since a and

any xa (x ∈ F×) are isomorphic OF -modules. Does On−1
F ⊕ a as an OF -module, depend

on a exactly through its ideal class? That is, if On−1
F ⊕ a ∼= On−1

F ⊕ b as OF -modules,

does [a] = [b] in Cl(F )? The next two theorems say the answer is YES.

Theorem 2.1.24. [7, Thm. 12] Let A be a domain with fraction field F . For fractional

A-ideals a and b in F , a ∼= b as A-modules if and only if a = xb for some x ∈ F×.

Theorem 2.1.25. [7, Thm. 13] For nonzero ideals a1, . . . , am and b1, . . . , bn in a

Dedekind domain A, we have a1 ⊕ · · · ⊕ am ∼= b1 ⊕ · · · ⊕ bn if and only if m = n and

[a1 . . . am] = [b1 . . . bn] in Cl(A).

Example 2.1.26. [7, Ex. 14] F = Q(
√
−6), E = F (

√
−3), and OE

∼= OF ⊕ p where

p = (3,
√
−6). We can show OE is not a free OF -module: if it were free then OE

∼= O2
F ,

so OF ⊕p ∼= OF ⊕OF as OF -modules. Then Theorem 13 implies p ∼= OF as OF -modules,

so p is principal, but p is nonprincipal. This is a contradiction.

We can now associate to any finite extension of number fields E/F a canonical class

in Cl(F ), namely [a] where OE
∼= On−1

F ⊕ a as OF -modules. Theorem 2.1.25 assures us

[a] is well-defined. Since the construction of [a] is due to Steinitz (1912), [a] is called the

Steinitz class of E/F .

2.2 An Existence Theorem for Integral Representations

We will use the following result, including the proof as it is instructive, from Keith

Conrad’s notes[9].

Lemma 2.2.1. [9, Lem. 1] Let R be a domain with fraction field K. For a finitely
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generated R-module U , K⊗RU is finite dimensional as a K-vector space and dimK(K⊗R

U) is the maximal number of R-linearly independent elements in U and is a lower bound

on the size of a spanning set for U . In particular, the size of each linearly independent

subset of U is less than or equal to the size of each spanning set of U .

Proof. If x1, . . . , xn is a spanning set for U as an R-module then 1⊗ x1, . . . , 1⊗ xn span

K ⊗R U as a K-vector space, so dimK(K ⊗R U) ≤ n.

Let y1, . . . , yd be R-linearly independent in U . Suppose
∑d

i−1 ci(1 ⊗ yi) = 0 with

ci ∈ K. Write ci = ai/b using a common denominator b in R. Then 0 = 1/b⊗
∑d

i=1 aiyi in

K⊗RU . This implies that
∑d

i=1 aiyi belongs to a torsion submodule of U , so
∑d

i=1 raiyi =

0 in U for some nonzero r ∈ R. By linear independence of the yi’s over R every rai is 0,

so every ai is 0 (since R is a domain). Thus every ci = ai/b is 0. So {1⊗yi} is K-linearly

independent in K ⊗R U and therefore d ≤ dimK(K ⊗R U).

Now to show U has a linearly independent subset of size dimK(K ⊗R U). Let

{e1, . . . , ed} be a linearly independent subset of U , where d is maximal. (Since d ≤

dimK(K⊗RU), there is a maximal d.) For every u ∈ U , {e1, . . . , ed, u} has to be linearly

dependent, so there is a nontrivial R-linear relation a1e1 + · · ·+aded+au = 0 with a 6= 0.

If a = 0, then all the ai’s are 0 by linear independence of the ei’s. In K ⊗R U ,

d∑
i=1

ai(1⊗ ei) + a(1⊗m) = 0

and from the K-vector space structure on K ⊗R U we can solve for 1⊗ u as a K-linear

combination of the 1⊗ ei’s. Therefore {1⊗ ei} spans K ⊗R U as a K-vector space. This

set is also linearly independent over K by the previous paragraph, so it is a basis and

therefore d = dimK(K ⊗R U).

We will use a definition and a theorem from Curtis and Reiner’s[10] treatment with

some modifications for notational convenience. Let R be a Dedekind domain with quo-

tient field K and let G be a finite group.
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Definition 2.2.2 (R-order). Let A be a finite dimensional algebra over K with a unity

element e. An R-order in A is a subset X of A with satisfies

(a) X is a subring of A,

(b) e ∈ X,

(c) X contains a K-basis of A,

(d) X is a finitely generated R-module.

If the representations of a finite group H is given by matrices with entries in R, then

RH is an R-order in KH. As another example, the ring of all algebraic integers in an

algebraic number field L is a Z-order in L.

We embed K in KG by the mapping α 7→ αe, α ∈ K; this also embeds R in KG.

Given an KG-module U∗, we shall always make U∗ into a K-module by setting αm =

(αe)m, α ∈ K, m ∈ U∗. Since em = m, m ∈ U∗, this makes U∗ into a vector space over

K.

A RG-module U can be embedded in the KG-module U∗ where U∗ = K ⊗R U . The

embedding of U in U∗ is given by u 7→ 1⊗ u. Lemma 1 tells us that K ⊗R U is a finite

dimensional vector space. That is, U∗ is a finite dimensional K-space; we have defined

the R-rank of U [denoted by (U : R)] to be (U∗ : K) which is the dimension of the

vector space U∗. Then (U : R) is just the maximal number of R-free elements of U . The

action of KG on U∗ is given by (αx)(β ⊗ u) = αβ ⊗ xu. α, β ∈ K, x ∈ RG, u ∈ U . We

write U∗ = KU to indicate that U∗ consists of all K-linear combinations of U (in this

case U∗ is a full lattice). Now for the theorem from Curtis and Reiner[10].

Theorem 2.2.3. [10, Thm. 75.2] Let U∗ be an KG-module that is of dimension n as a

K-vector space. Then U∗ contains a RG-module U of R-rank n such that U∗ = KU .

Proof. Let U∗ = Ku∗1 ⊕ · · · ⊕Ku∗n where the u∗i are the basis elements of U∗ and U∗j is
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the j-th summand of U∗. Define

U =
n∑
j=1

(RG)U∗j =

{∑
j

xju
∗
j : xj ∈ RG

}
.

Then

(RG)U ⊂
∑

(RG)2u∗j ⊂
∑

(RG)u∗j = U

since RG is a ring. Next U is a finitely generated R-module because RG is. Further

e ∈ RG and that each u∗j ∈ U , so that U∗ = KU .

We can now prove the following theorem for integral representations.

Theorem 2.2.4. Let G be a finite group. Let K = Q(ζN) be the cyclotomic field with its

ring of integers R = Z[ζN ] ⊂ K (R = {a0+a1ζN+a2ζ
2
N+· · ·+aN−1ζ

N−1
N }). V is a finitely

generated KG-module that is free as a K-module (since it is a finite dimensional vector

space over K). Then there exists an RG-module U that is projective as an R-module,

such that V ∼= U ⊗R K.

Proof. Since R is the ring of integers of K, R is a Dedekind domain and it is finitely

generated. Using the definition of U from Theorem 75.2, we see that U is a finitely

generated R-module. Noting that vector spaces are torsion free, U is a subset of a finite

dimensional vector space U∗, and R is a subset of K we have that U is a torsion-free

R-module. So U is a projective R-module since finitely generated modules over Dedekind

domains are projective if and only if they are torsion-free. We then apply Lemma 1 to

show that U ⊗R K is indeed a vector space. It is clear that U ⊗R K ∼= K ⊗R U . Next

Theorem 75.2 constructs U explicitly which proves its existence.

2.3 Riese’s Lemma 3 and an alternate proof

Lemma 2.3.1. [26, Lem. 3] Let R̃ = R[1
p
] for some rational prime p. If U is an RG-

lattice then Ũ = R̃U ∼= R̃⊗R U is an R̃G-lattice, and to every R̃G-lattice Ũ there exists
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an RG-lattice U with this property. Ũ is R̃-free if and only if the Steinitz class of U can

be represented by an ideal of R lying above p.

Proof. Recall that in a Dedekind domain, R, every non-zero fractional ideal is invertible.

So the set of fractional ideals forms a group under multiplication. Also, every ideal in R

has a unique factorization as a product of prime ideals. So the prime ideals of R can be

viewed as generators of the group Frac(R). To be more precise, the ideal group of R is

the free abelian group generated by its nonzero prime ideals p.

Let R̃ = R[1
p
]. Next define the map φ : Frac(R) → Frac(R̃) by where it sends its

prime ideals: p 7→ R̃p. Then kerφ is generated by those prime ideals p of R which contain

p (p ∩ S 6= ∅). φ is a split epimorphism. Defining ψ : Frac(R̃)→ Frac(R) by p̃ 7→ p̃ ∩R,

we have the following split short exact sequence

0 ker(φ) Frac(R) Frac(R̃) 0
φ Imφ

ψ

since φ ◦ ψ = 1. That is, p̃ 7→ (p̃ ∩R) 7→ R̃(p̃ ∩R) ∼= p̃.

We have the canonical homomorphisms Φ1 : Frac(R) → Cl(R) where p 7→ [p] and

Φ2 : Frac(R̃)→ Cl(R̃) where p̃ 7→ [p̃]. This gives us the following commutative square:

Frac(R) Frac(R̃)

Cl(R) Cl(R̃)

Φ1

φ

Φ2

ϕ

If p̃ = (π̃) is a principal prime ideal of R̃ and p = p̃ ∩R, then

R̃p = R̃(p̃ ∩R) = R̃p̃ ∩ R̃R = p̃ ∩ R̃ = p̃

and π̃ =
π

pk
for some π ∈ p and some k ≥ 0. It follows that

R̃π = R̃pkπ̃ = R̃p̃ = p̃

and that Rπ = p̃J for some ideal J of R containing p. Thus we have an epimorphism
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Cl(R)� Cl(R̃) whose kernel is generated by the classes of the (prime) ideals of R lying

above p. Diagrammatically we have the following:

Frac(R) Frac(R̃)

0 ker(ϕ) Cl(R) Cl(R̃) 0.

Φ1

φ

Φ2

ϕ

2.4 An Isomorphism Theorem of Class Groups

Given the short exact sequence

0 ker(ϕ) Cl(R) Cl(R̃) 0
ϕ

with R = Z[ζp] and R̃ = Z [1/p, ζp], we want to show that ϕ is an isomorphism. From

the previous discussion, ϕ is surjective so we need to show that it is injective, that is,

kerϕ = [0]. We will use two lemmas from Washington[37] to show that (p) is not a prime

ideal in Z[ζp].

2.4.1 Lemmas from Washington

Lemma 2.4.1. [37, Lem.1.3] Suppose r and s are integers with (p, rs) = 1. Then (ζrp −

1)/(ζsp − 1) is a unit of Z[ζp].

Proof. (Noting that GCD is multiplicative, 1 = (p, rs) = (p, r)(p, s) implies (p, r) = 1

and (p, s) = 1. So ζrp and ζsp are primitive roots of unity). Let r ≡ st mod p for some t.

ζrp − 1

ζsp − 1
=
ζstp − 1

ζsp − 1
= 1 + ζsp + · · ·+ ζs(t−1)

p ∈ Z[ζp].

Similarly, writing s ≡ rv mod p for some v,

ζsp − 1

ζrp − 1
∈ Z[ζp].

Lemma 2.4.2. [37, Lem.1.4] The ideal (1−ζp) is a prime ideal of Z[ζp] and (1−ζp)p−1 =
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(p). Therefore p is totally ramified in Q(ζp) (prime ideal factoring in an extension so as

to give some repeated prime ideal factors).

Proof. Since

Xp−1 +Xp−2 + · · ·+X + 1 =

p−1∏
i=1

(X − ζ ip),

we let X = 1 to obtain

p =

p−1∏
i=1

(1− ζ ip).

From Lemma 2.4.1, we see that (1− ζp) and (1− ζ ip) are associate, so we have equality

of ideals (1 − ζp) = (1 − ζ ip). Therefore (p) = (1 − ζp)p−1. Since (p) can have at most

(p − 1) = deg(Q(ζp)/Q) prime factors in Q(ζ), it follows that (1 − ζ) must be a prime

ideal of Z[ζp]. Alternatively, if (1− ζp) = A ·B, then p = N(1− ζp) = NA ·NB so either

NA = 1 or NB = 1 since p is prime in Z. Therefore the ideal (1− ζ) does not factor in

Z[ζp].

Remark 2.4.3. Robert Ash[1] also proves these two lemmas and are worth reading.

Theorem 2.4.4. With R = Z[ζp] and R̃ = Z
[

1
p
, ζp

]
, Cl(R) ∼= Cl(R̃).

Proof. So we have (p) = (1 − ζp)
p−1 and Lemma 1.4 showed that (1 − ζp) is a prime

ideal in Z[ζp]. Since Z[ζp] is a Dedekind domain, it is also a maximal ideal. It is clear

that (p) is not a prime ideal in Z[ζp] nor is it prime in Z[1
p
, ζp] either since p is a unit

in Z[1
p
, ζp]. Now (p) = (1 − ζp)p−1 ⊂ (1 − ζp) since (1 − ζp) divides (1 − ζp)p−1. (1 − ζp)

is a principal ideal and since the class group is a quotient of the fractional ideals by

the principal ideals, (1 − ζp) ∈ [0]. Since (1 − ζp) is maximal, nothing else, namely no

non-principal ideal divides (contains) (1− ζp) so ker(ϕ) = [0]. Thus ϕ is an isomorphism

of class groups.

What this isomorphism tells us is if we have an integral basis for the representations
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for R̃, then we have an integral basis over R. We will calculate the representations of

SL2(Z/3Z) and SL2(Z/5Z) using Nobs and Wolfart’s methods[24], using bases developed

by Wang[36], and using bases developed by Zemel[44]. We will also compare the results

with Riese’s[26] results. Riese refers to R(1,+) (as well as R(n,+)) as the Weil character

ξ of degree 1
2
(p + 1) and R(1,−) (as well as R(n,−)) as the Weil character ζ of degree

1
2
(p− 1). He proves the following for these two characters (where µp is the p-th root of

unity).

Proposition 2.4.5. [26, Prop. 2] The Weil characters can be realized over R = Z[µp]

by representations which are stable under all field automorphisms of G = SL(2, q).

Proposition 2.4.6. [26, Prop. 3] Assume that q ≡ 3 mod 4. Then the Weil character

ξ can be realized over R = Z
[

1+
√
−p

2

]
.

Proposition 2.4.7. [26, Prop. 4] Suppose that q = pn is a rational square or that q ≡ 5

mod 8. Then the Weil character ξ can be realized over R = Z
[

1+
√
p

2

]
.

The non-trivial irreducible representations for SL2(Z/pλZ) are the Steinberg St, prin-

cipal series (R(1,±), R(n,±), and N1(χ)), and cuspidal representations.

2.5 The p+1-dimensional irreducible principal series integral representation

We can also construct the p-dimensional principal series representation of SL2(Z/pZ)

by inducing a non-trivial one-dimensional representation of the Borel subgroup of

SL2(Z/pZ). Its entries will be over Z[ζp−1]. This agrees with Riese[26, Prop. 1]. We can

do so by inducing the one dimensional character of its Borel subgroup and the Bruhat

decomposition. We will use use this method in Chapter 4 Section 2 to compute the

representation that is integral over Z[ζ4] = Z[i].

2.5.1 Non-trivial one-dimensional character of the Borel subgroup of

SL(2, p)

Kirby[16] gives a complete calculation of the character tables of T , the subgroup of

diagonal matrices, and B, the Borel subgroup. With p an odd prime, let Fp = Z/pZ. Let
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G = SL2(Fp). Its Borel subgroup is given by

B =


u x

0 u−1

 : u ∈ F×p , x ∈ Fp

 .

With ξ := exp(2πi/(p − 1)), and I2 = [ 1 0
0 1 ], the trivial and non-trivial characters of B

are given in Table 2.5.1.

B εI2

[
ai 0
0 a−i

] [
ε 1
0 ε

] [
ε a
0 ε

]
ε ∈ {±I2} ai ∈ F×p \ {±I2} a ∈ f×p ,

a is a non-square

|class| 1 p (p− 1)/2 (p− 1)/2

#classes 2 p− 3 2 2

χ0 1 1 1 1

χj εj ξji εj εj

Table 2.5.1: Character Table of the Borel Subgroup

2.5.2 Inducing the Borel subgroup

We review the notions of restricting a representation and inducing a representation.

Definition 2.5.1. Let H be a subgroup of G and let π : G→ GL(V ) be a representation

of G. The restriction of π to H, denoted ResGH(π), is defined by

[ResGH(π)](h) = φ(h)

for all h ∈ H. If χ is the character of π, write resGH(χ) for the character of ResGH(χ).

Definition 2.5.2. Let G be a finite group, H subgroup of G and let σ : H → C× be a one

dimensional character (representation) of H. The induced representation, IndGH(σ),

has vector space

V = IndGH(σ) = {f : G→ C : f(hg) = σ(h)f(g), ∀g ∈ G, h ∈ H}

and representation ρ : G → GL(V ), given by the G-action [ρ(g)f ](x) = f(xg) for all
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x, g ∈ G. The dimension of the induced representation is given by the index of G and

H, i.e.,

dim(IndGH(σ)) = [G : H].

The character of IndGH(σ)) is given by

[indGH(σ)](g) =
∑

x ∈ H\G

g ∈ x−1Hx

σ(xgx−1).

In particular, [indGH(σ)](g) = 0 unless g is conjugate to an element in H and if g = 1,

then [indGH(σ)](1) = dim(V ).

2.5.3 The Bruhat Decomposition

From Lang[20], we learned of the Bruhat decomposition. We corrected/clarified the

conclusion of lemma. Let F be a field. A Borel subgroup of GL2 or SL2 is a subgroup

which is conjugate to the standard subgroup consisting of all matricesa b

0 d

 ,
(with d = a−1 in the case of SL2). We let U be the group of matrices

u(b) =

1 b

0 1

 , b ∈ F.

We let A be the group of diagonal matrices,

a 0

0 d

. We let

s(a) =

a 0

0 a−1

 , a ∈ F×, w =

 0 1

−1 0

 .
For the rest of this section we let G = SL2(F ), or GL2(F ).



80

Lemma 2.5.3. The matrices

X(b) =

1 b

0 1

 , and Y (c) =

1 0

c 1


generate SL2(F ).

Proof. Multiplying an arbitrary element of SL2(F ) by matrices of the above type on the

right and on the left corresponds to elementary row and column operations (e.g., adding

a scalar multiple of a row to the other, etc.). Thus a given matrix can always be brought

into a form a 0

0 a−1


by such multiplications. Let W (a) = X(a)Y (−a−1) (correction to the lemma begins

here). Then,

W (a)W (−1) = X(a)Y (−a−1)X(−1)Y (−(−1)−1)

= X(a)Y (−a−1)X(−1)Y (1)

=

1 a

0 1


 1 0

−a−1 1


1 −1

0 1


1 0

1 1


=

 0 a

−a−1 1


0 −1

1 1


=

a a

1 1 + a−1
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and since

W (a)W (−1)X(−1)Y (−a) =

a a

1 1 + a−1


1 −1

0 1


 1 0

−a 1


=

a 0

1 a−1


 1 0

−a 1


=

a 0

1 a−1


 1 0

−a 1


=

a 0

0 a−1

 ,
we are done.

If we let U be the group of lower matrices,1 0

c 1


then we see that

wUw−1 = U.

Let V be an element of U . Then

wV w−1 =

 0 1

−1 0


1 c

0 1


0 −1

1 0


=

 0 1

−1 −c


0 −1

1 0


=

 1 0

−c 1


0 −1

1 0
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=

 1 0

−c 1

 ∈ U.
Also note the commutation relation

w

a 0

0 d

w−1 =

 0 1

−1 0


a 0

0 d


0 −1

1 0


=

 0 d

−a 0


0 −1

1 0


=

d 0

0 a

 (2.5.1)

shows that w normalizes A. Similarly,

wBw−1 = B.

Letting [ a bc d ] ∈ B, we have

w

a b

0 d

w−1 =

 0 1

−1 0


a b

0 d


0 −1

1 0


=

 0 d

−a −b


0 −1

1 0


=

 d 0

−b a

 ∈ B
is the group of lower triangular matrices. We note that B = AU = UA and also that A

normalizes U . There is a decomposition of G into disjoint subsets, G = BtBwB. Indeed,

view G as operating on the left of column vectors. The isotropy (little or stabilizer) group
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of

e1 =

1

0


is obviously U . The orbit Be1 consists of all column vectors whose second component is

zero. On the other hand,

we1 =

 0

−1

 ,
and therefore the orbit Bwe1 consists of all vectors whose second component is 6= 0, and

whose first component is arbitrary. Since these two orbits of B and BwB cover the orbit

Ge1, it follows that the union of B and BwB is equal to G (because the isotropy group

U is contained in B), and they are obviously disjoint. This decomposition is called the

Bruhat decomposition.

Remark 2.5.4. Sury[33] has the most general proof and cleanest example for us. It is

completely trivial to deduce a corresponding Bruhat decomposition

SLn(K) = tw∈SnB0wB0.

Here, B0 = B ∩ SLn(K). For n = 2, this is explicitly given as follows. If g = [ a bc d ] ∈

SL2(K), then g ∈ B0 if c = 0. If c 6= 0, thena b

c d

 =

−c−1 −a

0 −c


 0 1

−1 0


1 dc−1

0 1

 .
2.5.4 Cosets of SL(2, p)/B

We need to compute the cosets of SL2(Fp)/B in order to induce the one-dimensional

representation of B. The Bruhat decomposition gives a glimpse of what they may be.

Let G = SL2(Fp) and B its Borel subgroup. |G| = p(p − 1)(p + 1) and |B| = p(p − 1).

So, [G : B] = p+ 1 tells us that there are p+ 1 cosets.
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The first one is the easiest one, IB. So let I be its representative.

The second coset has a representative of the form 0 −x

x−1 y


where x ∈ F×p and y ∈ Fp. Call this representative M2. For this case all matrices of the

this form are in the same coset.

M2B1 =

 0 −x

x−1 y


a b

0 a−1

 =

 0 −xa−1

ax−1 bx−1 + ya−1

 .

There are p(p− 1) elements mapped to p(p− 1) elements. If we let B1 =

1 1

0 1

, then

M2B1 =

 0 −x

x−1 y


1 1

0 1

 =

 0 −x

x−1 y + x−1

 .
So we have 2 of the p+ 1 cosets. The claim is that remaining coset representatives take

the form (fix a and range c over F×p ): a−1 0

c a

 .

Let Pc =

1 0

c 1

 and Pd =

1 0

d 1

 be two of the p− 1 representatives. Then

(Pd)
−1Pc =

 1 0

−d 1


 1 0

d 1

 =

 1 0

d− c 1

 .
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So (Pd)
−1Pc 6∈ B if d 6= c.x−1 0

y x

B =

x−1 0

y x


a−1 b

0 a

 =

 ax−1 bx−1

a y b y + xa−1

 .
1 0

y 1

B =

1 0

y 1


a−1 b

0 a

 =

 a b

a y b y + a−1

 .
Let X0 · · ·Xp be the coset representatives for SL(2, p)/B. Let χ denote χj with j = 1,

the non-trivial character of the Borel subgroup 2.5.1. Then the p-dimensional integral

and irreducible representations,D1(χ)(S) and D1(χ)(T ), for the generators of SL(Z/pZ)

are given by

D1(χ)(S) =



χ(X−1
0 SX0) χ(X−1

0 SX1) · · · χ(X−1
0 SXp)

χ(X−1
1 SX0) χ(X−1

1 SX1) · · · χ(X−1
1 SXp)

...
...

...
...

χ(X−1
p SX0) χ(X−1

p SX1) · · · χ(X−1
p SXp)


(2.5.2)

and

D1(χ)(T ) =



χ(X−1
0 TX0) χ(X−1

0 TX1) · · · χ(X−1
0 TXp)

χ(X−1
1 TX0) χ(X−1

1 TX1) · · · χ(X−1
1 TXp)

...
...

...
...

χ(X−1
p TX0) χ(X−1

p TX1) · · · χ(X−1
p TXp)


(2.5.3)

We will explicitly compute the p-dimensional principal series representation for p = 3

and p = 5.

2.6 Method for constructing the reducible integral representation of 1 + St

We can construct a reducible p+1-dimensional representation of SL(2, p) by inducing

the trivial character of the Borel subgroup[16]. Again, we X0 · · ·Xp be the coset repre-

sentatives for SL(2, p)/B. Let χ denote the trivial character of the Borel subgroup 2.5.1.
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Then the p-dimensional integral and irreducible representations,D1(χ)(S) and D1(χ)(T ),

for the generators of SL(Z/pZ) are given by

D1(χ)(S) =



χ(X−1
0 SX0) χ(X−1

0 SX1) · · · χ(X−1
0 SXp)

χ(X−1
1 SX0) χ(X−1

1 SX1) · · · χ(X−1
1 SXp)

...
...

...
...

χ(X−1
p SX0) χ(X−1

p SX1) · · · χ(X−1
p SXp)


(2.6.1)

and

D1(χ)(T ) =



χ(X−1
0 TX0) χ(X−1

0 TX1) · · · χ(X−1
0 TXp)

χ(X−1
1 TX0) χ(X−1

1 TX1) · · · χ(X−1
1 TXp)

...
...

...
...

χ(X−1
p TX0) χ(X−1

p TX1) · · · χ(X−1
p TXp)


(2.6.2)

where for 0 ≤ i ≤ p and 0 ≤ i ≤ p,

χ(XiSXj) =

 0 if XiSXj 6∈ B

1 if XiSXj ∈ B
(2.6.3)

and

χ(XiTXj) =

 0 if XiTXj 6∈ B

1 if XiTXj ∈ B
. (2.6.4)

We will explicitly compute this p+1-dimensional principal series representation for p = 3

and p = 5. We will then construct the integral (over Z) Steinberg representations for

p = 3 and p = 5. We will do both in the following chapters.
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CHAPTER 3 The Irreducible Representations Of SL(2,3)

3.1 The Weil Representation

We will use Nobs and Wolfart II[24], Kloosterman[18] and what we learned from

Reeder[25]. | SL2(Z/pZ)| = p(p2 − 1). So | SL2(Z/3Z)| = 3(9 − 1) = 24. Using the fact

that the order of the group is equal to sum of the squares of the dimensions of the

irreducible representations, we have

24 = 12 + 12 + 12 + 22 + 22 + 22 + 32 = 1 + 1 + 1 + 4 + 4 + 4 + 9,

giving us three irreducible representations of degree 1, three of degree 2, and one of

degree 3. It agrees with Nobs and Wolfart[24] (Nobs and Wolfart do not list the trivial

representation).

Representations
of Level 1, p = 3 Degree Number Remarks

D1(χ) χ ∈ B p+ 1 = 4 1
2
(p− 3) = 0 NONE. Theorem 1[24]

N1(χ) χ ∈ B p− 1 = 2 1
2
(p− 1) = 1 Theorem 2[24]

R1(1,±), R1(n,±)

(
n

p

)
= −1

p± 1

2
= 2, 1 4 Theorem 4

N1(χ1) p = 3 1 “Steinberg
Representation”

Table 3.1.1: The type and number of irreducible representations of SL(2, 3)

So how are they constructed from the Weil representation? Using Theorem 2 and

Eq(7) from Nobs[23]: we have Q(x) = x2/p, B(x, y) = 2xy/p, Aλ = M = Z/pλZ. With

λ = 1, p = 3, we have A1 = Z/pZ = Z/3Z, |M | = 3, r = 1.
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With SQ(a) = |M |−1/2
∑

x∈M e(−aQ(x)), we have

SQ(−1) = 3−1/2
∑
x∈M

e(−(−1)Q(x))

= 3−1/2
∑
x∈M

e(Q(x))

= 3−1/2
(
exp(2πi(02/p)) + exp(2πi(12/p)) + exp(2πi(22/p))

)
= 3−1/2 (exp(0) + exp(2πi/3) + exp(8πi/3))

= 3−1/2

(
1− 1

2
+ i

√
3

2
− 1

2
+ i

√
3

2

)

= 3−1/2
(

1− 1 + i
√

3
)

= i

which agrees with Nobs’ I, Lemma 1: with r = 1, p = 3, λ = 1,

Λ(a) =

(
a

p

)λ
, SQ(−1) =


1 if λ even(
r

p

)
ε(p) if λ odd

,

distinguishes ε(d) = 1 or i, depending on whether d ≡ 1 or 3 mod 4. So, SQ(−1) =(
r

p

)
ε(p) =

(
1

p

)
ε(p) = 1 · i = i where ε(p) = i since p ≡ 3 mod 4. With M an abelian

module and Q a quadratic form on M , Nobs[23] calls the pair (M,Q) a quadratic

module. According to the comment after Nobs[23] Definition 3, the representations of

SL2(Aλ) in the case p 6= 2 correspond to the quadratic modules with M = Aλ, Q(x) =

p−λrx2 r 6= 0 mod p, λ ≥ 1 are called Rλ(r).

Recall the definition of a quadratic form on an abelian group. We now define a Gauss

sum[32].

Definition 3.1.1. Let q(x) = x2/p be a quadratic form. Let ζp = exp(2πi/p). Then

Ω(p) :=
∑
x

ζx
2

p =

 i · √p if p ≡ 3 mod 4

√
p if p ≡ 1 mod 4
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is a Gauss sum.

Remark 3.1.2. We have the following relationship between the Gauss sum and SQ(−1):

Ω(p) =

(
SQ(−1)√

M

)−1

=

√
M

SQ(−1)
.

We will use this fact when we perform computations using SAGE.

3.1.1 Representation of the action by T

Theorem 2 from Nobs[23]tells us that

[ 1 1
0 1 ] f(x) = e(b(Q(x)) · f(x) for all b ∈ Aλ.

Taking f(x) = δx and b = 1, we have the action of the T matrix

Tδx = [ 1 1
1 0 ] δx

= e((Q(x)) · δx

= exp(2πix2/p)δx

= ζx
2

p δx.

It is a diagonal matrix as before.

3.1.2 Every rep. of a finite group is equivalent to a unitary rep.

We will make use of the following lemma[31] for our calculation for S. That is, relating

Nobs’ “S”, [ 0 1
−1 0 ] to the standard “S”, [ 0 −1

1 0 ].

Lemma 3.1.3. Every representation of a finite group is equivalent to a unitary repre-

sentation.

Proof. Let G be a finite group. Let ϕ : G→ GL(V ) be a representation with dimV = n.

Since very vector space has a basis, choose a basis B for V . Let T : V → Cn be the

isomorphism taking coordinates with respect to B. Defining ρg = TϕgT
−1 for g ∈ G

yields a representation ρ : G→ GLn(C) equivalent to ϕ. Let 〈·, ·〉 be the standard inner
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product (Euclidean dot product) on Cn. Next define

(v, w) =
∑
g∈G

〈ρgv, ρgw〉.

It meets the definition of an inner product since it has the three properties:

1. Linearity

(c1v1 + c2v2, w) =
∑
g∈G

〈ρg(c1v1 + c2v2), ρgw〉

=
∑
g∈G

[c1〈ρgv1, ρgw〉+ (c2〈ρgv2, ρgw〉]

= c1

∑
g∈G

〈ρgv1, ρgw〉+ c2

∑
g∈G

〈ρgv2, ρgw〉

= c1(v1, w) + c2(v2, w).

2. Conjugate Symmetry

(w, v) =
∑
g∈G

〈ρgw, ρgv〉

=
∑
g∈G

〈ρgw, ρgv〉

= (v, w).

3. Positive Definiteness. Since each term 〈ρgv, ρgv〉 ≥ 0,

(v, v) =
∑
g∈G

〈ρgv, ρgv〉 ≥ 0.

If (v, v) = 0, then
∑

g∈G〈ρgv, ρgv〉 = 0 which implies 〈ρgv, ρgv〉 = 0 for all g ∈ G.

So 0 = 〈ρgv, ρgv〉 = 〈ρ1v, ρ1v〉 = 〈v, v〉. So v = 0.

Next, we verify the representation is unitary with respect to this inner product.

(ρhv, ρhw) =
∑
g∈G

〈ρgρhv, ρgρhw〉 = 〈ρghv, ρghρghw〉.

Substituting x = gh, x ranges over all the elements of G since G ranges over all G. To
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see this, let k ∈ G, then if g = kh−1, x = k. So, we have our desired result:

(ρhv, ρhw) =
∑
x∈G

〈ρxv, ρxw〉 = (v, w).

3.1.3 The representation of the action by S

Taking f(x) = δx, applying the fact that the inverse of a unitary matrix is its

conjugate transpose, recognizing that the right hand-side of the equation is a symmetric

matrix,

[ 0 1
−1 0 ] f(x) = SQ(−1)|M |−1/2

∑
y∈M

e(B(x, y)) · δy,

allows us to apply Lemma 3.1.3 to give

Sδx =

0 −1

1 0

 δx
= SQ(1)|M |−1/2

∑
y∈M

e(−B(x, y)) · δy

= SQ(1)|M |−1/2
∑
y∈M

exp(−2πi/p · (2xy)) · δy

=
−i√
M

∑
y∈M

ζ−2xy
p · δy

which agrees with our previous result.

3.2 Explicit Computation of the action of S from Theorem 2 for p = 3

We will brute force compute the action of S from Theorem 2 for p = 3 from Nobs[23].

Take M = Z/3Z. |M | = 3. p = 3. ζ = ζ3 and f(x) = δx. Since

[ 0 1
−1 0 ] f(x) = SQ(−1)|M |−1/2

∑
y∈M

e(B(x, y)) · f(y)

=
i√
3

(
ζ2x·0f(0) + ζ2x·1f(1) + ζ2x·2f(2)

)
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=
i√
3

(
1 · f(0) + ζ2x·1f(1) + ζxf(2)

)
,

we have 0 1

−1 0


2

f(x) =
i√
3


 0 1

−1 0

 f(0) + ζ2x

 0 1

−1 0

 f(1) + ζx

 0 1

−1 0

 f(2)

 .

Computing each summand gives

i√
3

 0 1

−1 0

 f(0) =
i√
3

i√
3

(
ζ2·0·0f(0) + ζ2·0·1f(1) + ζ2·0·2f(2)

)
,

=
−1

3
(f(0) + f(1) + f(2)) ,

i√
3
· ζ2x

 0 1

−1 0

 f(1) =
−1

3
· ζ2x ·

(
ζ2·1·0f(0) + ζ2·1·1f(1) + ζ2·1·2f(2)

)
,

=
−1

3
· ζ2x ·

(
f(0) + ζ2f(1) + ζ1f(2)

)
,

i√
3
· ζx ·

 0 1

−1 0

 f(2) =
−1

3
· ζx ·

(
ζ2·2·0f(0) + ζ2·2·1f(1) + ζ2·2·2f(2)

)
.

=
−1

3
· ζx ·

(
f(0) + ζ1f(1) + ζ2f(2)

)
.

So,  0 1

−1 0


2

f(x) =
−1

3
[(f(0) + f(1) + f(2))

+ ζ2x ·
(
f(0) + ζ2f(1) + ζ1f(2)

)
+ ζx ·

(
f(0) + ζ1f(1) + ζ2f(2)

)
] .

Next, 0 1

−1 0


3

f(x) =

 0 1

−1 0

 −1

3
[(f(0) + f(1) + f(2))
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+ ζ2x ·
(
f(0) + ζ2f(1) + ζ1f(2)

)
+ ζx ·

(
f(0) + ζ1f(1) + ζ2f(2)

)
]

=
−1

3

 0 1

−1 0

 [ (1 + ζ2x + ζx)f(0) + (1 + ζ2xζ2 + ζxζ1)f(1)

+ (1 + ζ2xζ1 + ζxζ2)f(2) ]

=
−i
3
√

3
[ (1 + ζ2x + ζx)(f(0) + f(1) + f(2))

+ (1 + ζ2xζ2 + ζxζ1)(
(
f(0) + ζ2f(1) + ζ1f(2)

)
)

+ (1 + ζ2xζ1 + ζxζ2)(
(
f(0) + ζ1f(1) + ζ2f(2)

)
) ]

=
−i
3
√

3
[ (1 + ζ2x + ζx)f(0) + (1 + ζ2x + ζx)f(1) + (1 + ζ2x + ζx)f(2)

+ (1 + ζ2xζ2 + ζxζ1)f(0) + (1 + ζ2xζ2 + ζxζ1)ζ2f(1)

+ (1 + ζ2xζ2 + ζxζ1)ζ1f(2) + (1 + ζ2xζ1 + ζxζ2)f(0)+

+ (1 + ζ2xζ1 + ζxζ2)ζ1f(1) + (1 + ζ2xζ1 + ζxζ2)ζ2f(2) ]

=
−i
3
√

3
[ (1 + ζ2x + ζx + 1 + ζ2xζ2 + ζxζ1 + 1 + ζ2xζ1 + ζxζ2)f(0)

+ ((1 + ζ2x + ζx) + (1 + ζ2xζ2 + ζxζ1)ζ2

+ (1 + ζ2xζ1 + ζxζ2)ζ1)f(1)

+ ((1 + ζ2x + ζx) + (1 + ζ2xζ2 + ζxζ1)ζ1+

+ (1 + ζ2xζ1 + ζxζ2)ζ2)f(2) ]

=
−i
3
√

3
[ (3 + ζ2x + ζx + ζ2x+2 + ζx+1 + ζ2x+1 + ζx+2)f(0)

+ (1 + ζ1 + ζ2 + ζ2x + ζx + ζ2x+4 + ζx+3 + ζ2x+2 + ζx+3)f(1)

+ (1 + ζ1 + ζ2 + ζ2x + ζx + ζ2x+3 + ζx+2 + ζ2x+3 + ζx+4)f(2) ]

=
−i
3
√

3
[ (3 + ζ2x + ζx + ζ2x+2 + ζx+1 + ζ2x+1 + ζx+2)f(0)

+ (ζ2x + ζx + ζ2x+1 + ζx + ζ2x+2 + ζx)f(1)
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+ (ζ2x + ζx + ζ2x + ζx+2 + ζ2x + ζx+1)f(2) ]

=
−i
3
√

3
[ (3 + ζx + ζx+1 + ζx+2 + ζ2x + ζ2x+1 + ζ2x+2)f(0)

+ (3ζx + ζ2x + ζ2x+1 + ζ2x+2)f(1)

+ (ζx + ζx+1 + ζx+2 + 3ζ2x)f(2) ]

=
−i
3
√

3
[ (3 + (ζ0 + ζ1 + ζ2)ζx + (1 + ζ1 + ζ2)ζ2x)f(0)

+ (3ζx + (ζ0 + ζ1 + ζ2)ζ2x)f(1)

+ ((ζ0 + ζ1 + ζ2)ζx + 3ζ2x)f(2) ]

=
−i
3
√

3
[ (3f(0) + (3ζx)f(1) + (3ζ2x)f(2) ]

=
−i√

3

[
(f(0) + ζxf(1) + ζ2xf(2)

]
=
−i√

3

[
f(0) + ζ−2xf(1) + ζ−4f(2)

]
=
−i√

3

∑
y∈M

ζ−2xyf(y).

So,  0 1

−1 0


3

f(x) =

0 −1

1 0

 f(x) =
−i√

3

∑
y∈M

ζ−2xyf(y)

agrees with our previous calculation for S.

This illustrates that the action of [ 0 −1
1 0 ] on basis elements δx results in the the

conjugation of the action by [ 0 1
−1 0 ]. It was already symmetric so the transpose had no

effect. Applying Lemma 3.1.3 is much easier. But this was an instance in which brute

force worked reasonably well.

3.3 R1(1,±)

Lemma 1 from Nobs[23] tells us that the quadratic module (M,Q) generates the Weil

representation W (M,Q) of SL2(Aλ). According to the comment after Nobs[23] Definition

3, the representations of SL2(Aλ) in the case p 6= 2 correspond to the quadratic modules
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with M = Aλ, Q(x) = p−λrx2 r 6= 0 mod p, λ ≥ 1 are called Rλ(r).

Recall,

Sδx =
−i√
M

∑
y∈M

exp(−2πi/p · (2xy)) · δy =
−i√
M

∑
y∈M

ζ−2xy · δy

and

Tδx = ζx
2

p δx.

Nobs[23] provides two methods for the decomposition of Weil’s representations.

3.3.1 U = {−1, 1}

Aut(M,Q) is the group of automorphisms of M invariant under Q, i.e., for every

ϕ ∈ Aut(M,Q), Q(ϕ(x)) = Q(x) for all x ∈ M . So since M = Z/3Z and Q(x) = x2/p,

Aut(M,Q) will consist of the identity and the inverse maps. Aut(M,Q) = {1,−1} ∼=

Z/2Z = C2. Aut(M,Q) has the trivial subgroup and itself as the only two subgroups

since it is of prime order. So let U = {1,−1} and let χ be a character of U, then

V (χ) := {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}

is a subspace of V = CM that is invariant under SL2(Aλ). If you write W (M,Q, χ) for

the sub-representation of W (M,Q) in the space V (χ), then

W (M,Q) = ⊕χW (M,Q, χ),

where χ runs through all the characters from U.

3.3.2 Basis Choice 1

For our case, there are two characters, χ1 the trivial character and χ2 the non-trivial

character of the abelian group U.

Let’s start with χ1.

V (χ1) = {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}
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= {f ∈ CM | f(εx) = f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(1 · x) = f(x) and f(−1 · x) = f(x) ∀x ∈M}

= {f ∈ CM | f(−x) = f(x) ∀x ∈M}

So even functions meet the criterion. Let f0(x) = δ0(x). Then δ0(−0) = δ0(0) = 1,

δ0(−1) = δ0(2) = δ0(1) = 0, and δ0(−2) = δ0(1) = δ0(2) = 0. It holds.

Let f1(x) = δ0(x)− δ1(x)− δ2(x). Then

f1(−0) = δ0(−0)− δ1(−0)− δ2(0) = 1− 0− 0 = f1(0) = δ0(0)− δ1(0)− δ2(0).

f1(−1) = f1(2) = δ0(2)−δ1(2)−δ2(2) = 0−0−1 = f1(1) = δ0(1)−δ1(1)−δ2(1) = −1.

f1(−2) = f1(1) = δ0(1)−δ1(1)−δ2(1) = 0−1−0 = f1(2) = δ0(2)−δ1(2)−δ2(2) = −1.

It too holds.

V (χ1) = {f0, f1}. So it’s a two dimensional subspace.

Next we have χ2(1) = 1 and χ2(−1) = −1. Our subspace is given by

V (χ2) = {f ∈ CM | f(εx) = χ2(ε)f(x) ∀ε ∈ U, ∀x ∈M}.

Applying the relation gives f(1 · 0) = χ2(1) · f(0) = 1 · f(0) = f(0)

f(1 · 1) = χ2(1) · f(1) = 1 · f(1) = f(1)

f(1 · 2) = χ2(1) · f(2) = 1 · f(2) = f(2)

f(−1 · 0) = f(0) = χ2(−1) · f(0) = −1 · f(0) = −f(0)

f(−1 · 1) = f(−1) = f(2) = χ2(−1) · f(1) = −1 · f(1) = −f(1)

f(−1 · 2) = f(−2) = f(1) = χ2(−1) · f(2) = −1 · f(2) = −f(2).

So for ε = 1, we have f(x) = f(x). For ε = −1, f(0) = −f(0) which implies f(0) = 0,

f(1) = −f(2) = −f(−1). So odd functions meet the criterion.

Let f2(x) = δ1(x)− δ2(x). Then

f2(−1 ·0) = f2(0) = δ1(0)− δ2(0) = 0 = χ2(−1)f2(0) = −(δ1(0)− δ2(0)) = −0 = −f1(0),
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f2(−1 · 1) = f2(2) = δ1(2)− δ2(2) = −1 = χ2(−1)f2(1) = −(δ1(1)− δ2(1)) = −1,

and

f2(−1 · 2) = f2(1) = δ1(1)− δ2(1) = 1 = χ2(−1)f2(2) = −(δ1(2)− δ2(2)) = 1.

V (χ2) = {f2}. So it’s a one dimensional subspace. We need to perform a change of basis

on matrix Tb

Tb =


1 0 0

0 ζb3 0

0 0 ζb3


that results by the action of [ 1 b

0 1 ]. Let

M =


1 1 0

0 −1 1

0 −1 −1

 .
Then M contains as column the vectors of the new basis B = {f0, f1, f2} with respect

to the canonical basis {δ0, δ1, δ2}. M represents the matrix of change of basis from B to

the canonical.

To determine the new coordinates with respect to the new basis,

Tf = M−1TbM

=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 0 0

0 ζb3 0

0 0 ζb3




1 1 0

0 −1 1

0 −1 −1



=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 1 0

0 −ζb3 ζb3

0 −ζb3 −ζb3
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=


1 1− ζb3 0

0 ζb3 0

0 0 ζb3

 .
So we have our desired block diagonal matrix for the matrix representation of the action

by T = [ 1 b
0 1 ] with respect to the basis vectors {f0, f1, f2}:

Tf =


1 1− ζb3 0

0 ζb3 0

0 0 ζb3


R1(1,+) corresponds to the 2× 2 block and R1(1,−) corresponds to the 1× 1 block.

Letting T = [ 1 1
0 1 ], we see that

R1(1,+)(T ) =

1 1− ζ3

0 ζ3


=

1 1−
(
−1

2
+ i

√
3

2

)
0 −1

2
+ i

√
3

2


=

1 3
2
− i

√
3

2

0 −1
2

+ i
√

3
2


and

R1(1,−)(T ) = −1

2
+ i

√
3

2
.

Now for the action by [ 0 −1
1 0 ]. Call this matrix Sb and it is

Sb =
−i√

3


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3

 .
Applying the similarity transformation gives us the matrix with respect to the new
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basis

Sf = M−1SbM

=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2

 −i√3


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3




1 1 0

0 −1 1

0 −1 −1



=
−i√

3


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 −1 0

1 −ζ2
3 − ζ3 + 1 ζ3 − ζ2

3

1 −ζ2
3 − ζ3 + 1 ζ2

3 − ζ3



=
−i√

3


2 −ζ2

3 − ζ3 0

−1 ζ2
3 + ζ3 − 1 0

0 0 ζ3 − ζ2
3



=
−i√

3


2 1 0

−1 −2 0

0 0 ζ3 − ζ2
3

 .
In block diagonal form,

Sf =
−i√

3


2 1 0

−1 −2 0

0 0 ζ3 − ζ2
3

 ,
R1(1,+) corresponds to the 2 × 2 block and R1(1,−) corresponds to the 1 × 1 block.

Letting S = [ 0 −1
1 0 ], we have

R1(1,+)(S) =

−2i
√

3
3

−i
√

3
3

i
√

3
3

2i
√

3
3


and

R1(1,−)(S) =
−i
√

3

3
(ζ3 − ζ2

3 )
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=
−i
√

3

3

[
−1 + i

√
3

2
− −1− i

√
3

2

]

=
−i
√

3

3
· i
√

3

= 1.

3.3.3 Basis Choice 2

For our case, there are two characters, χ1 the trivial character and χ2 the non-trivial

character of the abelian group U. Let’s start with χ1.

V (χ1) = {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(εx) = f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(1 · x) = f(x) and f(−1 · x) = f(x) ∀x ∈M}

= {f ∈ CM | f(−x) = f(x) ∀x ∈M}

So even functions meet the criterion. Let f0(x) = δ0(x). Then δ0(−0) = δ0(0) = 1,

δ0(−1) = δ0(2) = δ0(1) = 0, δ0(−2) = δ0(1) = δ0(2) = 0. It holds.

Let f1(x) = δ1(x) + δ2(x). Then

f1(−0) = δ1(−0) + δ2(−0) = 0 + 0 = 0 = δ1(0) + δ2(0)

f1(−1) = f1(2) = δ1(2) + δ2(2) = 0 + 1 = f1(1) = δ1(1) + δ2(1),

and

f1(−2) = f1(1) = δ1(1) + δ2(1) = 1 = f1(2) = δ1(2) + δ2(2) = 1.

It too holds and V (χ1) = {f0, f1}. So it’s a two dimensional subspace.
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Next we have χ2(1) = 1 and χ2(−1) = −1.

V (χ2) = {f ∈ CM | f(εx) = χ2(ε)f(x) ∀ε ∈ U, ∀x ∈M}.

Computations show f(1 · 0) = χ2(1) · f(0) = 1 · f(0) = f(0),

f(1 · 1) = χ2(1) · f(1) = 1 · f(1) = f(1),

f(1 · 2) = χ2(1) · f(2) = 1 · f(2) = f(2),

f(−1 · 0) = f(0) = χ2(−1) · f(0) = −1 · f(0) = −f(0),

f(−1 · 1) = f(−1) = f(2) = χ2(−1) · f(1) = −1 · f(1) = −f(1),

f(−1 · 2) = f(−2) = f(1) = χ2(−1) · f(2) = −1 · f(2) = −f(2),

that for ε = 1, we have f(x) = f(x). For ε = −1, f(0) = −f(0) which implies

f(0) = 0, f(1) = −f(2) = −f(−1). So odd functions meet the criterion.

Let f2(x) = δ1(x)− δ2(x). Then

f2(−1 ·0) = f2(0) = δ1(0)− δ2(0) = 0 = χ2(−1)f2(0) = −(δ1(0)− δ2(0)) = −0 = −f1(0),

f2(−1 · 1) = f2(2) = δ1(2)− δ2(2) = −1 = χ2(−1)f2(1) = −(δ1(1)− δ2(1)) = −1,

and

f2(−1 · 2) = f2(1) = δ1(1)− δ2(1) = 1 = χ2(−1)f2(2) = −(δ1(2)− δ2(2)) = 1

show that V (χ2) = {f2}. So it’s a one dimensional subspace. We need to perform a

change of basis on matrix Tb

Tb =


1 0 0

0 ζb3 0

0 0 ζb3
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that results by the action of = [ 1 b
0 1 ]. Let

M =


1 0 0

0 1
2

1
2

0 1
2
−1

2

 .
Then M contains as column the vectors of the new basis B = {f0, f1, f2} with respect

to the canonical basis {δ0, δ1, δ2}. M represents the matrix of change of basis from B to

the canonical.

To determine the new coordinates with respect to the new basis,

Tf = M−1TbM

=


1 0 0

0 1
2

1
2

0 1
2
−1

2




1 0 0

0 ζb3 0

0 0 ζb3




1 0 0

0 1 1

0 1 −1



=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 0 0

0 ζb3 ζb3

0 ζb3 −ζb3



=


1 0 0

0 ζb3 0

0 0 ζb3

 .
So we have our desired block diagonal matrix for the matrix representation of the action

by [ 1 b
0 1 ] with respect to the basis vectors {f0, f1, f2}:

Tf =


1 0 0

0 ζb3 0

0 0 ζb3
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Letting T = [ 1 1
0 1 ], we see that

R1(1,+)(T ) =

1 0

0 ζ3


=

1 0

0 −1
2

+ i
√

3
2


and

R1(1,−)(T ) = −1

2
+ i

√
3

2
.

Now for the action by [ 0 −1
1 0 ]. Call this matrix Sb and it is

Sb =
−i√

3


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3

 .
Applying the similarity transformation gives us the matrix with respect to the new basis

Sf = M−1SbM

=


1 0 0

0 1
2

1
2

0 1
2
−1

2

 −i√3


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3




1 0 0

0 1 1

0 1 −1



=
−i√

3


1 0 0

0 1
2

1
2

0 1
2
−1

2




1 2 0

1 ζ2
3 + ζ3 −ζ2

3 + ζ3

1 ζ2
3 + ζ3 ζ2

3 − ζ3



=
−i√

3


1 2 0

1 ζ2
3 + ζ3 0

0 0 −ζ2
3 + ζ3
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=
−i√

3


1 2 0

1 −1 0

0 0 −ζ2
3 + ζ3


In block diagonal form,

Sf =
−i√

3


1 2 0

1 −1 0

0 0 ζ3 − ζ2
3

 ,
R1(1,+) corresponds to the 2 × 2 block and R1(1,−) corresponds to the 1 × 1 block.

Comparing the results from Basis Choice 1, the characters agree as they should. Letting

S = [ 0 −1
1 0 ], we have

R1(1,+)(S) =

−i
√

3
3

−2i
√

3
3

−i
√

3
3

i
√

3
3


and

R1(1,−)(S) =
−i
√

3

3
(ζ3 − ζ2

3 )

=
−i
√

3

3

[
−1 + i

√
3

2
− −1− i

√
3

2

]

=
−i
√

3

3
· i
√

3

= 1.

So these representations are realized over Z
[

1
2
(1 +

√
−3), 1

3

]
= Z

[
ζ3,

1
3

]
. By Theorem

2.4.4, integral representations over Z[ζ3] exist. We construct them in the next section.

3.4 Wang’s Basis for R(1,+)

Wang[36] provides an integral basis for the R(1,+) and R(n,+) representations from

the Weil representation of T = [ 1 1
0 1 ]. Let v =

∑p−1
i=0 δp and ρ(T ) be the Weil representa-
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tion of T . Then an integral basis over Z[ζp] is given by

{
v, ρ(T ) · v, (ρ(T ))2 · v, · · · , (ρ(T ))(p−3)/2 · v, (ρ(T ))(p−1)/2 · v

}
.

Using SAGE, we verify that the representations are integral over Z[ζ3]. Since ζ3 =

1
2
(1 +

√
−3), they are also integral over Z[1

2
(1 +

√
−3)]:

R(1,+)(S) =

−ζ3 − 1 −ζ3

−ζ3 ζ3 + 1

 and R(1,+)(T ) =

0 −ζ3

1 ζ3 + 1

 ,
and

R(1,−)(S) = 1 and R(1,−)(T ) = ζ3.

3.5 Candelori’s Bases for R(1,+) and R(1,−)

Let ρ(S) and ρ(T ) be the Weil representations for S = [ 0 −1
1 0 ] and T = [ 1 1

0 1 ] respec-

tively. Define v+ := δ1 + δ(p−1) and v− := δ1 − δ(p−1). Define ρ(U) := ρ(S) · ρ(T ) · ρ(S).

Then a basis for R(n,+) is conjectured to be

{
v+, ρ(U) · v+, (ρ(U))2 · v+, · · · , (ρ(U))(p−3)/2 · v+, (ρ(T ))(p−1)/2 · v+

}
and a basis for R(n,−) is conjectured to be

{
v−, ρ(U) · v−, (ρ(U))2 · v−, · · · , (ρ(U))(p−3)/2 · v−, (ρ(U))(p−1)/2 · v−

}
.

Using SAGE, we verify that the representations are integral over Z[ζ3] = Z[1
2
(1+
√
−3)]:

R(1,+)(S) =

ζ3 1

ζ3 −ζ3

 and R(1,+)(T ) =

ζ3 1

0 1

 ,
and

R(1,−)(S) = 1 and R(1,−)(T ) = ζ3.
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3.6 R1(2,±)

Since 02 ≡ 0 mod 3, 12 ≡ 1 mod 2, and 22 = 4 ≡ 1 mod 3, we have that 2 is a

quadratic non-residue modulo 3. So,

(
2

3

)
= −1. We take r = 2. Our quadratic form is

Q(x) = 3−12 · x2 =
2

3
x2 and the associated bilinear form is

B(x, y) = Q(x+ y)−Q(x)−Q(y) =
2

3
(x2 + 2xy + y2)− 2

3
x2 − 2

3
y2 =

4

3
xy.

Using Theorem 2 and Eq(7) from Nobs[23] [24]: We have Q(x) = 2x2/p, B(x, y) = 4xy/3,

λ = 1, p = 3, Aλ = M = Z/pZ = A1 = Z/3Z, |M | = 3, r = 2.

SQ(a) = |M |−1/2
∑
x∈M

e(−aQ(x))

SQ(−1) = 3−1/2
∑
x∈M

e(−(−1)Q(x))

= 3−1/2
∑
x∈M

e(Q(x))

= 3−1/2
(
exp(2πi(2 · 02/3)) + exp(2πi(2 · 12/3)) + exp(2πi(2 · 22/3))

)
= 3−1/2 (exp(0) + exp(4πi/3) + exp(16πi/3))

= 3−1/2

(
1− 1

2
− i
√

3

2
− 1

2
− i
√

3

2

)

= 3−1/2
(

1− 1− i
√

3
)

= −i

which agrees with Nobs’ I, Lemma 1: with r = 2, p = 3, λ = 1,

Λ(a) =

(
a

p

)λ
, SQ(−1) =


1 if λ even(
r

p

)
ε(p) if λ odd

,

distinguishes ε(d) = 1 or i, depending on whether d ≡ 1 or 3 mod 4. We have SQ(−1) =(
r

p

)
ε(p) =

(
2

p

)
ε(p) = −1 · i = −i where ε(p) = i since p ≡ 3 mod 4. So our actions
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by S =

0 −1

1 0

 and T =

1 b

0 1

 are

0 −1

1 0

 δx = Sδx

= SQ(−1)|M |−1/2
∑
y∈M

e(−B(x, y)) · δy

=
i√
|M |

∑
y∈M

ζ−4xy
p · δy.

For our given M and p = 3,0 −1

1 0

 δ0 =
i√
3

∑
y∈M

ζ−4·0·y
3 · δy

=
i√
3


1

1

1

 ,
0 −1

1 0

 δ1 =
i√
3

∑
y∈M

ζ−4·1·y
3 · δy

=
i√
3


1

ζ−4·1·1
3

ζ−4·1·2
3



=
i√
3


1

ζ2
3

ζ3

 ,
0 −1

1 0

 δ2 =
i√
3

∑
y∈M

ζ−4·2·y
3 · δy
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=
i√
3


1

ζ−4·2·1
3

ζ−4·2·2
3



=
i√
3


1

ζ3

ζ2
3

 ,
implying

Sb =
i√
3


1 1 1

1 ζ2
3 ζ3

1 ζ3 ζ2
3

 .
And 1 b

0 1

 δx = Tδx

= e(bQ(x)) · δx

= ζ2bx2

p · δx

gives

Tb =


1 0 0

0 ζ2b
3 0

0 0 ζ2b
3

 .

3.6.1 U = {−1, 1}

Aut(M,Q) is the group of automorphisms of M invariant under Q, i.e., for every

ϕ ∈ Aut(M,Q), Q(ϕ(x)) = Q(x) for all x ∈M . So since M = Z/3Z and Q(x) = 2x2/p,

Aut(M,Q) will consist of the identity and the inverse maps. Aut(M,Q) = {1,−1} ∼=

Z/2Z = C2. Aut(M,Q) has the trivial subgroup and itself as the only two subgroups
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since it is of prime order. So let U = {1,−1} and let χ be a character of U, then

V (χ) := {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}

is a subspace of V = CM that is invariant under SL2(Aλ). If you write W (M,Q, χ) for

the sub-representation of W (M,Q) in the space V (χ), then

W (M,Q) = ⊕χW (M,Q, χ),

where χ runs through all the characters from U.

3.6.2 Basis Choice 1

For our case, there are two characters, χ1 the trivial character and χ2 the non-trivial

character of the abelian group U. Let’s start with χ1.

V (χ1) = {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(εx) = f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(1 · x) = f(x) and f(−1 · x) = f(x) ∀x ∈M}

= {f ∈ CM | f(−x) = f(x) ∀x ∈M}.

So even functions meet the criterion. Let f0(x) = δ0(x). Since δ0(−0) = δ0(0) = 1,

δ0(−1) = δ0(2) = δ0(1) = 0, and δ0(−2) = δ0(1) = δ0(2) = 0, it holds.

Let f1(x) = δ0(x)− δ1(x)− δ2(x). Then

f1(−0) = δ0(−0)− δ1(−0)− δ2(0) = 1− 0− 0 = f1(0) = δ0(0)− δ1(0)− δ2(0),

f1(−1) = f1(2) = δ0(2)− δ1(2)− δ2(2) = 0− 0− 1 = f1(1) = δ0(1)− δ1(1)− δ2(1) = −1,

and

f1(−2) = f1(1) = δ0(1)− δ1(1)− δ2(1) = 0− 1− 0 = f1(2) = δ0(2)− δ1(2)− δ2(2) = −1

show it holds and that V (χ1) = {f0, f1}. So it’s a two dimensional subspace.
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Next we have χ2(1) = 1 and χ2(−1) = −1. With

V (χ2) = {f ∈ CM | f(εx) = χ2(ε)f(x) ∀ε ∈ U, ∀x ∈M}

f(1 · 0) = χ2(1) · f(0) = 1 · f(0) = f(0),

f(1 · 1) = χ2(1) · f(1) = 1 · f(1) = f(1),

f(1 · 2) = χ2(1) · f(2) = 1 · f(2) = f(2),

f(−1 · 0) = f(0) = χ2(−1) · f(0) = −1 · f(0) = −f(0),

f(−1 · 1) = f(−1) = f(2) = χ2(−1) · f(1) = −1 · f(1) = −f(1),

and

f(−1 · 2) = f(−2) = f(1) = χ2(−1) · f(2) = −1 · f(2) = −f(2),

show that for ε = 1, we have f(x) = f(x). For ε = −1, f(0) = −f(0) which implies

f(0) = 0, f(1) = −f(2) = −f(−1). So odd functions meet the criterion.

Let f2(x) = δ1(x)− δ2(x). Then

f2(−1 ·0) = f2(0) = δ1(0)− δ2(0) = 0 = χ2(−1)f2(0) = −(δ1(0)− δ2(0)) = −0 = −f1(0),

f2(−1 · 1) = f2(2) = δ1(2)− δ2(2) = −1 = χ2(−1)f2(1) = −(δ1(1)− δ2(1)) = −1,

and

f2(−1 · 2) = f2(1) = δ1(1)− δ2(1) = 1 = χ2(−1)f2(2) = −(δ1(2)− δ2(2)) = 1

shows that V (χ2) = {f2}. So it’s a one dimensional subspace.

We need to perform a change of basis on matrix Tb

Tb =


1 0 0

0 ζ2b
3 0

0 0 ζ2b
3





111

that results by the action of [ 1 b
1 0 ]. Let

M =


1 1 0

0 −1 1

0 −1 −1

 .
Then M contains as column the vectors of the new basis B = {f0, f1, f2} with respect

to the canonical basis {δ0, δ1, δ2}. M represents the matrix of change of basis from B to

the canonical.

To determine the new coordinates with respect to the new basis,

Tf = M−1TbM

=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 0 0

0 ζ2b
3 0

0 0 ζ2b
3




1 1 0

0 −1 1

0 −1 −1



=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 1 0

0 −ζ2b
3 ζ2b

3

0 −ζ2b
3 −ζ2b

3



=


1 1− ζ2b

3 0

0 ζ2b
3 0

0 0 ζ2b
3


So we have our desired block diagonal matrix for the matrix representation of the action

by [ 1 b
0 1 ] with respect to the basis vectors {f0, f1, f2}:

Tf =


1 1− ζ2b

3 0

0 ζ2b
3 0

0 0 ζ2b
3

 .
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Letting T =

1 1

0 1

, we see that

R1(2,+)(T ) =

1 1− ζ2
3

0 ζ2
3


=

1 1−
(
−1

2
− i

√
3

2

)
0 −1

2
− i

√
3

2


=

1 3
2

+ i
√

3
2

0 −1
2
− i

√
3

2


and

R1(2,−)(T ) = −1

2
− i
√

3

2
.

Now for the action by [ 0 −1
1 0 ]. Call this matrix Sb and it is

Sb =
i√
3


1 1 1

1 ζ2
3 ζ3

1 ζ3 ζ2
3

 .
Applying the similarity transformation gives us the matrix with respect to the new basis

Sf = M−1SbM

=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2

 i√
3


1 1 1

1 ζ2
3 ζ3

1 ζ3 ζ2
3




1 1 0

0 −1 1

0 −1 −1



=
i√
3


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 −1 0

1 −ζ2
3 − ζ3 + 1 ζ2

3 − ζ3

1 −ζ2
3 − ζ3 + 1 ζ3 − ζ2

3
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=
i√
3


2 −ζ2

3 − ζ3 0

−1 ζ2
3 + ζ3 − 1 0

0 0 ζ2
3 − ζ3



=
i√
3


2 1 0

−1 −2 0

0 0 ζ2
3 − ζ3

 .
In block diagonal form,

Sf =
i√
3


2 1 0

−1 −2 0

0 0 ζ2
3 − ζ3

 ,
R1(2,+) corresponds to the 2× 2 block and R1(2,−) corresponds to the 1× 1 block.

Letting S = [ 0 −1
1 0 ], we have

R1(2,+)(S) =

 2i
√

3
3

i
√

3
3

−i
√

3
3

−2i
√

3
3


and

R1(2,−)(S) =
i
√

3

3
(ζ2

3 − ζ3)

=
i
√

3

3

[
−1− i

√
3

2
− −1 + i

√
3

2

]

=
i
√

3

3
· (−i
√

3)

= 1.

3.6.3 Basis Choice 2

For our case, there are two characters, χ1 the trivial character and χ2 the non-trivial

character of the abelian group U.
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Let’s start with χ1.

V (χ1) = {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(εx) = f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(1 · x) = f(x) and f(−1 · x) = f(x) ∀x ∈M}

= {f ∈ CM | f(−x) = f(x) ∀x ∈M}.

So even functions meet the criterion. Let f0(x) = δ0(x). Then δ0(−0) = δ0(0) = 1,

δ0(−1) = δ0(2) = δ0(1) = 0, and δ0(−2) = δ0(1) = δ0(2) = 0 show it holds.

Let f1(x) = δ1(x) + δ2(x). Then

f1(−0) = δ1(−0) + δ2(−0) = 0 + 0 = 0 = δ1(0) + δ2(0),

f1(−1) = f1(2) = δ1(2) + δ2(2) = 0 + 1 = f1(1) = δ1(1) + δ2(1), and

f1(−2) = f1(1) = δ1(1) + δ2(1) = 1 = f1(2) = δ1(2) + δ2(2) = 1

shows it holds and V (χ1) = {f0, f1}. So it’s a two dimensional subspace.

Next we have χ2(1) = 1 and χ2(−1) = −1.

V (χ2) = {f ∈ CM | f(εx) = χ2(ε)f(x) ∀ε ∈ U, ∀x ∈M}.

Then f(1 · 0) = χ2(1) · f(0) = 1 · f(0) = f(0),

f(1 · 1) = χ2(1) · f(1) = 1 · f(1) = f(1),

f(1 · 2) = χ2(1) · f(2) = 1 · f(2) = f(2),

f(−1 · 0) = f(0) = χ2(−1) · f(0) = −1 · f(0) = −f(0),

f(−1 · 1) = f(−1) = f(2) = χ2(−1) · f(1) = −1 · f(1) = −f(1),

and f(−1 · 2) = f(−2) = f(1) = χ2(−1) · f(2) = −1 · f(2) = −f(2) show that

for ε = 1, we have f(x) = f(x). For ε = −1, f(0) = −f(0) which implies f(0) = 0,

f(1) = −f(2) = −f(−1). So odd functions meet the criterion.

Let f2(x) = δ1(x)− δ2(x). Then
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f2(−1 · 0) = f2(0) = δ1(0) − δ2(0) = 0 = χ2(−1)f2(0) = −(δ1(0) − δ2(0)) = −0 =

−f1(0).

f2(−1 · 1) = f2(2) = δ1(2)− δ2(2) = −1 = χ2(−1)f2(1) = −(δ1(1)− δ2(1)) = −1.

f2(−1 · 2) = f2(1) = δ1(1)− δ2(1) = 1 = χ2(−1)f2(2) = −(δ1(2)− δ2(2)) = 1.

V (χ2) = {f2}. So it’s a one dimensional subspace.

We need to perform a change of basis on matrix Tb

Tb =


1 0 0

0 ζ2b
3 0

0 0 ζ2b
3



that results by the action of

1 b

0 1

. Let

M =


1 0 0

0 1 1

0 1 −1

 .
Then M contains as column the vectors of the new basis B = {f0, f1, f2} with respect

to the canonical basis {δ0, δ1, δ2}. M represents the matrix of change of basis from B to

the canonical.

To determine the new coordinates with respect to the new basis,

Tf = M−1TbM
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=


1 0 0

0 1
2

1
2

0 1
2
−1

2




1 0 0

0 ζ2b
3 0

0 0 ζ2b
3




1 0 0

0 1 1

0 1 −1



=


1 1

2
1
2

0 −1
2
−1

2

0 1
2
−1

2




1 0 0

0 ζ2b
3 ζ2b

3

0 ζ2b
3 −ζ2b

3



=


1 0 0

0 ζ2b
3 0

0 0 ζ2b
3

 .
So we have our desired block diagonal matrix for the matrix representation of the action

by [ 1 b
0 1 ] with respect to the basis vectors {f0, f1, f2}:

Tf =


1 0 0

0 ζ2b
3 0

0 0 ζ2b
3



Letting T =

1 1

0 1

, we see that

R1(2,+)(T ) =

1 0

0 ζ2
3


=

1 0

0 −1
2
− i

√
3

2


and

R1(2,−)(T ) = −1

2
− i
√

3

2
.
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Now for the action by

0 −1

1 0

. Call this matrix Sb and it is

Sb =
i√
3


1 1 1

1 ζ2
3 ζ3

1 ζ3 ζ2
3

 .
Applying the similarity transformation gives us the matrix with respect to the new basis

Sf = M−1SbM

=


1 0 0

0 1
2

1
2

0 1
2
−1

2

 i√
3


1 1 1

1 ζ2
3 ζ3

1 ζ3 ζ2
3




1 0 0

0 1 1

0 1 −1



=
i√
3


1 0 0

0 1
2

1
2

0 1
2
−1

2




1 2 0

1 ζ2
3 + ζ3 ζ2

3 − ζ3

1 ζ2
3 + ζ3 −ζ2

3 + ζ3



=
i√
3


1 2 0

1 ζ2
3 + ζ3 0

0 0 ζ2
3 − ζ3



=
i√
3


1 2 0

1 −1 0

0 0 ζ2
3 − ζ3

 .
In block diagonal form,

Sf =
i√
3


1 2 0

1 −1 0

0 0 ζ2
3 − ζ3

 ,
R1(2,+) corresponds to the 2 × 2 block and R1(2,−) corresponds to the 1 × 1 block.
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Comparing the results from Basis Choice 1, the characters agree as they should. Letting

S = [ 0 −1
1 0 ], we have

R1(2,+)(S) =

 i
√

3
3

2i
√

3
3

i
√

3
3

−i
√

3
3


and

R1(2,−)(S) =
i
√

3

3
(ζ2

3 − ζ3)

=
i
√

3

3

[
−1− i

√
3

2
− −1 + i

√
3

2

]

=
i
√

3

3
· (−i
√

3)

= 1.

3.7 Wang’s Basis for R(2,+)

Wang[36] provides an integral basis for the R(n,+) and R(n,+) representations

from the Weil representation of T = [ 1 1
0 1 ]. Let v =

∑p−1
i=0 δp and ρ(T ) be the Weil

representation of T . Then an integral basis over Z[ζp] is given by

{
v, ρ(T ) · v, (ρ(T ))2 · v, · · · , (ρ(T ))(p−3)/2 · v, (ρ(T ))(p−1)/2 · v

}
.

Using SAGE, we verify that the representations are integral over Z[ζ3]. Since ζ3 =

1
2
(1 +

√
−3), they are also integral over Z[1

2
(1 +

√
−3)]:

R(2,+)(S) =

 ζ3 ζ3 + 1

ζ3 + 1 −ζ3

 and R(2,+)(T ) =

0 ζ3 + 1

1 −ζ3

 ,
and

R(1,−)(S) = 1 and R(1,−)(T ) = ζ3.
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3.8 Candelori’s Bases for R(2,+) and R(2,−)

Let ρ(S) and ρ(T ) be the Weil representations for S = [ 0 −1
1 0 ] and T = [ 1 1

0 1 ] respec-

tively. Define v+ := δ1 + δ(p−1) and v− := δ1− δ(p− 1). Define ρ(U) := ρ(S) · ρ(T ) · ρ(S).

Then a basis for R(n,+) is conjectured to be

{
v+, ρ(U) · v+, (ρ(U))2 · v+, · · · , (ρ(U))(p−3)/2 · v+, (ρ(T ))(p−1)/2 · v+

}
and a basis for R(n,−) is conjectured to be

{
v−, ρ(U) · v−, (ρ(U))2 · v−, · · · , (ρ(U))(p−3)/2 · v−, (ρ(U))(p−1)/2 · v−

}
.

Using SAGE, we verify that the representations are integral over Z[ζ3] = Z[1
2
(1+
√
−3)]:

R(2,+)(S) =

−ζ3 − 1 1

−ζ3 − 1 ζ3 + 1

 and R(1,+)(T ) =

−ζ3 − 1 1

0 1

 ,
and

R(2,−)(S) = 1 and R(1,−)(T ) = −ζ3 − 1 = ζ2
3 .

3.9 N1(χ)

Our table in Section I, (from Nobs and Wolfart[24]) tells us that

N1(χ) ∼= R1(1,−)⊕R1(n,−) for χ 6≡ 1 and χ2 ≡ 1.

Nλ is also computed using M = Z/pZ⊕ Z/pZ, Q(x) = p−λx1x2 with λ ≥ 1.

Nλ is called the unbranched Weil representation[24].

For our case, λ = 1, Aλ = Z/3Z, M = Z/3Z⊕ Z/3Z, Q(x) = 3−1x1x2.

B(x, y) = Q(x+ y)−Q(x)−Q(y)

= 3−1((x1 + y1)(x2 + y2)− (x1x2)− (y1y2))

= 3−1(x1x2 + y1x2 + x1y2 + y1y2 − (x1x2)− (y1y2))
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= 3−1(y1x2 + x1y2)

Aut(M,Q) is the group of automorphisms of M invariant under Q, i.e., for every ϕ ∈

Aut(M,Q), Q(ϕ(x)) = Q(x) for all x ∈ M . Aut(M,Q) will consist of the identity, the

inverse maps, and κ : (x, y) 7→ (y, x). The effect of a ∈ A×λ on M will be defined by

a : (x, y) 7→ (a−1x, ay). For a = 1, this is the identity map. For a = 2, a−1 = 2 since a is

a unit of Z/3Z, the map is multiplication by 2. Multiplication by 2 is the same as the

inverse map:

2 · (0, 0) = (0, 0) + (0, 0) = (0, 0) = −(0, 0), 2 · (0, 1) = (0, 1) + (0, 1) = (0, 2) = −(0, 1)

2 · (0, 2) = (0, 2) + (0, 2) = (0, 1) = −(0, 2), 2 · (1, 0) = (1, 0) + (1, 0) = (2, 0) = −(1, 0)

2 · (1, 1) = (1, 1) + (1, 1) = (2, 2) = −(1, 1), 2 · (1, 2) = (1, 2) + (1, 2) = (2, 1) = −(1, 2)

2 · (2, 0) = (2, 0) + (2, 0) = (1, 0) = −(2, 0), 2 · (2, 1) = (2, 1) + (2, 1) = (1, 2) = −(2, 1)

2 · (2, 2) = (2, 2) + (2, 2) = (1, 1) = −(2, 2).

We summarize the calculations in the following tables.

a ∈M Q(a) κ(a) (κ(a))−1 Q ((κ(a))−1)
(0, 0) 0 (0, 0) (0, 0) 0

(0, 1) 0 (1, 0) (2, 0) 0

(0, 2) 0 (2, 0) (1, 0) 0

(1, 0) 0 (0, 1) (0, 2) 0

(1, 1) 1
3

(1, 1) (2, 2) 1
3

(1, 2) 2
3

(2, 1) (1, 2) 1
3

(2, 0) 0 (0, 2) (0, 1) 0

(2, 1) 2
3

(1, 2) (2, 1) 2
3

(2, 2) 1
3

(2, 2) (1, 1) 1
3

Table 3.9.1: Part I of calculations for Aut(M,Q)
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a ∈M Q(a) a−1 (κ(a−1) Q ((κ(a−1))
(0, 0) 0 (0, 0) (0, 0) 0

(0, 1) 0 (0, 2) (2, 0) 0

(0, 2) 0 (0, 1) (1, 0) 0

(1, 0) 0 (2, 0) (0, 2) 0

(1, 1) 1
3

(2, 2) (2, 2) 1
3

(1, 2) 2
3

(2, 1) (1, 2) 1
3

(2, 0) 0 (1, 0) (2, 0) 0

(2, 1) 2
3

(1, 2) (2, 1) 2
3

(2, 2) 1
3

(1, 1) (1, 1) 1
3

Table 3.9.2: Part II of calculations for Aut(M,Q)

We see that the κ automorphism commutes with the inverse. Their composition is

of order two as well. With the exception of the identity, every automorphism is of order

two. So, Aut(M,Q) ∼= V4 the Klein 4-group. So U can be the trivial subgroup, a subgroup

of order two, or the entire group. So let U = {1,−1} and let χ be a character of U, then

V (χ) := {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}

is a subspace of V = CM that is invariant under SL2(Aλ). If you write W (M,Q, χ) for

the sub-representation of W (M,Q) in the space V (χ), then

W (M,Q) = ⊕χW (M,Q, χ),

where χ runs through all the characters from U.

For our case, there are two characters, χ1 the trivial character and χ2 the non-trivial

character of the abelian group U.
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Let’s start with χ1.

V (χ1) = {f ∈ CM | f(εx) = χ(ε)f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(εx) = f(x) ∀ε ∈ U, ∀x ∈M}

= {f ∈ CM | f(1 · x) = f(x) and f(−1 · x) = f(x) ∀x ∈M}

= {f ∈ CM | f(−x) = f(x) ∀x ∈M}.

Again, even functions meet the criterion.

f(−1 · (0, 0)) = f((0, 0)) = f((0, 0)),

f(−1 · (0, 1)) = f((0, 2)) = f((0, 1)), and

f(−1 · (0, 2)) = f((0, 1)) = f((0, 2)).

f(−1 · (1, 0)) = f((2, 0)) = f((1, 0)),

f(−1 · (1, 1)) = f((2, 2)) = f((1, 1)), and

f(−1 · (1, 2)) = f((2, 1)) = f((1, 2)).

f(−1 · (2, 0)) = f((1, 0)) = f((2, 0)),

f(−1 · (2, 1)) = f((1, 2)) = f((2, 1)), and

f(−1 · (2, 2)) = f((1, 1)) = f((2, 2)).

Using the definition of δξ from Nobs and Wolfart in the proof of Theorem 2[24], let

δξ(η) =

 1 for ξ = η ∈M

0 otherwise

Then our basis functions are: f0 = δ(0,0), f1 = δ(0,1) + δ(0,2), f2 = δ(1,0) + δ(2,0), f3 =

δ(1,1) + δ(2,2), and f4 = δ(1,2) + δ(2,1).

But this does not meet the dimension requirements of the irreducible representa-

tion given in the table. So we will use another method. We will use material from
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Strömberg[32].

Let M1 = Z/3Z. Then N1 = Z/3Z × Z/3Z ∼= M1 ⊕ M̂1 = M1 ⊕ M2. We have

established earlier that Q(x) = xy/3 for N1. For M1, let Q1 = x2/3, M2, let Q2 = 2x2/3.

Then Lemma 2.10 and Proposition 2.11[32] tells us that

W (N1, Q) ∼= W (M1, Q1)⊗W (M2, Q2)

∼= (R1(1,+)⊕R1(1,−))⊗ (R1(2,+)⊕R1(2,−))

∼= (R1(1,+)⊗R1(2,+))⊕ (R1(1,+)⊗R1(2,−))

⊕ (R1(1,−)⊗R1(2,+))⊕ (R1(1,−)⊗R1(2,−))

Summarizing what we have so far:

Basis 1 Basis 1 Basis 2 Basis 2
Representation Generator S Generator T Generator S Generator T

R1(1,+)

[
−2i
√

3
3

−i
√

3
3

i
√

3
3

2i
√

3
3

] [
1 3

2
− i

√
3

2

0 −1
2

+ i
√

3
2

] [
−i
√

3
3

−2i
√

3
3

−i
√

3
3

i
√

3
3

] [
1 0

0 −1
2

+ i
√

3
2

]

R1(1,−) 1 −1
2

+ i
√

3
2

1 −1
2

+ i
√

3
2

R1(2,+)

[
2i
√

3
3

i
√

3
3

−i
√

3
3

−2i
√

3
3

] [
1 3

2
+ i

√
3

2

0 −1
2
− i

√
3

2

] [
i
√

3
3

2i
√

3
3

i
√

3
3

−i
√

3
3

] [
1 0

0 −1
2
− i

√
3

2

]

R1(2,−) 1 −1
2
− i

√
3

2
1 −1

2
− i

√
3

2

Table 3.9.3: R1(1,±) and R1(2,±) for SL2(F3)

The conjugacy class representatives of SL2(F3) and their sizes are given in Table

3.9.4.
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Conjugacy Class Generated Conjugacy Class
Representative By Size

I =

[
1 0
0 1

]
S4 1

−I =

[
2 0
0 2

]
S2 1

u =

[
1 1
0 1

]
T 4

u′ =

[
1 2
0 1

]
T 2 4

−u′ =
[
2 1
0 2

]
T 2S2 4

−u =

[
2 2
0 2

]
TS2 4

s =

[
0 2
1 0

]
S 6

Table 3.9.4: Conjugacy class representatives of SL2(F3) and their sizes

3.9.1 Basis Choice 1

For Basis 1, the four dimensional representation of the generator S = [ 0 −1
1 0 ] is

R1(1,+)⊗R1(2,+))(S) =

−2i
√

3
3

−i
√

3
3

i
√

3
3

2i
√

3
3

⊗
 2i

√
3

3
i
√

3
3

−i
√

3
3

−2i
√

3
3



=



−2i
√

3
3

 2i
√

3
3

i
√

3
3

−i
√

3
3

−2i
√

3
3

 −i
√

3
3

 2i
√

3
3

i
√

3
3

−i
√

3
3

−2i
√

3
3


i
√

3
3

 2i
√

3
3

i
√

3
3

−i
√

3
3

−2i
√

3
3

 2i
√

3
3

 2i
√

3
3

i
√

3
3

−i
√

3
3

−2i
√

3
3
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=



4
3

2
3

2
3

1
3

−2
3
−4

3
−1

3
−2

3

−2
3
−1

3
−4

3
−2

3

1
3

2
3

2
3

4
3


.

The trace of this matrix raised to the fourth power is 4. The trace of the matrix

squared is also 4, corresponding to the trace of S4 = 1 and S2 = −1. The trace of this

matrix is zero. This agrees with the trace of representation 1 + St (S corresponds to s

in Reeder’s character table).

Now for T = [ 1 1
0 1 ] (which corresponds to u in Reeder’s character table).

R1(1,+)⊗R1(2,+))(T ) =

1 3
2
− i

√
3

2

0 −1
2

+ i
√

3
2

⊗
1 3

2
+ i

√
3

2

0 −1
2
− i

√
3

2



=


1

1 3
2

+ i
√

3
2

0 −1
2
− i

√
3

2

 (3
2
− i

√
3

2
)

1 3
2

+ i
√

3
2

0 −1
2
− i

√
3

2


0

1 3
2

+ i
√

3
2

0 −1
2
− i

√
3

2

 (−1
2

+ i
√

3
2

)

1 3
2

+ i
√

3
2

0 −1
2
− i

√
3

2





=



1 3
2

+ i
√

3
2

3
2
− i

√
3

2
3

0 −1
2
− i

√
3

2
0 −3

4
+ i

√
3

4
− 3i

√
3

4
− 3

4

0 0 −1
2

+ i
√

3
2
−3

4
− i

√
3

4
+ 3i

√
3

4
− 3

4

0 0 0 1
4

+ 3
4



=



1 3
2

+ i
√

3
2

3
2
− i

√
3

2
3

0 −1
2
− i

√
3

2
0 −3

2
+ i

√
3

2

0 0 −1
2

+ i
√

3
2

3
2
− i

√
3

2

0 0 0 1


.

Neither are in block diagonal form so we will need to perform another basis change. But
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we can verify that this indeed 1⊕St since it agrees with the characters on the conjugacy

classes and since it decomposes into two irreducible representations. It is readily verified

using a computer. Let’s try the second choice for the basis.

3.9.2 Basis Choice 2

For Basis 2, the four dimensional representation of the generator S = [ 0 −1
1 0 ] is

(R1(1,+)⊗R1(2,+))(S) =

−i
√

3
3

−2i
√

3
3

−i
√

3
3

i
√

3
3

⊗
 i
√

3
3

2i
√

3
3

i
√

3
3

−i
√

3
3



=



−i
√

3
3

 i
√

3
3

2i
√

3
3

i
√

3
3

−i
√

3
3

 −2i
√

3
3

 i
√

3
3

2i
√

3
3

i
√

3
3

−i
√

3
3


−i
√

3
3

 i
√

3
3

2i
√

3
3

i
√

3
3

−i
√

3
3

 i
√

3
3

 i
√

3
3

2i
√

3
3

i
√

3
3

−i
√

3
3





=



1
3

2
3

2
3

4
3

1
3
−1
3

2
3

−2
3

1
3

2
3

−1
3

−2
3

1
3
−1
3

−1
3

1
3


.

Now for T = [ 1 1
0 1 ] (which corresponds to u in Reeder’s character table).

(R1(1,+)⊗R1(2,+))(T ) =

1 0

0 −1
2

+ i
√

3
2

⊗
1 0

0 −1
2
− i

√
3

2



=


1 ·

1 0

0 −1
2
− i

√
3

2

 0 ·

1 0

0 −1
2
− i

√
3

2


0 ·

1 0

0 −1
2
− i

√
3

2

 −1
2

+ i
√

3
2
·

1 0

0 −1
2
− i

√
3

2
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=



1 0 0 0

0 −1−i
√

3
2

0 0

0 0 −1+
√

3
2

0

0 0 0
1

4
+

3

4



=



1 0 0 0

0 −1−i
√

3
2

0 0

0 0 −1+
√

3
2

0

0 0 0 1


.

It’s not in block diagonal form so we need to perform a change of basis. For convenience,

let ρ1 = R1(1,+), ρ2 = R1(2,+) and ζ = exp(2πi/3). Recall that V (χ1) = {f0, f1} and

f0 = δ0 and f1 = δ1 + δ2. Then we have

ρ1(T ) =

1 0

0 ζ


ρ2(T ) =

1 0

0 ζ−1



ρ1 ⊗ ρ2(T ) =



1 0 0 0

0 ζ−1 0 0

0 0 ζ 0

0 0 0 1


and

ρ1(S) =
−i√

3

1 2

1 −1


ρ2(S) =

i√
3

1 2

1 −1
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ρ1 ⊗ ρ2(S) =
1

3



1 2 2 4

1 −1 2 −2

1 2 −1 −2

1 −1 −1 1


.

ρ1 ⊗ ρ2(T ) has an eigenvalue of 1 with multiplicity two. To determine the invariant

subspace, we consider the eigenspace generated by eigenvalue of 1.

VT = span(δ0 ⊗ δ0, (δ1 + δ2)⊗ (δ1 + δ2))

= span(δ0 ⊗ δ0, δ1 ⊗ δ1 + δ2 ⊗ δ1 + δ1 ⊗ δ2 + δ2 ⊗ δ2)

= span





1

0

0

0


,



0

0

0

1





= span





1

0

0

1


,



0

0

0

1




.

Next recall that (the Fourier “expansion”)

ρ1(S)(δ0) = δ1 + δ2 + δ3

ρ1(S)(δ1 + δ2) = δ0 + ζ3δ1 + ζ2δ2 + δ0 + ζ2
3δ2 + ζ3δ3

= 2δ0 + (ζ3 + ζ3
3 )δ1 + (ζ2

3 + ζ3)δ2

= 2δ0 − δ1 − δ2.
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Computing the Jordan form of ρ1 ⊗ ρ2(S) we obtain the Jordan matrix, J , and the D

the matrix of the associated generalized eigenvectors:

J =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


D =



2 2 0 −2

1 0 −1 2

1 0 1 0

0 1 0 1


So the invariant subspace VS is given by

VS = span





2

1

1

0


,



2

0

0

1




.

So the invariant subspace spanned by the intersection is one-dimensional:

VT ∩ VS = span





1

0

0

1


,



0

0

0

1




∩ span





2

1

1

0


,



2

0

0

1





= span





2

0

0

1




= span(2δ0 ⊗ δ0 + (δ1 + δ2)⊗ (δ1 + δ2)).

Since this is one-dimensional, it corresponds to the trivial representation in the decom-

position of R1(1,+)⊗R1(2,+). To find the Steinberg representation, we need to compute
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the basis of orthogonal complement of VT ∩ VS. So,

(VT ∩ VS)⊥ = span {v ∈ V | v · w = 0 for all w ∈ (VT ∩ VS)}

=





1

0

0

−2


,



0

1

0

0


,



0

0

1

0




= span {δ0 ⊗ δ0 − 2((δ1 + δ2)⊗ (δ1 + δ2)),

δ0 ⊗ (δ1 + δ2),

(δ1 + δ2)⊗ δ0}.

Lets try to put this in block diagonal form with respect to the new basis (the above set

of linearly independent spanning vectors). Letting

M =



2 1 0 0

0 0 1 0

0 0 0 1

1 −2 0 0



T0 = M−1(ρ1 ⊗ ρ2(T ))M

=



1 0 0 0

0 1 0 0

0 0 ζ2 0

0 0 0 ζ


It’s still block diagonal. So far so good.

S0 = M−1(ρ1 ⊗ ρ2(S))M
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=



1 −1 1
5

1
5

0 −1
3

4
15

4
15

0 5
3
−1

3
2
3

0 5
3

2
3
−1

3


It’s not block diagonal. Lets compute the others.

R1(1,+)⊗R1(2,−)(S) =

−i
√

3

3

−2i
√

3

3
−i
√

3

3

i
√

3

3

⊗ (−1)

= −R1(1,+)(S).

R1(1,−)⊗R1(2,+)(S) = 1⊗

i
√

3

3

2i
√

3

3
i
√

3

3

−i
√

3

3


= R1(2,+)(S).

R1(1,−)⊗R1(2,−)(S) = 1⊗ (1) = 1.

R1(1,+)⊗R1(2,−)(T ) =

1 0

0
−1 + i

√
3

2

⊗(−1

2
− i
√

3

2

)

=

(
−1

2
− i
√

3

2

)
R1(1,+)(T )

R1(1,−)⊗R1(2,+)(T ) =

(
−1

2
+ i

√
3

2

)
⊗

1 0

0
−1− i

√
3

2


=

(
−1

2
+ i

√
3

2

)
R1(2,+)(T )
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R1(1,−)⊗R1(2,−)(T ) =

(
−1

2
+ i

√
3

2

)
⊗

(
−1

2
− i
√

3

2

)

= 1.

Let’s summarize what we calculated so far:

Representation I −I u u′ −u −u′ s

R1(1,−)⊗R1(2,−) 1 1 1 1 1 1 1
= Trivial

R1(1,+)⊗R1(2,+) 4 4 1 1 1 1 0
∼= 1⊕ St

R1(1,+) ∼= ρ′0 2 −2 1
2

+ i
√

3
2

1
2
− i

√
3

2
−1

2
− i

√
3

2
−1

2
+ i

√
3

2
0

∼= R1(1,−)⊗R1(2,+)

R1(2,+) ∼= ρ′′0 2 −2 1
2
− i

√
3

2
1
2

+ i
√

3
2

−1
2

+ i
√

3
2
−1

2
− i

√
3

2
0

∼= R1(1,+)⊗R1(2,−)

R1(1,−) ∼= π′0 1 1 −1
2

+ i
√

3
2
−1

2
− i

√
3

2
−1

2
+ i

√
3

2
−1

2
− i

√
3

2
1

R1(2,−) ∼= π′′0 1 1 −1
2
− i

√
3

2
−1

2
+ i

√
3

2
−1

2
− i

√
3

2
−1

2
+ i

√
3

2
1

Table 3.9.5: R1(1,±) and R1(2,±) for SL2(F3)

Nobs and Wolfart[24] tell us how to compute the Steinberg and the other two dimen-

sional Weil representations.
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3.10 N1(χ) redux

In Nobs Part I[23] Theorem 3, we have another binary quadratic form for M =

Z/pZ⊕ Z/pZ: Q(x) = p−λ(x2
1 − ux2

2). Its bilinear form is given by

B(x, y) = Q(x+ y)−Q(x)−Q(y)

=
(x1 + y1)2 − u(x2 + y2)2

pλ
− (x1)2 − u(x2)2

pλ
− (y1)2 − u(y2)2

pλ

=
((x2

1 + 2x1y1 + y2
1)− u(x2

2 + 2x2y2 + y2
2))− x2

1 + ux2
2 − y2

1 + uy2
2

pλ

=
x2

1 + 2x1y1 + y2
1 − ux2

2 − u2x2y2 − uy2
2 − x2

1 + ux2
2 − y2

1 + uy2
2

pλ

=
2x1y1 − 2ux2y2

pλ
.

For our case, p = 3, λ = 1, and u = 2. Since we know the automorphism group of M

will be GL2(Z/pZ), we will start there to compute Aut(M,Q).

The order of GL2(Z/pZ) is (p2−1)(p2−p). So |GL2(Z/3Z)| = (9−1)(9−3) = 8 ·6 =

48. Lets list them:1 0

0 1

,
2 0

0 2

 ,
0 1

1 0

 ,
0 2

2 0

 ,
0 2

1 2

 ,
0 1

2 1

 ,
0 1

2 2

 ,
0 2

1 1

 ,
1 0

0 2

 ,
2 0

0 1

 ,
0 2

1 0

 ,
0 1

2 0

 ,
2 2

1 0

 ,
1 1

2 0

 ,
2 1

2 0

 ,
1 2

1 0

 ,
2 2

0 2

 ,
1 1

0 1

 ,
2 0

1 2

 ,
1 0

2 1

 ,
2 0

2 2

 ,
1 0

1 1

 ,
2 1

0 2

 ,
1 2

0 1

 ,
1 1

0 2

 ,
2 2

0 1

 ,
2 0

2 1

 ,
1 0

1 2

 ,
2 0

1 1

 ,
1 0

2 2

 ,
1 2

0 2

 ,
2 1

0 1

 ,
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1 2

2 2

 ,
2 1

1 1

 ,
1 1

1 2

 ,
2 2

2 1

 ,
2 1

2 2

 ,
2 2

1 2

 ,
1 2

1 1

 ,
1 1

2 1

 ,
0 1

1 1

 ,
1 2

2 0

 ,
0 2

2 1

 ,
1 1

1 0

 ,
2 2

2 0

 ,
0 1

1 2

 ,
2 1

1 0

 ,
0 2

2 2

 .
Lets write the domain and image of Q(x).

x1 x2 x2
1 x2

2 x2
1 − 2x2

2 Q(x) = (x2
1 − 2x2

2)/3 ∈ Q/Z

0 0 0 0 0 0

0 1 0 1 0− 2 −2/3 = 1/3

0 2 0 4 0− 8 −8/3 = 1/3

1 0 1 0 1− 0 1/3 = 1/3

∗ 1 1 1 1 1− 2 −1/3 = 2/3

∗ 1 2 1 4 1− 8 −7/3 = 2/3

2 0 4 0 4− 0 4/3 = 1/3

∗ 2 1 4 1 4− 2 2/3 = 2/3

∗ 2 2 4 4 4− 8 −4/3 = 2/3

Now to determine the elements of Aut(M,Q). Since Aut(M,Q) is going to be a

subgroup of GL2(Z/3Z), its order has to be 1, 2, 3, 4, 6, 8, 12, 16, 24 or 48.
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We have the identity element:

1 0

0 1

 and its order is 1.

0 1

1 0


0

0

 =

0

0

 ,
0 1

1 0


0

1

 =

1

0

 ,
0 1

1 0


0

2

 =

2

0

 ,
0 1

1 0


1

0

 =

0

1

 ,
0 1

1 0


1

1

 =

1

1

 ,
0 1

1 0


1

2

 =

2

1

 ,
0 1

1 0


2

0

 =

0

2

 ,
0 1

1 0


2

1

 =

1

2

 ,
0 1

1 0


2

2

 =

2

2

 .
0 1

1 0

 is an element of order 2.

0 2

2 0


0

0

 =

0

0

 ,
0 2

2 0


0

1

 =

2

0

 ,
0 2

2 0


0

2

 =

1

0

 ,
0 2

2 0


1

0

 =

0

2

 ,
0 2

2 0


1

1

 =

2

2

 ,
0 2

2 0


1

2

 =

1

2

 ,
0 2

2 0


2

0

 =

0

1

 ,
0 2

2 0


2

1

 =

2

2

 ,
0 2

2 0


2

2

 =

1

1

 .
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0 2

2 0

 is an element of order 2.

0 2

1 0


0

0

 =

0

0

 ,
0 2

1 0


0

1

 =

2

0

 ,
0 2

1 0


0

2

 =

1

0

 ,
0 2

1 0


1

0

 =

0

1

 ,
0 2

1 0


1

1

 =

2

1

 ,
0 2

1 0


1

2

 =

1

2

 ,
0 2

1 0


2

0

 =

0

2

 ,
0 2

1 0


2

1

 =

2

2

 ,
0 2

1 0


2

2

 =

1

2

 .
0 2

1 0

 is an element of order 4. So |Aut(M,Q)| is either 4, 8, 12, 16, 24, or 48.

2 0

0 2


0

0

 =

0

0

 ,
2 0

0 2


0

1

 =

0

2

 ,
2 0

0 2


0

2

 =

0

1

 ,
2 0

0 2


1

0

 =

2

0

 ,
2 0

0 2


1

1

 =

2

2

 ,
2 0

0 2


1

2

 =

2

1

 ,
2 0

0 2


2

0

 =

1

0

 ,
2 0

0 2


2

1

 =

1

2

 ,
2 0

0 2


2

2

 =

1

1

 .



137

2 0

0 2

 is an element of order 2.

0 1

2 0


0

0

 =

0

0

 ,
0 1

2 0


0

1

 =

1

0

 ,
0 1

2 0


0

2

 =

2

0

 ,
0 1

2 0


1

0

 =

0

2

 ,
0 1

2 0


1

1

 =

1

2

 ,
0 1

2 0


1

2

 =

2

2

 ,
0 1

2 0


2

0

 =

0

1

 ,
0 1

2 0


2

1

 =

1

2

 ,
0 1

2 0


2

2

 =

2

1

 .
0 1

2 0

 is an element of order 4.

2 0

0 1


0

0

 =

0

0

 ,
2 0

0 1


0

1

 =

0

1

 ,
2 0

0 1


0

2

 =

0

2

 ,
2 0

0 1


1

0

 =

2

0

 ,
2 0

0 1


1

1

 =

2

1

 ,
2 0

0 1


1

2

 =

2

2

 ,
2 0

0 1


2

0

 =

1

0

 ,
2 0

0 1


2

1

 =

1

1

 ,
2 0

0 1


2

2

 =

1

2

 .
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2 0

0 1

 is an element of order 2.

1 0

0 2


0

0

 =

0

0

 ,
1 0

0 2


0

1

 =

0

2

 ,
1 0

0 2


0

2

 =

0

1

 ,
1 0

0 2


1

0

 =

1

0

 ,
1 0

0 2


1

1

 =

1

2

 ,
1 0

0 2


1

2

 =

1

1

 ,
1 0

0 2


2

0

 =

2

0

 ,
1 0

0 2


2

1

 =

2

1

 ,
1 0

0 2


2

2

 =

2

1

 .
1 0

0 2

 is an element of order 2. The elements

1 0

1 1

 ,
1 1

1 0

 ,
1 2

1 0

 ,
1 2

1 1

 ,
1 0

1 2

 ,
1 1

1 2



map

1

0

 to

1

1

.

The elements1 2

0 2

 ,
2 2

0 2

 ,
0 2

1 2

 ,
2 2

1 2

 ,
1 2

2 2

 ,
0 2

2 2



map

0

2

 to

1

1

.
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The elements1 1

0 1

 ,
1 1

2 1

 ,
2 1

0 1

 ,
2 1

1 1

 ,
0 1

1 1

 ,
0 1

2 1



map

0

1

 to

1

1

.

The elements2 0

2 1

 ,
2 1

2 0

 ,
2 0

2 2

 ,
2 2

2 1

 ,
2 1

2 2

 ,
2 2

2 1



map

2

0

 to

1

1

.

The elements 2 0

1 1

 ,
2 1

1 0

 ,
2 2

1 2

 ,
2 2

1 0

 ,
2 0

1 2



map

2

0

 to

1

2

.

The elements1 0

2 1

 ,
1 0

2 2

 ,
1 2

2 1

 ,
1 1

2 0

 ,
1 2

2 2

 ,
1 2

2 0



map

2

0

 to

2

1

.

2 1

0 2

 is not an element as it maps

1

1

 to

0

2

.
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Neither is

2 2

0 2

 as it maps

0

1

 to

2

2

.

So since 37 elements are not in Aut(M,Q), the order (cardinality) of Aut(M,Q) is

not greater than 8. So Aut(M,Q) will have to have order 8.

Aut(M,Q) =


1 0

0 1

 ,
0 1

1 0

 ,
0 2

2 0

 ,
0 2

1 0

 ,
2 0

0 2

 ,
0 1

2 0

 ,
2 0

0 1

 ,
1 0

0 2




Now to show that Aut(M,Q) is indeed a group. It inherits associativity from

GL2(Z/3Z). We have the identity element. Each of the elements has an inverse. Each of

the five elements of order two is an inverse to itself and the two elements of order four

are inverses to each other:0 1

2 0

 ·
0 2

1 0

 =

1 0

0 1

 and

0 2

1 0

 ·
0 1

2 0

 =

1 0

0 1

 .
Now to verify closure of the binary operation. First the order 2 elements.0 2

2 0


0 1

1 0

 =

2 0

0 2

 ,
0 2

1 0


0 1

1 0

 =

2 0

0 1

 ,
2 0

0 2


0 1

1 0

 =

0 2

2 0

 ,
0 1

2 0


0 1

1 0

 =

1 0

0 2

 ,
2 0

0 1


0 1

1 0

 =

0 2

1 0

 ,
1 0

0 2


0 1

1 0

 =

0 1

2 0

 .
0 1

1 0


0 2

2 0

 =

2 0

0 2

 ,
0 2

1 0


0 2

2 0

 =

1 0

0 2

 ,
2 0

0 2


0 2

2 0

 =

0 1

1 0

 ,
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0 1

2 0


0 2

2 0

 =

2 0

0 1

 ,
2 0

0 1


0 2

2 0

 =

0 1

2 0

 ,
1 0

0 2


0 2

2 0

 =

0 2

1 0

 ,
0 1

1 0


2 0

0 2

 =

0 2

1 0

 ,
0 2

2 0


2 0

0 2

 =

0 1

1 0

 ,
0 2

1 0


2 0

0 2

 =

2 0

0 1

 ,
0 1

2 0


2 0

0 2

 =

0 2

1 0

 ,
2 0

0 1


2 0

0 2

 =

1 0

0 2

 ,
1 0

0 2


2 0

0 2

 =

2 0

0 1

 ,
0 1

1 0


2 0

0 1

 =

0 1

2 0

 ,
0 2

2 0


2 0

0 1

 =

0 2

1 0

 ,
0 2

1 0


2 0

0 1

 =

0 2

2 0

 ,
2 0

0 2


2 0

0 1

 =

1 0

0 2

 ,
0 1

2 0


2 0

0 1

 =

0 1

1 0

 ,
1 0

0 2


2 0

0 1

 =

2 0

0 2

 ,
0 1

1 0


1 0

0 2

 =

0 2

1 0

 ,
0 2

2 0


1 0

0 2

 =

0 1

2 0

 ,
0 2

1 0


1 0

0 2

 =

0 1

1 0

 ,
2 0

0 2


1 0

0 2

 =

2 0

0 1

 ,
0 1

2 0


1 0

0 2

 =

0 2

2 0

 ,
2 0

0 1


1 0

0 2

 =

2 0

0 2

 .
Now for the order 4 elements:0 1

1 0


0 1

2 0

 =

2 0

0 1

 ,
0 2

2 0


0 1

2 0

 =

2 0

0 2

 ,
0 2

1 0


0 1

2 0

 =

1 0

0 1

 ,
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2 0

0 2


0 1

2 0

 =

0 2

1 0

 ,
2 0

0 1


0 1

2 0

 =

0 2

2 0

 ,
1 0

0 2


0 1

2 0

 =

0 1

1 0

 ,
0 1

2 0


0 1

2 0

 =

0 1

1 0

 ,
0 1

1 0


0 2

1 0

 =

1 0

0 2

 ,
0 2

2 0


0 2

1 0

 =

2 0

0 1

 ,
2 0

0 2


0 2

1 0

 =

2 0

0 1

 ,
0 1

2 0


0 2

1 0

 =

1 0

0 1

 ,
2 0

0 1


0 2

1 0

 =

0 1

1 0

 ,
1 0

0 2


0 2

1 0

 =

1 0

0 1

 ,
0 2

1 0


0 2

1 0

 =

0 1

1 0

 .
We have closure under the binary operation (matrix multiplication). So Aut(M,Q) is

a group. It is nonabelian. Letting r = [ 0 1
2 0 ] and s = [ 0 1

1 0 ], we can generate the eight

elements as follows:

s =

0 1

1 0

 , r =

0 1

2 0

 , r2 =

2 0

0 2

 , r3 = srs =

0 2

1 0

 , r4 = s2 =

1 0

0 1

 ,

rs =

1 0

0 2

 , r2s =

0 2

2 0

 , r3s =

2 0

0 1

 .
Since it has two elements of order 4, five elements of order 2, and the above relations

with the two generators r and s, it is isomorphic to the dihedral group of order 8:

Aut(M,Q) = 〈r, s | r4 = s2 = 1, srs = r−1 = r3〉.
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It has an abelian subgroup of order 4 which is generated by either r or r−1. That is,

U = 〈r | r4 = 1〉. So we will have characters of U that are not 1 or −1.

Remark 3.10.1. The orthogonal group O+(2, p) has a dihedral group of order 2(p+ 1)

as its automorphism group. One can refer to Taylor[34] Theorem 11.4 for the details.

Theorem 2 in Nobs[23],

Theorem 3.10.2 (Nobs, 2). Let χ, χ1, χ2 be primitive characters of U with χ2, χ2
1, χ

2
2 6≡

1.

a) Nλ(χ) is irreducible of level λ.

b) Nλ(χ1) ∼= Nλ(χ2) if and only if χ1 = χ2 or χ2.

This gives ((p2 − 1)/2)pλ−2 non-isomorphic irreducible representations of SL2(Aλ) of

degree pλ−1(p − 1) for λ > 1, p 6= 2, and for λ > 3, p = 2. The corresponding numbers

are (p− 1)/2 for p 6= 2 and λ = 1,

 1 for λ = 1, 2

2 for λ = 3

 and p = 2.

tells us that for Nλ(χ), there are (p − 1)/2 non-isomorphic irreducible representations

of SL2(Z/pZ) for λ = 1. So for p = 3, there is (3− 1)/2 = 1 irreducible representation.

Since U is a cyclic group of order 4:

U =


1 0

0 1

 ,
0 1

2 0

 ,
2 0

0 2

 ,
0 2

1 0


 ,

so,

χ


1 0

0 1


 = 1, χ


0 1

2 0


 = i, χ


2 0

0 2


 = −1, χ


0 2

1 0


 = −i.

δξ ∈ CM defined by

δξ(η) =

 1 for ξ = η ∈M

0 otherwise

 .

Then the fξ(χ) :=
∑

ε∈U χ(ε)δεξ form a system of generators of CM [24]. However, as
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we will see, we only obtain two linearly independent functions.

f
0

0


(χ) = χ


1 0

0 1


 δ

1 0

0 1



0

0


+ χ


0 1

2 0


 δ

0 1

1 2



0

0



+ χ


2 0

0 2


 δ

2 0

0 2



0

0


+ χ


0 2

1 0


 δ

0 2

1 0



0

0


= 1 · δ

0

0


+ i · δ

0

0


− 1 · δ

0

0


− i · δ

0

0


= 0 · δ

0

0


= 0.

This agrees with Nobs[24] (fξ(χ) = 0 if χ is primitive and ξ ∈ pM , well, pM = 0 and

since ξ = 0, it agrees).

f
0

1


(χ) = χ


1 0

0 1


 δ

1 0

0 1



0

1


+ χ


0 1

2 0


 δ

0 1

2 0



0

1



+ χ


2 0

0 2


 δ

2 0

0 2



0

1


+ χ


0 2

1 0


 δ

0 2

1 0



0

1


= 1 · δ

0

1


+ i · δ

1

0


− 1 · δ

0

2


− i · δ

2

0


.
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f
0

2


(χ) = χ


1 0

0 1


 δ

1 0

0 1



0

2


+ χ


0 1

2 0


 δ

0 1

2 0



0

2



+ χ


2 0

0 2


 δ

2 0

0 2



0

2


+ χ


0 2

1 0


 δ

0 2

1 0



0

2


= 1 · δ

0

2


+ i · δ

2

0


− 1 · δ

0

1


− i · δ

1

0


= −1 · δ

0

1


− i · δ

1

0


+ 1 · δ

0

2


+ i · δ

2

0


.

So f
0

2


(χ) = −f

0

1


(χ).

f
1

0


(χ) = χ


1 0

0 1


 δ

1 0

0 1



1

0


+ χ


0 1

2 0


 δ

0 1

2 0



1

0



+ χ


2 0

0 2


 δ

2 0

0 2



1

0


+ χ


0 2

1 0


 δ

0 2

1 0



1

0


= 1 · δ

1

0


+ i · δ

0

2


− 1 · δ

2

0


− i · δ

0

1
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= −i · δ
0

1


+ 1 · δ

1

0


+ i · δ

0

2


− 1 · δ

2

0


.

So f
1

0


(χ) = i · f

0

2


(χ) = −i · f

0

1


(χ).

f
2

0


(χ) = χ


1 0

0 1


 δ

1 0

0 1



2

0


+ χ


0 1

2 0


 δ

0 1

2 0



2

0



+ χ


2 0

0 2


 δ

2 0

0 2



2

0


+ χ


0 2

1 0


 δ

0 2

1 0



2

0


= 1 · δ

2

0


+ i · δ

0

1


− 1 · δ

1

0


− i · δ

0

2


= i · δ

0

1


− 1 · δ

1

0


− i · δ

0

2


+ 1 · δ

2

0


.

So f
2

0


(χ) = −i · f

0

2


(χ) = i · f

0

1


(χ).

f
1

1


(χ) = χ


1 0

0 1


 δ

1 0

0 1



1

1


+ χ


0 1

2 0


 δ

0 1

2 0



1

1
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+ χ


2 0

0 2


 δ

2 0

0 2



1

1


+ χ


0 2

1 0


 δ

0 2

1 0



1

1


= 1 · δ

1

1


+ i · δ

1

2


− 1 · δ

2

2


− i · δ

2

1


.

So f
1

1


(χ) is not a linear combination of the previous functions.

f
1

2


(χ) = χ


1 0

0 1


 δ

1 0

0 1



1

2


+ χ


0 1

2 0


 δ

0 1

2 0



1

2



+ χ


2 0

0 2


 δ

2 0

0 2



1

2


+ χ


0 2

1 0


 δ

0 2

1 0



1

2


= 1 · δ

1

2


+ i · δ

2

2


− 1 · δ

2

1


− i · δ

1

1


= −i · δ

1

1


+ 1 · δ

1

2


+ i · δ

2

2


− 1 · δ

2

1


.

So f
1

2


(χ) = −i · f

1

1


(χ).
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f
2

1


(χ) = χ


1 0

0 1


 δ

1 0

0 1



2

1


+ χ


0 1

2 0


 δ

0 1

2 0



2

1



+ χ


2 0

0 2


 δ

2 0

0 2



2

1


+ χ


0 2

1 0


 δ

0 2

1 0



2

1


= 1 · δ

2

1


+ i · δ

1

1


− 1 · δ

1

2


− i · δ

2

2


= i · δ

1

1


− 1 · δ

1

2


− i · δ

2

2


+ 1 · δ

2

1


.

So f
2

1


(χ) = −f

1

2


(χ) = i · f

1

1


(χ).

f
2

2


(χ) = χ


1 0

0 1


 δ

1 0

0 1



2

2


+ χ


0 1

2 0


 δ

0 1

2 0



2

2



+ χ


2 0

0 2


 δ

2 0

0 2



2

2


+ χ


0 2

1 0


 δ

0 2

1 0



2

2


= 1 · δ

2

2


+ i · δ

2

1


− 1 · δ

1

1


− i · δ

1

2
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= −1 · δ
1

1


− i · δ

1

2


+ 1 · δ

2

2


+ i · δ

2

1


.

So f
2

2


(χ) = i · f

2

1


(χ) = −f

1

1


(χ).

The two linearly independent generators are

f
0

1


(χ) and f

1

1


(χ).

Nobs[24] has another approach. For a fixed χ, V (χ) is generated by the fξ so that

from these only one system can be selected linearly independent. From

fγξ = χ(γ)−1fξ(χ) for all γ ∈ U, ξ ∈M,χ ∈ Car U

we compute and verify the above equation.
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γ ξ γξ χ(γ) χ(γ)−1 χ(γ)−1fξ(χ) fγξ χ(γ)−1fξ(χ)? = fγξ

1 0

0 1


0

0


0

0

 1 1 f
0

0


f

0

0


Y ES

0 1

2 0


0

0


0

0

 i −i −if
0

0


f

0

0


Y ES

2 0

0 2


0

0


0

0

 −1 −1 −f
0

0


f

0

0


Y ES

0 2

1 0


0

0


0

0

 −i i if
0

0


f

0

0


Y ES
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γ ξ γξ χ(γ) χ(γ)−1 χ(γ)−1fξ(χ) fγξ χ(γ)−1fξ(χ) = fγξ?

1 0

0 1


0

1


0

1

 1 1 f
0

1


f

0

1


Y ES

0 1

2 0


0

1


1

0

 i −i −if
0

1


f

1

0


Y ES

2 0

0 2


0

1


0

2

 −1 −1 −f
0

1


f

0

2


Y ES

0 2

1 0


0

1


2

0

 −i i if
0

1


f

2

0


Y ES

1 0

0 1


0

2


0

2

 1 1 f
0

2


f

0

2


Y ES

0 1

2 0


0

2


2

0

 i −i −if
0

2


f

2

0


Y ES
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γ ξ γξ χ(γ) χ(γ)−1 χ(γ)−1fξ(χ) fγξ χ(γ)−1fξ(χ) = fγξ?

2 0

0 2


0

2


0

1

 −1 −1 −f
0

2


f

0

1


Y ES

0 2

1 0


0

2


1

0

 −i i if
0

2


f

1

0


Y ES

1 0

0 1


1

0


1

0

 1 1 f
1

0


f

1

0


Y ES

0 1

2 0


1

0


0

2

 i −i −if
1

0


f

0

2


Y ES

2 0

0 2


1

0


2

0

 −1 −1 −f
1

0


f

2

0


Y ES

0 2

1 0


1

0


0

1

 −i i if
1

0


f

0

1


Y ES
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γ ξ γξ χ(γ) χ(γ)−1 χ(γ)−1fξ(χ) fγξ χ(γ)−1fξ(χ) = fγξ?

1 0

0 1


1

1


1

1

 1 1 f
1

1


f

1

1


Y ES

0 1

2 0


1

1


1

2

 i −i −if
1

1


f

1

2


Y ES

2 0

0 2


1

1


2

2

 −1 −1 −f
1

1


f

2

2


Y ES

0 2

1 0


1

1


2

1

 −i i if
1

1


f

2

1


Y ES

1 0

0 1


1

2


1

2

 1 1 f
1

2


f

1

2


Y ES

0 1

2 0


1

2


2

2

 i −i −if
1

2


f

2

2


Y ES
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γ ξ γξ χ(γ) χ(γ)−1 χ(γ)−1fξ(χ) fγξ χ(γ)−1fξ(χ) = fγξ?

2 0

0 2


1

2


2

1

 −1 −1 −f
1

2


f

2

1


Y ES

0 2

1 0


1

2


1

1

 −i i if
1

2


f

1

1


Y ES

1 0

0 1


2

0


2

0

 1 1 f
2

0


f

2

0


Y ES

0 1

2 0


2

0


0

1

 i −i −if
2

0


f

0

1


Y ES

2 0

0 2


2

0


1

0

 −1 −1 −f
2

0


f

1

0


Y ES

0 2

1 0


2

0


0

2

 −i i if
2

0


f

0

2


Y ES
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γ ξ γξ χ(γ) χ(γ)−1 χ(γ)−1fξ(χ) fγξ χ(γ)−1fξ(χ) = fγξ?

1 0

0 1


2

1


1

1

 1 1 f
1

1


f

1

1


Y ES

0 1

2 0


2

1


2

1

 i −i −if
2

1


f

1

1


Y ES

2 0

0 2


2

1


1

2

 −1 −1 −f
2

1


f

1

2


Y ES

0 2

1 0


2

1


2

2

 −i i if
2

1


f

2

2


Y ES

1 0

0 1


2

2


2

2

 1 1 f
2

2


f

2

2


Y ES
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γ ξ γξ χ(γ) χ(γ)−1 χ(γ)−1fξ(χ) fγξ χ(γ)−1fξ(χ) = fγξ?

0 1

2 0


2

2


2

1

 i −i −if
2

2


f

2

1


Y ES

2 0

0 2


2

2


1

1

 −1 −1 −f
2

2


f

1

1


Y ES

0 2

1 0


2

2


1

2

 −i i if
2

2


f

1

2


Y ES.

Again, we have that there are two linearly independent generators as before:

f
0

1


(χ) and f

1

1


(χ).

3.10.1 The representation of the action by T

Letting ξ =

x1

x2

, N(ξ) = x2
1 − ux2

2.

With u = 2. Following Nobs[24], θ must contain exactly one ξ with N(ξ) = a for

every for every a ∈ A×λ . So a = 1 or a = 2.

θ1 = 1 corresponds to ξ =

0

1

 and θ2 = 2 corresponds to ξ =

1

1

.
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Theorem 2 from Nobs[23][24] tells us that for ξ =

0

1


1 1

0 1

 fξ(χ) = e(p−λN(ξ))fξ(χ)

= exp

(
2πi

3
(02 − 2 · 12)

)
f

0

1


(χ)

= exp

(
−4πi

3

)
·


1 · δ

0

1


+ i · δ

1

0


− 1 · δ

0

2


− i · δ

2

0





= exp

(
2πi

3

)
·


1 · δ

0

1


+ i · δ

1

0


− 1 · δ

0

2


− i · δ

2

0




= exp

(
2πi

3

)
f

0

1


(χ)

= ζ3 · f
0

1


(χ).

And for ξ =

1

1

,

1 1

0 1

 fξ(χ) = e(p−λN(ξ))fξ(χ)



158

= exp

(
2πi

3
(12 − 2 · 12)

)
f

1

1


(χ)

= exp

(
−2πi

3

)
·


i · δ

1

1


− 1 · δ

1

2


− i · δ

2

2


+ 1 · δ

2

1





= exp

(
4πi

3

)
·


i · δ

1

1


− 1 · δ

1

2


− i · δ

2

2


+ 1 · δ

2

1




= exp

(
4πi

3

)
f

1

1


(χ)

= ζ2
3 · f

1

1


(χ).

With respect to the basis vectors f
0

1


(χ) and f

1

1


(χ),

N1(χ)(T ) =

ζ3 0

0 ζ2
3

 .
We verify that Tr(N1(χ)(T )) = ζ3 + ζ2

3 = −1. It does agree with Reeder[25]. The

representation Nλ(χ) is referred to as πη and πη(u) = −1 where u is the representative

of the conjugacy class of T =

1 1

0 1

.



159

3.10.2 The representation of the action by S using Nobs’ method

Recall

B(x, y) =
2x1y1 − 2ux2y2

pλ
.

So for our case,

B(x, y) =
2x1y1 − 4x2y2

3
.

Nobs and Wolfart[24] tells us that 0 1

−1 0

 fξ(χ) = p−λ(−1)λ
∑
η∈θ

{∑
ε∈U

χ(ε)e(p−λ Tr εξη)

}
fη(χ) (5)

= p−λ(−1)λ
∑
η∈θ

{∑
ε∈U

χ(ε)e(B(εξ, η))

}
fη(χ).

With λ = 1, p = 3, we have 0 1

−1 0

 f0

1


(χ) =

−1

3


χ


1 0

0 1


 e

B

1 0

0 1


0

1

 ,
0

1





+ χ


0 1

2 0


 e

B

0 1

2 0


0

1

 ,
0

1





+ χ


2 0

0 2


 e

B

2 0

0 2


0

1

 ,
0

1





+ χ


0 2

1 0


 e

B

0 2

1 0


0

1

 ,
0

1




 f

0

1


(χ)

+

χ

1 0

0 1


 e

B

1 0

0 1


0

1

 ,
1

1
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+ χ


0 1

2 0


 e

B

0 1

2 0


0

1

 ,
1

1





+ χ


2 0

0 2


 e

B

2 0

0 2


0

1

 ,
1

1





+ χ


0 2

1 0


 e

B

0 2

1 0


0

1

 ,
1

1




 f

1

1


(χ)


 0 1

−1 0

 f0

1


(χ) =

−1

3


1 · e

B

0

1

 ,
0

1



 + i · e

B

1

0

 ,
0

1





−1 · e

B

0

2

 ,
0

1



 −i · e

B

2

0

 ,
0

1




 f

0

1


(χ)

+

1 · e

B

0

1

 ,
1

1



 + i · e

B

1

0

 ,
1

1





−1 · e

B

0

2

 ,
1

1



 −i · e

B

2

0

 ,
1

1




 f

1

1


(χ)


 0 1

−1 0

 f0

1


(χ) =

−1

3

[{
1 · e

(
2 · 0 · 0− 4 · 1 · 1

3

)
+ i · e

(
2 · 1 · 0− 4 · 0 · 1

3

)
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+ −1 · e
(

2 · 0 · 0− 4 · 2 · 1
3

)
+ −i · e

(
2 · 2 · 0− 4 · 0 · 1

3

)}
f

0

1


(χ)

+

{
1 · e

(
2 · 0 · 1− 4 · 1 · 1

3

)
+ i · e

(
2 · 1 · 1− 4 · 0 · 1

3

)

−1 · e
(

2 · 0 · 1− 4 · 2 · 1
3

)
−i · e

(
2 · 2 · 1− 4 · 0 · 1

3

)}
f

1

1


(χ)



 0 1

−1 0

 f0

1


(χ) =

−1

3


{

1 · e
(
−4

3

)
+ i · e

(
0

3

)
− 1 · e

(
−8

3

)
− i · e

(
0

3

)}
f

0

1


(χ)

+

{
1 · e

(
−4

3

)
+ i · e

(
2

3

)
−1 · e

(
−8

3

)
−i · e

(
4

3

)}
f

1

1


(χ)


 0 1

−1 0

 f0

1


(χ) =

−1

3

[{
exp

(
−8πi

3

)
− exp

(
−16πi

3

)}
f

0

1


(χ)

+

{
exp

(
−8πi

3

)
+ i · exp

(
4πi

3

)
−1 · exp

(
−16πi

3

)

−i · exp

(
8πi

3

)}
f

1

1


(χ)
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 0 1

−1 0

 f0

1


(χ) =

−1

3

[{
exp

(
4πi

3

)
− exp

(
2πi

3

)}
f

0

1


(χ)

+

{
exp

(
4πi

3

)
+ i · exp

(
4πi

3

)
− 1 · exp

(
2πi

3

)

−i · exp

(
2πi

3

)}
f

1

1


(χ)



 0 1

−1 0

 f0

1


(χ) =

−1

3


−i
√

3 · f
0

1


(χ) + (

√
3− i

√
3) · f

1

1


(χ)


=
i
√

3

3
· f

0

1


(χ) +

−
√

3 + i
√

3

3
· f

1

1


(χ).

 0 1

−1 0

 f1

1


(χ) =

−1

3


χ


1 0

0 1


 e

B

1 0

0 1


1

1

 ,
0

1





+ χ


0 1

2 0


 e

B

0 1

2 0


1

1

 ,
0

1





+ χ


2 0

0 2


 e

B

2 0

0 2


1

1

 ,
0

1
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+ χ


0 2

1 0


 e

B

0 2

1 0


1

1

 ,
0

1




 f

0

1


(χ)

+

χ

1 0

0 1


 e

B

1 0

0 1


1

1

 ,
1

1





+ χ


0 1

2 0


 e

B

0 1

2 0


1

1

 ,
1

1





+ χ


2 0

0 2


 e

B

2 0

0 2


1

1

 ,
1

1





+ χ


0 2

1 0


 e

B

0 2

1 0


1

1

 ,
1

1




 f

1

1


(χ)


 0 1

−1 0

 f1

1


(χ) =

−1

3


χ


1 0

0 1


 e

B

1

1

 ,
0

1





+ χ


0 1

2 0


 e

B

1

2

 ,
0

1





+ χ


2 0

0 2


 e

B

2

2

 ,
0

1





+ χ


0 2

1 0


 e

B

2

1

 ,
0

1




 f

0

1


(χ)
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+

χ

1 0

0 1


 e

B

1

1

 ,
1

1





+ χ


0 1

2 0


 e

B

1

2

 ,
1

1





+ χ


2 0

0 2


 e

B

2

2

 ,
1

1





+ χ


0 2

1 0


 e

B

2

1

 ,
1

1




 f

1

1


(χ)


 0 1

−1 0

 f1

1


(χ) =

−1

3

[{
1 · e

(
2 · 1 · 0− 4 · 1 · 1

3

)
+ i · e

(
2 · 1 · 0− 4 · 2 · 1

3

)

−1 · e
(

2 · 2 · 0− 4 · 2 · 1
3

)
−i · e

(
2 · 2 · 0− 4 · 1 · 1

3

)}
f

0

1


(χ)

{
1 · e

(
2 · 1 · 1− 4 · 1 · 1

3

)
+ i · e

(
2 · 1 · 1− 4 · 2 · 1

3

)

−1 · e
(

2 · 2 · 1− 4 · 2 · 1
3

)
−i · e

(
2 · 2 · 1− 4 · 1 · 1

3

)}
f

1

1


(χ)
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 0 1

−1 0

 f1

1


(χ) =

−1

3

[{
1 · e

(
−4

3

)
+ i · e

(
−8

3

)
− 1 · e

(
−8

3

)

−i · e
(
−4

3

)}
f

0

1


(χ)+

+

{
1 · e

(
−2

3

)
+ i · e

(
−6

3

)
−1 · e

(
−4

3

)
−i · e

(
0

3

)}
f

1

1


(χ)


 0 1

−1 0

 f1

1


(χ) =

−1

3

[{
1 · exp

(
−8πi

3

)
+ i · exp

(
−16πi

3

)
− 1 · exp

(
−16πi

3

)

− i · exp

(
−8πi

3

)}
f

0

1


(χ)

+

{
1 · exp

(
−4πi

3

)
+ i · exp

(
−12πi

3

)
− 1 · exp

(
−8πi

3

)

−i · exp

(
0

3

)}
f

1

1


(χ)
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 0 1

−1 0

 f1

1


(χ) =

−1

3

[{
1 · exp

(
4πi

3

)
+ i · exp

(
2πi

3

)

−1 · exp

(
2πi

3

)
− i · exp

(
4πi

3

)}
f

0

1


(χ)+

+

{
1 · exp

(
2πi

3

)
+ i · exp

(
0

3

)
+

−1 · exp

(
4πi

3

)
− i · exp

(
0

3

)}
f

1

1


(χ)


.

 0 1

−1 0

 f1

1


(χ) =

−1

3


(−i
√

3−
√

3) · f
0

1


(χ) + i

√
3 · f

1

1


(χ)


=

√
3 + i

√
3

3
· f

0

1


(χ)− i

√
3

3
· f

1

1


(χ).

Recall,  0 1

−1 0

 f0

1


(χ) =

i
√

3

3
· f

0

1


(χ) +

−
√

3 + i
√

3

3
· f

1

1


(χ).
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So with respect to the basis 
f

0

1


(χ), f

1

1


(χ)


The action of [ 0 1

−1 0 ] is given by i
√

3

3

−
√

3 + i
√

3

3√
3 + i

√
3

3

−i
√

3

3

 =

√
3

3

 i −1 + i

1 + i −i

 .
So the action by S, call it N1(χ)(S), will be the conjugate transpose of the above

matrix:

N1(χ)(S) =

 −i
√

3

3

√
3− i

√
3

3
−
√

3− i
√

3

3

i
√

3

3

 =
1√
3

 −i −i+ 1

−1− i i

 .
Its trace agrees with the character table in Bonnafé[4]. The representation in that

text is called R′(i∧) and the conjugacy class of S is d′(i). For T , the conjugacy class

is u+ and its character also agrees. We verify the relations (N1(χ)(S))4 = 1 and

(N1(χ)(S)N1(χ)(T ))3 = (N1(χ)(S))2.

(N1(χ)(S))2 =

 1√
3

 −i −i+ 1

−1− i i




2

=
1

3

 −i −i+ 1

−1− i i


 −i −i+ 1

−1− i i


=

1

3

 −1 +−2 −1− i+ 1 + i

i− 1− i+ 1 −2− 1
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=
1

3

−3 0

0 −3


= −1.

So, (N1(χ)(S))4 = 1. Recalling that

N1(χ)(T ) =

ζ3 0

0 ζ2
3

 ,
we have

N1(χ)(S) ·N1(χ)(T ) =
1√
3

 −i −i+ 1

−1− i i


−1 + i

√
3

2
0

0
−1− i

√
3

2



=
1√
3

 i+
√

3

2

(i−
√

3− 1− i
√

3)

2
1− i

√
3 + i+

√
3

2

−i+
√

3

2



=
1√
3


√

3 + i

2

−(
√

3 + 1) + i(1−
√

3)

2
(1 +

√
3) + i(1−

√
3)

2

√
3− i
2


=

1

2
√

3

 √
3 + i −(

√
3 + 1) + i(1−

√
3)

(1 +
√

3) + i(1−
√

3)
√

3− i

 ,

(N1(χ)(S) ·N1(χ)(T ))2 =
1

12

 √
3 + i −[(

√
3 + 1)− i(1−

√
3)]

(1 +
√

3) + i(1−
√

3)
√

3− i


·

 √
3 + i −[(

√
3 + 1)− i(1−

√
3])

(1 +
√

3) + i(1−
√

3)
√

3− i


=

1

12

 −6 + 2i
√

3 −(6 + 2
√

3) + i(2
√

3− 6)

(6 + 2
√

3) + i(2
√

3− 6) −6− 2i
√

3
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and finally

(N1(χ)(S) ·N1(χ)(T ))3 =
1

24
√

3

 −6 + 2i
√

3 −(6 + 2
√

3) + i(2
√

3− 6)

(6 + 2
√

3) + i(2
√

3− 6) −6− 2i
√

3


·

 √
3 + i −[(

√
3 + 1)− i(1−

√
3])

(1 +
√

3) + i(1−
√

3)
√

3− i


=

1

24
√

3

−24
√

3 0

0 −24
√

3


= −1

= (N1(χ)(S))2.

3.10.3 The representation of the action by S using the unreduced Nobs’

method

Let

f1 = f
0

1


(χ) =


1 · δ

0

1


+ i · δ

1

0


− 1 · δ

0

2


− i · δ

2

0




and

f2 = f
1

1


(χ) =


i · δ

1

1


− 1 · δ

1

2


− i · δ

2

2


+ 1 · δ

2

1
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as before. Using the action from Nobs[23][24] we will compute the action of S.

 0 1

−1 0

 f1(x) =

 0 1

−1 0




1 · δ
0

1


+ i · δ

1

0


− 1 · δ

0

2


− i · δ

2

0




 0 1

−1 0

 · 1 · δ0

1


= SQ(−1)|M |−1/2

∑
y∈M

e(B(x, y)) · δy

=
−1

3

∑
y∈M

e

B

0

1

 , y

 · δy)

=
−1

3

∑
y∈M

e

(
2 · 0 · y1 − 4 · 1 · y2

3

)
· δy

=
−1

3

∑
y∈M

ζ−4y2
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ−4·1

3 · δ
0

1


+ ζ−4·2

3 · δ
0

2


+ ζ−4·0

3 · δ
1

0


+ ζ−4·1

3 · δ
1

1


+ ζ−4·2

3 · δ
1

2



+ ζ−4·0
3 · δ

2

0


+ ζ−4·1

3 · δ
2

1


+ ζ−4·2

3 · δ
2

2




.
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 0 1

−1 0

 · 1 · δ0

1


=
−1

3


δ

0

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
0

2


+ δ

1

0


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
1

2



+ δ
2

0


+ ζ2

3 · δ
2

1


+ ζ1

3 · δ
2

2




.

 0 1

−1 0

 · (−1) · δ
0

2


= (−1) · −1

3

∑
y∈M

e

(
2 · 0 · y1 − 4 · 2 · y2

3

)
· δy

=
1

3

∑
y∈M

ζ−8y2
3 · δy

=
1

3

∑
y∈M

ζy23 · δy

=
1

3


δ

0

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
0

2


+ δ

1

0


+ ζ3 · δ

1

1


+ ζ2

3 · δ
1

2





172

+ δ
2

0


+ ζ1

3 · δ
2

1


+ ζ2

3 · δ
2

2




.

 0 1

−1 0

 · (i) · δ1

0


= (i) · −1

3

∑
y∈M

e

(
2 · 1 · y1 − 4 · 0 · y2

3

)
· δy

=
−i
3

∑
y∈M

ζ2y1
3 · δy

=
−i
3


δ

0

0


+ ζ0

3 · δ
0

1


+ ζ0

3 · δ
0

2


+ ζ2

3 · δ
1

0


+ ζ2

3 · δ
1

1


+ ζ2

3 · δ
1

2



+ ζ1
3 · δ

2

0


+ ζ1

3 · δ
2

1


+ ζ1

3 · δ
2

2




.

 0 1

−1 0

 · (−i) · δ2

0


= (−i) · −1

3

∑
y∈M

e

(
2 · 2 · y1 − 4 · 0 · y2

3

)
· δy

=
i

3

∑
y∈M

ζ4y1
3 · δy
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=
i

3

∑
y∈M

ζy13 · δy

=
i

3


δ

0

0


+ ζ0

3 · δ
0

1


+ ζ0

3 · δ
0

2


+ ζ1

3 · δ
1

0


+ ζ1

3 · δ
1

1


+ ζ1

3 · δ
1

2



+ ζ2
3 · δ

2

0


+ ζ2

3 · δ
2

1


+ ζ2

3 · δ
2

2




.

 0 1

−1 0

 f1(x) =
−1

3


δ

0

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
0

2


+ δ

1

0


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
1

2



+ δ
2

0


+ ζ2

3 · δ
2

1


+ ζ1

3 · δ
2

2
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+
1

3


δ

0

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
0

2


+ δ

1

0


+ ζ1

3 · δ
1

1


+ ζ2

3 · δ
1

2



+ δ
2

0


+ ζ1

3 · δ
2

1


+ ζ2

3 · δ
2

2





+
−i
3


δ

0

0


+ ζ0

3 · δ
0

1


+ ζ0

3 · δ
0

2


+ ζ2

3 · δ
1

0


+ ζ2

3 · δ
1

1


+ ζ2

3 · δ
1

2



+ ζ1
3 · δ

2

0


+ ζ1

3 · δ
2

1


+ ζ1

3 · δ
2

2





+
i

3


δ

0

0


+ ζ0

3 · δ
0

1


+ ζ0

3 · δ
0

2
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+ ζ1
3 · δ

1

0


+ ζ1

3 · δ
1

1


+ ζ1

3 · δ
1

2



+ ζ2
3 · δ

2

0


+ ζ2

3 · δ
2

1


+ ζ2

3 · δ
2

2




.

 0 1

−1 0

 f1(x) =

(
−1

3
+

1

3
+
−i
3

+
i

3

)
δ

0

0


+

1

3

(
−ζ2

3 + ζ1
3 − i+ i

)
δ

0

1


+

1

3

(
−ζ1

3 + ζ2
3 − i+ i

)
δ

0

2


+

1

3

(
−1 + 1− i · ζ2

3 + i · ζ1
3

)
δ

1

0


+

1

3

(
−ζ2

3 + ζ1
3 − i · ζ2

3 + i · ζ1
3

)
δ

1

1


+

1

3

(
−ζ1

3 + ζ2
3 − i · ζ2

3 + i · ζ1
3

)
δ

1

2
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+
1

3

(
−1 + 1− i · ζ1

3 + i · ζ2
3

)
δ

2

0


+

1

3

(
−ζ2

3 + ζ1
3 − i · ζ1

3 + i · ζ2
3

)
δ

2

1


+

1

3

(
−ζ1

3 + ζ2
3 − i · ζ1

3 + i · ζ2
3

)
δ

2

2


 0 1

−1 0

 f1(x) = (0) δ
0

0


+

1

3

(
i
√

3
)
δ

0

1


+

1

3

(
−i
√

3
)
δ

0

2


+

1

3

(
−
√

3
)
δ

1

0


+

1

3

(
i
√

3−
√

3
)
δ

1

1


+

1

3

(
−i
√

3−
√

3
)
δ

1

2


+

1

3

(√
3
)
δ

2

0


+

1

3

(
i
√

3 +
√

3
)
δ

2

1


+

1

3

(√
3− i

√
3
)
δ

2

2


=
i
√

3

3
· δ

0

1


+
−
√

3

3
· δ

1

0


+
−i
√

3

3
· δ

0

2


+

√
3

3
· δ

2

0


+
i
√

3−
√

3

3
δ

1

1


+
−i
√

3−
√

3

3
δ

1

2


+

√
3− i

√
3

3
δ

2

2


+
i
√

3 + i
√

3

3
δ

2

1
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=
i
√

3

3


δ

0

1


+ i · δ

1

0


− δ

0

2


− i · δ

2

0





+
i
√

3 +
√

3

3


δ

1

1


− δ

1

2


− iδ

2

2


+ δ

2

1




.

So,  0 1

−1 0

 f1(x) =
i
√

3

3
f1 +

(
i
√

3 +
√

3

3

)
f2.

Next, we work on

 0 1

−1 0

 f2(x) =

 0 1

−1 0



i · δ

1

1


− 1 · δ

1

2


− i · δ

2

2


+ 1 · δ

2

1




.

 0 1

−1 0

 · (i) · δ1

1


=
−i
3

∑
y∈M

e

(
2 · 1 · y1 − 4 · 1 · y2

3

)
· δy

=
−i
3

∑
y∈M

ζ2y1−4y2
3 · δy =

−i
3

∑
y∈M

ζ2y1+2y2
3 · δy =

−i
3

∑
y∈M

ζ
2(y1+y2)
3 · δy

=
−i
3


ζ0

3 · δ
0

0


+ ζ

2(0+1)
3 · δ

0

1


+ ζ

2(0+2)
3 · δ

0

2
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+ ζ
2(1+0)
3 · δ

1

0


+ ζ

2(1+1)
3 · δ

1

1


+ ζ

2(1+2)
3 · δ

1

2



+ ζ
2(2+0)
3 · δ

2

0


+ ζ

2(2+1)
3 · δ

2

1


+ ζ

2(2+2)
3 · δ

2

2





=
−i
3


δ

0

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
0

2


+ ζ2

3 · δ
1

0


+ ζ1

3 · δ
1

1


+ δ

1

2



+ ζ1
3 · δ

2

0


+ δ

2

1


+ ζ2

3 · δ
2

2




.

 0 1

−1 0

 · (−1) · δ
1

2


=

1

3

∑
y∈M

e

(
2 · 1 · y1 − 4 · 2 · y2

3

)
· δy

=
1

3

∑
y∈M

ζ2y1−8y2
3 · δy

=
1

3

∑
y∈M

ζ2y1+y2
3 · δy
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=
1

3


ζ0

3 · δ
0

0


+ ζ

2(0)+1
3 · δ

0

1


+ ζ

2(0)+2
3 · δ

0

2


+ ζ

2(1)+0
3 · δ

1

0


+ ζ

2(1)+1
3 · δ

1

1


+ ζ

2(1)+2
3 · δ

1

2



+ ζ
2(2)+0)
3 · δ

2

0


+ ζ

2(2)+1
3 · δ

2

1


+ ζ

2(2)+2
3 · δ

2

2





=
1

3


δ

0

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
0

2


+ ζ2

3 · δ
1

0


+ δ

1

1


+ ζ1

3 · δ
1

2



+ ζ1
3 · δ

2

0


+ ζ2

3 · δ
2

1


+ δ

2

2




.

 0 1

−1 0

 · (−i) · δ2

2


=
i

3

∑
y∈M

e

(
2 · 2 · y1 − 4 · 2 · y2

3

)
· δy
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=
i

3

∑
y∈M

ζ4y1−8y2
3 · δy

=
i

3

∑
y∈M

ζy1+y2
3 · δy

=
i

3


ζ0

3 · δ
0

0


+ ζ0+1

3 · δ
0

1


+ ζ0+2

3 · δ
0

2


+ ζ1+0

3 · δ
1

0


+ ζ1+1

3 · δ
1

1


+ ζ1+2

3 · δ
1

2



+ ζ2+0
3 · δ

2

0


+ ζ2+1

3 · δ
2

1


+ ζ2+2

3 · δ
2

2





=
i

3


δ

0

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
0

2


+ ζ1

3 · δ
1

0


+ ζ2

3δ

1

1


+ δ

1

2



+ ζ2
3 · δ

2

0


+ δ

2

1


+ ζ1

3 · δ
2

2




.
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 0 1

−1 0

 · (1) · δ
2

1


=
−1

3

∑
y∈M

e

(
2 · 2 · y1 − 4 · 1 · y2

3

)
· δy

=
−1

3

∑
y∈M

ζ4y1−4y2
3 · δy

=
−1

3

∑
y∈M

ζy1+2y2
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ

0+2(1)
3 · δ

0

1


+ ζ

0+2(2)
3 · δ

0

2


+ ζ

1+2(0)
3 · δ

1

0


+ ζ

1+2(1)
3 · δ

1

1


+ ζ

1+2(2)
3 · δ

1

2



+ ζ
2+2(0)
3 · δ

2

0


+ ζ

2+2(1)
3 · δ

2

1


+ ζ

2+2(2)
3 · δ

2

2





=
−1

3


δ

0

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
0

2


+ ζ1

3 · δ
1

0


+ δ

1

1


+ ζ2

3δ

1

2
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+ ζ2
3 · δ

2

0


+ ζ1

3δ

2

1


+ δ

2

2




.

 0 1

−1 0

 f2(x) =
−i
3


δ

0

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
0

2


+ ζ2

3 · δ
1

0


+ ζ1

3 · δ
1

1


+ δ

1

2



+ ζ1
3 · δ

2

0


+ δ

2

1


+ ζ2

3 · δ
2

2





+
1

3


δ

0

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
0

2


+ ζ2

3 · δ
1

0


+ δ

1

1


+ ζ1

3 · δ
1

2
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+ ζ1
3 · δ

2

0


+ ζ2

3δ

2

1


+ δ

2

2





=
i

3


δ

0

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
0

2


+ ζ1

3 · δ
1

0


+ ζ2

3δ

1

1


+ δ

1

2



+ ζ2
3 · δ

2

0


+ δ

2

1


+ ζ1

3 · δ
2

2





=
−1

3


δ

0

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
0

2


+ ζ1

3 · δ
1

0


+ δ

1

1


+ ζ2

3δ

1

2



+ ζ2
3 · δ

2

0


+ ζ1

3δ

2

1


+ δ

2

2




.
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 0 1

−1 0

 f2(x) =
1

3
(0) · δ

0

0


+

1

3

(
−i · ζ2

3 + ζ1
3 + i · ζ3 − ζ2

3

)
· δ

0

1


+

1

3

(
−i · ζ3 + ζ2

3 + i · ζ2
3 − ζ3

)
· δ

0

2


+

1

3

(
−i · ζ2

3 + ζ2
3 + i · ζ1

3 − ζ1
3

)
· δ

1

0


+

1

3

(
−i · ζ1

3 + 1 + i · ζ2
3 − 1

)
· δ

1

1


+

1

3

(
−i+ ζ1

3 + i− ζ2
3

)
· δ

1

2


+

1

3

(
−i · ζ1

3 + ζ1
3 + i · ζ2

3 − ζ2
3

)
· δ

2

0


+

1

3

(
−i+ ζ2

3 + i− ζ1
3

)
· δ

2

1


+

1

3

(
−i · ζ2

3 + 1 + i · ζ1
3 − 1

)
· δ

2

2


.
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 0 1

−1 0

 f2(x) =

(
−
√

3 + i
√

3

3

)
δ

0

1


+

(
−
√

3− i
√

3

3

)
δ

1

0


+

(√
3− i

√
3

3

)
δ

0

2



+

(√
3 + i

√
3

3

)
δ

2

0


+
√

3 · δ
1

1


+ i
√

3 · δ
1

2


−
√

3 · δ
2

2


− i
√

3 · δ
2

1



 0 1

−1 0

 f2(x) =

(
−
√

3 + i
√

3

3

)

δ

0

1


+ i · δ

1

0


− δ

0

2


− i · δ

2

0





− i
√

3


i · δ

1

1


− δ

1

2


− i · δ

2

2


+ δ

2

1




=

(
−
√

3 + i
√

3

3

)
f1(x)− i

√
3f2(x).

So the action by [ 0 1
−1 0 ] is given by i

√
3

3

−
√

3 + i
√

3

3√
3 + i

√
3

3

−i
√

3

3

 =

√
3

3

 i −1 + i

i+ 1 −i


So by our lemma the action of [ 0 −1

1 0 ] will be the conjugate transpose of the action by

[ 0 1
−1 0 ]:

N1(χ)(S) =

√
3

3

 −i −i+ 1

−1− i i





186

Then √3

3

 −i −i+ 1

−1− i i




4

= 1.

Recalling that

N1(χ)(T ) =

ζ3 0

0 ζ2
3

 .
We have that

(N1(χ)(S) ·N1(χ)(T ))3 = (N1(χ)(S))2.

It agrees with the previous section.

3.11 N1(χ1): the Steinberg Representation by Nobs and Wolfart

Recall

Aut(M,Q) =


1 0

0 1

 ,
0 1

1 0

 ,
0 2

2 0

 ,
0 2

1 0

 ,
2 0

0 2

 ,
0 1

2 0

 ,
2 0

0 1

 ,
1 0

0 2


 .

Let χ1 denote the trivial character.

V (χ) = {f ∈ CM | f(εx) = χ1(ε)f(x) ∀ε ∈ Aut(M,Q), ∀x ∈M}

= {f ∈ CM | f(εx) = f(x) ∀ε ∈ Aut(M,Q), ∀x ∈M}.

Lets try the delta functions.

f0(x) = δ
0

0


(x)

works.
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f(x) = δ
0

1


(x) does not work for ε =

0 1

1 0

 and x =

0

1

.

f(x) = δ
0

2


(x) does not work for ε =

0 1

1 0

 and x =

0

2

.

f(x) = δ
1

0


(x) does not work for ε =

0 1

1 0

 and x =

1

0

.

f(x) = δ
2

0


(x) does not work for ε =

0 1

1 0

 and x =

2

0

.

f1(x) =


δ

1

0


+ δ

0

1


+ δ

2

0


+ δ

0

2




(x)

works.

f2(x) =


δ

1

2


+ δ

2

1


+ δ

1

1


+ δ

2

2




(x)

also works.

Brute force computations show they work. ε sends elements of the form

0

a

 to either
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0

c

 or

d
0

 where a, c and d ∈ {1, 2}. And ε sends elements of the form

a
e

 to

b
c


where a, b, c, e ∈ {1, 2}. We also exploit the property of the delta function. Now it is

clear that f0, f1 and f2 are linearly independent and orthogonal.

So we have an orthogonal basis. Letting x =

x1

x2

, j = 0, 1, and 2,

1 1

0 1

 fj(x) = e(Q(x))f0(x)

= exp

(
2πi(x2

1 − 2x2
2)

3

)
fj(x)

= ζ
x21−2x22
3 · fj(x).

So, 1 1

0 1

 f0(x) = e(Q(x))f0(x)

= exp

(
2πi(x2

1 − 2x2
2)

3

)
f0(x)1 1

0 1

 δ0

0


= ζ02−2·02

3 · δ
0

0


= δ

0

0


.

and that is equivalent to 1 1

0 1

 f0(x) = ·f0(x).
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Now for the action on the second basis function.

1 1

0 1

 f1(x) =

1 1

0 1



δ

1

0


+ δ

0

1


+ δ

2

0


+ δ

0

2




.

1 1

0 1

 δ1

0


= ζ12−2·02

3 · δ
1

0


= ζ1

3 · δ
1

0


.

1 1

0 1

 δ0

1


= ζ02−2·12

3 · δ
0

1


= ζ1

3 · δ
0

1


.

1 1

0 1

 δ2

0


= ζ22−2·02

3 · δ
2

0


= ζ1

3 · δ
2

0


.

1 1

0 1

 δ0

2


= ζ02−2·22

3 · δ
0

2


= ζ1

3 · δ
0

2


.

So, 1 1

0 1

 f1(x) = ζ3 · f1(x).
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Now for the action on the third basis function.

1 1

0 1

 f2(x) =

1 1

0 1



δ

1

2


+ δ

2

1


+ δ

1

1


+ δ

2

2




.

1 1

0 1

 δ1

2


= ζ12−2·22

3 · δ
1

2


= ζ2

3 · δ
1

2


.

1 1

0 1

 δ2

1


= ζ22−2·12

3 · δ
2

1


= ζ2

3 · δ
2

1


.

1 1

0 1

 δ1

1


= ζ12−2·12

3 · δ
1

1


= ζ2

3 · δ
1

1


.

1 1

0 1

 δ2

2


= ζ22−2·22

3 · δ
2

2


= ζ2

3 · δ
2

2


.

So, 1 1

0 1

 f2(x) = ζ2
3 · f2(x).

Hence the action of T with respect to the basis {f1(x), f2(x), f3(x)} is given by (using

the notation from Nobs and Wolfart[24]):
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N1(χ1)(T ) =


1 0 0

0 ζ3 0

0 0 ζ2
3

 .

Now to compute the action by S by computing the action of

 0 1

−1 0

 first and then

taking the conjugate transpose.

Theorems 2[23] and 3[24] tell us that 0 1

−1 0

 f(x) = SQ(−1)|M |−1/2
∑
y∈M

e(B(x, y)) · f(y)

= (−1)λ|M |−1/2
∑
y∈M

e(B(x, y)) · f(y)

=
−1

3

∑
y∈M

e

(
2x1y1 − 4x2y2

3

)
· f(y)

=
−1

3

∑
y∈M

ζ2x1y1−4x2y2
3 · f(y).

Next, 0 1

−1 0

 f0(x) =

 0 1

−1 0

 δ0

0


(x)

=
−1

3

∑
y∈M

ζ2x1y1−4x2y2
3 · δy

=
−1

3

∑
y∈M

ζ2·0y1−4·0·y2
3 · δy

=
−1

3

∑
y∈M

ζ0
3 · δ

0

0


(y)
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=
−1

3

∑
y∈M

δy

=
−1

3


δ

0

0


+ δ

1

0


+ δ

0

1


+ δ

2

0


+ δ

0

2


+ δ

1

2


+ δ

2

1


+ δ

1

1


+ δ

2

2




=
−1

3
(f0 + f1 + f2) .

Next, we compute the action on f1(x)

 0 1

−1 0

 f1(x) =

 0 1

−1 0



δ

1

0


(x) + δ

0

1


(x) + δ

2

0


(x) + δ

0

2


(x)


.

piecemeal as before: 0 1

−1 0

 δ1

0


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·1·y1−4·0·y2
3 · δy

=
−1

3

∑
y∈M

ζ2y1
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ2

3 · δ
1

0


+ ζ0

3 · δ
0

1


+ ζ1

3 · δ
2

0


+ ζ0

3 · δ
0

2
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+ζ2
3 · δ

1

2


+ ζ1

3 · δ
2

1


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
2

2




.

 0 1

−1 0

 δ0

1


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·0·y1−4·1·y2
3 · δy

=
−1

3

∑
y∈M

ζ2y2
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ0

3 · δ
1

0


+ ζ2

3 · δ
0

1


+ ζ0

3 · δ
2

0


+ ζ1

3 · δ
0

2



+ζ1
3 · δ

1

2


+ ζ2

3 · δ
2

1


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
2

2




.

 0 1

−1 0

 δ2

0


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·2·y1−4·0·y2
3 · δy

=
−1

3

∑
y∈M

ζy13 · δy
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=
−1

3


ζ0

3 · δ
0

0


+ ζ1

3 · δ
1

0


+ ζ0

3 · δ
0

1


+ ζ2

3 · δ
2

0


+ ζ0

3 · δ
0

2



+ζ1
3 · δ

1

2


+ ζ2

3 · δ
2

1


+ ζ1

3 · δ
1

1


+ ζ2

3 · δ
2

2




.

 0 1

−1 0

 δ0

2


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·0·y1−4·2·y2
3 · δy

=
−1

3

∑
y∈M

ζy23 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ0

3 · δ
1

0


+ ζ1

3 · δ
0

1


+ ζ0

3 · δ
2

0


+ ζ2

3 · δ
0

2



+ζ2
3 · δ

1

2


+ ζ1

3 · δ
2

1


+ ζ1

3 · δ
1

1


+ ζ2

3 · δ
2

2




.



195

 0 1

−1 0

 f1(x) =
−1

3


ζ0

3 · δ
0

0


+ ζ2

3 · δ
1

0


+ ζ0

3 · δ
0

1


+ ζ1

3 · δ
2

0


+ ζ0

3 · δ
0

2


+ ζ2

3 · δ
1

2


+ ζ1

3 · δ
2

1


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
2

2


+ ζ0

3 · δ
0

0


+ ζ0

3 · δ
1

0


+ ζ2

3 · δ
0

1


+ ζ0

3 · δ
2

0


+ ζ1

3 · δ
0

2


+ ζ1

3 · δ
1

2


+ ζ2

3 · δ
2

1


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
2

2


+ ζ0

3 · δ
0

0


+ ζ1

3 · δ
1

0


+ ζ0

3 · δ
0

1


+ ζ2

3 · δ
2

0


+ ζ0

3 · δ
0

2


+ ζ1

3 · δ
1

2


+ ζ2

3 · δ
2

1


+ ζ1

3 · δ
1

1


+ ζ2

3 · δ
2

2


+ ζ0

3 · δ
0

0


+ ζ0

3 · δ
1

0


+ ζ1

3 · δ
0

1


+ ζ0

3 · δ
2

0


+ ζ2

3 · δ
0

2



+ζ2
3 · δ

1

2


+ ζ1

3 · δ
2

1


+ ζ1

3 · δ
1

1


+ ζ2

3 · δ
2

2




.
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 0 1

−1 0

 f1(x) =
−1

3


4 · δ

0

0


+ (ζ2

3 + 1 + ζ3 + 1) · δ
1

0


+ (1 + ζ2

3 + 1 + ζ3) · δ
0

1


+ (ζ3 + 1 + ζ2

3 + 1) · δ
2

0


+ (1 + ζ3 + 1 + ζ2

3 ) · δ
0

2


+ (ζ2

3 + ζ3 + ζ3 + ζ2
3 ) · δ

1

2


+ (ζ3 + ζ2

3 + ζ2
3 + ζ3) · δ

2

1



+ (ζ2
3 + ζ2

3 + ζ3 + ζ3) · δ
1

1


+ (ζ3 + ζ3 + ζ2

3 + ζ2
3 ) · δ

2

2




which simplifies to

 0 1

−1 0

 f1(x) =
−1

3


4 · δ

0

0


+ (1) · δ

1

0


+ (1) · δ

0

1


+ (1) · δ

2

0


+ (1) · δ

0

2


+ (−2) · δ

1

2
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+ (−2) · δ
2

1


+ (−2) · δ

1

1


+ (−2) · δ

2

2




=
−1

3
(4f0(x) + f1(x)− 2f2(x))

Next, we compute the action on f2(x)

 0 1

−1 0

 f2(x) =

 0 1

−1 0



δ

1

2


(x) + δ

2

1


(x) + δ

1

1


(x) + δ

2

2


(x)


.

piecemeal as before: 0 1

−1 0

 δ1

2


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·1·y1−4·2·y2
3 · δy

=
−1

3

∑
y∈M

ζ2y1+y2
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ2

3 · δ
1

0


+ ζ1

3 · δ
0

1


+ ζ1

3 · δ
2

0


+ ζ2

3 · δ
0

2



+ζ1
3 · δ

1

2


+ ζ2

3 · δ
2

1


+ ζ0

3 · δ
1

1


+ ζ0

3 · δ
2

2




.
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 0 1

−1 0

 δ2

1


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·2·y1−4·1·y2
3 · δy

=
−1

3

∑
y∈M

ζy1+2y2
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ1

3 · δ
1

0


+ ζ2

3 · δ
0

1


+ ζ2

3 · δ
2

0


+ ζ1

3 · δ
0

2



+ζ2
3 · δ

1

2


+ ζ1

3 · δ
2

1


+ ζ0

3 · δ
1

1


+ ζ0

3 · δ
2

2




.

 0 1

−1 0

 δ1

1


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·1·y1−4·1·y2
3 · δy

=
−1

3

∑
y∈M

ζ
2(y1+y2)
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ2

3 · δ
1

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
2

0


+ ζ1

3 · δ
0

2
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+ζ0
3 · δ

1

2


+ ζ0

3 · δ
2

1


+ ζ1

3 · δ
1

1


+ ζ2

3 · δ
2

2




.

 0 1

−1 0

 δ2

2


(x) =

−1

3

∑
y∈M

ζ
(2x1y1−4x2y2)
3 · δy

=
−1

3

∑
y∈M

ζ2·2·y1−4·2·y2
3 · δy

=
−1

3

∑
y∈M

ζy1+y2
3 · δy

=
−1

3


ζ0

3 · δ
0

0


+ ζ1

3 · δ
1

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
2

0


+ ζ2

3 · δ
0

2



+ζ0
3 · δ

1

2


+ ζ0

3 · δ
2

1


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
2

2




.

 0 1

−1 0

 f2(x) =
−1

3


ζ0

3 · δ
0

0


+ ζ2

3 · δ
1

0


+ ζ1

3 · δ
0

1


+ ζ1

3 · δ
2

0


+ ζ2

3 · δ
0

2
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+ ζ1
3 · δ

1

2


+ ζ2

3 · δ
2

1


+ ζ0

3 · δ
1

1


+ ζ0

3 · δ
2

2


+ ζ0

3 · δ
0

0


+ ζ1

3 · δ
1

0


+ ζ2

3 · δ
0

1


+ ζ2

3 · δ
2

0


+ ζ1

3 · δ
0

2


+ ζ2

3 · δ
1

2


+ ζ1

3 · δ
2

1


+ ζ0

3 · δ
1

1


+ ζ0

3 · δ
2

2


+ ζ0

3 · δ
0

0


+ ζ2

3 · δ
1

0


+ ζ2

3 · δ
0

1


+ ζ1

3 · δ
2

0


+ ζ1

3 · δ
0

2


+ ζ0

3 · δ
1

2


+ ζ0

3 · δ
2

1


+ ζ1

3 · δ
1

1


+ ζ2

3 · δ
2

2


+ ζ0

3 · δ
0

0


+ ζ1

3 · δ
1

0


+ ζ1

3 · δ
0

1


+ ζ2

3 · δ
2

0


+ ζ2

3 · δ
0

2



+ζ0
3 · δ

1

2


+ ζ0

3 · δ
2

1


+ ζ2

3 · δ
1

1


+ ζ1

3 · δ
2

2




.

 0 1

−1 0

 f2(x) =
−1

3


4 · δ

0

0


+ (ζ2

3 + ζ3 + ζ2
3 + ζ3) · δ

1

0


+ (ζ3 + ζ2

3 + ζ2
3 + ζ3) · δ

0

1
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+ (ζ3 + ζ2
3 + ζ3 + ζ2

3 ) · δ
2

0


+ (ζ2

3 + ζ3 + ζ3 + ζ2
3 ) · δ

0

2


+ (ζ3 + ζ2

3 + 1 + 1) · δ
1

2


+ (ζ2

3 + ζ3 + 1 + 1) · δ
2

1



(1 + 1 + ζ2
3 + ζ2

3 ) · δ
1

1


+ (1 + 1 + ζ2

3 + ζ3) · δ
2

2




which simplifies to

 0 1

−1 0

 f1(x) =
−1

3


4 · δ

0

0


+ (−2) · δ

1

0


+ (−2) · δ

0

1


+ (−2) · δ

2

0


+ (−2) · δ

0

2


+ (1) · δ

1

2



+ (1) · δ
2

1


+ (1) · δ

1

1


+ (1) · δ

2

2




=
−1

3
(4f0(x)− 2f1(x) + f2(x)).
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So the action of

 0 1

−1 0

 with respect to the basis {f0, f1, f2} is given by

−1

3


1 4 4

1 1 −2

1 −2 1

 .
So the action by S is the conjugate transpose of the matrix above:

N1(χ1)(S) =
−1

3


1 1 1

4 1 −2

4 −2 1

 .
Its trace is −1. We verify the relations: (N1(χ1)(S))4 = 1 and

(N1(χ1)(S1)(N1(χ1)(T )))3 = (N1(χ1)(S))2. For typesetting convenience X =

(N1(χ1)(S1)(N1(χ1)(T )))3. Since

(N1(χ1)(S)(N1(χ1)(T )) =
−1

3


1 1 1

4 1 −2

4 −2 1




1 0 0

0 ζ3 0

0 0 ζ2
3



=
−1

3


1 ζ3 ζ2

3

4 ζ3 −2ζ2
3

4 −2ζ3 ζ2
3

 ,
we have

A = (N1(χ1)(S)(N1(χ1)(T ))3

=
−1

27


1 ζ3 ζ2

3

4 ζ3 −2ζ2
3

4 −2ζ3 ζ2
3

 ·


1 ζ3 ζ2
3

4 ζ3 −2ζ2
3

4 −2ζ3 ζ2
3

 ·


1 ζ3 ζ2
3

4 ζ3 −2ζ2
3

4 −2ζ3 ζ2
3
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=
−1

27


1 ζ3 ζ2

3

4 ζ3 −2ζ2
3

4 −2ζ3 ζ2
3

 ·


−3 −3 −3

4 + 4ζ3 − 8ζ2
3 4ζ3 + ζ2

3 + 4 4ζ2
3 − 2− 2ζ3

4− 8ζ3 + 4ζ2
3 4ζ3 − 2ζ2

3 − 2 4ζ2
3 + 4 + ζ3



=
−1

27


1 ζ3 ζ2

3

4 ζ3 −2ζ2
3

4 −2ζ3 ζ2
3

 ·

−3 −3 −3

−12ζ2
3 −3ζ2

3 6ζ2
3

−12ζ3 6ζ3 −3ζ3



=
1

9


1 ζ3 ζ2

3

4 ζ3 −2ζ2
3

4 −2ζ3 ζ2
3

 ·


1 1 1

4ζ2
3 ζ2

3 −2ζ2
3

4ζ3 −2ζ3 ζ3



=
1

9


1 + 4 + 4 1 + 1− 2 1− 2 + 1

4 + 4− 8 4 + 1 + 4 4− 2− 2

4− 8 + 4 4− 2− 2 4 + 4 + 1


= 1.

Since

(N1(χ1)(S))2 =
1

9


1 1 1

4 1 −2

4 −2 1




1 1 1

4 1 −2

4 −2 1

 =
1

9


9 0 0

0 9 0

0 0 9

 = 1,

our verification is complete.

Note that the using this method, the Steingber representation will not be realizable

over Z. It is a well-known fact that the Steinberg representation is defined over Z. So

how can we realize it over Z?
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3.12 N1(χ1), the Steinberg representation realized over the integers

Inducing the trivial character of the Borel subgroup gives us the four dimensional

reducible representation 1 + St for S and T :

(1 + St)(S) =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, (1 + St)(T ) =



1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


.

Then using the basis

{f1 = δ0 − δ1, f2 = δ1 − δ2, f3 = δ2 − δ3} ,

and SAGE, we find the three dimensional irreducible Steinberg representations of S and

T :

St(S) =


0 0 −1

0 −1 0

−1 0 0

 , St(T ) =


1 0 0

1 0 −1

0 1 −1

 .
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3.13 The character table for SL2(F3)

The following table lists the characters of SL2(F3). The choice of representatives are

as follows: u = T = [ 1 1
1 0 ], u′ = T 2 = [ 1 2

1 0 ] and s = S = [ 0 −1
1 0 ].

Representation I −I u u′ −u −u′ s

R1(1,−)⊗R1(2,−) 1 1 1 1 1 1 1
= Trivial

R1(1,+) ∼= ρ′0 2 −2 1
2

+ i
√

3
2

1
2
− i

√
3

2
−1

2
− i

√
3

2
−1

2
+ i

√
3

2
0

∼= R+(α0)
∼= R1(1,−)⊗R1(2,+)

R1(2,+) ∼= ρ′′0
∼= R−(α0) 2 −2 1

2
− i

√
3

2
1
2

+ i
√

3
2

−1
2

+ i
√

3
2
−1

2
− i

√
3

2
0

∼= R1(1,+)⊗R1(2,−)

R1(1,−) ∼= π′0
∼= R′+(θ0) 1 1 −1

2
+ i

√
3

2
−1

2
− i

√
3

2
−1

2
+ i

√
3

2
−1

2
− i

√
3

2
1

R1(2,−) ∼= π′′0
∼= R′−(θ0) 1 1 −1

2
− i

√
3

2
−1

2
+ i

√
3

2
−1

2
− i

√
3

2
−1

2
+ i

√
3

2
1

N1(χ) ∼= πη ∼= R′(i∧) 2 −2 −1 −1 1 1 0

N1(χ1) = StG 3 3 0 0 0 0 −1

Table 3.13.1: Character Table for SL2(F3)

This agrees with Reeder[25] and Bonnafé[4]. We combined the notations of Nobs,

Reeder and Bonnafé.
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CHAPTER 4 The Irreducible Representations Of SL(2,5)

4.1 The 6-dim. Irred. Principal Series Representation

We want to compute the six-dimensional irreducible representation for SL2(Z/5Z).

This is a principal series representation. Since |SL2(Z/pZ)| = p(p2 − 1), SL2(Z/5Z)| =

5(52 − 1) = 5 · 24 = 120. Using the fact that the order of the group is equal to the sum

of squares of the dimensions of the irreducible representations, we have

120 = 1 + 36 + 32 + 18 + 8 + 25 = 1 + 62 + 42 + 42 + 32 + 32 + 22 + 22 + 52.

giving us one irreducible representations of degree 1, two of degree 2, two of degree 3,

two of degree four, one of degree 5, and one of degree 6. It agrees with Nobs II[24] (Nobs

does not list the trivial representation). So there exists a six-dimensional irreducible

representation for SL2(Z/5Z).

Representations

of Level 1, p = 5 Degree Number Remarks

D1(χ) χ ∈ B p+ 1 = 6 1
2
(p− 3) = 1 Theorem 1

N1(χ) χ ∈ B p− 1 = 4 1
2
(p− 1) = 2 Theorem 2

R1(1,±), R1(n,±)

(
n

p

)
= −1

p± 1

2
= 3, 2 4 Theorem 4

N1(χ1) p = 5 1 “Steinberg”

Representation”

D1(χ) ∼= R1(1,+)⊕R1(n,+) for χ 6≡ 1, χ2 ≡ 1,

N1(χ) ∼= R1(1,−)⊕R1(n,−) for χ 6≡ 1, χ2 ≡ 1,

D1(χ1) ∼= N1(χ1)⊕ C1 ⊕ C1.
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We are interested in D1(χ). According to Nobs and Wolfart[24] (see §3 The Disas-

sembled Row), Dλ is computed using M = Z/pZ ⊕ Z/pZ, Q((x1, x2)) = p−λx1x2 for

λ ≥ 1. For our case, λ = 1, Aλ = Z/5Z, M = Z/5Z⊕Z/5Z, Q((x1, x2)) = 5−1x1x2. The

bilinear form is given by

B(x, y) = Q(x+ y)−Q(x)−Q(y)

= 5−1((x1 + y1)(x2 + y2)− (x1x2)− (y1y2))

= 5−1(x1x2 + y1x2 + x1y2 + y1y2 − (x1x2)− (y1y2))

= 5−1(y1x2 + x1y2).

We can use the same procedure as we used for computing N1(χ). Aut(M,Q) is the group

of automorphisms of M invariant under Q, i.e., for every ϕ ∈ Aut(M,Q), Q(ϕ(x)) =

Q(a) for all a ∈ M . Aut(M,Q) will consist of the identity, the inverse maps, and κ :

(x, y) 7→ (y, x), and the action by c ∈ A×λ . The effect of c ∈ A×λ on M will be defined by

c : (x, y) 7→ (c−1x, cy). Lets enumerate all four values of c:

c = 1. This is the identity map. So 1 : (x, y) 7→ (x, y). That is, c1 =

1 0

0 1

.

c = 2. c−1 = 3. So c2 : (x, y) 7→ (3x, 2y).

Q(c2(x, y)) = Q((3 · 2)xy/5)) = Q(xy/5) = Q(x, y). c2 =

3 0

0 2

.

c = 3. c−1 = 2. So c3 : (x, y) 7→ (2x, 3y).

Q(c3(x, y)) = Q((2 · 3)xy/5)) = Q(xy/5) = Q(x, y). c3 =

2 0

0 3

.

c = 4. c−1 = 4. So c4 : (x, y) 7→ (4x, 4y).
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Q(c4(x, y)) = Q((4 · 4)xy/5)) = Q(xy/5) = Q(x, y). c4 =

4 0

0 4

.

Now to find the relations.

(1) c2c3 = c3c2 = (6x, 6y) = (x, y) so c2 = c−1
3 = 1.

(2) c2
2 : (x, y) 7→ (9x, 4y) = (4x, 4y). So c2

2 = c4.

(3) c2
3 : (x, y) 7→ (4x, 9y) = (4x, 4y). So c2

3 = c4.

(4) c2
4 : (x, y) 7→ (16x, 16y) = (x, y). So c2

4 = 1.

(5) c2
4 = κ2 = 1 and since c4

2 = c2
3 = c4, c8

2 = c4
3 = 1.

(6) We have (κ ◦ ci)(x, y) = κ(ci(x, y)) = κ(ci
−1x, ciy) = (ciy, ci

−1x) and

(ci ◦ κ)(x, y) = ci(y, x) = (ci
−1y, cix), so κ does not commute with ci.

We now rearrange the relations (so that we can use GAP or SAGE):

c4
2 = c4

3 = c2
4 = c2c4c3 = c3c4c2 = c2c3 = c3c2 = κ2 = c3κc3κ = c2κc2κ = c4κc4κ = 1.

Using the following script in SAGE,

F.<c2,c3,c4, k>=FreeGroup()

G = F / [c2^4, c3^4, c4^2, c2*c4*c3, c3*c4*c2, c2*c3, c3*c2, k*k,

c3*k*c3*k, c2*k*c2*k, c4*k*c4*k ]

G.order()

G.list()

we see that the group is of order 8. Thus, Aut(M,Q) ∼= D8, the dihedral group of

order 8. The abelian subgroup U is cyclic of order four. So U ∼= A×1 = (Z/5Z)× ∼= C4.

A×1 = {1, 2, 3, 4}. The invariant subspace is given by

V (χ) := {f ∈ CM | f(ax) = χ(a) · f(x) ∀a ∈ A×1 , x ∈M}.
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We define Dλ by the following operation of SL2(Aλ) on CM [24]:

(S · f)(X) := f(XS) for S ∈ SL2(Aλ), X ∈M

with X written as a row vector and XS is matrix multiplication. A basis of Vλ(χ) is

obtained through functions fY [24] with

fY (X) =


χ(a) for X = aY, a ∈ A×λ ,

0 for X 6∈ [Y ],

where Y runs through a system of all straight lines in M . Note that

a ∈


1 0

0 1

 ,
3 0

0 2

 ,
4 0

0 4

 ,
2 0

0 3


 .

Since (Z/5Z)× ∼= Z/4Z, a ∈ (Z/5Z)×, we compute χ(a) as follows (a is represented by

a matrix and not a scalar):

χ


1 0

0 1


 = 1, χ


3 0

0 2


 = i, χ


4 0

0 4


 = −1, and χ


2 0

0 3


 = −i.

We list the equivalence classes of the elements of M = (Z/pZ× Z/pZ) below.
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Verification follows.

(1) [

0

0

] =


0

0




(2) [

0

1

] =


0

1

 ,
0

2

 ,
0

4

 ,
0

3




(3) [

1

0

] =


1

0

 ,
3

0

 ,
4

0

 ,
2

0




(4) [

1

1

] =


1

1

 ,
3

2

 ,
4

4

 ,
2

3




(5) [

1

2

] =


1

2

 ,
3

4

 ,
4

3

 ,
2

1




(6) [

1

3

] =


1

3

 ,
3

1

 ,
4

2

 ,
2

4




(7) [

1

4

] =


1

4

 ,
3

3

 ,
4

1

 ,
2

2


.

Next, explicit calculations of the equivalence classes are given.
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Y

[
1 0
0 1

]
· Y

[
3 0
0 2

]
· Y

[
4 0
0 4

]
· Y

[
2 0
0 3

]
· Y

[
0
1

] [
0
1

] [
3 0
0 2

]
·
[
0
1

]
=

[
0
2

] [
4 0
0 4

]
·
[
0
1

]
=

[
0
4

] [
2 0
0 3

]
·
[
0
1

]
=

[
0
3

]

[
0
2

] [
0
2

] [
3 0
0 2

]
·
[
0
2

]
=

[
0
4

] [
4 0
0 4

]
·
[
0
2

]
=

[
0
3

] [
2 0
0 3

]
·
[
0
2

]
=

[
0
1

]

[
0
3

] [
0
3

] [
3 0
0 2

]
·
[
0
3

]
=

[
0
1

] [
4 0
0 4

]
·
[
0
3

]
=

[
0
2

] [
2 0
0 3

]
·
[
0
3

]
=

[
0
4

]

[
0
4

] [
0
4

] [
3 0
0 2

]
·
[
0
4

]
=

[
0
3

] [
4 0
0 4

]
·
[
0
4

]
=

[
0
1

] [
2 0
0 3

]
·
[
0
4

]
=

[
0
2

]

[
1
0

] [
1
0

] [
3 0
0 2

]
·
[
1
0

]
=

[
3
0

] [
4 0
0 4

]
·
[
1
0

]
=

[
4
0

] [
2 0
0 3

]
·
[
1
0

]
=

[
2
0

]

[
1
1

] [
1
1

] [
3 0
0 2

]
·
[
1
1

]
=

[
3
2

] [
4 0
0 4

]
·
[
1
1

]
=

[
4
4

] [
2 0
0 3

]
·
[
1
1

]
=

[
2
3

]

[
1
2

] [
1
2

] [
3 0
0 2

]
·
[
1
2

]
=

[
3
4

] [
4 0
0 4

]
·
[
1
2

]
=

[
4
3

] [
2 0
0 3

]
·
[
1
2

]
=

[
2
1

]

[
1
3

] [
1
3

] [
3 0
0 2

]
·
[
1
3

]
=

[
3
1

] [
4 0
0 4

]
·
[
1
3

]
=

[
4
2

] [
2 0
0 3

]
·
[
1
3

]
=

[
2
4

]
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Y

[
1 0
0 1

]
· Y

[
3 0
0 2

]
· Y

[
4 0
0 4

]
· Y

[
2 0
0 3

]
· Y

[
1
4

] [
1
4

] [
3 0
0 2

]
·
[
1
4

]
=

[
3
3

] [
4 0
0 4

]
·
[
1
4

]
=

[
4
1

] [
2 0
0 3

]
·
[
1
4

]
=

[
2
2

]

[
2
0

] [
2
0

] [
3 0
0 2

]
·
[
2
0

]
=

[
1
0

] [
4 0
0 4

]
·
[
2
0

]
=

[
3
0

] [
2 0
0 3

]
·
[
2
0

]
=

[
4
0

]

[
2
1

] [
2
1

] [
3 0
0 2

]
·
[
2
1

]
=

[
1
2

] [
4 0
0 4

]
·
[
2
1

]
=

[
3
4

] [
2 0
0 3

]
·
[
2
1

]
=

[
4
3

]

[
2
2

] [
2
2

] [
3 0
0 2

]
·
[
2
2

]
=

[
1
4

] [
4 0
0 4

]
·
[
2
2

]
=

[
3
3

] [
2 0
0 3

]
·
[
2
2

]
=

[
4
1

]

[
2
3

] [
2
3

] [
3 0
0 2

]
·
[
2
3

]
=

[
1
1

] [
4 0
0 4

]
·
[
2
3

]
=

[
3
2

] [
2 0
0 3

]
·
[
2
3

]
=

[
4
4

]

[
2
4

] [
2
4

] [
3 0
0 2

]
·
[
2
4

]
=

[
1
3

] [
4 0
0 4

]
·
[
2
4

]
=

[
3
1

] [
2 0
0 3

]
·
[
2
4

]
=

[
4
2

]

[
3
0

] [
3
0

] [
3 0
0 2

]
·
[
3
0

]
=

[
4
0

] [
4 0
0 4

]
·
[
3
0

]
=

[
2
0

] [
2 0
0 3

]
·
[
3
0

]
=

[
1
0

]

[
3
1

] [
3
1

] [
3 0
0 2

]
·
[
3
1

]
=

[
4
2

] [
4 0
0 4

]
·
[
3
1

]
=

[
2
4

] [
2 0
0 3

]
·
[
3
1

]
=

[
1
3

]
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Y

[
1 0
0 1

]
· Y

[
3 0
0 2

]
· Y

[
4 0
0 4

]
· Y

[
2 0
0 3

]
· Y

[
3
2

] [
3
2

] [
3 0
0 2

]
·
[
3
2

]
=

[
4
4

] [
4 0
0 4

]
·
[
3
2

]
=

[
2
3

] [
2 0
0 3

]
·
[
3
2

]
=

[
1
1

]

[
3
3

] [
3
3

] [
3 0
0 2

]
·
[
3
3

]
=

[
4
1

] [
4 0
0 4

]
·
[
3
3

]
=

[
2
2

] [
2 0
0 3

]
·
[
3
3

]
=

[
1
4

]

[
3
4

] [
3
4

] [
3 0
0 2

]
·
[
3
4

]
=

[
4
3

] [
4 0
0 4

]
·
[
3
4

]
=

[
2
1

] [
2 0
0 3

]
·
[
3
4

]
=

[
1
2

]

[
4
0

] [
4
0

] [
3 0
0 2

]
·
[
4
0

]
=

[
2
0

] [
4 0
0 4

]
·
[
4
0

]
=

[
1
0

] [
2 0
0 3

]
·
[
4
0

]
=

[
3
0

]

[
4
1

] [
4
1

] [
3 0
0 2

]
·
[
4
1

]
=

[
2
2

] [
4 0
0 4

]
·
[
4
1

]
=

[
1
4

] [
2 0
0 3

]
·
[
4
1

]
=

[
3
3

]

[
4
2

] [
4
2

] [
3 0
0 2

]
·
[
4
2

]
=

[
2
4

] [
4 0
0 4

]
·
[
4
2

]
=

[
1
3

] [
2 0
0 3

]
·
[
4
2

]
=

[
3
1

]

[
4
3

] [
4
3

] [
3 0
0 2

]
·
[
4
3

]
=

[
2
1

] [
4 0
0 4

]
·
[
4
3

]
=

[
1
2

] [
2 0
0 3

]
·
[
4
3

]
=

[
3
4

]

[
4
4

] [
4
4

] [
3 0
0 2

]
·
[
4
4

]
=

[
2
3

] [
4 0
0 4

]
·
[
4
4

]
=

[
1
1

] [
2 0
0 3

]
·
[
4
4

]
=

[
3
2

]
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4.1.1 Basis for D1(λ)

Thus, our basis consists of functions fY where

Y ∈


0

1

 ,
1

0

 ,
1

1

 ,
1

2

 ,
1

3

 ,
1

4


 .

We state the functions in terms of delta functions using our tables of equivalence

class calculations

f
0

1


= δ

0

1


+ i · δ

0

2


+ (−1) · δ

0

4


+ (−i) · δ

0

3


f

1

0


= δ

1

0


+ i · δ

3

0


+ (−1) · δ

4

0


+ (−i) · δ

2

0


f

1

1


= δ

1

1


+ i · δ

3

2


+ (−1) · δ

4

4


+ (−i) · δ

2

3


f

1

2


= δ

1

2


+ i · δ

3

4


+ (−1) · δ

4

3


+ (−i) · δ

2

1


f

1

3


= δ

1

3


+ i · δ

3

1


+ (−1) · δ

4

2


+ (−i) · δ

2

4


f

1

4


= δ

1

4


+ i · δ

3

3


+ (−1) · δ

4

1


+ (−i) · δ

2

2


.
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4.1.2 Action of S on the delta functions

Since |M | = 25 and

SQ(a) = |M |−1/2
∑
x∈M

e(−aQ(x))

SQ(−1) = (25)−1/2
∑
x∈M

e(−(−1)Q(x))

= 5−1
∑
x∈M

e(Q(x))

= 5−1(exp(2πi(0 · 0)/5)) + exp(2πi(0 · 1)/5)) + exp(2πi(0 · 2)/5)+

+ exp(2πi(0 · 3)/5) + exp(2πi(0 · 4)/5)) + exp(2πi(1 · 0)/5)+

+ exp(2πi(1 · 1)/5)) + exp(2πi(1 · 2)/5)) + exp(2πi(1 · 3)/5)+

+ exp(2πi(1 · 4)/5)) + exp(2πi(2 · 0)/5) + exp(2πi(2 · 1)/5))

+ exp(2πi(2 · 2)/5)) + exp(2πi(2 · 3)/5)+

+ exp(2πi(2 · 4)/5)) + exp(2πi(3 · 0)/5) + exp(2πi(3 · 1)/5))+

+ exp(2πi(3 · 2)/5)) + exp(2πi(3 · 3)/5)) + exp(2πi(3 · 4)/5)

+ exp(2πi(4 · 0)/5) + exp(2πi(4 · 1)/5)) + exp(2πi(4 · 2)/5)+

+ exp(2πi(4 · 3)/5) + exp(2πi(4 · 4)/5)

= 5−1(1 + 1 + 1 + 1 + 1 + 1 + ζ5 + ζ2
5 + ζ3

5 + ζ4
5 + 1 + ζ2

5 + ζ4
5 + ζ5 + ζ3

5

+ 1 + ζ3
5 + ζ5 + ζ4

5 + ζ2
5 + 1 + ζ4

5 + ζ3
5 + ζ2

5 + ζ5)

= 5−1(5) = 1,

we have  0 1

−1 0

 · f(x) = SQ(−1)|M |−1/2 ·
∑
y∈M

e((B(x, y)) · f(y)

= 5−1 ·
∑
y∈M

(exp(2πi · (y1x2 + x1y2)/5) · f(x)) .
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We compute the action of S = [ 0 1
−1 0 ] on the delta functions.

 0 1

−1 0

 · δ0

0


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 0 + 0 · y2)/5) · δ

y1

y2




= 5−1 ·

∑
y∈M

(
δ[ y1y2 ]

)

= 5−1 ·


δ

0

0


+ δ

0

1


+ δ

0

2


+ δ

0

3


+ δ

0

4


+

+ δ
1

0


+ δ

1

1


+ δ

1

2


+ δ

1

3


+ δ

1

4


+

+ δ
2

0


+ δ

2

1


+ δ

2

2


+ δ

2

3


+ δ

2

4


+

+ δ
3

0


+ δ

3

1


+ δ

3

2


+ δ

3

3


+ δ

3

4


+

+ δ
4

0


+ δ

4

1


+ δ

4

2


+ δ

4

3


+ δ

4

4




.
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 0 1

−1 0

 · δ0

1


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 1 + 0 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζy15 · δ

y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ0

5 · δ
0

1


+ ζ0

5 · δ
0

2


+ ζ0

5 · δ
0

3


+ ζ0

5 · δ
0

4


+

+ ζ1
5 · δ

1

0


+ ζ1

5 · δ
1

1


+ ζ1

5 · δ
1

2


+ ζ1

5 · δ
1

3


+ ζ1

5 · δ
1

4


+

+ ζ2
5 · δ

2

0


+ ζ2

5 · δ
2

1


+ ζ2

5 · δ
2

2


+ ζ2

5 · δ
2

3


+ ζ2

5 · δ
2

4


+

+ ζ3
5 · δ

3

0


+ ζ3

5 · δ
3

1


+ ζ3

5 · δ
3

2


+ ζ3

5 · δ
3

3


+ ζ3

5 · δ
3

4


+

+ ζ4
5 · δ

4

0


+ ζ4

5 · δ
4

1


+ ζ4

5 · δ
4

2


+ ζ4

5 · δ
4

3


+ ζ4

5 · δ
4

4




.
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 0 1

−1 0

 · δ0

2


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 2 + 0 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζ2y1

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ0

5 · δ
0

1


+ ζ0

5 · δ
0

2


+ ζ0

5 · δ
0

3


+ ζ0

5 · δ
0

4


+

+ ζ2
5 · δ

1

0


+ ζ2

5 · δ
1

1


+ ζ2

5 · δ
1

2


+ ζ2

5 · δ
1

3


+ ζ2

5 · δ
1

4


+

+ ζ4
5 · δ

2

0


+ ζ4

5 · δ
2

1


+ ζ4

5 · δ
2

2


+ ζ4

5 · δ
2

3


+ ζ4

5 · δ
2

4


+

+ ζ1
5 · δ

3

0


+ ζ1

5 · δ
3

1


+ ζ1

5 · δ
3

2


+ ζ1

5 · δ
3

3


+ ζ1

5 · δ
3

4


+

+ ζ3
5 · δ

4

0


+ ζ3

5 · δ
4

1


+ ζ3

5 · δ
4

2


+ ζ3

5 · δ
4

3


+ ζ3

5 · δ
4

4




.
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 0 1

−1 0

 · δ0

3


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 3 + 0 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζ3y1

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ0

5 · δ
0

1


+ ζ0

5 · δ
0

2


+ ζ0

5 · δ
0

3


+ ζ0

5 · δ
0

4


+

+ ζ3
5 · δ

1

0


+ ζ3

5 · δ
1

1


+ ζ3

5 · δ
1

2


+ ζ3

5 · δ
1

3


+ ζ3

5 · δ
1

4


+

+ ζ1
5 · δ

2

0


+ ζ1

5 · δ
2

1


+ ζ1

5 · δ
2

2


+ ζ1

5 · δ
2

3


+ ζ1

5 · δ
2

4


+

+ ζ4
5 · δ

3

0


+ ζ4

5 · δ
3

1


+ ζ4

5 · δ
3

2


+ ζ4

5 · δ
3

3


+ ζ4

5 · δ
3

4


+

+ ζ2
5 · δ

4

0


+ ζ2

5 · δ
4

1


+ ζ2

5 · δ
4

2


+ ζ2

5 · δ
4

3


+ ζ2

5 · δ
4

4




.
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 0 1

−1 0

 · δ0

4


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 4 + 0 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζ4y1

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ0

5 · δ
0

1


+ ζ0

5 · δ
0

2


+ ζ0

5 · δ
0

3


+ ζ0

5 · δ
0

4


+

+ ζ4
5 · δ

1

0


+ ζ4

5 · δ
1

1


+ ζ4

5 · δ
1

2


+ ζ4

5 · δ
1

3


+ ζ4

5 · δ
1

4


+

+ ζ3
5 · δ

2

0


+ ζ3

5 · δ
2

1


+ ζ3

5 · δ
2

2


+ ζ3

5 · δ
2

3


+ ζ3

5 · δ
2

4


+

+ ζ2
5 · δ

3

0


+ ζ2

5 · δ
3

1


+ ζ2

5 · δ
3

2


+ ζ2

5 · δ
3

3


+ ζ2

5 · δ
3

4


+

+ ζ1
5 · δ

4

0


+ ζ1

5 · δ
4

1


+ ζ1

5 · δ
4

2


+ ζ1

5 · δ
4

3


+ ζ1

5 · δ
4

4




.
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 0 1

−1 0

 · δ1

0


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 0 + 1 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζy25 · δ

y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ1

5 · δ
0

1


+ ζ2

5 · δ
0

2


+ ζ3

5 · δ
0

3


+ ζ4

5 · δ
0

4


+

+ ζ0
5 · δ

1

0


+ ζ1

5 · δ
1

1


+ ζ2

5 · δ
1

2


+ ζ3

5 · δ
1

3


+ ζ4

5 · δ
1

4


+

+ ζ0
5 · δ

2

0


+ ζ1

5 · δ
2

1


+ ζ2

5 · δ
2

2


+ ζ3

5 · δ
2

3


+ ζ4

5 · δ
2

4


+

+ ζ0
5 · δ

3

0


+ ζ1

5 · δ
3

1


+ ζ2

5 · δ
3

2


+ ζ3

5 · δ
3

3


+ ζ4

5 · δ
3

4


+

+ ζ0
5 · δ

4

0


+ ζ1

5 · δ
4

1


+ ζ2

5 · δ
4

2


+ ζ3

5 · δ
4

3


+ ζ4

5 · δ
4

4




.
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 0 1

−1 0

 · δ1

1


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 1 + 1 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζy1+y2

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ1

5 · δ
0

1


+ ζ2

5 · δ
0

2


+ ζ3

5 · δ
0

3


+ ζ4

5 · δ
0

4


+

+ ζ1
5 · δ

1

0


+ ζ2

5 · δ
1

1


+ ζ3

5 · δ
1

2


+ ζ4

5 · δ
1

3


+ ζ0

5 · δ
1

4


+

+ ζ2
5 · δ

2

0


+ ζ3

5 · δ
2

1


+ ζ4

5 · δ
2

2


+ ζ5

5 · δ
2

3


+ ζ0

5 · δ
2

4


+

+ ζ3
5 · δ

3

0


+ ζ4

5 · δ
3

1


+ ζ5

5 · δ
3

2


+ ζ0

5 · δ
3

3


+ ζ1

5 · δ
3

4


+

+ ζ4
5 · δ

4

0


+ ζ5

5 · δ
4

1


+ ζ0

5 · δ
4

2


+ ζ1

5 · δ
4

3


+ ζ2

5 · δ
4

4




.
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 0 1

−1 0

 · δ1

2


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 2 + 1 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζ2y1+y2

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ1

5 · δ
0

1


+ ζ2

5 · δ
0

2


+ ζ3

5 · δ
0

3


+ ζ4

5 · δ
0

4


+

+ ζ2
5 · δ

1

0


+ ζ3

5 · δ
1

1


+ ζ4

5 · δ
1

2


+ ζ0

5 · δ
1

3


+ ζ1

5 · δ
1

4


+

+ ζ4
5 · δ

2

0


+ ζ0

5 · δ
2

1


+ ζ1

5 · δ
2

2


+ ζ2

5 · δ
2

3


+ ζ3

5 · δ
2

4


+

+ ζ1
5 · δ

3

0


+ ζ2

5 · δ
3

1


+ ζ3

5 · δ
3

2


+ ζ4

5 · δ
3

3


+ ζ0

5 · δ
3

4


+

+ ζ3
5 · δ

4

0


+ ζ4

5 · δ
4

1


+ ζ0

5 · δ
4

2


+ ζ1

5 · δ
4

3


+ ζ2

5 · δ
4

4




.
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 0 1

−1 0

 · δ1

3


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 3 + 1 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζ3y1+y2

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ1

5 · δ
0

1


+ ζ2

5 · δ
0

2


+ ζ3

5 · δ
0

3


+ ζ4

5 · δ
0

4


+

+ ζ3
5 · δ

1

0


+ ζ4

5 · δ
1

1


+ ζ0

5 · δ
1

2


+ ζ1

5 · δ
1

3


+ ζ2

5 · δ
1

4


+

+ ζ1
5 · δ

2

0


+ ζ1

5 · δ
2

1


+ ζ2

5 · δ
2

2


+ ζ3

5 · δ
2

3


+ ζ4

5 · δ
2

4


+

+ ζ4
5 · δ

3

0


+ ζ0

5 · δ
3

1


+ ζ1

5 · δ
3

2


+ ζ2

5 · δ
3

3


+ ζ3

5 · δ
3

4


+

+ ζ2
5 · δ

4

0


+ ζ3

5 · δ
4

1


+ ζ4

5 · δ
4

2


+ ζ0

5 · δ
4

3


+ ζ1

5 · δ
4

4




.
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 0 1

−1 0

 · δ1

4


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 4 + 1 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζ4y1+y2

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ1

5 · δ
0

1


+ ζ2

5 · δ
0

2


+ ζ3

5 · δ
0

3


+ ζ4

5 · δ
0

4


+

+ ζ4
5 · δ

1

0


+ ζ0

5 · δ
1

1


+ ζ1

5 · δ
1

2


+ ζ2

5 · δ
1

3


+ ζ3

5 · δ
1

4


+

+ ζ3
5 · δ

2

0


+ ζ4

5 · δ
2

1


+ ζ0

5 · δ
2

2


+ ζ1

5 · δ
2

3


+ ζ2

5 · δ
2

4


+

+ ζ2
5 · δ

3

0


+ ζ3

5 · δ
3

1


+ ζ4

5 · δ
3

2


+ ζ0

5 · δ
3

3


+ ζ1

5 · δ
3

4


+

+ ζ1
5 · δ

4

0


+ ζ2

5 · δ
4

1


+ ζ3

5 · δ
4

2


+ ζ4

5 · δ
4

3


+ ζ0

5 · δ
4

4




.
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 0 1

−1 0

 · δ2

0


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 0 + 2 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζ2y2

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ2

5 · δ
0

1


+ ζ4

5 · δ
0

2


+ ζ1

5 · δ
0

3


+ ζ3

5 · δ
0

4


+

+ ζ0
5 · δ

1

0


+ ζ2

5 · δ
1

1


+ ζ4

5 · δ
1

2


+ ζ1

5 · δ
1

3


+ ζ3

5 · δ
1

4


+

+ ζ0
5 · δ

2

0


+ ζ2

5 · δ
2

1


+ ζ4

5 · δ
2

2


+ ζ1

5 · δ
2

3


+ ζ3

5 · δ
2

4


+

+ ζ0
5 · δ

3

0


+ ζ2

5 · δ
3

1


+ ζ4

5 · δ
3

2


+ ζ1

5 · δ
3

3


+ ζ3

5 · δ
3

4


+

+ ζ0
5 · δ

4

0


+ ζ2

5 · δ
4

1


+ ζ4

5 · δ
4

2


+ ζ1

5 · δ
4

3


+ ζ3

5 · δ
4

4




.
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 0 1

−1 0

 · δ2

1


= 5−1 ·

∑
y∈M


exp(2πi(y1 · 1 + 2 · y2)/5) · δ

y1

y2





= 5−1 ·
∑
y∈M


ζy1+2y2

5 · δ
y1

y2





= 5−1 ·


ζ0

5 · δ
0

0


+ ζ2

5 · δ
0

1


+ ζ4

5 · δ
0

2


+ ζ1

5 · δ
0

3


+ ζ3

5 · δ
0

4


+

+ ζ1
5 · δ

1

0


+ ζ3

5 · δ
1

1


+ ζ0

5 · δ
1

2


+ ζ2

5 · δ
1

3


+ ζ4

5 · δ
1

4


+

+ ζ2
5 · δ

2

0


+ ζ4

5 · δ
2

1


+ ζ1

5 · δ
2

2


+ ζ3

5 · δ
2

3


+ ζ0

5 · δ
2

4


+

+ ζ3
5 · δ

3

0


+ ζ0

5 · δ
3

1


+ ζ2

5 · δ
3

2


+ ζ4

5 · δ
3

3


+ ζ1

5 · δ
3

4


+

+ ζ4
5 · δ

4

0


+ ζ1

5 · δ
4

1
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4.1.3 Representation of S with respect to the basis of delta functions.

Combining the calculations gives the following matrix for S.

S =
1

5
·



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 ζ4
5 ζ4

5 ζ4
5 ζ4

5 ζ4
5 ζ3

5 ζ3
5 ζ3

5 ζ3
5 ζ3

5 ζ2
5 ζ2

5 ζ2
5 ζ2

5 ζ2
5 ζ5 ζ5 ζ5 ζ5 ζ5

1 1 1 1 1 ζ3
5 ζ3

5 ζ3
5 ζ3

5 ζ3
5 ζ5 ζ5 ζ5 ζ5 ζ5 ζ4

5 ζ4
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5 ζ4
5 ζ4
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1 1 1 1 1 ζ2
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5 ζ3

5 ζ4
5 ζ4

5 ζ4
5 ζ4

5 ζ4
5

1 ζ4
5 ζ3

5 ζ2
5 ζ5 1 ζ4

5 ζ3
5 ζ2

5 ζ5 1 ζ4
5 ζ3

5 ζ2
5 ζ5 1 ζ4

5 ζ3
5 ζ2

5 ζ5 1 ζ4
5 ζ3

5 ζ2
5 ζ5

1 ζ4
5 ζ3

5 ζ2
5 ζ5 ζ4

5 ζ3
5 ζ2

5 ζ5 1 ζ3
5 ζ2

5 ζ5 1 ζ4
5 ζ2

5 ζ5 1 ζ4
5 ζ3

5 ζ5 1 ζ4
5 ζ3

5 ζ2
5

1 ζ4
5 ζ3

5 ζ2
5 ζ5 ζ3

5 ζ2
5 ζ5 1 ζ4

5 ζ5 1 ζ4
5 ζ3

5 ζ2
5 ζ4

5 ζ3
5 ζ2

5 ζ5 1 ζ2
5 ζ5 1 ζ4

5 ζ3
5

1 ζ4
5 ζ3

5 ζ2
5 ζ5 ζ2

5 ζ5 1 ζ4
5 ζ3

5 ζ4
5 ζ3

5 ζ2
5 ζ5 1 ζ5 1 ζ4

5 ζ3
5 ζ2

5 ζ3
5 ζ2

5 ζ5 1 ζ4
5

1 ζ4
5 ζ3

5 ζ2
5 ζ5 ζ5 1 ζ4

5 ζ3
5 ζ2

5 ζ2
5 ζ5 1 ζ4

5 ζ3
5 ζ3

5 ζ2
5 ζ5 1 ζ4

5 ζ4
5 ζ3

5 ζ2
5 ζ5 1

1 ζ3
5 ζ5 ζ4

5 ζ2
5 1 ζ3

5 ζ5 ζ4
5 ζ2

5 1 ζ3
5 ζ5 ζ4

5 ζ2
5 1 ζ3

5 ζ5 ζ4
5 ζ2

5 1 ζ3
5 ζ5 ζ4

5 ζ2
5

1 ζ3
5 ζ5 ζ4

5 ζ2
5 ζ4

5 ζ2
5 1 ζ3

5 ζ5 ζ3
5 ζ5 ζ4

5 ζ2
5 1 ζ2

5 1 ζ3
5 ζ5 ζ4

5 ζ5 ζ4
5 ζ2

5 1 ζ3
5

1 ζ3
5 ζ5 ζ4

5 ζ2
5 ζ3

5 ζ5 ζ4
5 ζ2

5 1 ζ5 ζ4
5 ζ2

5 1 ζ3
5 ζ4

5 ζ2
5 1 ζ3

5 ζ5 ζ2
5 1 ζ3

5 ζ5 ζ4
5

1 ζ3
5 ζ5 ζ4

5 ζ2
5 ζ2

5 1 ζ3
5 ζ5 ζ4

5 ζ4
5 ζ2

5 1 ζ3
5 ζ5 ζ5 ζ4

5 ζ2
5 1 ζ3

5 ζ3
5 ζ5 ζ4

5 ζ2
5 1

1 ζ3
5 ζ5 ζ4

5 ζ2
5 ζ5 ζ4

5 ζ2
5 1 ζ3

5 ζ2
5 1 ζ3

5 ζ5 ζ4
5 ζ3

5 ζ5 ζ4
5 ζ2

5 1 ζ4
5 ζ2

5 1 ζ3
5 ζ5

1 ζ2
5 ζ4

5 ζ5 ζ3
5 1 ζ2

5 ζ4
5 ζ5 ζ3

5 1 ζ2
5 ζ4

5 ζ5 ζ3
5 1 ζ2

5 ζ4
5 ζ5 ζ3

5 1 ζ2
5 ζ4

5 ζ5 ζ3
5

1 ζ2
5 ζ4

5 ζ5 ζ3
5 ζ4

5 ζ5 ζ3
5 1 ζ2

5 ζ3
5 1 ζ2

5 ζ4
5 ζ5 ζ2

5 ζ4
5 ζ5 ζ3

5 1 ζ5 ζ3
5 1 ζ2

5 ζ4
5

1 ζ2
5 ζ4

5 ζ5 ζ3
5 ζ3

5 1 ζ2
5 ζ4

5 ζ5 ζ5 ζ3
5 1 ζ2

5 ζ4
5 ζ4

5 ζ5 ζ3
5 1 ζ2

5 ζ2
5 ζ4

5 ζ5 ζ3
5 1

1 ζ2
5 ζ4

5 ζ5 ζ3
5 ζ2

5 ζ4
5 ζ5 ζ3

5 1 ζ4
5 ζ5 ζ3

5 1 ζ2
5 ζ5 ζ3

5 1 ζ2
5 ζ4

5 ζ3
5 1 ζ2

5 ζ4
5 ζ5

1 ζ2
5 ζ4

5 ζ5 ζ3
5 ζ5 ζ3

5 1 ζ2
5 ζ4

5 ζ2
5 ζ4

5 ζ5 ζ3
5 1 ζ3

5 1 ζ2
5 ζ4

5 ζ5 ζ4
5 ζ5 ζ3

5 1 ζ2
5

1 ζ5 ζ2
5 ζ3

5 ζ4
5 1 ζ5 ζ2

5 ζ3
5 ζ4

5 1 ζ5 ζ2
5 ζ3

5 ζ4
5 1 ζ5 ζ2

5 ζ3
5 ζ4

5 1 ζ5 ζ2
5 ζ3

5 ζ4
5

1 ζ5 ζ2
5 ζ3

5 ζ4
5 ζ4

5 1 ζ5 ζ2
5 ζ3

5 ζ3
5 ζ4

5 1 ζ5 ζ2
5 ζ2

5 ζ3
5 ζ4

5 1 ζ5 ζ5 ζ2
5 ζ3

5 ζ4
5 1

1 ζ5 ζ2
5 ζ3

5 ζ4
5 ζ3

5 ζ4
5 1 ζ5 ζ2

5 ζ5 ζ2
5 ζ3

5 ζ4
5 1 ζ4

5 1 ζ5 ζ2
5 ζ3

5 ζ2
5 ζ3

5 ζ4
5 1 ζ5

1 ζ5 ζ2
5 ζ3

5 ζ4
5 ζ2

5 ζ3
5 ζ4

5 1 ζ5 ζ4
5 1 ζ5 ζ2

5 ζ3
5 ζ5 ζ2

5 ζ3
5 ζ4

5 1 ζ3
5 ζ4

5 1 ζ5 ζ2
5

1 ζ5 ζ2
5 ζ3

5 ζ4
5 ζ5 ζ2

5 ζ3
5 ζ4

5 1 ζ2
5 ζ3

5 ζ4
5 1 ζ5 ζ3

5 ζ4
5 1 ζ5 ζ2

5 ζ4
5 1 ζ5 ζ2

5 ζ3
5
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4.1.4 Representation of T with respect to the basis of delta functions.

With b = 1, Theorem 2[23] tell us that1 1

0 1

 · δx1

x2


= exp(Q(x)) · δ

x1

x2


= exp(2πi · x1x2/5) · δ

x1

x2


= ζx1x25 · δ

x1

x2


.

Applying the formula gives the following matrix. Due to the size of the matrix, it is

displayed on the next page.
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T =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ζ5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ζ2
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ζ3
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ζ4
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ζ2
5 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ζ4
5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ζ5 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ3
5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ3
5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ4
5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ2
5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ4
5 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ3
5 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ2
5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ5
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4.1.5 Actions of S and T on the basis functions of V (χ)

The actions of S and T on the basis of V (χ) are given by

S · f
0

1


= S · δ

0

1


+ S · i · δ

0

2


+ S · (−1) · δ

0

4


+ S · (−i) · δ

0

3


S · f

1

0


= S · δ

1

0


+ S · i · δ

3

0


+ S · (−1) · δ

4

0


+ S · (−i) · δ

2

0


S · f

1

1


= S · δ

1

1


+ S · i · δ

3

2


+ S · (−1) · δ

4

4


+ S · (−i) · δ

2

3


S · f

1

2


= S · δ

1

2


+ S · i · δ

3

4


+ S · (−1) · δ

4

3


+ S · (−i) · δ

2

1


S · f

1

3


= S · δ

1

3


+ S · i · δ

3

1


+ S · (−1) · δ

4

2


+ S · (−i) · δ

2

4


S · f

1

4


= S · δ

1

4


+ S · i · δ

3

3


+ S · (−1) · δ

4

1


+ S · (−i) · δ

2

2
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and

T · f
0

1


= T · δ

0

1


+ T · i · δ

0

2


+ T · (−1) · δ

0

4


+ T · (−i) · δ

0

3


T · f

1

0


= T · δ

1

0


+ T · i · δ

3

0


+ T · (−1) · δ

4

0


+ T · (−i) · δ

2

0


T · f

1

1


= T · δ

1

1


+ T · i · δ

3

2


+ T · (−1) · δ

4

4


+ T · (−i) · δ

2

3


T · f

1

2


= T · δ

1

2


+ T · i · δ

3

4


+ T · (−1) · δ

4

3


+ T · (−i) · δ

2

1


T · f

1

3


= T · δ

1

3


+ T · i · δ

3

1


+ T · (−1) · δ

4

2


+ T · (−i) · δ

2

4


T · f

1

4


= T · δ

1

4


+ T · i · δ

3

3


+ T · (−1) · δ

4

1


+ T · (−i) · δ

2

2


.

Determining the coordinates of six by six matrices with respect to the basis of the

invariant subspace is rather tedious and will not properly fit on this paper size. Since we

have a product of i =
√
−1 with ζ5, the resulting matrix entries will not be in Q[ζ5]. So

we will employ SAGE to compute it for us. We will enlarge our ring so that it contains
√
−1.
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D
1 (χ

)(S
)

=
15
· 

0
−
ζ

72
0 −

ζ
62
0 −

ζ
42
0

+
ζ

32
0

−
ζ

72
0 −

ζ
62
0 −

ζ
42
0

+
ζ

32
0

ζ
72
0 −

ζ
62
0 −

ζ
42
0 −

ζ
32
0

0
ζ

72
0 −

ζ
62
0 −

ζ
42
0 −

ζ
32
0

ζ
72
0 −

ζ
62
0 −

ζ
42
0 −

ζ
32
0

−
ζ

72
0 −

ζ
62
0 −

ζ
42
0

+
ζ

32
0

−
ζ

62
0

+
ζ

42
0 −

25 ζ
22
0

+
1

ζ
72
0 −

ζ
62
0 −

ζ
42
0 −

ζ
32
0

ζ
72
0 −

ζ
62
0 −

ζ
52
0

+
ζ

42
0

+
ζ

32
0 −

25 ζ
22
0 −

25 ζ
2
0

+
1
−
ζ

72
0

+
ζ

62
0 −

ζ
42
0

+
ζ

32
0

+
25 ζ

22
0 −

1

ζ
72
0 −

ζ
62
0 −

ζ
42
0 −

ζ
32
0
−
ζ

72
0

+
ζ

62
0

+
ζ

52
0 −

ζ
42
0 −

ζ
32
0

+
25 ζ

22
0

+
25 ζ

2
0 −

1
ζ

72
0

+
ζ

62
0 −

ζ
52
0

+
ζ

42
0

+
ζ

32
0 −

25 ζ
2
0

ζ
72
0 −

ζ
62
0 −

ζ
42
0 −

ζ
32
0

ζ
72
0

+
ζ

62
0

+
ζ

42
0 −

ζ
32
0

−
ζ

72
0

+
ζ

52
0 −

ζ
32
0

+
25 ζ

2
0

−
ζ

72
0 −

ζ
62
0 −

ζ
42
0

+
ζ

32
0

−
ζ

72
0 −

ζ
62
0 −

ζ
42
0

+
ζ

32
0

−
ζ

72
0 −

ζ
62
0 −

ζ
42
0

+
ζ

32
0

−
ζ

72
0 −

ζ
62
0

+
ζ

52
0

+
ζ

42
0 −

ζ
32
0 −

25 ζ
22
0

+
25 ζ

2
0

+
1

ζ
72
0

+
ζ

62
0 −

ζ
52
0 −

ζ
42
0

+
ζ

32
0

+
25 ζ

22
0 −

25 ζ
2
0 −

1
−
ζ

72
0

+
ζ

62
0

+
ζ

42
0

+
ζ

32
0

ζ
72
0

+
ζ

62
0 −

ζ
42
0 −

ζ
32
0

+
25 ζ

22
0 −

1
−
ζ

72
0

+
ζ

62
0

+
ζ

52
0

+
ζ

42
0 −

ζ
32
0

+
25 ζ

2
0

ζ
72
0 −

ζ
52
0

+
ζ

32
0 −

25 ζ
2
0

ζ
62
0

+
ζ

42
0

ζ
72
0 −

ζ
32
0

−
ζ

72
0 −

ζ
62
0

+
ζ

52
0 −

ζ
42
0 −

ζ
32
0

+
25 ζ

2
0

−
ζ

72
0

+
ζ

32
0

−
ζ

62
0 −

ζ
42
0

ζ
72
0 −

ζ
62
0

+
ζ

42
0 −

ζ
32
0 −

25 ζ
22
0

+
1

ζ
72
0 −

ζ
62
0 −

ζ
52
0 −

ζ
42
0

+
ζ

32
0 −

25 ζ
2
0

−
ζ

72
0 −

ζ
62
0

+
ζ

42
0

+
ζ

32
0 −

25 ζ
22
0

+
1

ζ
62
0 −

ζ
42
0

+
25 ζ

22
0 −

1



(4.1.1)
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For T =

1 1

0 1

,

D1(χ)(T ) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 ζ4
20 0 0 0

0 0 0 ζ6
20 − ζ4

20 + ζ2
20 − 1 0 0

0 0 0 0 −ζ2
20 0

0 0 0 0 0 −ζ6
20


.

We have our six-dimensional irreducible representations for the generators of SL2(Z/5Z).

Its entries are over Z[ζ20]. Can we find a smaller ring that contains the entries? Yes, as

stated in the previous chapter, Riese[26] gives a much tighter bound. He proves that the

ring is Z[ζ4] (the Gaussian integers). How can we can construct it?

4.2 The 6-dim Irred. Principal Series Rep. that is integral over Z[ζ4] = Z[i].

We will employ the procedure from Chapter 2 Section 5. We will also employ the

Frobenius Reciprocity Theorem. Let’s state it for our application.

Let G = SL2(Fp). Fix the non-trivial one-dimensional character χ = χj of B, inflated

from T , so that

χ

ai x

0 a−1

 = ξij

for some j. Consider the representation (space)

V = IndGB(χ) = {f : G→ C : f(bg) = χ(b)f(g),∀b ∈ B, g ∈ G}.

Let ρ be the representation of G on V . If H is subgroup of G and and σ : H → C× is

a one dimensional character (representation) of H, then the induced representation,
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IndGH(σ), has vector space

V = IndGH(σ) = {f : G→ C : f(hg) = σ(h)f(g), ∀g ∈ G, h ∈ H}

and representation ρ : G → GL(V ), given by the G-action [ρ(g)f ](x) = f(xg) for all

x, g ∈ G. The dimension of the induced representation is given by the index of G and

H, i.e.,

dim(IndGH(σ)) = [G : H].)

Since χj = χ is a one-dimensional character of B,

dim(V ) = [G : B] · 1 = p+ 1.

Is (ρ, V ) an irreducible representation? Yes, for the detailed proofs, see Kirby[16].

In Chapter 2, we learned the character table for B (Table 2.5.1), how to obtain the

cosets of SL2(Fp)/B, and that the induced six-dimensional representation is irreducible,

we can construct it. The six coset representatives are

X0 =

 1 0

0 1

 X1 =

 1 0

1 1

 X2 =

 2 0

1 3



X3 =

 2 0

3 3

 X4 =

 2 0

4 3

 X5 =

 0 4

1 4

 ,
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Let S = [ 0 −1
1 0 ]. Then the induced six-dimensional representation of S is

D1(χ)(S) =



χ(X−1
0 SX0) χ(X−1

0 SX1) · · · χ(X−1
0 SX4) χ(X−1

0 SX5)

χ(X−1
1 SX0) χ(X−1

1 SX1) · · · χ(X−1
1 SX4) χ(X−1

1 SX5)

χ(X−1
2 SX0) χ(X−1

2 SX1) · · · χ(X−1
2 SX4) χ(X−1

2 SX5)

χ(X−1
3 SX0) χ(X−1

3 SX1) · · · χ(X−1
3 SX4) χ(X−1

3 SX5)

χ(X−1
4 SX0) χ(X−1

4 SX1) · · · χ(X−1
4 SX4) χ(X−1

4 SX5)

χ(X−1
5 SX0) χ(X−1

5 SX1) · · · χ(X−1
5 SX4) χ(X−1

5 SX5)



=



χ ([ 0 4
1 0 ]) χ ([ 4 4

1 0 ]) χ ([ 4 2
2 0 ]) χ ([ 2 2

2 0 ]) χ ([ 1 2
2 0 ]) χ ([ 4 1

0 4 ])

χ ([ 0 4
1 1 ]) χ ([ 4 4

2 1 ]) χ ([ 4 2
3 3 ]) χ ([ 2 2

0 3 ]) χ ([ 1 2
1 3 ]) χ ([ 4 1

1 3 ])

χ ([ 0 2
2 1 ]) χ ([ 2 2

3 1 ]) χ ([ 2 1
0 3 ]) χ ([ 1 1

2 3 ]) χ ([ 3 1
3 3 ]) χ ([ 2 3

1 2 ])

χ ([ 0 2
2 3 ]) χ ([ 2 2

0 3 ]) χ ([ 2 1
2 4 ]) χ ([ 1 1

3 4 ]) χ ([ 3 1
1 4 ]) χ ([ 2 3

3 0 ])

χ ([ 0 2
2 4 ]) χ ([ 2 2

1 4 ]) χ ([ 2 1
3 2 ]) χ ([ 1 1

1 2 ]) χ ([ 3 1
0 2 ]) χ ([ 2 3

4 4 ])

χ ([ 1 1
0 1 ]) χ ([ 2 1

1 1 ]) χ ([ 3 3
1 3 ]) χ ([ 0 3

3 3 ]) χ ([ 1 3
4 3 ]) χ ([ 1 3

1 4 ])



=



0 0 0 0 0 −1

0 0 0 −ζ4 0 0

0 0 −ζ4 0 0 0

0 −ζ4 0 0 0 0

0 0 0 0 ζ4 0

1 0 0 0 0 0



=



0 0 0 0 0 −1

0 0 0 −i 0 0

0 0 −i 0 0 0

0 −i 0 0 0 0

0 0 0 0 i 0

1 0 0 0 0 0


.
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Let T = [ 1 1
0 1 ]. Then the induced six-dimensional representation of T is

D1(χ)(T ) =



χ(X−1
0 TX0) χ(X−1

0 TX1) · · · χ(X−1
0 TX4) χ(X−1

0 TX5)

χ(X−1
1 TX0) χ(X−1

1 TX1) · · · χ(X−1
1 TX4) χ(X−1

1 TX5)

χ(X−1
2 TX0) χ(X−1

2 TX1) · · · χ(X−1
2 TX4) χ(X−1

2 TX5)

χ(X−1
3 TX0) χ(X−1

3 TX1) · · · χ(X−1
3 TX4) χ(X−1

3 TX5)

χ(X−1
4 TX0) χ(X−1

4 TX1) · · · χ(X−1
4 TX4) χ(X−1

4 TX5)

χ(X−1
5 TX0) χ(X−1

5 TX1) · · · χ(X−1
5 TX4) χ(X−1

5 TX5)



=



χ ([ 1 1
0 1 ]) χ ([ 2 1

1 1 ]) χ ([ 3 3
1 3 ]) χ ([ 0 3

3 3 ]) χ ([ 1 3
4 3 ]) χ ([ 1 3

1 4 ])

χ ([ 1 1
4 0 ]) χ ([ 2 1

4 0 ]) χ ([ 3 3
3 0 ]) χ ([ 0 3

3 0 ]) χ ([ 1 3
3 0 ]) χ ([ 1 3

0 1 ])

χ ([ 3 3
4 1 ]) χ ([ 1 3

0 1 ]) χ ([ 4 4
4 3 ]) χ ([ 0 4

1 3 ]) χ ([ 3 4
2 3 ]) χ ([ 3 4

1 0 ])

χ ([ 3 3
2 4 ]) χ ([ 1 3

1 4 ]) χ ([ 4 4
3 2 ]) χ ([ 0 4

1 2 ]) χ ([ 3 4
0 2 ]) χ ([ 3 4

4 4 ])

χ ([ 3 3
1 3 ]) χ ([ 1 3

4 3 ]) χ ([ 4 4
0 4 ]) χ ([ 0 4

1 4 ]) χ ([ 3 4
4 4 ]) χ ([ 3 4

3 1 ])

χ ([ 4 0
4 4 ]) χ ([ 4 0

3 4 ]) χ ([ 3 0
2 2 ]) χ ([ 3 0

0 2 ]) χ ([ 3 0
4 2 ]) χ ([ 0 1

4 2 ])



=



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 ζ4 0

0 0 −1 0 0 0

0 0 0 ζ4 0 0


=



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 i 0

0 0 −1 0 0 0

0 0 0 i 0 0


.

Lets verify the relations (D1(χ)(S) ·D1(χ)(T ))3 = (D1(χ)(S))2 and (D1(χ)(S))4 = 1.

Let A = (D1(χ)(S) ·D1(χ)(T ))3. Then
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A =





0 0 0 0 0 −1

0 0 0 −i 0 0

0 0 −i 0 0 0

0 −i 0 0 0 0

0 0 0 0 i 0

1 0 0 0 0 0





1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 i 0

0 0 −1 0 0 0

0 0 0 i 0 0





3

=





0 0 0 −i 0 0

0 0 0 0 1 0

0 −i 0 0 0 0

0 0 0 0 0 −i

0 0 −i 0 0 0

1 0 0 0 0 0





3

=



0 0 0 −i 0 0

0 0 0 0 1 0

0 −i 0 0 0 0

0 0 0 0 0 −i

0 0 −i 0 0 0

1 0 0 0 0 0





0 0 0 −i 0 0

0 0 0 0 1 0

0 −i 0 0 0 0

0 0 0 0 0 −i

0 0 −i 0 0 0

1 0 0 0 0 0





0 0 0 −i 0 0

0 0 0 0 1 0

0 −i 0 0 0 0

0 0 0 0 0 −i

0 0 −i 0 0 0

1 0 0 0 0 0



=



0 0 0 −i 0 0

0 0 0 0 1 0

0 −i 0 0 0 0

0 0 0 0 0 −i

0 0 −i 0 0 0

1 0 0 0 0 0





0 0 0 0 0 −1

0 0 −i 0 0 0

0 0 0 0 −i 0

−i 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 −i 0 0
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=



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


.

(D1(χ)(S))2 =



0 0 0 0 0 −1

0 0 0 −ζ4 0 0

0 0 −ζ4 0 0 0

0 −ζ4 0 0 0 0

0 0 0 0 ζ4 0

1 0 0 0 0 0


·



0 0 0 0 0 −1

0 0 0 −ζ4 0 0

0 0 −ζ4 0 0 0

0 −ζ4 0 0 0 0

0 0 0 0 ζ4 0

1 0 0 0 0 0



=



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


= A

= (D1(χ)(S) ·D1(χ)(T ))3.
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(D1(χ)(S))4 =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1



2

=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


= 1.

The relations hold. So the integral representations are over the the Gaussian integers.

This agrees with Riese’s Proposition 1[26]. Can we induce the other principal series

representations? The answer is yes. We can easily induce the (reducible principal series

representations): the 1+St representation and R1(1,+) ⊕ R1(2,+) (also referred to as

ρ′0 ⊕ ρ′′0). To directly compute the irreducible ones, Nobs’ methods are the easiest to

compute (as we did for SL2(Z/3Z)). These reducible ones are calculated for completeness.
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4.3 The Steinberg representation, N1(χ1)

Recall that when we computed the Steinberg representation of SL2(Z/3Z), we learned

that the Aut(M,Q) is isomorphic to the dihedral group of order 2(p+ 1) ([34] Theorem

11.4). We have M = Z/5Z⊕Z/5Z and Q(x) = 5−1(x2
1− ux2

2) = 5−1(x2
1− 2x2

2) from [23]

Theorem 3. The bilinear form is B(x, y) = 5−1(2x1y1 − 4x2y2) = 5−1(2x1y1 + x2y2). We

proceed as before. Lets write down the domain and image of Q(x).

x x1 x2 x2
1 x2

2 x2
1 − 2x2

2 Q(x) = (x2
1 − 2x2

2)/3 ∈ Q/Z

0 0 0 0 0 0 0

1 0 1 0 1 0− 2 −2/5 = 3/5

2 0 2 0 4 0− 8 −8/5 = 2/5

3 0 3 0 9 0− 18 −18/5 = 2/5

4 0 4 0 16 0− 32 −32/5 = 3/5

5 1 0 1 0 1− 0 1/5

6 1 1 1 1 1− 2 −1/5 = 4/5

7 1 2 1 4 1− 8 −7/5 = 3/5

8 1 3 1 9 1− 18 −17/5 = 3/5

9 1 4 1 16 1− 32 −31/5 = 4/5

10 2 0 4 0 4− 0 4/5

11 2 1 4 1 4− 2 2/5

12 2 2 4 4 4− 8 −4/5 = 1/5

13 2 3 4 9 4− 18 −14/5 = 1/5

14 2 4 4 16 4− 32 −28/5 = 2/5

15 3 0 9 0 9− 0 9/5 = 4/5
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x x1 x2 x2
1 x2

2 x2
1 − 2x2

2 Q(x) = (x2
1 − 2x2

2)/3 ∈ Q/Z

16 3 1 9 1 9− 2 7/5 = 2/5

17 3 2 9 4 9− 8 1/5

18 3 3 9 9 9− 18 −9/5 = 1/5

19 3 4 9 16 9− 32 −23/5 = 2/5

20 4 0 16 0 16− 0 16/5 = 1/5

21 4 1 16 1 16− 2 14/5 = 4/5

22 4 2 16 4 16− 8 8/5 = 3/5

23 4 3 16 9 16− 18 −2/5 = 3/5

24 4 4 16 16 16− 32 −16/5 = 4/5

Now grouping the images gives us the basis vectors δx.

Q(x) ∈ Q/Z

x x1 x2 x2
1 x2

2 x2
1 − 2x2

2 (x2
1 − 2x2

2)/5

0 0 0 0 0 0 0

5 1 0 1 0 1− 0 1/5

12 2 2 4 4 4− 8 −4/5 = 1/5

13 2 3 4 9 4− 18 −14/5 = 1/5

17 3 2 9 4 9− 8 1/5

18 3 3 9 9 9− 18 −9/5 = 1/5

20 4 0 16 0 16− 0 16/5 = 1/5
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Q(x) ∈ Q/Z

x x1 x2 x2
1 x2

2 x2
1 − 2x2

2 (x2
1 − 2x2

2)/5

2 0 2 0 4 0− 8 −8/5 = 2/5

3 0 3 0 9 0− 18 −18/5 = 2/5

11 2 1 4 1 4− 2 2/5

14 2 4 4 16 4− 32 −28/5 = 2/5

16 3 1 9 1 9− 2 7/5 = 2/5

19 3 4 9 16 9− 32 −23/5 = 2/5

1 0 1 0 1 0− 2 −2/5 = 3/5

4 0 4 0 16 0− 32 −32/5 = 3/5

7 1 2 1 4 1− 8 −7/5 = 3/5

8 1 3 1 9 1− 18 −17/5 = 3/5

22 4 2 16 4 16− 8 8/5 = 3/5

23 4 3 16 9 16− 18 −2/5 = 3/5

6 1 1 1 1 1− 2 −1/5 = 4/5

9 1 4 1 16 1− 32 −31/5 = 4/5

10 2 0 4 0 4− 0 4/5

15 3 0 9 0 9− 0 9/5 = 4/5

21 4 1 16 1 16− 2 14/5 = 4/5

24 4 4 16 16 16− 32 −16/5 = 4/5
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That is,

f0(x) = δ
0

0


(x),

f1(x) =


δ

1

0


+ δ

1

2


+ δ

2

3


+ δ

3

2


+ δ

3

3


+ δ

4

0




(x),

f2(x) =


δ

0

2


+ δ

0

3


+ δ

2

1


+ δ

2

4


+ δ

3

1


+ δ

3

4




(x),

f3(x) =


δ

0

1


+ δ

0

4


+ δ

1

2


+ δ

1

3


+ δ

4

2


+ δ

4

3




(x),

and

f4(x) =


δ

1

1


+ δ

1

4


+ δ

2

0


+ δ

3

0


+ δ

4

1


+ δ

4

4




(x).
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We have our five basis vectors. Using SAGE, we determine the representations to be

N1(χ1)(S) =
1

5



−1 −1 −1 −1 −1

−6 ζ3
5 + ζ2

5 + 2 2ζ3
5 + 2ζ2

5 −2ζ3
5 − 2ζ2

5 − 2 −ζ3
5 − ζ2

5 + 1

−6 2ζ3
5 + 2ζ2

5 −ζ3
5 − ζ2

5 + 1 ζ3
5 + ζ2

5 + 2 −2ζ3
5 − 2ζ2

5 − 2

−6 −2ζ3
5 − 2ζ2

5 − 2 ζ3
5 + ζ2

5 + 2 −ζ3
5 − ζ2

5 + 1 2ζ3
5 + 2ζ2

5

−6 −ζ3
5 − ζ2

5 + 1 −2ζ3
5 − 2ζ2

5 − 2 2ζ3
5 + 2ζ2

5 ζ3
5 + ζ2

5 + 2


and

N1(χ1)(T ) =



1 0 0 0 0

0 ζ5 0 0 0

0 0 ζ2
5 0 0

0 0 0 ζ3
5 0

0 0 0 0 ζ4
5


.

Using SAGE we confirm that (N1(χ1)(S))2 = (N1(χ1)(S))4 = 1 and (N1(χ1)(S) ·

N1(χ1)(T ))3 = (N1(χ1)(S)2). We also confirm that characters agree with Reeder[25]:

Tr(N1(χ1)(S)) = 1 and Tr(N1(χ1)(T )) = 0. Using Nobs and Wolfart’s[24] method, we

can realize the Steinberg representation over Z[ζ5]. However, as Riese[26] and others

state that the Steinberg representation can be realized over Z!

4.4 1+St, the 6-dim. reducible principal series representation of SL(2,5)

We can compute the six dimensional reducible principal series representation of

SL2(Z/5Z) that is the direct sum of the trivial and Steinberg representations: 1 + St.

We can do this by inducing the trivial representation[16].
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Let S =

0 −1

1 0

. Then the induced six-dimensional representation of S is

(1 + St)(S) =



χ(X−1
0 SX0) χ(X−1

0 SX1) · · · χ(X−1
0 SX5)

χ(X−1
1 SX0) χ(X−1

1 SX1) · · · χ(X−1
1 SX4) χ(X−1

1 SX5)

χ(X−1
2 SX0) χ(X−1

2 SX1) · · · χ(X−1
2 SX4) χ(X−1

2 SX5)

χ(X−1
3 SX0) χ(X−1

3 SX1) · · · χ(X−1
3 SX4) χ(X−1

3 SX5)

χ(X−1
4 SX0) χ(X−1

4 SX1) · · · χ(X−1
4 SX4) χ(X−1

4 SX5)

χ(X−1
5 SX0) χ(X−1

5 SX1) · · · χ(X−1
5 SX4) χ(X−1

5 SX5)



=



χ ([ 0 4
1 0 ]) χ ([ 4 4

1 0 ]) χ ([ 4 2
2 0 ]) χ ([ 2 2

2 0 ]) χ ([ 1 2
2 0 ]) χ ([ 4 1

0 4 ])

χ ([ 0 4
1 1 ]) χ ([ 4 4

2 1 ]) χ ([ 4 2
3 3 ]) χ ([ 2 2

0 3 ]) χ ([ 1 2
1 3 ]) χ ([ 4 1

1 3 ])

χ ([ 0 2
2 1 ]) χ ([ 2 2

3 1 ]) χ ([ 2 1
0 3 ]) χ ([ 1 1

2 3 ]) χ ([ 3 1
3 3 ]) χ ([ 2 3

1 2 ])

χ ([ 0 2
2 3 ]) χ ([ 2 2

0 3 ]) χ ([ 2 1
2 4 ]) χ ([ 1 1

3 4 ]) χ ([ 3 1
1 4 ]) χ ([ 2 3

3 0 ])

χ ([ 0 2
2 4 ]) χ ([ 2 2

1 4 ]) χ ([ 2 1
3 2 ]) χ ([ 1 1

1 2 ]) χ ([ 3 1
0 2 ]) χ ([ 2 3

4 4 ])

χ ([ 1 1
0 1 ]) χ ([ 2 1

1 1 ]) χ ([ 3 3
1 3 ]) χ ([ 0 3

3 3 ]) χ ([ 1 3
4 3 ]) χ ([ 1 3

1 4 ])



=



0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0


.



260

Let T =

1 1

0 1

. Then the induced six-dimensional representation of T is

(1 + St)(T ) =



χ(X−1
0 TX0) χ(X−1

0 TX1) · · · χ(X−1
0 TX4) χ(X−1

0 TX5)

χ(X−1
1 TX0) χ(X−1

1 TX1) · · · χ(X−1
1 TX4) χ(X−1

1 TX5)

χ(X−1
2 TX0) χ(X−1

2 TX1) · · · χ(X−1
2 TX4) χ(X−1

2 TX5)

χ(X−1
3 TX0) χ(X−1

3 TX1) · · · χ(X−1
3 TX4) χ(X−1

3 TX5)

χ(X−1
4 TX0) χ(X−1

4 TX1) · · · χ(X−1
4 TX4) χ(X−1

4 TX5)

χ(X−1
5 TX0) χ(X−1

5 TX1) · · · χ(X−1
5 TX4) χ(X−1

5 TX5)



=



χ ([ 1 1
0 1 ]) χ ([ 2 1

1 1 ]) χ ([ 3 3
1 3 ]) χ ([ 0 3

3 3 ]) χ ([ 1 3
4 3 ]) χ ([ 1 3

1 4 ])

χ ([ 1 1
4 0 ]) χ ([ 2 1

4 0 ]) χ ([ 3 3
3 0 ]) χ ([ 0 3

3 0 ]) χ ([ 1 3
3 0 ]) χ ([ 1 3

0 1 ])

χ ([ 3 3
4 1 ]) χ ([ 1 3

0 1 ]) χ ([ 4 4
4 3 ]) χ ([ 0 4

1 3 ]) χ ([ 3 4
2 3 ]) χ ([ 3 4

1 0 ])

χ ([ 3 3
2 4 ]) χ ([ 1 3

1 4 ]) χ ([ 4 4
3 2 ]) χ ([ 0 4

1 2 ]) χ ([ 3 4
0 2 ]) χ ([ 3 4

4 4 ])

χ ([ 3 3
1 3 ]) χ ([ 1 3

4 3 ]) χ ([ 4 4
0 4 ]) χ ([ 0 4

1 4 ]) χ ([ 3 4
4 4 ]) χ ([ 3 4

3 1 ])

χ ([ 4 0
4 4 ]) χ ([ 4 0

3 4 ]) χ ([ 3 0
2 2 ]) χ ([ 3 0

0 2 ]) χ ([ 3 0
4 2 ]) χ ([ 0 1

4 2 ])



=



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0


.
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((1 + St)(S) · (1 + St)(T ))3 =





0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0





1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0





3

=



0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0



3

=



0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0



2 

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0



=



0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0





0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0
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=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

((1 + St)(S))2 =



0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0





0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0



=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.
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So,

((1 + St)(S))4 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

The representations are not in block diagonal form but the characters agree (see

calculations in Reeder[25]). That is, 1 + St is realized over Z but can we realize the

Steinberg representation over Z?

4.5 The Steinberg representation is realized over Z

Since we computed 1 + St for the prime p = 5, we can extract the five-dimensional

Steinberg representation St out of 1 + St. We need the appropriate basis. Reeder[25]

states that 1 +St is just the permutation representation of G on P1(Z/pZ), and 1 is the

subspace of constant functions, the vector space of St is given by

St =

f : P1(Z/pZ)(f)→ C such that
∑

`∈P1(Z/pZ)(f)

f(`) = 0

 .

So what is a basis for this space St?

Proposition 4.5.1. For SL(2, 5), the five dimensional Steinberg representation can be

realized over Z with the basis

{(δ0 − δ1), (δ1 − δ2), (δ2 − δ3), (δ3 − δ4), (δ4 − δ5)} .

Proof. Using SAGE, we explicitly compute the Steinberg representations of the genera-
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tors S = [ 0 −1
1 0 ] and T = [ 1 1

0 1 ]. They are

St(S) =



0 0 0 0 −1

0 0 −1 1 −1

0 −1 0 1 −1

−1 0 0 1 −1

−1 0 0 0 0


and St(T ) =



1 0 0 0 0

1 0 0 0 −1

0 1 0 0 −1

0 1 0 −1 0

0 0 1 −1 0


,

and (St(S) · (St(T ))3 = (St(S))2 and (St(S))4 = 1.

4.6 The 6-dim. rep. that is a direct sum of two 3-dim. irred. rep.

Let a be a generator of Z/pZ. Let ϕ denote the Legendre character of the diagonal

subgroup of SL2(Z/pZ):

ϕ


ai 0

0 a−i


 =

 1 if i is even

−1 if i is odd
.

We can induce a six-dimensional representation that is a direct sum of two three-

dimensional representations[16].
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Let S = [ 0 −1
1 0 ]. Then the induced six-dimensional representation of S is

ρ(S) =



χ(X−1
0 SX0) χ(X−1

0 SX1) · · · χ(X−1
0 SX4) χ(X−1

0 SX5)

χ(X−1
1 SX0) χ(X−1

1 SX1) · · · χ(X−1
1 SX4) χ(X−1

1 SX5)

χ(X−1
2 SX0) χ(X−1

2 SX1) · · · χ(X−1
2 SX4) χ(X−1

2 SX5)

χ(X−1
3 SX0) χ(X−1

3 SX1) · · · χ(X−1
3 SX4) χ(X−1

3 SX5)

χ(X−1
4 SX0) χ(X−1

4 SX1) · · · χ(X−1
4 SX4) χ(X−1

4 SX5)

χ(X−1
5 SX0) χ(X−1

5 SX1) · · · χ(X−1
5 SX4) χ(X−1

5 SX5)



=



χ ([ 0 4
1 0 ]) χ ([ 4 4

1 0 ]) χ ([ 4 2
2 0 ]) χ ([ 2 2

2 0 ]) χ ([ 1 2
2 0 ]) χ ([ 4 1

0 4 ])

χ ([ 0 4
1 1 ]) χ ([ 4 4

2 1 ]) χ ([ 4 2
3 3 ]) χ ([ 2 2

0 3 ]) χ ([ 1 2
1 3 ]) χ ([ 4 1

1 3 ])

χ ([ 0 2
2 1 ]) χ ([ 2 2

3 1 ]) χ ([ 2 1
0 3 ]) χ ([ 1 1

2 3 ]) χ ([ 3 1
3 3 ]) χ ([ 2 3

1 2 ])

χ ([ 0 2
2 3 ]) χ ([ 2 2

0 3 ]) χ ([ 2 1
2 4 ]) χ ([ 1 1

3 4 ]) χ ([ 3 1
1 4 ]) χ ([ 2 3

3 0 ])

χ ([ 0 2
2 4 ]) χ ([ 2 2

1 4 ]) χ ([ 2 1
3 2 ]) χ ([ 1 1

1 2 ]) χ ([ 3 1
0 2 ]) χ ([ 2 3

4 4 ])

χ ([ 1 1
0 1 ]) χ ([ 2 1

1 1 ]) χ ([ 3 3
1 3 ]) χ ([ 0 3

3 3 ]) χ ([ 1 3
4 3 ]) χ ([ 1 3

1 4 ])



=



0 0 0 0 0 1

0 0 0 −1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

0 0 0 0 −1 0

1 0 0 0 0 0


.
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Let T = [ 1 1
0 1 ]. Then the induced six-dimensional representation of T is

ρ(T ) =



χ(X−1
0 TX0) χ(X−1

0 TX1) · · · χ(X−1
0 TX4) χ(X−1

0 TX5)

χ(X−1
1 TX0) χ(X−1

1 TX1) · · · χ(X−1
1 TX4) χ(X−1

1 TX5)

χ(X−1
2 TX0) χ(X−1

2 TX1) · · · χ(X−1
2 TX4) χ(X−1

2 TX5)

χ(X−1
3 TX0) χ(X−1

3 TX1) · · · χ(X−1
3 TX4) χ(X−1

3 TX5)

χ(X−1
4 TX0) χ(X−1

4 TX1) · · · χ(X−1
4 TX4) χ(X−1

4 TX5)

χ(X−1
5 TX0) χ(X−1

5 TX1) · · · χ(X−1
5 TX4) χ(X−1

5 TX5)



=



χ ([ 1 1
0 1 ]) χ ([ 2 1

1 1 ]) χ ([ 3 3
1 3 ]) χ ([ 0 3

3 3 ]) χ ([ 1 3
4 3 ]) χ ([ 1 3

1 4 ])

χ ([ 1 1
4 0 ]) χ ([ 2 1

4 0 ]) χ ([ 3 3
3 0 ]) χ ([ 0 3

3 0 ]) χ ([ 1 3
3 0 ]) χ ([ 1 3

0 1 ])

χ ([ 3 3
4 1 ]) χ ([ 1 3

0 1 ]) χ ([ 4 4
4 3 ]) χ ([ 0 4

1 3 ]) χ ([ 3 4
2 3 ]) χ ([ 3 4

1 0 ])

χ ([ 3 3
2 4 ]) χ ([ 1 3

1 4 ]) χ ([ 4 4
3 2 ]) χ ([ 0 4

1 2 ]) χ ([ 3 4
0 2 ]) χ ([ 3 4

4 4 ])

χ ([ 3 3
1 3 ]) χ ([ 1 3

4 3 ]) χ ([ 4 4
0 4 ]) χ ([ 0 4

1 4 ]) χ ([ 3 4
4 4 ]) χ ([ 3 4

3 1 ])

χ ([ 4 0
4 4 ]) χ ([ 4 0

3 4 ]) χ ([ 3 0
2 2 ]) χ ([ 3 0

0 2 ]) χ ([ 3 0
4 2 ]) χ ([ 0 1

4 2 ])



=



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 −1 0

0 0 1 0 0 0

0 0 0 −1 0 0


.

Lets check the relations (ρ(S) · ρ(T ))3 = (ρ(S))2 and (ρ(S))4 = 1.
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(ρ(S) · ρ(T ))3 =





0 0 0 0 0 1

0 0 0 −1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

0 0 0 0 −1 0

1 0 0 0 0 0





1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 −1 0

0 0 1 0 0 0

0 0 0 −1 0 0





3

=



0 0 0 −1 0 0

0 0 0 0 1 0

0 −1 0 0 0 0

0 0 0 0 0 −1

0 0 −1 0 0 0

1 0 0 0 0 0



3

=



0 0 0 −1 0 0

0 0 0 0 1 0

0 −1 0 0 0 0

0 0 0 0 0 −1

0 0 −1 0 0 0

1 0 0 0 0 0





0 0 0 0 0 1

0 0 −1 0 0 0

0 0 0 0 −1 0

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 −1 0 0



=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.
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We also have

(ρ(S))2 =



0 0 0 0 0 1

0 0 0 −1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

0 0 0 0 −1 0

1 0 0 0 0 0



2

=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


so that (ρ(S))4 = (ρ(S))2 = 1. The relations are verified. They are not in block

diagonal form but the traces agree (see Reeder[25]).
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CHAPTER 5 Realization Of The Weil Characters For SL(2,p)

In this chapter we state a conjecture of Candelori, briefly discuss Zemel’s result [44],

introduce the Gauss sum, and attempt to show Wang’s basis[36] realizes R(1,+) and

R(n,+) over Z[(1 + Ωp)/2] via a direct method. This direct method fails.

5.1 Candelori’s Basis (Conjectural)

Let t = [ 1 1
0 1 ] and s = [ 0 −1

1 0 ]. Let ρ(s) and ρ(t) be the Weil representations of

SL2(Z/pZ) as before.

Let U = ρ(s) · ρ(t) · ρ(s), v+ = δ1 + δp−1 and v− = δ1 − δp−1. Then, Candelori

conjectures that a basis for R(1,+) and R(n,+) is given by

{
v+, U · v+, U

2 · v+, · · · , Up−1 · v+

}
, (5.1.1)

and a basis for R(1,−) and R(n,−) is given by

{
v−, U · v−, U2 · v−, · · · , Up−1 · v−

}
. (5.1.2)

For p = 3, 5, 7, 11, 13, 17, 19, 23 and 29, we verified that these bases realize the repre-

sentations over Z[ζp] but not for smaller rings.

We further conjecture that for 1 ≤ a ≤ p−1 and if v+ = δa+δp−a and v− = δa−δp−a,

then we also obtain an integral basis. The entries for the representations of R(1,±) and

R(n,±) restricted to their respective basis lie in Z[ζp].

5.2 Zemel’s Basis

Zemel[44] gives an integral basis for the (p−1)/2 dimensional representations R(1,−)

and R(n,−). Let

v :=

(p−1)∑
m=0

ζ2m
p − ζ−2m

p√
p

δm.
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Then the integral basis is given by{
v, ρ(t) · v, (ρ(t))2 · v, · · · (ρ(t))

p−3
2 · v

}
.

Using SAGE we verified that R(1,−) cannot be realized over a smaller ring.

Calculations with SAGE show that the multiplicative factor
√
p is not necessary. So

let us see if we can prove integrality over Z[ζp] without it. Let p be an odd prime. We

set the first basis vector as

v :=

(p−1)∑
m=0

(ζ2m
p − ζ−2m

p )δm =



0

ζ2
p − ζ−2

p

ζ4
p − ζ−4

p

ζ6
p − ζ−6

p

...

ζp−2
p − ζ−(p−2)

p

ζp−1
p − ζ−(p−1)

p .


It is clear that the j-th coordinate of v is given by (ζ2j

p −ζ−2j
p ). Recalling ρ(t) is a diagonal

matrix and that ρ(t)jj = ζj
2

p for 0 ≤ j ≤ p− 1. Routine calculations show that

(ρ(t)n · v)j = (ζj
2n

p · (ζ2j
p − ζ−2j

p ) = ζ2nj+2j
p − ζ2nj−2j

p = ζ2j(n+1)
p − ζ2j(n−1)

p ,

That is, for 0 ≤ n ≤ p− 1,

ρ(t)n · v =



0

ζ
2(n+1)
p − ζ2(n−1)

p

ζ
4(n+1)
p − ζ4(n−1)

p

...

ζ
2(p−2)(n+1)
p − ζ2(p−2)(n−1)

p

ζ
2(p−1)(n+1)
p − ζ2(p−1)(n−1)

p
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Let B be the matrix of the basis vectors,

B :=
{
v, ρ(t) · v, (ρ(t))2 · v, · · · (ρ(t))

p−3
2 · v

}
.

The characteristic polynomial of ρ(t) is xp − 1 = (x − 1)(xp−1 + xp−2 + · · · + x + 1) =

(x− 1)Φp(x), where Φp(x) is the p-th cyclotomic polynomial. Let R(1,−)(t) denote the

(p − 1)/2-dimensional irreducible representation of t with respect to the basis B. Let

m(x) denote the minimal polynomial of R(1,−)(t). Then m(x) divides the character-

istic polynomial of ρ(t). R(1,−)(t) has the following form (after making the necessary

substitutions):

R(1,−)(t) =



0 0 0 · · · 0 −a(p−1)/2

1 0 0 · · · 0 −a(p−3)/2

0 1 0 · · · 0 −a(p−5)/2

...
...

...
...

...

0 0 0 · · · 1 −a1


. (5.2.1)

Let r = (p−3)/2. Using the fact that a matrix and its transpose have the same mimimal

polynomial and Wang’s Lemma 4[36], the minimal polynomial m(x) is given by

m(x) = xr+1 + a1x
r + a2x

r−1 + · · ·+ arx+ ar+1. (5.2.2)

Since both polynomials are completely reducible over Q[ζp], m(x) factors as (x− 1)(x−

θ1)(x − θ2) · · · (x − θr). The θi are roots of xp − 1 as well. ζ ip where 0 ≤ i ≤ p − 1 are

roots of xp − 1. There are (p− 1)/2 roots of m(x). By a theorem of Viète (or Vieta)[35]
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we can write the coefficients of the polynomial in terms of its roots:

a1 = −(1 + θ1 + θ2 + θ3 + · · ·+ θ(p−1)/2),

a2 = (1 · θ1 + 1 · θ2 + · · ·+ 1 · θ(p−1)/2)

+ (θ1 · θ2 + θ1 · θ3 + · · · θ1 · θ(p−1)/2)

+ (θ2 · θ3 + θ2 · θ4 + · · · θ2 · θ(p−1)/2)

...

+ θ(p−3)/2 · θ(p−1)/2,

...
...

a(p−1)/2 = (−1)(p−1)/2 · 1 · θ1 · θ2 · · · · · θ(p−3)/2.

(5.2.3)

Hence the representation R(1,−)(t) is integral over Z[ζp].

5.3 The Gauss Sum

Riese’s Proposition 4[26] stated that the Weil character ξ can be realized over R =

Z
[

1+
√
p

2

]
for p ≡ 5 mod 8. We will prove a stronger result that covers all odd primes.

For a prime p, the quadratic Gauss sum can be expressed as follows:

ε =
∑

x∈Z/pZ

ζx
2

p =


√
p for p ≡ 1 mod 4

√
−p for p ≡ 3 mod 4

(5.3.1)

Remark 5.3.1. Murthy and Pathak[22] give a proof of this for any natural number n

that uses only elementary methods.

The Kronecker-Weber theorem tells us that every finite abelian extension of Q is

contained in a cyclotomic extension. So Q(
√
p) ⊂ Q(ζp) and Q(

√
−p) ⊂ Q(ζp) since

quadratic extensions are abelian. The fundamental theorem of Galois theory tells us

that for p ≥ 5 we have

where 〈σ〉 = Gal(Q(ζp)) = Z/(p−1)Z. The generator σ is the automorphism σ : ζp → ζ ip
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Q(ζp) {e}

Q(ε) ⇐⇒ H = 〈σ2〉

Q 〈σ〉

p−1
2

p−1
2

2 2

Figure 5.3.1: Quadratic Extension of Q(ζp)

where gcd(i, p− 1) = 1. Then σ2 : ζp → ζ i
2

p . Since 1 and i2 are squares, σ2 sends squares

to squares. That is, if j is a square, then σ2 : ζj → ζj·i
2
. Since a product of squares is a

square, σ2 maps squares to squares. If j is not a square, then σ2 : ζjp → ζj·i
2

p . Since ji2 is

not a square, σ2 sends non-squares to non-squares. σ2 fixes ζ0
p . For an odd prime p and

a an integer coprime to p, Euler’s criterion states(
a

p

)
≡ a

p−1
2 mod p. (5.3.2)

So modulo an odd prime, there are (p − 1)/2 quadratic residues (excluding 0) and

(p − 1)/2 quadratic non-residues. We can write the quadratic Gauss sum strictly as a

sum of powers of ζp that are squares:

ε = 1 +
∑

i∈(Z/pZ)×

ζ i
2

p

= 1 + 2
∑

k∈(Z/pZ)× k a square

ζkp .

(5.3.3)

Then ∑
k∈(Z/pZ)× k a square

ζkp =
−1 + ε

2
. (5.3.4)



274

We can also write the quadratic Gauss sum strictly as powers of ζp that are NOT squares:

ε =
∑

i∈(Z/pZ)

ζ i
2

p

= 1 + 2
∑

k∈(Z/pZ)× k a square

ζkp

= 1 + 2

−1−
∑

j∈(Z/pZ)× j not a square

ζjp


= −1− 2

 ∑
j∈(Z/pZ)× j not a square

ζjp

 .

(5.3.5)

Then ∑
j∈(Z/pZ)× j not a square

ζjp =
−1− ε

2
. (5.3.6)

Since

−
(
−1− ε

2

)
=

1 + ε

2
and −

(
−1− ε

2

)
− 1 =

−1 + ε

2
(5.3.7)

we see that they are contained in Z[1+ε
2

]. Since Z[1+ε
2

] ⊂ Q(ε), we have proved the

following lemma:

Lemma 5.3.2. Let a, b, c, d ∈ Z. The Z-linear combinations

a ·

( ∑
i a square

ζ ip

)
+ b and c ·

( ∑
j not a square

ζjp

)
+ d

lie in Q(ε).

We explore the cases p = 5, 7, 11, 13, 17, 19, 23, and 29. The maps in red correspond

to exponents of ζp that are squares modulo p and those in blue to exponents of ζp that

are NOT squares module p.
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5.3.1 Primes congruent to 1 modulo 4

Case p = 5

Since gcd(3, 4) = 1, i = 3. We have

σ :1 7→ 1

ζ1
5 → ζ3

5

ζ2
5 → ζ6

5 = ζ1
5

ζ3
5 → ζ9

5 = ζ4
5

ζ4
5 → ζ12

5 = ζ2
5

(5.3.8)

with |σ| = 4. Then

σ2 :1 7→ 1

ζ1
5 → ζ4

5

ζ2
5 → ζ3

5

ζ3
5 → ζ2

5

ζ4
5 → ζ5

, (5.3.9)

and |σ2| = (5− 1)/2 = 2. The Z-linear combinations of ζjp that belong to Q(ε) are those

that are fixed by σ2. The ones that are fixed are a(ζ5 + ζ4
5 ) + b and c(ζ2

5 + ζ3
5 ) + d where

a, b, c, d ∈ Z. For p = 5, ε =
√

5 since 5 ≡ 1 mod 4. We have

ε =
√

5

=
∑

x∈Z/5Z

ζx
2

p

= ζ02

5 + ζ12

5 + ζ22

5 + ζ32

5 + ζ42

5

= 1 + ζ1
5 + ζ4

5 + ζ9
5 + ζ16

5

= 1 + ζ1
5 + ζ4

5 + ζ4
5 + ζ1

5

= 1 + 2ζ1
5 + 2ζ4

5

= 1 + 2(−1− ζ3
5 − 2ζ2

5 )

= −1 +−2(ζ3
5 + 2ζ2

5 ).

(5.3.10)
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This implies

ζ2
5 + ζ3

5 = −1 +
√

5

2
. (5.3.11)

From our computation of R(1,+), we see that the entries are of the form c(ζ2
5 + ζ3

5 ) + d.

So R(1,+) and R(n,+) are realized over Z[1
2
(1 +

√
5)].

Case p = 13

Since gcd(7, 12) = 1, i = 7. (5 does not work). We have

σ :1 7→ 1

ζ1
13 → ζ7

13

ζ2
13 → ζ14

13 = ζ1
13

ζ3
13 → ζ21

15 = ζ8
13

ζ4
13 → ζ28

13 = ζ2
13

ζ5
13 → ζ35

13 = ζ9
13

ζ6
13 → ζ42

13 = ζ3
13

ζ7
13 → ζ49

13 = ζ10
13

ζ8
13 → ζ56

13 = ζ4
13

ζ9
13 → ζ63

13 = ζ11
13

ζ10
13 → ζ70

13 = ζ5
13

ζ11
13 → ζ77

13 = ζ12
13

ζ12
13 → ζ84

13 = ζ6
13

(5.3.12)

with |σ| = 12. Then

σ2 :1 7→ 1

ζ1
13 → ζ10

13

ζ2
13 → ζ7

13

ζ3
13 → ζ4

13

ζ4
13 → ζ1

13

ζ5
13 → ζ11

13

ζ6
13 → ζ8

13

ζ7
13 → ζ5

13

ζ8
13 → ζ2

13

ζ9
13 → ζ12

13

ζ10
13 → ζ9

13

ζ11
13 → ζ6

13

ζ12
13 → ζ3

13

(5.3.13)

with |σ2| = (13 − 1)/2 = 6. The Z-linear combinations of ζjp that belong to Q(ε) are

those that are fixed by σ2. The ones that are fixed are a(ζ1
13 +ζ3

13 +ζ4
13 +ζ9

13 +ζ10
13 +ζ12

13 )+b
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and c(ζ2
13 + ζ5

13 + ζ6
13 + ζ7

13 + ζ8
13 + ζ11

13 ) + d. For p = 13, ε =
√

13 since 13 ≡ 1 mod 4. We

have

ε =
√

13

=
∑

x∈Z/13Z

ζx
2

p

= 1 + 2(ζ2
13 + ζ5

13 + ζ6
13 + ζ7

13 + ζ8
13 + ζ11

13 ).

(5.3.14)

This implies

ζ2
13 + ζ5

13 + ζ6
13 + ζ7

13 + ζ8
13 + ζ11

13 =
−1 +

√
13

2
. (5.3.15)

From our computation of R(1,+), we see that the entries are of the form c(ζ2
13 + ζ5

13 +

ζ6
13 + ζ7

13 + ζ8
13 + ζ11

13 ) + d. So R(1,+) and R(n,+) are realized over Z[1
2
(1 +

√
13)].

Case p = 17

Since gcd(3, 16) = 1, i = 3. We have

σ :1 7→ 1

ζ1
17 → ζ3

17

ζ2
17 → ζ6

17

ζ3
17 → ζ9

15

ζ4
17 → ζ12

17

ζ5
17 → ζ15

17

ζ6
17 → ζ18

17 = ζ1
17

ζ7
17 → ζ21

17 = ζ4
17

ζ8
17 → ζ24

17 = ζ7
17

σ :ζ9
17 → ζ27

17 = ζ10
17

ζ10
17 → ζ30

17 = ζ13
17

ζ11
17 → ζ33

17 = ζ16
17

ζ12
17 → ζ36

17 = ζ2
17

ζ13
17 → ζ39

17 = ζ5
17

ζ14
17 → ζ42

17 = ζ8
17

ζ15
17 → ζ45

17 = ζ11
17

ζ16
17 → ζ48

17 = ζ14
17

(5.3.16)
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with |σ| = 16. Then

σ2 :1 7→ 1

ζ1
17 → ζ9

17

ζ2
17 → ζ1

17

ζ3
17 → ζ10

17

ζ4
17 → ζ2

17

ζ5
17 → ζ11

17

ζ6
17 → ζ3

17

ζ7
17 → ζ12

17

ζ8
17 → ζ4

17

σ2 :ζ9
17 → ζ13

17

ζ10
17 → ζ5

17

ζ11
17 → ζ14

17

ζ12
17 → ζ6

17

ζ13
17 → ζ15

17

ζ14
17 → ζ7

17

ζ15
17 → ζ16

17

ζ16
17 → ζ8

17

(5.3.17)

with |σ2| = (17−1)/2 = 8. The Z-linear combinations of ζjp that belong to Q(ε) are those

that are fixed by σ2. The ones that are fixed are a(ζ1
17+ζ2

17+ζ4
17+ζ8

17+ζ9
17+ζ13

17 +ζ15
17 +ζ16

17 )+b

and c(ζ3
17 + ζ5

17 + ζ6
17 + ζ7

17 + ζ10
17 + ζ11

17 + ζ12
17 + ζ14

17 ) + d. For p = 17, ε =
√

17 since 17 ≡ 1

mod 4. We have

ε =
√

17

=
∑

x∈Z/17Z

ζx
2

p

= 1 + 2(ζ1
17 + ζ2

17 + ζ4
17 + ζ8

17 + ζ9
17 + ζ13

17 + ζ15
17 + ζ16

17 )

= 1 + 2(−1− ζ3
17 − ζ5

17 − ζ6
17 − ζ7

17 − ζ10
17 + ζ11

17 + ζ12
17 + ζ14

17 ).

(5.3.18)

This implies

ζ3
17 + ζ5

17 + ζ6
17 + ζ7

17 + ζ10
17 + ζ11

17 + ζ12
17 + ζ14

17 =
1−
√

17

2
. (5.3.19)

From our computation of R(1,+), we see that the entries are of the form c(ζ3
17 + ζ5

17 +

ζ6
17 +ζ7

17 +ζ10
17 +ζ11

17 +ζ12
17 +ζ14

17 )+d. So R(1,+) and R(n,+) are realized in Z[1
2
(1+
√

17)].
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Case p = 29

Since gcd(19, 28) = 1, i = 19. We have |σ| = 28 and |σ2 = (29 − 1)/2 = 14. The Z-

linear combinations of ζjp that belong to Q(ε) are those that are fixed by σ2. For p = 29,

ε =
√

29 since 29 ≡ 1 mod 4. We have

ε =
√

29

=
∑

x∈Z/29Z

ζx
2

p

= 1 + 2(ζ1
29 + ζ4

29 + ζ9
29 + ζ5

29 + ζ6
29 + ζ7

29 + ζ9
29 + ζ13

29 + ζ16
29 + ζ20

29 + ζ22
29 + ζ23

29

+ ζ24
29 ) + ζ25

29 + ζ28
29 )

= 1 + 2(−1− ζ2
29 − ζ3

29 − ζ8
29 − ζ10

29 − ζ11
29 − ζ12

29 − ζ14
29 − ζ15

29 − ζ17
29 − ζ18

29

− ζ19
29 − ζ21

29 − ζ26
29 − ζ27

29 )

= −1− ζ2
29 − ζ3

29 − ζ8
29 − ζ10

29 − ζ11
29 − ζ12

29 − ζ14
29 − ζ15

29

− ζ17
29 − ζ18

29 − ζ19
29 − ζ21

29 − ζ26
29 − ζ27

29 ).

(5.3.20)

This implies

−1 +
√

29

2
= ζ2

29 + ζ3
29 + ζ8

29 + ζ10
29 + ζ11

29 + ζ12
29 + ζ14

29 + ζ15
29

+ ζ17
29 + ζ18

29 + ζ19
29 + ζ21

29 + ζ26
29 + ζ27

29 ).

(5.3.21)

From our computation of R(1,+), we see that the entries are of the form

a(ζ2
29 + ζ3

29 + ζ8
29 + ζ10

29 + ζ11
29 + ζ12

29 + ζ14
29 + ζ15

29

+ ζ17
29 + ζ18

29 + ζ19
29 + ζ21

29 + ζ26
29 + ζ27

29 ) + b.

(5.3.22)

So R(1,+) and R(n,+) are realized in Z[1
2
(1 +

√
29)].
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5.3.2 Primes congruent to 3 modulo 4

Case p = 7

Since gcd(5, 6) = 1, i = 5. We have

σ :1 7→ 1

ζ1
7 → ζ5

7

ζ2
7 → ζ10

7 = ζ3
7

ζ3
7 → ζ15

7 = ζ1
7

ζ4
7 → ζ20

7 = ζ6
7

ζ5
7 → ζ25

7 = ζ4
7

ζ6
7 → ζ30

7 = ζ2
7

(5.3.23)

with |σ| = 6. Then

σ2 :1 7→ 1

ζ1
7 → ζ4

7

ζ2
7 → ζ1

7

ζ3
7 → ζ5

7

ζ4
7 → ζ2

7

ζ5
7 → ζ6

7

ζ6
7 → ζ3

7

(5.3.24)

and |σ2| = (7− 1)/2 = 3. The Z-linear combinations of ζjp that belong to Q(ε) are those

that are fixed by σ2. The ones that are fixed are a(ζ7 +ζ2
7 +ζ4

7 )+b and c(ζ3
7 +ζ5

7 +ζ6
7 )+d

where a, b, c, d ∈ Z. For p = 7, ε =
√
−7 since 7 ≡ 3 mod 4. We have

ε =
√
−7

=
∑

x∈Z/7Z

ζx
2

p

= ζ02

7 + ζ12

7 + ζ22

7 + ζ32

7 + ζ42

7 + ζ52

7 + ζ62

7

= 1 + ζ1
7 + ζ4

7 + ζ9
7 + ζ16

7 + ζ25
7 + ζ36

7

= 1 + ζ1
7 + ζ4

7 + ζ2
7 + ζ2

7 + ζ4
7 + ζ1

7

= 1 + 2(ζ1
7 + ζ2

7 + ζ4
7 ).

(5.3.25)
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This implies

ζ1
7 + ζ2

7 + ζ4
7 =
−1 +

√
−7

2
. (5.3.26)

From our computation of R(1,+), we see that the entries are of the form a(ζ7+ζ2
7 +ζ4

7 )+b.

So R(1,+) and R(n,+) are realized over Z[1
2
(1 +

√
−7)].

Case p = 11

Case p = 11. Since gcd(3, 10) = 1, i = 3. We have

σ :1 7→ 1

ζ1
11 → ζ3

11

ζ2
11 → ζ6

11

ζ3
11 → ζ9

11

ζ4
11 → ζ12

11 = ζ1
11

ζ5
11 → ζ15

11 = ζ4
11

ζ6
11 → ζ18

11 = ζ7
11

ζ7
11 → ζ21

11 = ζ10
11

ζ8
11 → ζ24

11 = ζ2
11

ζ9
11 → ζ27

11 = ζ5
11

ζ10
11 → ζ30

11 = ζ8
11

(5.3.27)

with |σ| = 5. This does not generate the entire Galois group. With i = 7, gcd(7, 10) = 1

and we have

σ :1 7→ 1

ζ1
11 → ζ7

11

ζ2
11 → ζ14

11 = ζ3
11

ζ3
11 → ζ21

11 = ζ10
11

ζ4
11 → ζ28

11 = ζ6
11

ζ5
11 → ζ35

11 = ζ2
11

ζ6
11 → ζ42

11 = ζ9
11

ζ7
11 → ζ49

11 = ζ5
11

ζ8
11 → ζ56

11 = ζ1
11

ζ9
11 → ζ63

11 = ζ8
11

ζ10
11 → ζ70

11 = ζ4
11

(5.3.28)
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with |σ| = 10. Then

σ2 :1 7→ 1

ζ1
11 → ζ5

11

ζ2
11 → ζ10

11

ζ3
11 → ζ4

11

ζ4
11 → ζ9

11

ζ5
11 → ζ3

11

ζ6
11 → ζ8

11

ζ7
11 → ζ2

11

ζ8
11 → ζ7

11

ζ9
11 → ζ1

11

ζ10
11 → ζ6

11

(5.3.29)

with |σ2| = (11 − 1)/2 = 5. The Z-linear combinations of ζjp that belong to Q(ε) are

those that are fixed by σ2. The ones that are fixed are a(ζ1
11 + ζ3

11 + ζ4
11 + ζ5

11 + ζ9
11) + b

and c(ζ2
11 + ζ6

11 + ζ7
11 + ζ8

11 + ζ10
11 ) + d. For p = 11, ε =

√
−11 since 11 ≡ 3 mod 4. We

have

ε =
√
−11

=
∑

x∈Z/11Z

ζx
2

p

= ζ02

11 + ζ12

11 + ζ22

11 + ζ32

11 + ζ42

11 + ζ52

11+

ζ62

11 + ζ72

11 + ζ82

11 + ζ92

11 + ζ102

11

= 1 + 2(ζ1
11 + ζ3

11 + ζ4
11 + ζ5

11 + ζ9
11)

(5.3.30)

This implies

ζ1
11 + ζ3

11 + ζ4
11 + ζ5

11 + ζ9
11 =

−1 +
√
−11

2
. (5.3.31)

From our computation of R(1,+), we see that the entries are of the form a(ζ1
11 + ζ3

11 +

ζ4
11 + ζ5

11 + ζ9
11) + b. So, R(1,+) and R(n,+) are realized over Z[1

2
(1 +

√
−11)].

Case p = 19

Since gcd(13, 18) = 1, i = 13. We have |σ| = 18 and |σ2 = (19 − 1)/2 = 9. The

Z-linear combinations of ζjp that belong to Q(ε) are those that are fixed by σ2. The
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ones that are fixed are a(ζ1
19 + ζ4

19 + ζ5
19 + ζ6

19 + ζ7
19 + ζ9

19 + ζ11
19 + ζ16

19 + ζ17
19 ) + b and

c(ζ2
19 + ζ3

19 + ζ8
19 + ζ10

19 + ζ12
19 + ζ13

19 + ζ14
19 + ζ15

19 + ζ18
19 ) + d. For p = 19, ε =

√
−19 since

19 ≡ 3 mod 4. We have

ε =
√
−19

=
∑

x∈Z/19Z

ζx
2

p

= 1 + 2(ζ1
19 + ζ4

19 + ζ5
19 + ζ6

19 + ζ7
19 + ζ9

19 + ζ11
19 + ζ16

19 + ζ17
19 ).

(5.3.32)

This implies

ζ1
19 + ζ4

19 + ζ5
19 + ζ6

19 + ζ7
19 + ζ9

19 + ζ11
19 + ζ16

19 + ζ17
19 =

−1 +
√
−19

2
. (5.3.33)

From our computation of R(1,+), we see that the entries are of the form a(ζ1
19+ζ4

19+ζ5
19+

ζ6
19 +ζ7

19 +ζ9
19 +ζ11

19 +ζ16
19 +ζ17

19 )+b. So R(1,+) and R(n,+) are realized in Z[1
2
(1+
√
−19)].

Case p = 23

Since gcd(19, 22) = 1, i = 19. We have |σ| = 22 and |σ2 = (23 − 1)/2 = 11. The

Z-linear combinations of ζjp that belong to Q(ε) are those that are fixed by σ2. The

ones that are fixed are a(ζ1
23 + ζ4

23 + ζ5
23 + ζ6

23 + ζ7
23 + ζ9

23 + ζ11
23 + ζ16

23 + ζ17
23 ) + b and

c(ζ2
23 + ζ3

23 + ζ8
23 + ζ10

23 + ζ12
23 + ζ13

23 + ζ14
23 + ζ15

23 + ζ18
23 ) + d. For p = 23, ε =

√
−23 since

23 ≡ 3 mod 4. We have

ε =
√
−23

=
∑

x∈Z/23Z

ζx
2

p

= 1 + 2(ζ1
23 + ζ2

23 + ζ3
23 + ζ4

23 + ζ6
23 + ζ8

23 + ζ9
23 + ζ12

23 + ζ13
23 + ζ16

23 + ζ18
23 ).

(5.3.34)

This implies

ζ1
23 + ζ2

23 + ζ3
23 + ζ4

23 + ζ6
23 + ζ8

23 + ζ9
23 + ζ12

23 + ζ13
23 + ζ16

23 + ζ18
23 =

−1 +
√
−23

2
. (5.3.35)
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From our computation of R(1,+), we see that the entries are of the form a(ζ1
23 + ζ2

23 +

ζ3
23 + ζ4

23 + ζ6
23 + ζ8

23 + ζ9
23 + ζ12

23 + ζ13
23 + ζ16

23 + ζ18
23 ) + b. So R(1,+) and R(n,+) are realized

in Z[1
2
(1 +

√
−23)].

5.4 Direct verification of the integrality of Wang’s basis

Let s = [ 0 −1
1 0 ] and t = [ 1 1

0 1 ]. We want to prove that all of the entries of R(1,+)(s)

and R(1,+)(t) lie in Z[(1 + ε)/2] where ε is the Gauss quadratic sum. Let p ≥ 5 be an

odd prime. We will soon see that we encounter the very difficult problem of determine

quadratic residues and non-residues for an arbitrary prime. In other words, this direct

methods fails absolutely for the computation of R(1,+)(s).

Let v be vector of dimension p whose entries are 1. That is,

v := (1, 1, · · · , 1)′. (5.4.1)

Given the quadratic form Q(x) = x2/p, we know that ρ(t), the Weil representation of t, is

a diagonal matrix whose (j, j)-th entry is ζj
2

p . We also see that ρ(t)k where 0 ≤ k ≤ p−1

is also a diagonal matrix whose (j, j)-th entry is ζk·j
2

p . Then

ρ(t)k · v = (1, ζkp , ζ
22k
p , ζ32k

p , · · · , ζ(p−1)2·k
p )′. (5.4.2)

The invariant subspace W ’s basis is given by {v, ρ(t)v, · · · , ρ(t)(p−1)/2v}. Index the basis

vectors as bj where j is the exponent of ρ(t). So b0 = v, b1 = ρ(t)v, · · · , b p−1
2

= ρ(t)(p−1)/2v.

That is,

b0 = (1, 1, · · · , 1), (5.4.3)

b1 = (1, ζ1
p , ζ

4
p , ζ

9
p , · · · , ζ(p−1)2

p ), (5.4.4)

b2 = (1, ζ2
p , ζ

8
p , ζ

18
p , · · · , ζ2(p−1)2

p ), (5.4.5)

b3 = (1, ζ3
p , ζ

12
p , ζ

27
p , · · · , ζ3(p−1)2

p ), (5.4.6)
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and so on until

b p−1
2

= (1, ζ(p−1)/2
p , ζ22·(p−1)/2

p , ζ32·(p−1)/2
p , · · · , ζ((p−1)2·(p−1)/2)

p . (5.4.7)

We wish to find the coordinates of R(1,+) with respect to this basis. So we multiply ρ(t)

by each of these basis vectors. Then the image of ρ(t) · b0 is the basis vector b1 = ρ(t)v.

The image of ρ(t)·b1 is the basis vector b2 = ρ(t)2v. So ρ(t)·bi = bi+1 for 0 ≤ i < (p−1)/2.

For the basis vector b p−1
2

, we have

` := ρ(t) · b p−1
2

= ρ(t) · ρ(t)(p−1)/2 · v

= ρ(t)(p+1)/2 · v

= (1, ζ(p+1)/2
p , ζ(4·(p+1)/2)

p , · · · , ζ((p−1))2(p+1)/2
p ).

(5.4.8)

So the (j)-th coordinate of ` is ζ
j2·(p+1)/2
p . For the first coordinate, j = 0, it is 1. The

second coordinate is of ` is ζ
(p+1)/2
p . Denote the i-the coordinate of the a vector v as v(i)

and denote the coordinate vector of ` with respect to Wang’s basis as w. Then

` = w(0)b0 + w(1)b1 + · · ·+ w((p− 1)/2))b(p−1)/2. (5.4.9)

In coordinates, the vector ` is given by

`(0)

`(1)

`(2)

`(3)

...

`(p− 1)


=



w(0)b0(0)

w(0)b0(1)

w(0)b0(2)

w(0)b0(3)

...

w(0)b0

(
p−1

2

)


+ · · ·+



w
(
p−1

2

)
b p−1

2
(0)

w
(
p−1

2

)
b p−1

2
(1)

w
(
p−1

2

)
b p−1

2
(2)

w
(
p−1

2

)
b p−1

2
(3)

...

w
(
p−1

2

)
b p−1

2

(
p−1

2

)


(5.4.10)
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1

ζ
p+1
2

p

ζ
4(p+1)

2
p

ζ
9(p+1)

2
p

...

ζ
(p−1)2(p+1)

2
p


=



w(0)

w(0)

w(0)

w(0)

...

w(0)


+



w(1)

w(1)ζ1
p

w(1)ζ4
p

w(1)ζ9
p

...

w(1)ζ
(p−1)2

p


+ · · ·+



w
(
p−1

2

)
1

w
(
p−1

2

)
ζ
p−1
2

p

w
(
p−1

2

)
ζ

22· p−1
2

p

w
(
p−1

2

)
ζ

32· p−1
2

p

...

w
(
p−1

2

)
ζ

(p−1)2· p−1
2

p


. (5.4.11)

That is,

`(0) = 1

= w(0) · b0(0) + w(1) · b1(0) + · · ·+ w((p− 1)/2) · b(p−1)/2(0)

= w(0) · 1 + w(1) · 1 + · · ·+ w((p− 1)/2) · 1

= w(0) + w(1) · 1 + · · ·+ w((p− 1)/2) · 1,

(5.4.12)

`(1) = ζ(p+1)/2
p

= w(0) · b0(1) + w(1) · b1(1) + · · ·+ w((p− 1)/2) · b(p−1)/2(1)

= w(0) + w(1) · ζ1
p + · · ·+ w((p− 1)/2) · ζ(p−1)/2

p ,

(5.4.13)

`(2) = ζ4(p+1)/2
p

= w(0) · b0(2) + w(1) · b1(2) + · · ·+ w((p− 1)/2) · b(p−1)/2(2)

= w(0) + w(1) · ζ2
p + · · ·+ w((p− 1)/2) · ζ22·(p−1)/2

p ,

(5.4.14)
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and so on until

`(p− 1) = ζ(p−1)2·(p+1)/2
p

= w(0) · b0((p− 1)) + w(1) · b1((p− 1)) + · · ·

+ w((p− 1)/2) · b(p−1)/2(p− 1)

= w(0) + w(1) · ζ(p−1)/2
p + · · ·

+ w((p− 1)/2) · ζ(p−1)/2((p−1)2)
p .

(5.4.15)

It is clear that bi(0) = 1 for 0 ≤ i ≤ (p− 1)/2 and b0(k) = 1 for 0 ≤ k ≤ (p− 1). These

relations show that ζ
j2·(p+1)/2
p is an O-linear combination of the sums of squares of ζkp .

We want to show that O is Z[1+ε
2

].

Let B denote the p× p+1
2

dimensional matrix consisting of the basis vectors b0, · · · b p−1
2

.

The matrix B has full column rank so it has a unique left inverse (BᵀB)−1Bᵀ. Let L be

the p× p+1
2

-dimensional matrix whose column vectors are ρ(t)·b0, ρ(t)2·b0, · · · , ρ(t)
p+1
2 ·b0.

Denote W as the coordinate matrix of L with respect to Wang’s basis. Then L = BW

and since B has a left inverse,

W = B−1L = (BᵀB)−1Bᵀ · L.

So the coordinates of ` with respect to Wang’s basis are given by (BᵀB)−1Bᵀ · `. Next,

we see that

BᵀB =



bᵀ0b0 bᵀ0b1 bᵀ0b2 · · · bᵀ0b p−1
2

bᵀ1b0 bᵀ1b1 bᵀ1b2 · · · bᵀ1b p−1
2

bᵀ2b0 bᵀ2b1 bᵀ2b2 · · · bᵀ2b p−1
2

...
...

... · · · ...

bᵀp−1
2

b0 bᵀp−1
2

b1 bᵀp−1
2

b2 · · · bᵀp−1
2

b p−1
2


(5.4.16)
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It is clear that bᵀ0b0 = p, bᵀ0b1 = ε. Equations 5.3.5 and 5.3.3 showed that

ε = 1 + 2
∑

k∈(Z/pZ)× k a square

ζkp

= −1− 2

 ∑
j∈(Z/pZ)× j not a square

ζjp

 .

(5.4.17)

If k is a square modulo p, then

bᵀ0bk =

p−1∑
i=0

bk(i) = ζk·i
2

p = ε. (5.4.18)

and if k is not square modulo p, then

bᵀ0bk =

p−1∑
i=0

bk(i) = −ε. (5.4.19)

By a result of Gauss[17], we know that

p−1∑
x=0

ζax
2

p =

(
a

p

)
ε (5.4.20)

where

(
a

p

)
denotes the Legendre symbol. For j, k ∈ Z/pZ,

bᵀj bk =

p−1∑
i=0

bj(i)bk(i)

=

p−1∑
i=0

ζj·i
2

p · ζk·i2p

=

p−1∑
i=0

ζ(j+k)·i2
p

=

(
j + k

p

)
ε.

(5.4.21)

So we have that

bᵀj bk =

(
j + k

p

)
ε. (5.4.22)
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That gives us

BᵀB =



p ε
(

2
p

)
ε · · ·

(
(p−1)/2

p

)
ε

ε
(

2
p

)
ε

(
3
p

)
ε · · ·

(
(p+1)/2

p

)
ε(

2
p

)
ε

(
3
p

)
ε

(
4
p

)
ε · · ·

(
(p+3)/2

p

)
ε

...
...

... · · · ...(
(p−1)/2

p

)
ε
(

(p+1)/2
p

)
ε
(

(p+3)/2
p

)
ε · · ·

(
(p−1)
p

)
ε


(5.4.23)

= ε ·



ε 1
(

2
p

)
· · ·

(
(p−1)/2

p

)
1

(
2
p

) (
3
p

)
· · ·

(
(p+1)/2

p

)
(

2
p

) (
3
p

) (
4
p

)
· · ·

(
(p+3)/2

p

)
...

...
... · · · ...(

(p−1)/2
p

) (
(p+1)/2

p

) (
(p+3)/2

p

)
· · ·

(
(p−1)
p

)


(5.4.24)

So we proved the following

Lemma 5.4.1. All but one of the symmetric (p+1)/2-dimensional matrix BᵀB’s entries

are of the the form ±ε. The (0, 0) entry is p.

Also we have the following lemma.

Lemma 5.4.2. The determinant and cofactors of ε−1BᵀB lie in Z[ε].

Proof. The first row of the adjugate matrix of 1εBᵀB (the cofactors) are all integers. So

computing the determinant using the first row yields C00ε+ d where d is an integer.

The characteristic polynomial of ρ(t) is xp− 1 = (x− 1)(xp−1 + xp−2 + · · ·+ x+ 1) =

(x−1)Φp(x), where Φp(x) is the p-th cyclotomic polynomial. Let R(n,+)(T ) denote the

(p + 1)/2 representation of T . Let m(x) denote the minimal polynomial of R(n,+)(T ).

Then m(x) divides the characteristic polynomial of ρ(t). R(1,+)(T ) has the following
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form (after making the necessary substitutions):

R(n,+)(T ) =



0 0 0 · · · 0 −a(p+1)/2

1 0 0 · · · 0 −a(p−1)/2

0 1 0 · · · 0 −a(p−3)/2

...
...

...
...

...

0 0 0 · · · 1 −a1


. (5.4.25)

Let r = (p−1)/2. Using the fact that a matrix and its transpose have the same minimal

polynomial and Wang’s Lemma 4[36], the minimal polynomial m(x) is given by

m(x) = xr+1 + a1x
r + a2x

r−1 + · · ·+ arx+ ar+1. (5.4.26)

Since both polynomials are completely reducible over Q[ζp], m(x) factors as (x− 1)(x−

θ1)(x − θ2) · · · (x − θr). The θi are roots of xp − 1 as well. ζ ip where 0 ≤ i ≤ p − 1 are

roots of xp − 1. There are (p+ 1)/2 roots of m(x). By a theorem of Viète (or Vieta)[35]

we can write the coefficients of the polynomial in terms of its roots:

a1 = −(1 + θ1 + θ2 + θ3 + · · ·+ θ(p−1)/2),

a2 = (1 · θ1 + 1 · θ2 + · · ·+ 1 · θ(p−1)/2)

+ (θ1 · θ2 + θ1 · θ3 + · · · θ1 · θ(p−1)/2)

+ (θ2 · θ3 + θ2 · θ4 + · · · θ2 · θ(p−1)/2)

...

+ θ(p−3)/2 · θ(p−1)/2,

...
...

a(p+1)/2 = (−1)(p+1)/2 · 1 · θ1 · θ2 · · · · · θ(p−1)/2.

(5.4.27)

The number of summands in ai is given by(
(p+ 1)/2

i

)
. (5.4.28)
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First we consider the a(p+1)/2 term. Since θj = ζ
j(p−j)/2
p ,

(−1)(p+1)/2 ·
(p−1)/2∏
j=0

θj = (−1)(p+1)/2 ·
(p−1)/2∏
j=0

ζj(p−j)/2p

= (−1)(p+1)/2ζxp

(5.4.29)

where

x =

(p−1)/2∑
j=0

j(p− j)/2

=
1

2

(p−1)/2∑
j=0

j(p− j)

=
1

2

(p−1)/2∑
j=0

(jp− j2)

=
1

2

[
p

2

(
p− 1

2
· p+ 1

2

)
− 1

6

(
p− 1

2
· p+ 1

2
·
(

2 · p− 1

2
+ 1

))]
=

1

2

[
p

2

(
p− 1

2
· p+ 1

2

)
− 1

6

(
p− 1

2
· p+ 1

2
· (p)

)]
=

1

2

[
2p

6

(
p− 1

2
· p+ 1

2

)]
=
p(p− 1)(p+ 1))

24
.

(5.4.30)

We claim that (p−1)p(p+1) is divisible by 24. One of the three terms p−1, p, or p+1 is

divisible by three. Since p−1 and p+ 1 are consecutive even numbers, both are divisible

by two and one of them is divisible by four. Let k be an even number. If p−1 = 2k then

p − 1 is divisible by 4 and p − 1 + 2 = p + 1 = 2k + 2 = 2(k + 1) is divisible by 2. If

k is odd, then p + 1 is divisible by four while p− 1 is divisible by 2. So (p− 1)p(p + 1)

is divisible by 3 · 2 · 4 = 24. If we require p > 3, then (p − 1)(p + 1) is divisible by 24.
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Denote this quotient by m. Substituting for x yields

(−1)(p+1)/2 ·
(p−1)/2∏
j=0

θj = (−1)(p+1)/2ζxp

= (−1)(p+1)/2 exp

(
2πi

p
· p(p

2 − 1)

24

)
= (−1)(p+1)/2 exp

(
2πi · (p2 − 1)

24

)
= (−1)(p+1)/2 exp (2πi ·m)

= (−1)(p+1)/2.

(5.4.31)

So a(p+1)/2 = 1 or a(p+1)/2 = −1 for p ≥ 5.

For the a1 term, which consists of
(

(p+1)/2
1

)
= (p + 1)/2 summands, we note that is

the negative of the trace of the representation R(n,+)(T ). That is,

a1 = −(1 + θ1 + · · · θ(p−1)/2)

−a1 = (1 + θ1 + · · · θ(p−1)/2)

= 1 +
∑

x a square

ζxp

= −
∑

y not a square

ζyp

=
1− ε

2

= Tr(R(n,+)).

(5.4.32)

The trace of a matrix is an invariant. The character table of SL2(Z/pZ) tells us that the

trace of R(n,+)(T ) lies in O = Z[1
2
(1 + ε)]. So we have a candidate ring as a(p+1)/2 is

also contained O. So a1 can be expressed either as the sum of ζxp where x are all squares

(including zero) or non-squares.

We did try to use two facts from number theory. First states that a positive square-

free integer can be written as a sum of three squares if the squares are not congruent to

7 modulo 8. However, the set of quadratic residues does not form a group under modulo
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addition so that approach will not be practical. This issue is evident when we attempt

to determine a2. The a2 term consists of
(

(p+1)/2
2

)
= (p+1)/2 · (p−1)/2 ·1/2 = (p2−1)/8

elements. By the formula for a2, we see that it contains −a1 − 1. −a1 − 1 is in O. Let’s

investigate this pattern and see if we can generalize it to all primes. Let x = −a1 − 1

and let p = 13. Then (p+ 1)/2 = 7 and (p− 1)/2 = 6. Then

a2 = −x+ θ1θ2 + θ1θ3 + θ1θ4 + θ1θ5 + θ1θ6

+ θ2θ3 + θ2θ4 + θ2θ5 + θ2θ6

+ θ3θ4 + θ3θ5 + θ3θ6

+ θ4θ5 + θ4θ6

+ θ5θ6

= −x+ θ1(x− θ1)

+ θ2(x− θ1 − θ2)

+ θ3(x− θ1 − θ2 − θ3)

+ θ4(x− θ1 − θ2 − θ3 − θ4)

+ θ5(x− θ1 − θ2 − θ3 − θ4 − θ5).

(5.4.33)

Expanding the terms yields

a2 = −x+ θ1x− θ2
1

+ θ2x− θ1θ2 − θ2
2

+ θ3x− θ3θ1 − θ3θ2 − θ2
3

+ θ4x− θ4θ1 − θ4θ2 − θ4θ3 − θ2
4

+ θ5x− θ5θ1 − θ5θ2 − θ5θ3 − θ5θ4 − θ2
5.

(5.4.34)
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Rearranging gives us

a2 = −x+ x(θ1 + θ2 + θ3 + θ4 + θ5)

− θ1(θ1 + θ2 + θ3 + θ4 + θ5)

− θ2(θ2 + θ3 + θ4 + θ5)

− θ3(θ3 + θ4 + θ5)

− θ4(θ4 + θ5)

− θ5(θ6),

(5.4.35)

a2 = −x+ x(x− θ6)

− θ1(x− θ6)

− θ2(x− θ1 − θ6)

− θ3(x− θ1 − θ2 − θ6)

− θ4(x− θ1 − θ2 − θ3 − θ6)

− θ5(x− θ1 − θ2 − θ3 − θ4 − θ5)

(5.4.36)

which does not simplify enough. This direct approach fails. In the next chapter, we use

Galois-theoretic methods to prove our result.



295

CHAPTER 6 SL(2,p)’s Minimal Integral Models Of ξi

6.1 Introduction

Let ρ : G → GL(V ) be an irreducible complex representation of a finite group G of

exponent e. A famous theorem of Brauer states that there is a choice of basis for V (i.e.

a model for ρ) so that ρ(g) is a matrix with entries in the cyclotomic field Q(ζe), for all

g ∈ G. Since the entries of the character table for G are always algebraic integers, it is

natural to formulate a much stronger conjecture stating that, in fact, the basis can be

chosen so that the matrix entries lie in the ring of integers Z[ζe] ⊆ Q(ζe) [5],[19]. In this

case, we say that ρ has an integral model over the ring R = Z[ζe]. Proving the existence of

such integral models is a notoriously difficult problem in integral representation theory.

Even when existence can be ascertained, the arguments often cannot be directly adapted

to explicitly construct such integral models.

In the case G = SL2(Fp), for p ≥ 3 a prime, Udo Riese [26] proved the existence

of integral models over Z[ζe]. The question remains however whether the result is best

possible, or whether for this particular family of groups there are integral models defined

over proper subrings R ⊂ Z[ζe]. For each irreducible character χ, the entries of the

character table provide a minimal ring of definition Rmin(χ), but it is not clear a priori

whether such a minimal integral model over Rmin(χ) actually exists. For example, the

character of the Steinberg representation χ = St (the unique irreducible character of

dimension p) has entries in Z, thus Rmin(St) = Z. It can be shown that an integral

model for St exists over Z [26, Prop. 1], [14], thus providing a minimal integral model

for St. Similarly, minimal integral models can easily be found for the characters belonging

to the irreducible principal series of G.

In this chapter we explicitly provide minimal integral models for the Weil characters

arising from the reducible principal series of SL2(Fp). For each p ≥ 3, there are pre-
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cisely two non-isomorphic such irreducible characters (representations) ξ1 and ξ2, each

of dimension (p+ 1)/2. The entries in the character table give

Rmin(ξi) = Z
[

1 +
√
εp

2

]
, ε =

 1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4

for both i = 1, 2. We therefore seek explicit integral models defined over this quadratic

ring R = Rmin(ξi), which in all cases coincides with the ring of integers of Q(
√
εp).

In [26], it is conjectured that such minimal integral models should always exist, and

existence is proved under the restriction p ≡ 5 mod 8 [26, Prop. 4]. The methods of [26]

are based on class-field theory and do not provide explicit integral models even under

the more restrictive assumptions. In this chapter (Theorems 6.3.1 and 6.3.3) we prove

the existence of minimal integral models for any prime p, with no restrictions, and we

provide them explicitly. Our methods are based on recent work of Yilong Wang [36], who

provided explicit integral models for ξi over Z[ζp]. By extensive explicit calculations, we

observed that in fact Wang’s models are defined over the minimal rings Rmin(ξi). This is

what we prove in this chapter, by studying the action of the Galois group Gal(Q(ζp)/Q)

on Wang’s integral models.

We now summarize the contents of this chapter. In Section 6.2, we collect all the

necessary formulas in the section regarding the Weil representation and define a more

modern set of notation. The notation will differ from the previous chapters. We explain

how to obtain explicit models for the Weil characters of SL2(Fp) from the Weil repre-

sentation, and we recall Wang’s construction of integral models for ξ1 and ξ2 [36]. In

Section 6.3 we prove our main results Thms. 6.3.1, 6.3.2 and 6.3.3, which show that

Wang’s integral models are in fact minimal. Finally, in Section 6.4 we provide explicit

examples of the minimal integral models for p = 7 and p = 13 and for both ξ1 and ξ2.
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6.2 Integral models for Weil characters

We write the Weil representations of the generators of SL2(Fp),s = [ 0 −1
1 0 ] and t =

[ 1 1
0 1 ], in terms of a quadratic form Q and its associated bilinear form B:

ρQ(s) = M(ψs) =
1
√
εp



1 1 1 · · · 1

1 e−2πiB(1,1) e−2πiB(1,2) · · · e−2πiB(1,p−1)

1 e−2πiB(2,1) e−2πiB(2,2) · · · e−2πiB(2,p−1)

...
...

...
. . .

...
...

1 e−2πiB(p−1,1) e−2πiB(p−1,2) · · · e−2πiB(p−1,p−1)


(6.2.1)

and

ρQ(t) = M(ψt) =



1 0 0 · · · 0 0

0 e2πiQ(1) 0 · · · 0 0

0 0 e2πiQ(2) · · · 0 0

...
...

... . . .
...

0 0 0 · · · 0 e2πiQ(p−1)


. (6.2.2)

The isomorphism class of each Weil representation only depends on the equivalence

class of the quadratic form Q. Note that there are two nonequivalent quadratic forms

on Cp = (Z/pZ,+):

Q1(x) = x2/p and Q2(x) = cx2/p (6.2.3)

where c is a quadratic non-residue modulo p. Therefore we obtain two non-isomorphic

Weil representations

ρ1, ρ2 : SL2(Fp) −→ GL(V ), (6.2.4)

along with their explicit (non-integral) models defined over the ring Z[1/p, ζp].

The Weil representations ρ1, ρ2 defined by (6.2.4) decompose into irreducible repre-

sentations ρi = ξi ⊕ πi, i = 1, 2. The characters ξ1, ξ2 are the two Weil characters of
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SL2(Fp) of dimension (p+1)/2; they belong to the principal series of SL2(Fp). The other

two Weil characters π1, π2 are of dimension (p − 1)/2 and they belong to the cuspidal

series.

We now construct an explicit integral model over Z[ζp] for the principal series Weil

characters ξ1, ξ2, following [36]. Let V + ⊆ V = {functions: Cp → C} be the subspace of

even functions, satisfying f(−x) = f(x) for all x ∈ Cp. This subspace is an invariant

subspace for both ρ1 and ρ2, and the principal series Weil characters ξ1, ξ2 are the

restrictions of ρ1, ρ2 to V +. To write down an explicit model for these characters, consider

the basis for V + given by the even delta functions:

b+
0 := δ0, b

+
1 := δ1 + δp−1, · · · , b+

(p−1)/2 := δ(p−1)/2 + δ(p+1)/2.

Then the explicit model for the Weil representation given by (6.2.1) and (6.2.2) can be

used to give an explicit model for ξ1 and ξ2 over the ring Z[1/p, ζp]. Let S and T denote

the matrices of the Weil representations ρ(s) and ρ(t) respectively, restricted to the basis

of even functions. Then

Sjk =



√
εp

εp
0 ≤ j ≤ p−1

2
and k = 0

2
√
εp

εp
j = 0 and 1 ≤ k ≤ p−1

2

1
√
εp

(
e−2πiB(j,k) + e2πiB(j,k)

)
otherwise

(6.2.5)

and

Tjk =

 e2πiQ(j) if j = k

0 otherwise.
(6.2.6)

Note that these models are not integral, since they can only be defined over the ring

Z[1/p, ζp].
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Remark 6.2.1. The (p − 1)/2-dimensional cuspidal series representations π1 and π2

can be constructed similarly by restricting ρ to the subspace V − ⊆ V of odd functions,

those satisfying f(−x) = −f(x). This subspace has basis

b−0 := δ1 − δ(p−1), · · · , b−(p−3)/2 := δ(p−1)/2 − δ(p+1)/2.

Let S and T denote the matrices of the Weil representations ρ(s) and ρ(t) respectively,

restricted to the basis of odd delta functions. Then S and T are given by

Sjk =
1
√
εp

(
e−2πiB(j+1,k+1) − e2πiB(j+1,k+1)

)
,

and

Tjk =

 e2πiQ(j+1) if j = k

0 otherwise.

These formulas provide explicit models for π1 and π2 over Z[1/p, ζp].

Wang [36] provides an integral model for ξ2 over the ring Z[ζp], by using a basis

consisting of circulant vectors. His construction can also be employed to provide an

integral model for ξ1, also defined over the ring Z[ζp]. Note that the existence of such

integral models for ξ1, ξ2 was proved by Riese in [26], but no explicit integral models

were given. As far as the authors know, the first integral models for ξ1 were later given

by Gilmore, Massbaum, and van Wamelen[13] and Wang [36] was the first to provide

integral models for ξ2.

To recall Wang’s construction, let Q = Q1, Q2 be one of the quadratic forms (6.2.3),

corresponding to each Weil character ξ1, ξ2. Let r = (p − 1)/2 and let θj = e2πiQ(j) for

0 ≤ j ≤ r, be the eigenvalues of the T -matrix (6.2.2). Note that θj 6= θk for all j 6= k.
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Consequently, the Vandermonde matrix

VQ =



1 1 1 1 · · · 1

1 θ1 θ2
1 θ3

1 · · · θr1

1 θ2 θ2
2 θ3

2 · · · θr2

1 θ3 θ2
3 θ3

3 · · · θr3
...

...
...

... · · · ...

1 θr θ2
r θ3

r · · · θrr


(6.2.7)

is invertible. Wang proves the following:

Theorem 6.2.2 ([36], Thm. 1). Suppose p ≥ 5 is an odd prime. Let S, T be the matrices

(6.2.5) and (6.2.6). Then the matrices V −1
Q SVQ and V −1

Q TVQ have entries in Z[ζp].

By Wang’s theorem, setting

ξi(s) = V −1
Qi
SVQi , ξi(t) = V −1

Qi
TVQi

yields explicit integral models for ξi, i = 1, 2 over the ring Z[ζp].

Remark 6.2.3. In his proof, Wang shows that the representation ξ2 is defined over

Z[ζp] for p ≡ 1 mod 4 and Z[ζp, i] for p ≡ 3 mod 4. However, upon further inspection

of Proposition 2.4, the proof readily generalizes to show integrality over Z[ζp] for all odd

primes and for both ξ1 and ξ2.

Remark 6.2.4. As mentioned in the previous chapter, Zemel [44] has recently con-

structed integral models over Z[ζp] for the cuspidal series Weil characters π1 and π2.

6.3 Minimal integral models and proof of the Main Theorem

In this section we prove that the integral models given by Theorem 6.2.2 are in fact

defined over the ring of integers of Q(
√
εp), thus providing minimal integral models

for ξ1 and ξ2. We do so by analyzing the action of the Galois group Gal(Q(ζp)/Q) on

the integral models. The key observation in this analysis is a surprising compatibility

between the Galois actions on the Vandermonde matrix VQ and on the entries of the
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matrices of the Weil representations ρQ, for Q = Q1, Q2. Investigating this compatibility

for more general quadratic forms Q might be of independent interest.

Recall that for an odd prime p, the quadratic Gauss sums can be evaluated as follows:

∑
x∈Z/pZ

ζx
2

p =


√
p for p ≡ 1 mod 4

√
−p for p ≡ 3 mod 4,

and therefore the quadratic field Q(
√
εp) is always contained in Q(ζp). By the fun-

damental theorem of Galois theory, this subfield must correspond to the subgroup

H ⊆ Gal(Q(ζp)/Q) of index 2,

Q(ζp) {e}

Q(
√
εp) ⇐⇒ H = 〈γ2〉

Q 〈γ〉

r r

2 2

(6.3.1)

where in the diagram we chose a generator 〈γ〉 = Gal(Q(ζp)/Q) ' Z/(2r)Z and r =

(p− 1)/2. The generator γ can be written down as an automorphism γ : ζp → ζjp where

gcd(j, 2r) = 1. Then γ2 : ζp → ζj
2

p acts on the exponents of ζp by sending squares to

squares and non-squares to non-squares. We can write the sums of square exponents and

sums of nonsquares exponents in terms of the quadratic Gauss sum:∑
k∈(Fp)×, k a square

ζkp =
−1 +

√
εp

2
and

∑
j∈(Fp)×, j not a square

ζjp =
−1−√εp

2

and from Remark 2.1.10, it is clear that they are always contained in the ring of integers

Z[1
2
(1 +

√
εp)] ⊂ Q(

√
εp).

Let S and T be the matrices given in (6.2.5) and (6.2.6), let VQ be the Vandermonde

matrix (6.2.7), and let T ′ = V −1
Q TVQ. We first prove the integrality of T ′ over the

quadratic ring:
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Theorem 6.3.1. The matrix entries of T ′ lie in Z[1
2
(1 +

√
εp)], the ring of integers of

Q(
√
εp).

Proof. Note that T ′ is the following circulant matrix

T ′ =



0 0 0 · · · 0 −ar+1

1 0 0 · · · 0 −ar

0 1 0 · · · 0 −ar−1

...
...

...
...

...

0 0 0 · · · 1 −a1


,

whose characteristic polynomial m(x) ∈ Q(ζp)[x] is given by

m(x) = xr+1 + a1x
r + a2x

r−1 + · · ·+ arx+ ar+1.

Thus to prove the Theorem it suffices to show that the coefficients of m(x) are contained

in Z[1
2
(1 +

√
εp)]. Since T and T ′ are conjugate matrices, we know that m(x) splits as

(x− 1)(x− θ1)(x− θ2) · · · (x− θr) in Q(ζp), where the θi’s are the eigenvalues/diagonal

entries of T . In the case Q = Q1, each θj is of the form ζsp , where s is a square mod p,

while in the case Q = Q2, each θi is of the form ζnp , where n is not a square mod p. In

each case, the set of roots of the polynomial m(x) is permuted by the index 2 subgroup

H ⊆ Gal(Q(ζp)/Q) defined in (6.3.1). So H fixes the coefficients of m(x), since those

are expressible in terms of elementary symmetric polynomials in the θj’s. Therefore the

coefficients ai of m(x) lie in the quadratic extension Q(
√
εp). In addition, since all the

roots of unity ζjp belong to the ring of integers Z[ζp] and since the symmetric polynomials

have integral coefficients, it must follow that the coefficients aj actually belong to the

ring of integers of Q(
√
εp).

For any element α ∈ Gal(Q(ζp)/Q) and any matrix M = (mjk) with entries mjk ∈

Q(ζp), we define α(M) = (α(mjk)) to be the matrix obtained from M by applying the
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field automorphism α to each entry. More generally, if ρ : G → GLn(Q(ζp)) is a model

for a group representation, we denote by ρα the model for the group representation

ρα(g) = α(ρ(g)), obtained by applying the field automorphism α to each matrix entry

ρ(g), g ∈ G.

In particular, let τ = γ2 be the generator of the subgroup H of the Galois group

of Q(ζp) defined in (6.3.1). Clearly we have |τ | = |H| = r. Consider the action of τ

on the Vandermonde matrix VQ. Since τ(ζxp ) = ζyp where x, y are either both squares

or both non-squares mod p, and since τ fixes the number 1, it follows that τ(VQ) is a

matrix obtained by permuting the rows of VQ. Let P denote the permutation matrix

corresponding to this permutation of the rows of VQ:

τ(VQ) = P · VQ. (6.3.2)

Since |τ | = r, the order of P is also r. P fixes the first row and therefore P−1 also fixes

the first row. We can consider P as a r− 1 cycle. We also note that P−1 = P ᵀ, since the

inverse of a permutation matrix is its transpose.

Interestingly, it turns out that the permutation matrix P also gives the Galois action

of τ on the Weil representation models for ξ1, ξ2 given by the matrices S, T defined

in (6.2.5) and (6.2.6). This non-trivial compatibility between the Galois action on the

Vandermonde matrix VQ and the Weil representation models is the key observation of

this article:

Theorem 6.3.2. Let ξ1, ξ2 : SL2(Fp) → GLr+1(Q(ζp)) be the explicit models for the

principal series Weil characters determined by ξi(s) = S, ξi(t) = T , where S, T are given

in (6.2.5) and (6.2.6). Then for each i = 1, 2 and all primes p > 2, the permutation

matrix P given in (6.3.2) satisfies

ξτi (g) = P ξi(g)P−1
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for all g ∈ SL2(Fp).

Proof. As is well-known, the character table entries for ξi are defined over the quadratic

field Q(
√
εp). Since this the fixed field of the subgroup H = 〈τ〉 ⊆ Gal(Q(ζp)/Q), it

follows that the character table entries of ξi and ξτi are the same, so ξτi
∼= ξi. This implies

that there exists a matrix M ∈ GL(V ) (uniquely defined up to multiplication by a

scalar) such that

ξτi (g) = M−1 · ξi(g) ·M (6.3.3)

for all g ∈ SL2(Fp). We want to show that M = λP−1 where λ ∈ C and P is the

permutation matrix (6.3.2), determined by the relation τ(VQ) = PVQ. First, recall that

the matrix T ′ = V −1
Q TVQ has entries in Q(

√
εp), by Theorem 6.3.1, and therefore τ(T ′) =

T ′. It follows that

τ(T ) = τ(VQ) · T ′ · τ(VQ)−1 = PVQ · T ′ · V −1
Q P−1 = PTP−1.

On the other hand, we know from (6.3.3) that

τ(T ) = M−1TM

so that the matrix T must commute with the matrix PM . Since T is a diagonal matrix

whose entries θi are all distinct, it follows that PM = D is also a diagonal matrix, and

M = P−1D. We want to show that D = λ · 1 in fact scalar. To show this, we also need

to employ the S-matrix. Let

D =



λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · · ...

0 0 0 · · · λr


.
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Again recall from (6.3.3) that τ(S) = M−1 · S ·M , so that

τ(S) = M · S ·M−1 = P−1D · S ·D−1P

Recall that S has the form

S =

√
εp

εp



1 2 2 · · · 2

1 s11 s12 · · · s1r

...
...

... · · · ...

1 sr1 sr2 · · · srr


,

for some entries sjk. In particular, since the first row and first column of S consists

of elements of Q(
√
εp), the action of τ leaves them fixed. In addition, by definition the

permutation matrix P also fixes the first row and the first column, and so does P−1 = P ᵀ.

Therefore we can write

P · τ(S) · P−1 =

√
εp

εp



1 2 2 · · · 2

1 x11 x12 · · · x1r

...
...

... · · · ...

1 xr1 xr2 · · · xrr


,

for some entries xjk’s. So

D−1 · P · τ(S) · P−1 ·D =

√
εp

εp



1 2λ1λ
−1
2 2λ1λ

−1
3 · · · 2λ1λ

−1
r

λ2λ
−1
1 ∗ ∗ · · · ∗

...
...

... · · · ...

λrλ
−1
1 ∗ ∗ · · · ∗



=

√
εp

εp



1 2 2 · · · 2

1 s11 s12 · · · s1r

...
...

... · · · ...

1 sr1 sr2 · · · srr


= S.
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Equating the first column and row of these matrices we conclude that λj = λk = λ are

all equal, and thus M = λP−1.

Let now S ′ := V −1
Q ·S ·VQ. Theorem 6.3.2 enables us to prove the following theorem.

Theorem 6.3.3. S ′ has matrix entries in Z[1
2
(1+
√
εp)], the ring of integers of Q(

√
εp).

Proof. Again let τ be the generator of the subgroup H ⊆ Gal(Q(ζp)/Q) defined in

(6.3.1). We want to show that τ(S ′) = S ′. By Theorem 6.3.3, we have:

τ(S ′) = τ(V −1
Q · S · VQ)

= τ(V −1
Q ) · τ(S) · τ(VQ)

= V −1
Q · P−1 · P · S · P−1 · P · VQ

= V −1
Q · S · VQ

= S ′.

Since τ fixes S ′, the entries of S ′ lie in the quadratic extension Q(
√
εp). But we also

know from Thm. 6.2.2 that the entries of S ′ belong to the ring of algebraic integers Z[ζp],

therefore they must lie in the ring of integers of Q(
√
εp).

By Theorems 6.3.1 and 6.3.3, setting

ξi(s) = S ′ and ξi(t) = T ′

gives integral models for the principal series Weil characters over the ring of integers of

Q(
√
εp), therefore giving minimal integral models for these characters.

6.4 Examples

We now show the computations giving the explicit minimal integral models for ξ1

and ξ2 for the primes p = 7 and p = 13. We used SageMath[30] and MATLAB[21] to

make and verify the computations.
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Example 6.4.1. Let p = 7. For the equivalent representation of ξ1, let c = 1. So,

Q1(x) = x2/7, B1(x, y) = 2xy/7 and the Gauss sum is given by∑
x∈Z/7Z

ζx
2

7 = 2ζ4
7 + 2ζ2

7 + 2ζ7 + 1 =
√
−7.

Then we have

S =
−
√

7

7



1 2 2 2

1 ζ5
7 + ζ2

7 ζ4
7 + ζ3

7 ζ6
7 + ζ7

1 ζ4
7 + ζ3

7 ζ6
7 + ζ7 ζ5

7 + ζ2
7

1 ζ6
7 + ζ7 ζ5

7 + ζ2
7 ζ4

7 + ζ3
7


,

T =



1 0 0 0

0 ζ7 0 0

0 0 ζ4
7 0

0 0 0 ζ2
7


,

VQ =



1 1 1 1

1 ζ7 ζ2
7 ζ3

7

1 ζ4
7 ζ7 ζ5

7

1 ζ2
7 ζ4

7 ζ7


,

S ′ = V −1
Q SVQ =



−1 1
2
(1−

√
−7) 0 0

1
2
(−1−

√
−7) 1 0 0

1
2
(1−

√
−7) 1

2
(1 +

√
−7) 0 −1

1 −1 1 0


,
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and

T ′ = V −1
Q TVQ =



0 0 0 −1

1 0 0 1
2
(1−

√
−7)

0 1 0 1

0 0 1 1
2
(1 +

√
−7)


.

For the equivalent representation of ξ2, we choose c = 3. So, Q2(x) = 3x2/7,

B2(x, y) = 6xy/7 and the Gauss sum is given by∑
x∈Z/7Z

ζ3x2

7 = −2ζ4
7 − 2ζ2

7 − 2ζ7 − 1 = −
√
−7.

Then we have

S =

√
−7

7



1 2 2 2

1 ζ6
7 + ζ7 ζ5

7 + ζ2
7 ζ4

7 + ζ3
7

1 ζ5
7 + ζ2

7 ζ4
7 + ζ3

7 ζ6
7 + ζ7

1 ζ4
7 + ζ3

7 ζ6
7 + ζ1

7 ζ5
7 + ζ2

7


,

T =



1 0 0 0

0 ζ3
7 0 0

0 0 ζ5
7 0

0 0 0 ζ6
7


,

VQ =



1 1 1 1

1 ζ3
7 ζ6

7 ζ2
7

1 ζ5
7 ζ3

7 ζ7

1 ζ6
7 ζ5

7 ζ4
7


,
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S ′ = V −1
Q SVQ =



−1 1
2
(1 +

√
−7) 0 0

1
2
(−1 +

√
−7) 1 0 0

1
2
(1 +

√
−7) 1

2
(1−

√
−7) 0 −1

1 −1 1 0


,

and

T ′ = V −1
Q TVQ =



0 0 0 −1

1 0 0 1
2
(1 +

√
7)

0 1 0 1

0 0 1 1
2
(1−

√
7)


.

Example 6.4.2. Let p = 13. For the equivalent representation of ξ1, let c = 1. So,

Q1(x) = x2/13, B1(x, y) = 2xy/13 and the Gauss sum is given by∑
x∈Z/13Z

ζx
2

13 = −2ζ11
13 − 2ζ8

13 − 2ζ7
13 − 2ζ6

13 − 2ζ5
13 − 2ζ2

13 − 1 =
√

13.

Then we have

S =

√
13

13



1 2 2 2 2 2 2

1 ζ11
13 + ζ2

13 ζ9
13 + ζ4

13 ζ7
13 + ζ6

13 ζ8
13 + ζ5

13 ζ10
13 + ζ3

13 ζ12
13 + ζ13

1 ζ9
13 + ζ4

13 ζ8
13 + ζ5

13 ζ12
13 + ζ13 ζ10

13 + ζ3
13 ζ7

13 + ζ6
13 ζ11

13 + ζ2
13

1 ζ7
13 + ζ6

13 ζ12
13 + ζ13 ζ8

13 + ζ5
13 ζ11

13 + ζ2
13 ζ9

13 + ζ4
13 ζ10

13 + ζ3
13

1 ζ8
13 + ζ5

13 ζ10
13 + ζ3

13 ζ11
13 + ζ2

13 ζ7
13 + ζ6

13 ζ12
13 + ζ13 ζ9

13 + ζ4
13

1 ζ10
13 + ζ3

13 ζ7
13 + ζ6

13 ζ9
13 + ζ4

13 ζ12
13 + ζ13 ζ11

13 + ζ2
13 ζ8

13 + ζ5
13

1 ζ12
13 + ζ13 ζ11

13 + ζ2
13 ζ10

13 + ζ3
13 ζ9

13 + ζ4
13 ζ8

13 + ζ5
13 ζ7

13 + ζ6
13



,
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T =



1 0 0 0 0 0 0

0 ζ13 0 0 0 0 0

0 0 ζ4
13 0 0 0 0

0 0 0 ζ9
13 0 0 0

0 0 0 0 ζ3
13 0 0

0 0 0 0 0 ζ12
13 0

0 0 0 0 0 0 ζ10
13



,

VQ =



1 1 1 1 1 1 1

1 ζ13 ζ2
13 ζ3

13 ζ4
13 ζ5

13 ζ6
13

1 ζ4
13 ζ8

13 ζ12
13 ζ3

13 ζ7
13 ζ11

13

1 ζ9
13 ζ5

13 ζ13 ζ10
13 ζ6

13 ζ2
13

1 ζ3
13 ζ6

13 ζ9
13 ζ12

13 ζ2
13 ζ5

13

1 ζ12
13 ζ11

13 ζ10
13 ζ9

13 ζ8
13 ζ7

13

1 ζ10
13 ζ7

13 ζ4
13 ζ13 ζ11

13 ζ8
13



,

S ′ = V −1
Q SVQ =



1
2
(3 +

√
13) 1

2
(1 +

√
13) 0 0 0 0 0

−1
2
(5 +

√
13) −1

2
(3 +

√
13) 0 0 0 0 0

3 +
√

13 1
2
(5 +

√
13) 0 0 0 0 −1

−4−
√

13 −1
2
(5 +

√
13) 0 0 1 0 0

3 +
√

13 1
2
(3 +

√
13) 0 1 0 0 0

−1
2
(5 +

√
13) −1

2
(1 +

√
13) 0 0 0 −1 0

1
2
(3 +

√
13) 1 −1 0 0 0 0



,
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and

T ′ = V −1
Q TVQ =



0 0 0 0 0 0 1

1 0 0 0 0 0 −1
2
(1 +

√
13)

0 1 0 0 0 0 1
2
(3 +

√
13)

0 0 1 0 0 0 −1
2
(5 +

√
13)

0 0 0 1 0 0 1
2
(5 +

√
13)

0 0 0 0 1 0 −1
2
(3 +

√
13)

0 0 0 0 0 1 1
2
(1 +

√
13)



.

For the equivalent representation of ξ2, let c = 2. So, Q2(x) = 2x2/13, B2(x, y) =

4xy/13 and the Gauss sum is given by∑
x∈Z/13Z

ζx
2

13 = 2ζ11
13 + 2ζ8

13 + 2ζ7
13 + 2ζ6

13 + 2ζ5
13 + 2ζ2

13 + 1 = −
√

13.

Then we have

S =
−
√

13

13



1 2 2 2 2 2 2

1 ζ9
13 + ζ4

13 ζ8
13 + ζ5

13 ζ12
13 + ζ13 ζ10

13 + ζ3
13 ζ7

13 + ζ6
13 ζ11

13 + ζ2
13

1 ζ8
13 + ζ5

13 ζ10
13 + ζ3

13 ζ11
13 + ζ2

13 ζ7
13 + ζ6

13 ζ12
13 + ζ13 ζ9

13 + ζ4
13

1 ζ12
13 + ζ13 ζ11

13 + ζ2
13 ζ10

13 + ζ3
13 ζ9

13 + ζ4
13 ζ8

13 + ζ5
13 ζ7

13 + ζ6
13

1 ζ10
13 + ζ3

13 ζ7
13 + ζ6

13 ζ9
13 + ζ4

13 ζ12
13 + ζ13 ζ11

13 + ζ2
13 ζ8

13 + ζ5
13

1 ζ7
13 + ζ6

13 ζ12
13 + ζ13 ζ8

13 + ζ5
13 ζ11

13 + ζ2
13 ζ9

13 + ζ4
13 ζ10

13 + ζ3
13

1 ζ11
13 + ζ2

13 ζ9
13 + ζ4

13 ζ7
13 + ζ6

13 ζ8
13 + ζ5

13 ζ10
13 + ζ3

13 ζ12
13 + ζ13



,
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T =



1 0 0 0 0 0 0

0 ζ2
13 0 0 0 0 0

0 0 ζ8
13 0 0 0 0

0 0 0 ζ5
13 0 0 0

0 0 0 0 ζ6
13 0 0

0 0 0 0 0 ζ11
13 0

0 0 0 0 0 0 ζ7
13



,

VQ =



1 1 1 1 1 1 1

1 ζ2
13 ζ4

13 ζ6
13 ζ8

13 ζ10
13 ζ12

13

1 ζ8
13 ζ3

13 ζ11
13 ζ6

13 ζ13 ζ9
13

1 ζ5
13 ζ10

13 ζ2
13 ζ7

13 ζ12
13 ζ4

13

1 ζ6
13 ζ12

13 ζ5
13 ζ11

13 ζ4
13 ζ10

13

1 ζ11
13 ζ9

13 ζ7
13 ζ5

13 ζ3
13 ζ13

1 ζ7
13 ζ13 ζ8

13 ζ2
13 ζ9

13 ζ3
13



,

S ′ = V −1
Q SVQ =



1
2
(3−

√
13) 1

2
(1−

√
13) 0 0 0 0 0

1
2
(−5 +

√
13) 1

2
(−3 +

√
13) 0 0 0 0 0

3−
√

13 1
2
(5−

√
13) 0 0 0 0 −1

−4 +
√

13) 1
2
(−5 +

√
13) 0 0 1 0 0

3−
√

13 1
2
(3−

√
13) 0 1 0 0 0

1
2
(−5 +

√
13) 1

2
(−1 +

√
13) 0 0 0 −1 0

1
2
(3−

√
13) 1 −1 0 0 0 0



,
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and

T ′ = V −1
Q TVQ =



0 0 0 0 0 0 1

1 0 0 0 0 0 1
2
(−1 +

√
13)

0 1 0 0 0 0 1
2
(3−

√
13)

0 0 1 0 0 0 1
2
(−5 +

√
13)

0 0 0 1 0 0 1
2
(5−

√
13)

0 0 0 0 1 0 1
2
(−3 +

√
13)

0 0 0 0 0 1 1
2
(1−

√
13)



.
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SUMMARY

We gave a construction of Weil representation from the Heisenberg group. We used

the results from Nobs[23] and Wolfart[24] explicitly compute all of the irreducible rep-

resentations of SL2(Fp) for the primes p = 3 and p = 5. The explicitly calculations

provide concrete examples which are not found in existing literature. In addition, we

noted that Yilong Wang and Samuel Wilson wrote a GAP package to compute all of the

irreducible representations of SL2(Z/nZ). For the examples given, we readily see that the

non-trivial representations are not integral using the methods/bases given in Nobs[23]

and Wolfart[24]. We discussed the existence of integral representations using Riese’s pa-

per and provided an alternative proof regarding existence. We explored the integrality

results of Wang, Candelori, and Zemel. Then we defined the notion of a minimal integral

model was defined.

Using Wang’s basis, we proved that we achieve the minimal integral model for the

principal series Weil representations. So we answered Riese’s question “Can ξ be realized

over the ring of integers of Q(
√
εq)?” when q is a prime. Our result gives a stronger

statement than Riese’s Proposition 4 for odd primes q:

Proposition 4. Suppose q is a rational square or that q ≡ 5 mod 8. Then the Weil

character can be realized over R = Z[(1 +
√
q)/2].

since our proof shows the minimal integral model is the ring of integers of Q(ε
√
q). This

is our central result.

The following questions remain:

1. Is the minimal integral model for the principal series Weil representation was

unique?

2. What is a basis that yields the minimal integral models for the cuspidal series Weil

representations of SL2(Fp)?

3. What is a basis that yields the minimal integral models for the discrete cuspidal
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series of SL2(Fp)?

4. How about all of the above for SL2(Fq)?

5. We know that Nobs and Wolfart’s[23][24] methods do not yield integrality for

SL2(Z/nZ). So what bases will? What are the minimal integral models?

These questions will require different techniques and we encourage the reader to pursue

these questions either independently or with us.
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ABSTRACT

INTEGRAL REPRESENTATIONS OF SL2(Z/nZ)

by

YATIN DINESH PATEL
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Advisors: Dr. Luca Candelori and Dr. Andrew Salch

Major: Mathematics

Degree: Doctor of Philosophy

The aim of this work is to determine for which commutative rings integral represen-

tations of SL2(Z/nZ) exist and to explicitly compute them. We start with R = Z/pZ

and then consider Z/pλZ. A new approach will be used to do this based on the Weil

representation. We then consider general finite rings Z/nZ by extending methods de-

scribed in [26]. We make extensive use of group theory, linear representations of finite

groups, ring theory, algebraic geometry, and number theory. From number theory we

will employ results regarding modular forms, Legendre symbols, Hilbert symbols, and

quadratic forms. We consider the works of André Weil[38], Alexandre Nobs[23][24] and

Udo Riese[26]. We explicitly compute the irreducible representations for several odd

primes using Nobs and Wolfart’s methods. Then we will explore Riese’s[26] construction

of the integral representations of SL2(Aλ) and explicitly compute them as the paper

only proves the existence. We will use integrality results of the Weil representations by

Luca Candelori, Shaul Zemel, and Yilong Wang (to appear). Then we will extend Reise’s

results to construct integral representations for rings that are not of the form Aλ.
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