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CONVENTIONS
We will employ the following conventions and notations:
Character and representation will be used interchangeably.
(p = exp(27i/p).
e and €2, denote the quadratic Gauss sum for an odd prime p.
e = (—1)(@=1/2 where ¢ is a prime power. ¢ = 1.
0; 1s the Kronecker delta function.
07, is the discriminant of a lattice L.
F, denotes a finite field of prime power order ¢ = p".
F, and Z/pZ denote a finite field of order p.
C), is the additive cyclic group of order p.
K, is the group C, x C,,.
H, or H(G,p) is the Heisenberg group of order p*.
s is the matrix [{ ']. Other definitions of this matrix will also be given.
t is the matrix [} 9]. Other definitions of this matrix will also be given.
AT and AT denote the transpose of a matrix or vector A.
v, is the cyclic group of the roots of unity: v, := {¢ € C: ¢V =1}
R(1,+), R(n,+), and £ are the Principal Series Weil Characters.
R(1,—), R(n,—), and ( are the Cuspidal Series Weil Characters.
St is the Steinberg representation.

Vo is the Vandermonde matrix associated to the quadratic form Q).

x1



INTRODUCTION

Issai Schur and Herbert Edwin Jordan computed the character tables of the special
linear group of order two over a finite field, SLy(F,), over a hundred years ago. The
irreducible representations came a little later and while there are several techniques,
we will employ the Weil representation to compute the irreducible representations of
SLy(Z/nZ) as well as SLy(F,). The Weil representation is a beautiful construct that has
many other applications. It is used to study theta functions (modular forms). When
generalized to a Grassmann algebra, it appears in quantum field theory. There are also
many number theoretic applications as well. We will cite and extend results pertaining
to the integrality of the irreducible representations by Wang[36] and Gilmer et al[I3].
These results were proven in the context of topological quantum field theory (TQFT).
TQFT is related to knot theory, theory of four-manifolds in algebraic topology, and
theory of modulii spaces in algebraic geometry.

The Weil representation was originally motivated by theoretical physics, namely by
quantization[I5]. It was firstly defined on the level of Lie algebra by L. van Hove in
1951, then on the level of Lie group by I. E. Segal and D. Shale in the 1960’s. On
the arithmetical side, in 1964, A. Weil generalized this machinery to include all local
fields. This is the main ingredient of Weil’s representation-theoretic approach to theta
functions. In fact, the theta functions can be interpreted as automorphic forms of a
subgroup of certain metaplectic group[I5]. We fully concur with H.N. Ward’s statement
“I have a strong fondness for the Weil representation.” It is our desire that the reader
will also develop a fondness for it.

This document contains six chapters. In the first chapter, we construct the Weil
representation using a Heisenberg group. This treatment, while not new, is explicit
enough and is suitable for advanced undergraduates and those interested in learning

about the Weil representation. It also contains examples of the representations which are



lacking in all the other treatments of the construction. In the second chapter, we define
and discuss integral representations and provide alternate proofs regarding integrality
that are more accessible.

In Chapter 3, we construct all the irreducible representations of SLy(Z/3Z) with the
exception of the Steinberg (which will be covered in Chapter 4). We use the methods
we learned from Nobs and Wolfart’s methods[23],[24]. Nothing is left to the imagina-
tion in the construction of these representations. The calculations are long and drawn
out to illustrate the nontriviality of the computations. We use the larger format of
matrices/vectors for the delta functions’ indicies for greater legibility and to accommo-
date those that may be vision-impaired. It does increase the page count but legibility
was the priority. Due to formatting requirements, we use smaller matrices for some of
the calculations. We do regret that compromise. In Chapter 4, we construct the six-
dimensional irreducible representation of SLy(Z/5Z) and the Steinberg representation.
We also construct the reducible 1 + St representation. We show that the Steinberg rep-
resentation is integral over Z and give an explicit basis for it. This is a well-known fact
and we learned of the integral basis from Reeder[25]. We then construct the reducible
six-dimensional representation that is the direct sum of two irreducible principal series
Weil representations. Samuel Wilson and Yilong Wang have created a GAP package
that computes ALL of the irreducible representations of SLy(Z/nZ). The GAP package
resides at https://snw-0.github.io/sl2-reps/. In Chapter 5, we discuss the integrality re-
sults of Wang and Zemel and ponder a conjecture by Candelori. We also attempt to
prove Wang’s basis/method yields the smallest ring of definition for the principal series
WEeil characters directly. It fails spectacularly because no method exists to ascertain the
values of Legendre symbols for an arbitrary prime.

The notion of a minimal integral model is introduced in Chapter 6. Using SAGE

to compute the principal series Weil representations of many primes, we noticed that


https://snw-0.github.io/sl2-reps/

the representations lie in the ring conjectured by Riese. We prove Wang’s basis/method
yields the minimal integral model for these representations. This is the central result of
this document. The proofs require only material that is generally covered in the first
year of a graduate program in mathematics. The quadratic Gauss sum and Wang’s basis

play pivotal roles.



CHAPTER 1 A Construction of The Weil Representation
1.1 The Groups H,
We will use the Heisenberg group to construct the Weil representation of SLy(F),).
We provide the necessary background material and discuss the Heisenberg group.
1.1.1 Quadratic forms on an abelian group
We begin with several definitions.
Definition 1.1.1. A bilinear form or bicharacter on an abelian group G with values

in another abelian group E is a function b: G x G — E satisfying:
b(z,y +2) =blx,y) +b(z,2) and bz +y,z)="b(z,2)+by,2)

It is symmetric if b(z,y) = b(y,x). It is nondegenerate if b(x,y) =0 for ally € G
implies that x = 0 and if b(x,y) = 0 for all x € G implies that y = 0.
Definition 1.1.2. Let G be a finite abelian group. A quadratic form on a finite abelian
group G is a function q : G — E such that q(—z) = q(x) and the form assigned to it
b(z,y) = q(z+y) —q(z) — q(y) is bilinear.
Definition 1.1.3. Let G be an finite abelian group and q : G — Q/Z be a quadratic
form. The level of q is the smallest integer N such that Nq(x) € Z for all z € G.

The following examples illustrate the definitions.
Example 1.1.4. Let p > 2. Consider the map q : G = Z/pZ — Q/Z that sends

x— 2%/p. The form b(z,y)

gz +y)—q(x) —qly) = —— - — — = = —= = b(x,y)

18 bilinear since

2 + 2 2
by +a) = ””(yp a) _ 42 )+ ()




and

2z + 2 2
bz +c,y) = <xpc)y= §y+%=b(x,y)+b(c,y)~

It 1s symmetric since

2zy  2yx

It is nondegenerate since if b(x,y) = 0 for all y, then x = 0 and if b(x,y) = 0 for all
x, then y = 0. q(x) is a quadratic form since b(z,y) is bilinear and q(—z) = (—x?)/p =
2?/p = q(x). q(x) is of level p.

Example 1.1.5. Let p = 2. Consider the map q : G = Z/2Z — Q/Z that sends

T 2?2 /4.

q(z +y) —q(z) —qly) = — === =b(zy).

We are in characteristic two. If x # y, then b(1,0) = b(0,1) = 0. If x = y, then
b(0,0) =0 and b(1,1) =1—-1/4—1/4=1/2. So b(x,y) = xy/2 is a is a symmetric and
nondegenerate bilinear form. So q is a quadratic from of level 4.

We would like to explain why Definition [1.1.3|is compatible with the standard defi-
nition of a quadratic form:[27]:
Definition 1.1.6. Let V' be a module over a commutative ring A. A function @ : V — A
1s called a quadratic form on V if:

1. Qaz) = a*Q(z) fora€ A andxz € V.

2. the function (z,y) — Q(z +y) — Q(x) — Q(y) is a bilinear form.

We have to restrict a to 1 because otherwise a*Q(z) is not defined if the codomain
is a group.
1.1.2 The Heisenberg group H (G, q)

We now provide a more general definition of the Heisenberg group.

Definition 1.1.7. Let N > 1 be an integer and vy = {¢ € C : (¥ = 1}), G be an



abelian group and let q be a quadratic form on G. The Heisenberg group H(G,q) is the

set vy X G X G together with the group law

(Coo w1, 91)(Cos T2, y2) = (Crloexp(2mib(z1, y2)), T1 + T2, Y1 + Y2).

Example 1.1.8. Letp > 2, G = Z/pZ and q be the quadratic form defined by x — 2 /p.

Then H, (or H(G,q)) has the group law

(Gt w1, 91)(Cos T2, y2) = (C1Co exp(2mi(221y2/p), 1 + T2, Y1 + o)

= (C1C2C§“y2,x1 + 22,91 + Y2).
1.1.3 The Heisenberg group H,
Let p be a prime. Let C), be the cyclic group of order p. Let
K, = C, x C,.

This is a two dimensional [F,-vector space, so that Aut(K,) = GLy(F,). Let

v,={CeC:(?=1}

be set of the p-th roots of unity. Define the group H, to be the set v, x K, with product

(A1, 21, 91) (Mo, T2, 42) = (M AGE™Y2, 210 + 22, Y1 + 4).

1.1.4 Important facts about H,
We will do the following:
1) Prove H, is a group.
2) Prove
a) H, is a non-trivial group extension 1 — v, — H, — K, — 0.
b) v, = Z(H,) (i.e., H, is a central extension).
c) calculate the commutator in H,, of two elements of the form (1, z,7;) and

(17 T2, yQ)



3) Find the conjugacy classes of H,,.

4) Compute the character table of H, by starting with the known subgroup and
induce characters from those. Also, we consider quotients and inflate characters
from those.

5) Determine the p-dimensional representations.

(1): H, is a group
We now show that H, is a group.
Well-defined: It is clear that the group operation is well-defined. Let (A1, z1,y1) =

(A2, T2, y2). Then for any other element of H,, (A, z,y), we have
(A, 21, y1) (A 2, y) = (AIAC]?xlya T+ 2,41 +Y)
and
(A2, w2, y2) (N, 2, y) = O\ﬁ\(ﬁmy; Ty +T,Y2 + )
implying
(/\MCEW, T+ T,y +yY) = (AQAC]?W, Ty + 2,92 + Y).
Even though H, is not commutative, we still see that
()\a Z, y)()‘la L1, yl) = (/\)‘lclgxylwx + T,y + yl)
and
(A, 2, y) (Ao, 2o, y2) = (/\)\QC?J:W» T+ T, Y + o)
imply
(Al)\C;?xly; T+ w,y +y) = ()\2>\C512y7 Ty + 2, + ).

Closure: The group operation, product, is well-defined. We need to show that the



set is closed under the operation. For A, A2 € v, and x4, 22,11, y2 € C,, we need

to show )\1)\2@?“3/2 € Up.

>\1)\2C§x1y2 =y C;,’ . gj‘“y? for some a,b € C,

— ga+b+2$1 Y2
P

= (, where ¢ = a + b+ 211y,

€ Vp,

Under modulo addition, C), is closed, so 21 + 22 € C, and y; +y» € C). So the set
under the operation, product, is closed.

Associativity: Straightforward calculations show that

(>\17 Xy, yl)[()\Qu X2, ?J2)(>\37 I3, 93)] - <>\17 Iy, yl)[()\Q)\3C§$2y37 o + x3, Y2 + y3)]

= ()\1)\2)\39?@@13 <2:c1 (y2+ys) ’

1+ o + 23,91 + Yo + Y3)

. 2(z2y3+T1y2+T1Y3)
— ()‘1)‘2)‘3@) 2ys FT1Y2+T1Y3)
Ty 4 22 + X3, Y1 + Y2 + Y3)

and

(A1, 21, 91) (A2, T2, 42)] (A3, 73, y3) = (/\1/\2@3“‘1/2,%1 + 29, 1 + y2)] (A3, 73, Y3)

= (AhAg(rm g2 toa,

T+ o + 23,91 + Yo + Y3)

= (/\1Az)\gci(ﬂfly2+r1y3+x2y3) :

1+ o + 23,91 + Yo + Y3)

= ()\1)\2)\3<§(I2y3+x1y2+x1y3) :

1+ 2o + 23,91 + Yo + y3)



are equal. Therefore associativity holds.

Identity: In order for
()‘17 L1, yl)(a7 b7 C) = (Alaggmlc7 1+ b7 n + C)
= ()\1,55173/1)

to be true, a = 1, b = ¢ = 0. So the identity is (1,0,0). Verification is straightfor-

ward.

(1,0,0)(A, 1, 91) = (1- A - 0,04 21,04 y1) = (A, 21, 1),

(A 21, y1)(1,0,0) = (A - 1+ 2y + 0,51 4 0) = (Ar, 21, 1)
Inverses: For
(A1, 21, 91) (Mg, 2, 92) = (M AaG™¥2, 2 + 22,41 + y2) = (1,0,0),
we require r; = —xy, Y1 = —Y2, and )\1/\2(’5"’“?”2 =1.50,1= Al)\gfg’“y? implies
Ay = )\1—1<p—2m1y2 _ )\1—1sz1‘7;1‘

Therefore, the inverse of (A1, z1,41) is ()\l_lgleyl, —x1, —Y1). Verification is straight-

forward.

(A, 21, 1) (AT, =2y, —i) = (Al'Aflfgwlyl'ngl(_yl),$1—$1,y1—y1) = (1,0,0).

ATTE™, —ay, —y) (A, @1, 1) = AT GO W) gy b, —y + )

= (1,0,0).

So, H, is a group under the product operation.
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(2): Properties of H,

a) A TRIVIAL group extension is an extension
l-K—-G—H—1
that is equivalent to the extension
l-=K—-KxH—H-—1.

Since we want a non-trivial one, we could consider the semi-direct product of
vy, Xy Kp. H, is isomorphic to a semidirect product of v, and K, if and only if

and a group homomorphism v : K}, — H, such that a0y = 1k,.

b K, — Aut(y) is given by o(k) = g, where ¢y(n) = B~ (y(k)B(n)y(h ).
It’s easier to directly construct the map H, — K,. We use the “coordinates”
given, compute its kernel, and then show that the exact sequence we obtain is
a non-trivial central extension. We need to kill off the first “coordinate” of H,,.

That’s readily done by a projection. That is, for an element (A, z,y) € Hp,
(Aaxay) = (I’y) G KP'

The projection is a homomorphism. a(1,0,0) = (0, 0) so it sends the identity to the
identity. Second, we need to verify that a(hy - hy) = a(h1) + a(hy) for hy, hy € Hy,.

Let hl = ()\1,%1,y1),h2 = ()\Q,LCQ,yQ). Then
hihy = (MAG™Y2, 21 + 22, 41 + Ya).

So a(hihg) = (21 + x2,y1 + y2). Since 04()\1,9317?41) = (5’317?/1) and 04()\2,9327?42) =



c)

11

(x2,y2), we have

CY(/\1,I17y1) + Oé(/\2,$2, 3/2) = ($1 + x9, 91 + 92)-

Hence it satisfies the homomorphic property. Since v, and K, are both commuta-
tive, the trivial extension v x K, would also be commutative. To see that H, is
a non-trivial extension, we need to verify that the product operation in H, is not
commutative.

Let hl = ()\1,.131,y1),h2 = ()\2,.’132,3/2). Then

hihy = (M2 2, 21 + 29, 41 + 1)

and

haohy = ()\2)\1@?“%, T1+ T2, Y1 + Y2).

So hihy # hahy if 21y2 # x2y;. Since K, and v, are both abelian, their direct
product is abelian. The given product is not abelian so the extension is not trivial.
An extension is called a central extension if the subgroup v, lies in the center
of H,. To show that v, is in the center of H,, we need to find elements that
commute with all elements of H,. Z(H,) is not empty as it contains the identity.

Let z = (a,b,c) € Z(H,). Let h = (\,z,y) € H,. Then zh = hz so
(a/\Cp?by, b+z,c+y) = (Aa{im, x+by+c).

This implies that for fixed b, c, Cgby = CS“ for all z,y € C,. Hence, b = ¢ = 0 and
Z(H,) = v,. We have that H, is a central extension.
Let hy = (1,z1,41), ha = (1,29, y2). The commutator of hy, hy is given by

[h1, ho] = hythy thihg

= (11O —y, =) - (171 G722, =20, =) - (1, 21,01) - (1, 2, 4a)
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— (C2961yl-i-296’2242<'2(—961)(—y2)7 —Ty — T, —Yp — y2)
: (1 -1 CQIlyzaxl + x2,Y1 + y?)

(¢Frwt2mana 2 g — gy —yy — yo) - (CP2 2y + Do, Y1 + Ya)

(C2x1y1+2x2y2+2x1y2 Cmyz C*Q(w1+12)(y1+y2) : O, O)

— (Cleyl+2x2y2+2x1y2+2x1y2C*Q(w1y1+$1y2+$2y1+$2y2) 0 O)
) Y

— (C2£E1y2<*2(9€2y1)’ 0, 0)

— (<2($1y2*$2yl)7 0,0).

(3): Conjugacy classes of H,
Lets find the conjugate of an arbitrary element of H,. For (A, z,y), (a,b,c) € H,, we

have

<)‘7 L, y)il = (Aflcixga -, _y)

and

()‘7 €, y)il(aa ba C)()‘a €, 3/) = (Ailégazya -, —3/> (aa b: C) ()‘7 €, y)
= (ATl M, —x + b, —y + o) (A, 2, y)
_ (Aflcp?xyGC;QzC)\Cg(f:erb)y’ b, C)

= (a/C;(by*xc)j b7 C)

Now lets consider some cases.
Case 1. Fix a and let b = ¢ = 0. Then (a,0,0) is conjugate to only itself as it
should since it is in the center of H,.
Case 2. Fix a, ¢, ¢ # 0 and take b = 0. Then (a, 0, ¢) is conjugate to (a(,?*,0,c).

The centralizer of (a, 0, ¢) consists of all elements of the form (A, 0,y) since

(@,0,¢)(X,0,y) = (@A"Y, 04 0,c+y) = (aX,0,c+y)
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and
(X,0,9)(a,0,¢) = (Aal2", 0+ 0,y + ¢) = (a), 0,y + c).

So the centralizer of (a, 0, c) contains p* elements. By the orbit-stabilizer theorem,
there are p elements in the orbit of (a,0,¢) (since |H,| = p*,|Ca0,] = p*). The

conjugacy class of (a,0,c) is

{(an_O'QC, 0,¢), (an_%, 0,¢), (an_4°, 0,¢), (a(’p_&, 0,¢),..., (aC;Q(p_l)C, 0,0)}

Sincea:gj for 0 <k <p—1, we have

{(¢5.0,0),(¢F2¢,0,¢),(¢57",0,¢),(¢F,0,¢),..., (2P, 0,0)}

Or in simplified form

{(1,0,¢), (¢, 0,0),(¢2,0,¢),..., (&, 0,¢).

Fix a, b, b # 0 and take ¢ = 0. Then (a,b,0) is conjugate to (a2, b,0).
Case 3. Fix a, b, b # 0 and take ¢ = 0. The centralizer of (a,b,0) consists of all

elements of the form (A, z,0) since

(a,b,0)(A,x,0) = (aA"°,b+ 2,0 + 0) = (aX, b+ z,0)
and

(X, 2,0)(a,b,0) = (A\aC>*°,x + b,0 + 0) = (aX, b+ x,0).

So the centralizer of (a,b,0) contains p* elements. By the orbit-stabilizer theorem,
there are p elements in the orbit of (a,b,0) (since |Hy,| = p?, [Clap0)| = p*). The

conjugacy class of (a,b,0) is

{(aC2®,b,0), (a2, b,0), (aC2®,b,0), (a2, b,0),..., (al2P D, 0,0)}.
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Sincea:C]f for 0 < k <p-—1, we have
{( Zlf’b7 0)’ (C§+2b7 b’ O)’ (§5+4b7 07 b)? (C§+6b7 b? 0)7 et (C§+2(p_1)b7 b? 0)}'
Or in simplified form

{(1,5,0), (¢, 5,0),(¢2,b,0),..., (5", b,0).

Case 4. Now for the last case. Fix a,b, ¢ such that b # 0 and ¢ # 0. Then (a, b, ¢)
is conjugate to (a(2™ " b, c). The centralizer of (a,b,c) consists of all elements

of the form (A, z,y) where only by = cx mod p:

(a,b,c)(\, z,y) = (a/\Ciby, b+ z,c+y)
and

(A, z,y)(a,b,c) = (Aa(j“, x+by+c).

Once 7 is chosen, y’s value is determined. This implies there are p? elements in the
centralizer: p values for A and p values for z. So the size of the orbit is p.
A partitioning of H, that “agrees” with the conjugacy classes. There are p(p—1) elements
of the form (a, 0, ¢) that are not in the center of H,. There are p(p — 1) elements of the
form (a,b,0) that are not in the center of H,. There are p elements of the form (a,0,0)
that comprise the center of H,. There are p(p—1)(p—1) of the form (a, b, ¢) where b # 0

and ¢ # 0. So,
pp— D) +pp—1D)+p+plp—1)(p—1)=2p"—2p+p+p(p>—2p+1)
=20 +2p—p+p*—2p"+p
:‘Hp‘-

There are p conjugacy classes in the center of size 1. There are p — 1 conjugacy classes
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of the form (a,b,0), b # 0; one for each b. There are p — 1 conjugacy classes of the form
(a,0,c¢), ¢ # 0, one for each c¢. There are (p — 1)(p — 1) conjugacy classes of the form
(a,b,c), b # 0 and ¢ # 0. We can further simplify to stating that there are p conjugacy
classes in the center of size 1 and p? — 1 conjugacy classes of size p with the form (a, b, c),
with a € vy, b,c € C, with b # 0 AND ¢ # 0. We will use this simplification in the
construction of the character table.
(4): The char. table of H, obtained by induction of the modulation subgroup
The subgroup of K, that is generated by (x,0) where x € F, is the called the
modulation subgroup. To compute the character table for H,, we need to determine the
number of conjugacy classes. We recall that the number of irreducible representations of
H, (up to isomorphism) is equal to the number of conjugacy classes of H,. The number

of conjugacy classes for H), is given by
p+-D)+@-D+@-Dp-1)=p+2p-2+p"-2p+1=p"+p—1.

So our character table has p* + p — 1 rows and columns.

We computed the commutator earlier and now we use it with the fact that the degree
1 representations of H), are in bijective correspondence with the degree 1 representations
of the abelian group H,/H, = H,/[H,, Hy]. That gives us H,/[H,, H,| = C, x C,.
C, x C, is abelian with order p*. This implies there are p? distinct one dimensional
representations of H,. Let ¢; and ¢, be one-dimensional characters of C,,. Then the one

dimensional character of an element (A, z,y) of H, is given by

5()‘7 Z, y) - le (l’)¢2(y)

One dimensional representations are irreducible and we have p? of them. That leaves
p — 1 of them to find. Using the fact that the sums of squares of the dimensions of

the irreducible representations equals the order of the group and that we obtained p?
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representations of dimension 1, we have
|Hy| = p* =p* —p* =p*(p - 1).

So we have p — 1 representations of degree p. We consider a subgroup of H,, of index p:
A={(\z,0),\ €vy,x e’}

A is abelian, has order p* and A = 2. (it is clear that v, = C), = F,). Given characters

¢1 and ¢, of IF,,, we fix a one-dimensional character of A and call it v. 1 is defined as

(X, 2,0) = ¢1(2)¢2(A).

We induce the representation of the subgroup A to obtain a p-dimensional representation

p = TInd}" ().

Now we need to show that this representation is irreducible. Let B be the set of repre-

sentatives of H,/A. So

B={(1,0,y),y € F,}.

The character of p is given by

Xﬂ((avbv C)) = Z w(<1’ O7y) ’ <a7bv C) ’ (1a07y)_1)'
yel,
(1,0,) - (a,b,c) - (1,0,y)" € A

Since

(170>y)(a7 b? c)(Loay)il = (17073/)(&71)’ c)<1707 _y)
= (aC®",0+b,c+y)(1,0,—y)
= (CL, ba c+ Z/)(L 07 _y)

= (aC72by7 b7 C)’
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if ¢ # 0 then x,((a,b,c)) = 0. This implies (for ¢ = 0)

Xp((a7 b’ C)) = Z ¢((1’an) . (a’ b7 C) : (170ay)_1)
yel,
(1,0,) - (a,b,c) - (1,0,y)"t € A

= > Y((aC™, b, ¢))
y ek,
(aC™",b,c) € A

= > ((a,0,0) (c=0)

yel,

= > di(b)ga(ac™™)
yel,

=oi(b) > dalaC™).
yel,

If b # 0 and ¢ = 1, we have x,(a,b,0) = pp1(b). If b # 0, and ¢, is not the trivial
character, then a{ =" runs through all of the elements of F,. This implies x,(a,b,0) = 0.
If b = 0, then our element is of the form (a,0,0) and that lies in the center of H,. So,
Xp(a,0,0) = ¢1(0) - p- pa(a) = ppa(a). Consider the following grouping of the conjugacy
classes:

(1) p conjugacy classes of size 1 in the center.

(2) p— 1 conjugacy classes of size p of the form (x,0,¢) with ¢ # 0.

(3) p(p —1) = p* — p classes of size p of the form (x,b,c) with b # 0.

We have two cases to check for the irreducibility of x,: ¢ = 1 and ¢o # 1. We

compute the inner product to determine irreducibility:
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Case ¢ =1 :

] 20 00 = 5 08 0= 1) (- )P + (07 =) -p- 0]

tEH
]%[p + (p* = p)p* + 0]
]%[p +p' = p’]
1
:Ep4
=p
41
Case ¢g # 1 :
1
|H| > Xt Zg[p-[p-cha(@)l]“rp(p—1)-02+(p —p)-p- 07
teH,

== R e
SN
hGSI\')
=

—
=

w

[E—

So only for the case ¢o # 1, x, is irreducible.

p¢2(a) (av b> C) S Z(Hp>

otherwise.

Xp((a,b,¢)) =

Recalling that the one dimensional character ¢ of H, was determined to be &(a,b,c) =
#1(b)pa(c) where ¢y and ¢y are the one-dimensional characters of F,,, we can now sum-

marize the character table for H:

(5): p-dim. representation p from induction of modulation subgroup
Fix a character ¢,. Then there exists a unique p-dimensional irreducible charac-

ter representation p : H, — GL, corresponding to ¢ (according to the Table |1.1.1]).
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(a,0,0) | (a,b,c), (b,c) # (0,0)
Trivial 1 1
§ 1 ¢1(b)da(c)
Xp | poa(a) 0

Table 1.1.1: Character Table for H,

We write an explicit model for this representation p. That is, given the generators

(¢,0,0),(1,1,0),(1,0,1) of H,, we find the matrices for each generator g. We do this using

the standard procedure. Recall the set of representatives of H,/A as B = {(1,0,y),y €

F,}. Also, we note that

(17 07 yl)_l(a7 b? C)(l’ 07 y2) = (17 Oa _y1>(a’7 b’ C)(L 07 y2)

= (1 “a- C;.O.Cv 0+0b,c— yl)(L 0, yQ)

Then ¢(a¢*?,b,c —y1 +y2) =0if c —y1 + 42 # 0. Let ;

= (a,b,c —y1)(1,0,2)

= (aCQbyz’ b7 C—U + 92)

is, v; =i, 1 € F,,. Then for g = (a,b,c) € H),

p((a,b,¢)) =

¥ (yo '9y1)

¥ (yi tgun)

¥ (4o ' g0)

¥ (yy 'gyo)

U (y, gvo) ¥ (v, igm)

Y(al®?,b,c—0+0)
Y(a¢®0,b,c—1+0)

P(ag®,b,c— (p—1) +0)

U (Yo 9Yp-1)

¥ (Y1 gyp—1)

U (Y2 19Yp—1)

Y(ag? -
(ag?

@D(GCZb(p_l)a b7 c— (p - 1) + (p - 1))

(1,0,v;) for v; € F,,. That

1),b7C—0+(p_1)

1)7b7c_1+(p_1))




Y(a,b,c)
Y(a,b,c—1)

W(a,b,c)
¢(@> ba ¢ — 1)

Since ¥(a, b,c) = 0 for ¢ # 0,

p((¢,0,0))

_w(aab7c_(p_1))

W(a,b,c)
w(aa ba Cc— 1)

¥(¢,0,0)
¢(<a 07 0— 1)

b(a,bc=(p—1)) -

- P(a¢®PV be—14 (p—1))

w(a’ab7c_(p_1))

- Pl be =14 (p - 1))

20

P(al®P=V b c + (p — 1))
@Zj(ac%(pil)a b7 c—1+ (p - 1))

V(aC®P Vb e—(p—1)+ (p+1)

Y(a¢®®=V b+ (p—1))

(a1, b, c)

Y(a¢®®=V b+ (p—1))

(a1, b, c)

¢(C7071) w<C7Oa (p_ 1))
1/)(67070) ¢(<7070_1+<p_1>>

¢(C7070_(p_1)> ¢(C70>_(p_1)+1) ¢(C7070)




¥(¢,0,0) 0
0 0 - 9(C.0,0))
$20¢) 0 0
0 #() - 0
00 60

Tr<p<C7 Oa O)) = p¢2(§) as required'

:0(<17 L, 0)) =

Y(a,b,c)
Y(a,b,c—1)

¢(a>b,0—(p—1))

¥(1,1,0)
w(la 170 - 1)

(1, 1L,0=(p=1)) -

21

$ac®D bt (p—1)) |

' w(aéﬂb(pfl)’ b7 c—1+ (p - 1))

P(aC®P, b, )

(1P VL0 +p — 1)

: ¢(1<2(p—1)7 17 0—1+ (p - 1))

Y(1¢2071,1,0)
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¢(1a170) w(c@(p—l)’l’p_ 1)
77Z)(1717_1) @Z)(C?(p*l)?l’p_ 1)

= P(1,1,-2) WP 1, p— 1)

(L1, =(p=1) - (L (p-1)~(p-1)

%0(1,1,0) 0 0 0
0 ¥(¢?,1,0) 0 0
|0 0 0 ¢<C2(p—1)’1,0)_
-cbz(l) 0 0 0 0
0 ¢2(¢*) 0 0 0
p((1,1,0))=| 0 0 ¢o(¢h) -+~ 0 0
i 0 0 0 0 ¢2(<2(p—1))_
10 0 0 0
0 ¢2 0 0 0
=10 0 ¢* 0 0
0 0 0 --- 0 ¢

Tr(p(1,1,0)) = EZ;B D2 (C*") = ZZ;E ¢ = 0 is as required.



p((l, 0, 1)) =

P((L 0, 1)) =

Y(a,b,c)
W(a,b,c—1)

¥(1,0,1)
¥(1,0,1—1)

23

' ¢(ac2b(p71)7 b? c—1+ (p - 1))

_¢(a,b,c—(p—1))

- (AN 0,0 - 14 (p - 1))

(1,01 =(p—-1)) -

(1,0,1)
#(1,0,0)

- (L0 1 =1+ (p—1))

P01 (p=1) -

¥(1,0,1)
¥(1,0,0)

$(ac® D bey (p—1)) |

P(aC®P, b, c)

B 0.1+ (p—1)) |

P(1¢*0P1,0,1)

SO+ (p—1) |

¥(1,0,1)
¥(1,0,2) ¥(1,0,0)

7vb(17071) ¢(1707(p_ 1))

¢<1’071_(p_1)) 1/)(17072_(]9_1)) ¢<1’O71)




24

0 0 0 0 (1)
$(1) 0 0 0 0
=1 0 (1) 0 0 0
0 0 0 -+ ¢(1) 0 |
000 -0 1]

100 0 0
=10 10 0 0
000 -~ 10

Tr(p(1,0,1)) = 0 is as required.
1.1.5 Summary

A “natural character’ of v, is defined to be the inclusion of v, into C that corresponds
to ¢o = 1, the identity. So we proved for each prime p, there exists a unique (up to
isomorphism) irreducible representation of H, such that v, acts by its natural character.
This is the so-called “Stone-von-Neumann-Mackey Theorem” [12]:
Theorem 1.1.9 (Mackey-Stone-von Neumann). For fized non-trivial (unitary) central
character, up to isomorphism there is a unique irreducible (unitary) representation of
the Heisenberg group with that central character. Further, any (unitary) representation
with that central character is a multiple of that irreducible.

We have proven the following theorem.
Theorem 1.1.10. All irreducible representations of H, can be realized over the ring

ZG].
Since H, is solvable of exponent p, this falls under the integrality cited by Riese[26]
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Thm 1.], so the result is not new, but we provided explicit models for all the represen-
tations.
1.1.6 Examples for the rep. induced by the translation subgroup

To make things even more explicit, we take p = 2 and p = 3 and write down the
matrices of the 2,3- dimensional representations with ¢, = 1.
Two Dimensional Representations with ¢, =1

Take p = 2. |Hs| = 8. (; = —1. The generators are (—1,0,0), (1,1,0), are (1,0, 1).

The eight elements of Hy and their representations are

100y 20D 0 1P 0
0 é(-1)| |01

(1,0,1) — 0 @) ot
¢2(1) 0 10

L) () 0 | |10

(=1,0,0)(—1,0,0) = ((—=1)(=1)¢Z°°. 0+ 0,0 4+ 0) = (1,0,0)

(1,0,0) all) 010

0 (1) 0 1
(1,0,1)(1,1,0) = (1)()E*° 0+ 1,1 4+0) = (1,1,1)

0 1| [1 0 0 1
(1,1,1) =
1 0|0 1 10

(—=1,0,0)(1,1,0) = ((—=1)(1)¢*°°,0 4+ 1,04+ 0) = (—1,1,0)
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<_17 Oa O)(L 07 1) = ((_1)<1)<2017 0+ 07 0+ 1) = (_17 Oa 1)
1 0] 1]0 1 0 1
(—1,0,1) — =
0 1 (1 O 10

and

<_17 L, O)(L 07 ]-) = <<_1)<1)<2117 1+ 07 0+ 1) = <_17 L, 1)
1 0[]0 1 01
(-1,1,1) — =
0 1{ |1 0 10

Table [L1.2] summarizes the results.

Element Representation
(1,0,0) (—1,0,0) (1 0]
(1,1,0) (—1,1,0) 0 1]
(-1,1,1) (-1,0,1) 0 1]
(1,1,1)  (1,0,1) 1 0]

Table 1.1.2: Table of representations for Hy with ¢ =1

Three Dimensional Representations with ¢, = 1
Take p = 3. |Hs| = 27. (3 = exp(27i/3) = 1(—1 + /3). The generators are ((3,0,0),

(1,1,0), are (1,0,1). The 27 elements of Hz and their representations with ¢o = 1:



27

G 00 20 0 100
(6,0,00= 10 ¢ 0], (G.0,00=1]0 ¢ 0], ((,0,00—= 10 1 0f,
0 0 ¢ 0 0 (2 00 1
00 1 10 0 1 0 0
(Lo,1) = |1 0 0], (LL,O)= 0 ¢ ofl=10 ¢ 0,
010 00 ¢ 0 0 G

(63:0,0)(1,0,1) = (G(1)¢5™,0,1) = (¢3,0,1)
¢ 0 0|00 1 0 0 (s
(¢:0,1) =~ 10 ¢ 0|1 00[=1|G 0 0],
0 0 (| |01 0 0 ¢ 0

(€3,0,1)(1,0,1) = (GG, 04+0,1+1) = ((3,0,2)
0 0 G| |00 1 0 ¢ 0
(€3:0,2) =~ [¢s 0 0|1 0 0[=1]0 0 (-
0 ¢ 0|0 10 G 00

<C32>070)(1707 1) = (Cg(l)cglo.la()? 1) = (C??v()’ 1)
C:’? 0 0 0 0 1 0 0 C??
(G.0,)~ |0 ¢ o|l|1t0oo0l=1{¢& 0 of,
0 0 Cg 010 0 Cg 0

(<37070>(17 170) = <<3<1)<§.0'07 170) - <<37 170)
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GG 0 01 0 0 GG 00

(G5,,0) =10 ¢ o]0 ¢ ol=1]01 0},
3

0 0 G||0 0 & 00 ¢

((3270’0)(17 170) = (C32(1)C§~0-07 170) = (<327 170)

2 0 olf1 o0 o0 2.0 0
(¢,1,00—= |0 ¢ o|]o ¢ o|l=]0 ¢ o,
00 |0 o0 g 0 0 1

(1,0,1)(G3,1,0) = ()G - G5, 1, 1) = (G, 1, 1)

00 1| |G 0 0 00 ¢
(G,L1) =110 0[]0 1 0|=1|G 0 0],
0100 0 ¢ 01 0

(170’ 1)(1707 1) = ((1)<1)C§.0.1>07 2) = (17072)

00 1[0 0 1 010
(1,0,2)—~ |1 0 ol [1 0 0o|l=10 0 1/,
010010 100

(1,1,0)(1,1,0) = (1)(1)¢5"?,2,0) = (1,2,0)
10 0|1 0 0 1 0 0
(L,2,0)=f0o ¢ o|l|0o ¢ o|=1]0 ¢ 0f,
00 G| [0 0 ¢ 0 0 ¢2

(17 0, 1)(17 L, 0) = ((1)(1)@30.07 L, 1) = (1’ L, 1)
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00 1][1 0 0 0 0 G
(LLD)= 110 0[|0 & Oo|=1|1 0 0f,
01 0[]0 0 ¢ 0¢ o

(<37 07 1)(17 17 ]') = (<3(1)<§.0'17 0+ ]'7 1+ ]') - <C37 17 2)

0 0 Gllo o0 ¢ 01 0
((1L,2)= ¢ 0 0|1 0 0|=1]0 0 ¢,

(1,0,2)(1,1,0) = ((1)(1)¢*°° 1,2) = (1,1,2)

0101 0 0 0¢ 0
(LL,2)= 10 0 1/ |0 ¢ 0o|=1]0 0 (>
1 00][0 0 ¢ 1 0 0

(1707 1)(17270) = ((D(l)Cg.O.OvQ? 1) = (17 2, 1)

00 1|1 0 0 00 ¢
(L,2,)—= 11 0 0| |0 ¢ Ol=1|1 0 0,
01000 ¢ 0 ¢ 0

(1,1,2)(1,1,0) = ((1)(1)¢**,2,2) = (1,2,2)

0¢2 o1 o o0 0 ¢ 0
(L2,2)—= (0o 0 ¢G||o ¢& o|l=1]0 0 ¢,
10 0[]0 0 ¢ 10 0

(C?n ]-a O)(C37 17 0) = (CS . CS ' C{?l.oﬁ 1+ 17 0) = (C{?? 27 0)
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G 0 0f |G 0 0 ¢G 00
(¢3,2,00—~ 10 1 0|0 1 0l=1]0 1 0],
00 ¢lloogl |oog

(C3707 1)((3707 1) = (C3 : C3 . C{%O.IJO + 07 I+ 1) = (C§707 2)

0 0 G| |0 0 G 0 ¢G 0
(G,0,2)= ¢ 0 0| |z 0 ofl=|0 0 ¢,
0 G 0110 ¢G O G 0 0

<C§>270)(C3707 1) = (C?? ’ C3 : C§.2.172 + 070 + 1) = (<§727 1)

20 o0l]lo o0 ¢ 0 0 1
@.2,0)—=10 1 0|l 0 o|l=|ag 0 of,
0 0 G||0 G O 0 ¢ O

(duplicate and it agrees with the previous result: )

(<37 07 1)(17 17 O) = <<3<1>g§07 0+ 17 1+ 1) = (<37 17 1)

0 0 G| |1 0 0 0 0 ¢
(GL1) = ¢ 0 00 ¢ 0l=]¢G 0 0f,
0 ¢ 0|0 0 & 01 0

(g??a 17 O)(C& 17 1) = (C?? ' C3 ' C??.l.lv 1+ 17 0+ 1) = <C37 27 1)

¢ 0 0|]0 0 ¢ 0 0 G
(3:2,1) =0 ¢ 0l |¢G 0 ol=1¢2 0 0f-
3
0 0 1|0 1 0 0 1 0

(C?n 27 1)(<3a Oa 2) = (<3 ' <3 ' 'C§.2.27 2+ Oa I+ 2) = (C37 27 0)
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0 0 G| |0 G 0 ¢G 00
((3,2,0)={¢2 0 1|]0 0 &|=1]0 1 0
01 0[|&G 0 0 00 G

(<37 07 1)(C37 ]-7 ]-) = (C3 : C3 : C§.0'17 0+ ]" 1+ 1) = (C??’ 17 2)

0 0 G| |0 0 ¢ 0 ¢ 0
(G.L2)—~ |G 0 o]l |g 0 o|l=0 01
0 G 0|0 1 0 2.0 0

(C37 07 1)<C37 27 1) = (<3 : C?) : C§.0.17 0 + 27 1 + 1) = (C??? 27 2)

0 0 ¢ 0 0 (3 0 ¢3 0
(G:22) = 1¢ 0 0| |G 0 o0l=|00 ¢
0 ¢3 0 0 1 0 1 0 O

(C?n 07 1)(C37 17 O) = (C?) ' CB ' C§-0.0> 0+ 17 1+ O) = (C??? 17 1)

0 0 G| |¢G 0 0 0 0 1
(G L) =l o ofllo 1 ol=]c 0 0
0 ¢ 0|0 0 ¢ 0 ¢ 0

and

(<37 17 1)(C§7 17 1) = (C?) : C?? ’ <§.1'17 1 + 17 1 + ]') = <<37 27 2)

0 0 ¢|1]0 01 0 1 0

(:22)= |G 0 0] | 0 0f=|0 0 G-

01 0[]0 ¢ 0 20 o0

The following table, Table summarizes the representations.

?
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GG 0 0 0 0 G 0 G 0
(G,0,0) = 10 ¢ 0 (G,0,1) = |¢s 00 (G3,0,2) = 10 0 (3
0 0 G 0 ¢ 0 G 0 0
G 00 00 ¢ 01 0
((,1,00—= 0 1 0 (G, 1L,1) = [¢ 0 0 (G, 1,2) =0 0 ¢
00 ¢ 01 0 GG 00
20 0 0 0 G 01 0
(¢3,2,0) =10 1 0 (G,2,1) = |2 0 0 ((3,2,2) = |0 0 &
0 0 ¢ 0 1 0 20 0
2.0 0 0 0 ¢ 0 ¢ 0
(0,00~ 10 ¢ of |(G01)=]|¢ 0o of [(G02)=]0 0 ¢
0 0 ¢ 0 ¢ 0 G 0 0
20 0 0 0 1 0 ¢ 0
(¢3,1,0) =0 ¢ o | (GL)= |2 0 o | (G L2)— |0 0 1
0 0 1 0 ¢ 0 20 0
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20 0 0 0 1 G 0
(¢3,2,00—~ |0 1 0 (2,2,1)—~ |¢ 0 o] | (¢3,2,2)— 0 ¢2
0 0 ( 0 ¢ o0 0 0
100 00 1 10
(1,0,0) =10 1 0 (1,0,1) = |1 0 0 (1,0,2) = 0 1
001 010 0 0
1 0 0 0 0 G 2 0
(1,1,0) — |1 ¢ 0 (LL,1)—~ 1|1 0 0 (1,1,2) — 0 G
00 & 0 ¢ 0 0 0
1 0 0 00 ¢ G 0
(1,2,0) = [0 ¢ 0 (L2,)= |1 0 0 (1,2,2) 0 ¢
00 ¢ 0 ¢s O 0 0

Table 1.1.3: Table of representations for Hs with ¢ = 1.
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1.2 Automorphism group of H,
What is the automorphism group of H,? Let Autgzm(Hp) denote the group of auto-

morphisms of H,, that fix the center, v, of H,. The claim is that for ¢/ € Aut(H,),

Aut(H,) — SLy(Z/pZ)
¢ ——— ¢ e[t ]]

Given

v, C H, —— GL,(C)

Cp 0

Vp 2 Gp ?

where p, = C* and ¢, — (,, we have

H, —— H, —’— GL,(C) .

? := poo is an irreducible representation of dimension p such that v, acts naturally.

p
This implies p” = p. Call this isomorphism W(o) € PGL,(C). Recall that PGL(C) =
GL(C)/Z(GL(C)). By Schur’s Lemma, W(o)p” = pW(o). We would like to prove the

following: o — W(o) gives a representation
Aut}¥™(H,) = SLy(Z/pZ) — PGL,(C).

In order to do so, we will require additional definitions and concepts.
Symplectic Group

From Wikipedia[41] we have the following definitions and facts regarding the sym-
plectic group.

Definition 1.2.1. A symplectic matriz is a 2n X 2n matriz M with entries from
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a field F that satisfies the condition MTQM = ., where Q is a non-singular, skew-

symmetric matriz. Typically, €2 is chosen to be the block matrix

where I, is the n x n identity matriz. The matriz 0 has determinant +1 and Q= =
OF = —Q. Every symplectic matriz has determinant +1.

Definition 1.2.2. A symplectic vector space vector space over a field F' equipped
with a symplectic bilinear form. A symplectic bilinear form is a mappingw : VXV —
F' that s

e bilinear

e alternating: w(v,v) = 0 holds for allv € V, and

e nondegenerate: w(u,v) =0 for allv € V implies that u = 0.

For fields whose characteristic is not 2, alternation is equivalent to skew-symmetric.
The abstract analog of a symplectic matrix is a symplectic transformation of a
symplectic vector space. A symplectic transformation is then a linear transformation
L :V — V which preserves w: w(Lu, Lv) = w(u,v).

The symplectic group is a classical group defined as the set of transformations of
a 2n-dimensional vector space over the field ' which preserve a non-degenerate skew-
symmetric bilinear form. Such a vector space is called a symplectic vector space, and
the symplectic group of an abstract symplectic vector space V' is denoted Sp(V'). Upon
fixing a basis for V', the symplectic group becomes the group of symplectic 2n x 2n
matrices with entries in F' under the operation of matrix multiplication.

The symplectic group Sp(2,F,) is isomorphic to SLy(FF,). To show this we use the

matrix form of the symplectic group with n = 1. Then for matrices M with entries from



Figure 1.2.1: Commutative diagram for the construction of Aut(H,)

F,, we solve the equation MTQM = Q with Q = [ % {] and letting M = [ %], we have

MTOM a ¢ 0 1| |a b a c| | ¢ d

b df |-1 0| |c¢ d b d| |—a -

ac — ac ad— be 0 ad — be

bc —ad bd — bd be — ad 0

=0

0 1

-1 0
This implies that ad — bc = 1. So det M = 1 and that implies M € SLy(FF,) and every
element of SLy(IF,) satisfies the equation. So SLo(F,) = Sp(2,F,).
1.2.1 Constructing Aut(H,)
We rewrite the material from [II] to construct the Aut(H,). Some notational refer-
ence for [I1]: Gy, is v, § is p and H(0) is H,. We denote by Aut,,(H,) the group of
automorphisms ¢ of H, inducing the identity on v, (that fix 1,), that is, the group of

automorphisms ¢ fitting in a diagram, Figure [1.2.1] [11] of the form
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The commutator pairing e, : K, x K, — v, sends (x1,%2) — [21,22]. The com-
mutator pairing is a map that does not appear to be mentioned outside of Weil
Representations. The commutativity of the diagram shows that the induced automor-
phism ¢ is symplectic with respect to the commutator pairing. For all z1,zs € K,,
ep(¥(21),¥(29)) = e,(1, 75). Denote by Sp(K,) the group of symplectic automorphisms
of K,. In order to study the possible extensions of )€ Sp(K}) to an element of Aut,, (H))
it is convenient to introduce the following definition [11], Def. 13]:

Definition 1.2.3. [I1, Def. 13] Let ¢ € Sp(K,). A t-semi-character (or a semi-

character if no confusion is possible) for the canonical pairing is a map Xyt Kp = 1y

such that for (z1,x2), (), x}) € K,

X (@1 4 2, 20 + 25) = xg((21, 22) - x5 (@], 25)) - [((), )2 (P (1, w2)1)] - (1) "),

where we write Y(x1, 1) =  (V(x1,29)1,U(x1,T0)2)  (respectively (xh, xh) =
(P (2, )1, (2], 2h)2)). in the canonical decomposition of K,. A semi-character X7 18
said to be symmetric if for all (x1,72) € Kp, x5(—(21,72)) = x5(71, 72).
1.2.2  Semi-characters

The definition, [IT Def. 13], needs to be modified for our application.
General Case

Let A € SLy(Z/pZ) and let A = [25]. For ¢4 € Aut,ifm(Hp), we are interested in

the mapping

Aut¥™(H,) — SLy(Z/pZ)
YA A.

Let 1), be the image of 14 and let Xv, denote its semi-character. Then

7v/}z‘l(/\h*rlv yl) = 77b141()‘1a 0, 0) : ¢A<1a :L‘hyl)

= (M,0,0) - (1 xg, (z1,91), az1 + by, ey + dyq)
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= (M,0,0) - (xz, (x1,41), ax1 + by, ey + dyq)

= (Axg, (@1, 41), az1 + by, czy + dyr).

For general elements, we have

YA, 21, y1)a(Ae, 22, 92) = Ya(Mide - G2 2y + 2,1 + 1)

Since

Ya(Mida - 72wy 4 2o, y1 + y2) = (MAGE™ 2 Xy (1 4 22, 41 + 1),

a(zy + x2) + b(y1 + y2), c(z1 + z2) + d(y1 + y2))

and

Ya(A, 21, y1)Ya(Aa, T2, y2) = (>\1X@A($17 Y1), ary + byy, cxy + dyr):

(Aoxg, (2, Y2), aza + bya, cxa + dys)

= (MAaxg, (21, y1)xp, (22, 92) - Ci(azﬁbyl)(czﬁd”);

a(xy +x2) + b(y1 +y2), c(x1 + x2) + d(y1 + y2)),

it is required that

A1 - C;xlyQX@A (T1 + T2, 51 +42) = M2 XEA<$17 Y1) - Xipg (2,92) - Cp?(mﬁbyl)(cmﬁdw)

= Mz X@A@l;yl) ) X@S(Izayﬁ

. €2 (acz1z2+beyrz2+adriy2+bdyiyz)
» .
This requires

b d bd, -
X7, (xl + 2o, y1 + y2) = Xy, (xh y1) X7 <x27 y2) . C;(acx1x2+ cy1z2+adz1yz+bdy1y2 —z1y2)

b d— bd
= Xy, (w1,91) - X@S(m, Y2) - Ci((mlxﬁ eniezt(ad—1)zyetbdyiye)

bd
= Xy, (z1,91) - X@S(m, Y2) - Ci(acmm+bcy1m+(b0)xly2+ i)

= Xy, (z1,91) - X@S@% Y2) - Cs(amw2+bc(ylz2+xly2)+bdy1y2)-
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So our modified definition of a semi-character is

Definition 1.2.4 (Semi-Character). Let 1 = [24] € Sp(K,,) = SLao(Z/pZ). A -semi-
character for the canonical pairing is a map X : K — v, such that for (xy1, z2), (77, 25) €
K

P

CQ(aCZEle +be(y1z2+21y2)+bdy1y2)
» .

Xg (71 + 77, 22 + 75) = X521, 72) - Xg(T), 25) -
A semi-character xy is said to be symmetric if for all (v1,72) € Kp, xg(—(21,22)) =

Xg(@1, 2).
For the generator S, (, 2y ijs a symmetric semi-character.
Let S € SLy(Z/pZ) and let S = [{ ']. For ¢s € AutlS,Zm(Hp), we are interested in
the mapping
AwtS™(H,) > SLy(Z/pZ),
vy — S

Let ¢ be the image of ¢g and let Xy denote its semi-character. Then

7/15()\1,1’17%) = Yﬂs()\l:(),o) ) wS(lvxbyl)
= (A1,0,0) - (1 X@S(l’layl)a —Y1,T1)
= (A1,0,0) - (Xas(l'l?yl)’ —Y1,21)

= (AXas(xl,yl), —Y1,71).
For general elements, we have
VYs( M, 71, y1)Ys(Na, Ta, y2) = Us(Ai A - Cﬁxlw;ﬂfl + 2,91 + Y2).

Since

hs(MiAg - G2 a1 + g,y + 42) = (M - 72 xg (21 + 2, 41 + 42),

— (1 + 1), (21 + 22))
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and

bs (A w1, 1) s (Aay 22, 92) = (Mxgg (21, 91), —yn, 21) (Aaxg (22, 42), =12, 22)
= (M2 X (z1,91) - X@S(%y Yo) - Cp_lem,

— (1 +12), (x1 + 72)),

it is required that

AtAg Cl?xmx%(xl + T2, Y1 +Y2) = A Ag - XES(Ilvyl) : X@S(m, Ya) - Cp_2ylz2'
This requires

Xis (T1 + T2, 91 + 42) = X (01, 01) - Xy (€2, 92) - C;lewrhly?

Substituting the a = 0,0 = —1,c¢ = 1,d = 0 in our definition,

C2(acx1x2 +bc(y1z2+w1y2)+bdy1y2) _ C*Z(y1 To+x1Y2)
g 4

we verify the calculation agrees with the definition. So what is xy_ (x,y)? Let’s verify

that xg_ (z,y) = ¢, 2ry is a semi-character.
—2z1y1—2x2y2 __ ~—2T1y1 | F—222y2 | f—2@2y1—221Y2
( - gp Cp Cp

X@S@Clu yl)X@S (.112, y2> “Sp

— g—2($1+$2)(91+y2)
P
= Xy, (T1 + 22,91 + y2).

X7 (z,y) =, 2y is also symmetric since

Xgg(—(@,9)) = xg, (-2, —y)

— <p—2(—m)(—y)

-2
= (2

= X (T, 9)-
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For the generator T, CIZ;’Q is a symmetric semi-character.
Let T' € SLy(Z/pZ) and let T = [{1]. For ¢r € Autls,zm(Hp), we are interested in

the mapping

AU (H,) > SLa(Z/p),
¢T — T.

Let ¢, be the image of ¢7 and let X denote its semi-character. Then

¢T(>\175171, 3/1) = wT()‘la 0, 0) ’ wT(la 9171:3/1)
= (AM,0,0) - (1 xg, (z1,91), 21 + Y1, 41)
= (A1,0,0) - (xg,.(@1,91), 21 + Y1, 41)

= (Mg, (T1,91), 21 + Y1, 91)-
For general elements, we have
Yr(A, 21, 1) e (g, 2, y2) = hr( Mg - G2, @1 + 22, y1 + Ya).

Since

Ur(Aide - G2 4 @2, y1 + y2) = (M- X (T1 + 22,91 + ),
(1 +y1 + 22+ y2), (11 + 42))
and
Ur(A, 21, y1) Y (A2, 22, 92) = (Mixg, (21, 91), 21 + Y1, 1) (Roxg, (T2, ¥2), T2 + Y2, y2)

= ()\1)\2 : X@T(l‘la ?Jl) "Xy ($2a 92) ) Cﬁ(m1+y1)yz,

(1 4+ y1 + 22 +y2), (11 + 12)),

it is required that

AtAg - CZ?MWXET(% + T2, Y1 +y2) = Mo Xy (T, 11) - X, (T2, 92) - C§($1+y1)y2-
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This requires
XET($1 + Z2, Y1 + yQ) = X3, (1‘1791) . XET("E%y?) . ngwz_

Lettinga=1,b=1,¢=0, and d = 1, we see that for Xy letting

C2(acr1r2+b0(y1w2+x1y2)+bdy1yz) — <2y1y2
P P

meets the definition of a semi-character. Lets determine if xy_(7,y) = (;02 is a semi-

character.
Xy (xl,yl)X@T (T2, y2) - nglyZ - C;ﬁ ) gg% ) ngwz _ g}()x%-l—m%—i—?ylyQ)
and
)@T(Q;1 + Ty, Y1 +Y2) = C}gx1+x2)2 _ C}()z%+2x1$2+z§)

show that g (x,y) = Cz’fz is NOT a semi-character.

. . 2 . .
Lets determine if x7_(z,y) = ¢} is a semi-character.
2 2 2 2 2
X (0, 01)XG (2, 92) - GG = GO+ Q- (B = (o ram) — (e
and
g 1 20,1+ ) = (P = (D
show that x (x,y) = @42 is a semi-character. )@T(:v, y) = ng is also symmetric since
50 () = x5, (=) = (9 = G = g, (0,0)
X"/)T Y XwT Y D D XwT ' Y)-

The ST and its semicharacter

Can we determine semicharacters of an arbitrary element of SLo(Z/pZ)? We have

ST = =
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and

YsT(A 2, y) = (Ys 0 ¥r) (A, z,y)
= Ys(A\xg(7,9), 2 +y,9))
= Us(AY 7 +y,9)
= (A GO, —y, (2 +y))
= (A2 —y (2 +y))

29
=AY, —y, (z +y)).
Is ¢, v'=2ry 5 semicharacter for ST? We have

X@(m + X9, Y1 + Yo) = Cp_(yl+y2)2—2(1‘1+y1)(y1+y2)

_ C—yf—2y1y2—y§—2:c1y1—2:c1y2—2:c2y1—2:(:21/2
P

and

<=2(acz1;t2 +be(yr1zat+a1ye)+bdyiy2)

X@(l‘l’ yl)X@(ZEQ, 92) D

C2(0cm1x2+(—1)(1)(y1m2+x1y2)+(—1)(1)y1y2)

= X@(%,yl)X@(%,yz) D

= X@@l, yl)X@@Q, y2)§5(—y1x2—m1y2—y1y2)

_ C—yf—2w1y1 g—y%—l’czyzC—2y1xz—2x1yz—2y1y2
P P P

_ C—y%—2x1y1—y§—21‘2y2—2y1x2—2r1y2—2y1y2
P

_ C—yf—2y1y2—y§—2x1y1—2z1y2—2x2y1—2x2y2
» )
So it is a semi-character and it is also symmetric:

—y)2—2(—x)(— —y?—2z
Xgar(—(,9) = Xgar(—2, —y) = oY) = v X7 (T, Y)-

The above illustrates how to obtain the semi-character for a given element of SLy(Z/pZ).
Definition and its modification were motivated by the following lemmal[IT],

Lem. 14].
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Lemma 1.2.5. [11, Lem. 14] Let ) € Aut,, H, and let i be the associated symplectic
automorphism of Kp. Then there exists a unique semi-character x such that for all

(Oé, (xlv x2>> € HP;

e (o (1, 22)) = (axg((21, 22), (21, 22)). (1.2.1)

As a consequence, if 1) € Sp(K,) there is a one on one correspondence between the set

of extensions of | to Aut,, H, and the set of semi-characters.

Proof. Note that (1.2.1)) uniquely defines a map Xy given 1, and conversely also uniquely
defines a map v and given 1. Moreover, by writing out the definitions Xy 1s a semichar-

acter if and only if ¢ is a homomorphism. O]

1.2.3 7. is an automorphism

Switching notations for convenience, let
K, =7/pZ x Z/pZ,
and define the map
ey K, x K, = v, CC*
where
(z1, Y1, T2, y2) = Cz(myrylm)-

Proposition 1.2.6. Let ¢ € K, and (A, z,y)) := (Xey(c, (x,y)),z,y). Then 1. is an

automorphism that fizes the center of H,.

Proof. 1t is clear that the image of v, lies in H,. We next verify that 1. is a homomor-

phism. Fix ¢ = (¢, ¢2) € K.

Ve((Ars 71, 91))Ve((A2, 22, 92)) = (Maeple, (21,91)), T1, Y1) (Aeep(c, (2, Y2)), T2, Ya)
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= (Mep((e1,c2), (@1, 91)), 21, 91)
()\2610((01, c2), (%2,92)), T2, y2)
= (MG gy ) (MY T2 g, 1)
_ (Al)\zcg(cﬂﬂfczm)Cg(c1y270212)c2x1y2, Ty + To,y1 + y2)

2 -2 2 -2 2
— ()\1)\24}5 c1y1—2c2z1+2¢c1y2—2c222+ $1y2)’x1 + T9, 1 + y2)

Ve((A, 21, 91) (A2, 72, 12)) = %()\1)\2(;%”7 T1+ T2, Y1 + o)

= (AMheGe™ e, ((c1, c2), (1 + 32), (y1 + 12)

= ()\1)\2(53”192@?81(y1+92)—282(m1+m2)

— ()\1)\293331@/2 C;?Clyl +2c1y2—2c2x1 —2c222

_ 2x1y2+2c1y1+2c1y2—2c2x1 —2c2x
— ()‘IAQCp 1Y2 1Y1 1Y2 2T1 2 2,[E1 + To, Y1 + y2)

2 —2 2 —2 2
= (Mdggprrmnenm iR =Beat 3002 gy 4 4y ) + o)

= (A1, 21, 41))¥e((A2, T2, 42)).-

Since H,, is finite, it suffices to show that 1), is injective for v, to be bijective. We have
Ye((M, 21, 41)) = (MG 22y, ),

and
Ve((Ags 2, 42)) = (A2GFM2722%2 29, ).

If Yo((Ar, 1, 91)) = Ye((A2, 22, 92)) then (A;QW 225z 1) = (AoQRM¥2 72272 1y, ).

This implies x1 = x5 and y; = y». So we now have

()\14"5(61311—62361)’ x1, yl) — (A2C3(01y1—02x1)’ T, yl)

which implies A\ = A\y. So, 9. is an automorphism since it is a bijective endomorphism
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of H,. It also fixes the center since for any element (X,0,0) € Z(H,), we have

wc((/\v 0, O)) = ()‘C;?(CI.O_CQ.O)a 0, 0) = ()‘7 0, O)

1.2.4 Kernel of ¢
Consider the map ® from the group of automorphisms of H, that fix the center to

the automorphisms of K,
® : Aut,, (H,) — Aut(K,) = GLa2(Z/pZ).

We would like to determine its kernel. To do this, we will need to apply a finite dimen-
sional version of the Riesz Representation Theorem.
Theorem 1.2.7 (Riesz Representation Theorem). Let V' be a finite dimensional inner

product space whose inner product (-,-) is non-degenerate and bilinear and sends
v = (w— (v,w)).

Denote this map f. Then f is an isomorphism: f:V S v

It is clear that K, = Z/pZ x Z/pZ is 2-dim vector space over F,. The map
ep: Kp x K, — C*
that sends
(a,b) x (c,d) — Cg(ad—bc)

is a symplectic bi-linear form. In other words, it is a bi-linear form (character) sometimes
called a bi-character that is non-degenerate and alternating. Let (a,b), (¢,d), (m,n) €

K,. Then

el’((av b) + (Cv d)? (m7 n)) = ep((a + Gy b + d)? (m7 n))
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_ C2((a+c)n— (b+d)m)
P

— C2an+2cn—2bm—2dm
P

_ Ci(anfbm) Cg(cnfdm)

= ¢p((a,0), (m,n)) - e((c, d), (m,n)),

ep(>‘ ’ (CL, b)? (C7 d)) = ep(()‘a’v Ab)v (C7 d))

- C2)\ad72)\bc
Toop

_ C2a)\d—2b)\c
Toop

= ¢,((a,b), (Ae, \d))
=ep((a,b), X (c,d)),

and

C)\Q(adfbc) _ (C2(adfbc)))‘

P P

- (ep((av b)? (C, d))))\ .

verifies bilinearity. It is non-degenerate since if e,((a,b), (c,d)) = "9 =1 for all
(¢c,d) € K,, then (a,b) = (0,0) and if e,((a,b), (c,d)) = ") =1 for all (a,b) €
K,, then (c¢,d) = (0,0). It is alternating since e,((a,b), (a,b)) = gﬁ(“”"’“) = 1 for all
(a,b) € K,. If p # 2, then alternation is equivalent to skew-symmetric. Recall Figure

diagram[11]:

bS]
~
=)

1 > U >

\
7

K, > 0
If ¢ is an automorphism of H,, it induces an automorphism P of K,. The commutativity

of the diagram shows that 1 is symplectic with respect to the commutator pairing[11].

That is, for all 7,y € K,, e,(¥(x),1%(y)) = e,(x,y). It is a straightforward verification.
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Let

€ SLy(Z/pZ) = Sp(K,)

Let © = (uy,uz) and y = (v, v2). Then

_ a bl |ug auy + bus
c d| |uy cuq + dus
and
_ a bl |u avy + bugy
Y(y) = =
c d| |us cvy + dvy

6p<$(x)7a( )) _ Cg(aul+bu2)(cvl+dvg)—2(cu1+du2)(av1+bv2)

simplifying the exponent and noting that if v is symplectic,

2(auy + bug)(cvy + dvy)

—2(cuy + dug)(avy + bvg) = 2(acuyvy + bcugvy + aduivy + bdugvs)
— 2(cauyvy + daugvy + cbuqvg + dbugvy)
= 2(acuyvy + beugvy + aduqvy + dbugvy)
— 2(acuivy + adugvy + beuyvg + dbugvs)
= 2(bcugvy + aduqvy) — 2(adugvy + beugvs)
= 2uyvy (be — ad) + 2uyva(ad — be)
= —2usvy(ad — be) + 2ujva(ad — be))
= —2u9v1 + 2uqVy
= 22UV — 2Uq

= 2(U1U2 — U2’U1).
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So,

ep(a(x),ﬂ(y)) — C;(uwz—ugvl)
= ¢y(7,Y).

Another way to see this is to note that the commutativity of the diagram implies the
commutator map of the upper row is the pullback via v of the commutator map of the

lower row|[3][Lem 6.6.3, page 161]. But

(v, up, u2) (B, v1,v2) (ay ug, ug) (B, v, v2) 7
= (o, uy,uz) (B, v1, UQ)((CY_lCﬁuluz, U, —Uz)w_l@}?mvz, —v1, —Usg)

= (aBCr " uy + vy, ug + "Uz)(a_lﬁ_lé}.guwz”vmCg(_ul)(_w), —Uy — V1, —Uy — V)

2uius+4uqva+2v1v2 2(u1+v1)(—ugs—v9
(Cp ’ Cp( ) )707())

(C2u1u2+4u1v2+2v1v2 X C72(u1u2+v1u2+u1v2+v1v2) 0 O)
¥4 D Y 3

(C2u1UQ+4u1v2+2v1v272u1UQ72v1UQ72u1v272v1v2) O O)
D » U

— (4‘2(“1@27’[]1“2), 0, O)

P

— <<2(u1v27u2v1), 0, O)

P

= (ep(2,9),0,0).

for all (a,us,us2)(B,v1,v2) € Hp. So the induced isomorphism (automorphism) ¢ is a
symplectic isormorphism with respect to the form e,.

In order to study Aut,, (H,), we consider the symplectic group Sp(K),) consist-
ing of all automorphims of K, which preserve the alternating form e,[3]. Every ele-
ment of Aut,,(H,) induces a symplectic isomorphism of K. This gives a homomor-
phism & : Aut, (H,) — Sp([,). One the other hand, any ¢ € K, defines an au-
tomorphism 1. € Aut,, (Hp), namely ¥.(\, z1,72) = (Aep(c, (w1, 22), 21, 72)) for all

(A, z1,22) € H,. Since e, is nondegenerate, the assignment ¢ +— 1), is an injective
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homomorphism ¥ : K, — Aut, (H,). Any ¢ € ker® is necessarily of the form
©(\, z1,22) = (Ag(z1,22), 21, x2). The function g : K, - C* is linear since ¢ is a ho-
momorphism. By the Riesz representation theorem, g(z1,z2) = e,(c, (21, x2)) for some
c € K,,. Let 1, denote these automorphisms instead of .

So the number of such automorphisms . is p?>. We will show this set is a group with
the operation being composition. It is clear that the operation is closed. The operation

is associative since function composition is associative. Lets verify. For a,b,c € K,,, we

have
(tha 0 Wp) 0 ) (N, 2, y) = ((tPa © Up) (Pe(N, 2, )
= ((tha 0 V) AV 2, )
= wa(wb(()\ég(clyfch), Z, y))
= P (A 20w=bary g )
= (AGewenn) bt 2onos) g )
and

(Y0 0thp) 0 Pe) (A 2,y) = (La(n(Ve(A, 7, 1))
= wa(wb(()\éﬁ(clyfch), Z, y))
= Yu((AGeO )

_ ()\Cg(clyfcyv)gi(blyszx) C;(alyfazx)’ z, y))

which shows associativity holds. It has the identity, taking ¢ = (0, 0) gives us the identity
automorphism. )(A, z,y) = (A~ Cg'(oyfox),x,y) = (\,z,y) for all (\,z,y) € Hp.

1. has an inverse namely ¢_..

(Ve o)A 2,y) = ve(-c) (A, 2, 9))

= Ye(AG P )
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= ()\Cp—261y1+202561C§C1y1—262x17 Zy, yl)

= (A 2,y)

shows that 1. has an inverse. That inverse is also unique.
So the set of 1, forms a group. Its order is p?. So it is isomorphic to either Z/p*Z
or Z/pZ x 7.]pZ. Since Z/p*Z is cyclic it has a generator but our group of v, does not.

Fixing a ¢ = (¢, ¢2) € K,

(¢C>N<A’ x? y) = (AC]?n(Cly_CQZ‘)7 x? y) = (ACI?“Cly_QnCQI’ I? y)'

As n ranges from 0 to p* — 1, (2ncy, 2ncy) will not generate every element of K,. There
are p — 1 multiples of p in this range. So there will be p — 1 values of n that send
(2ncy, 2ncy) to (0,0). Therefore it will not generate the group.

Since ¢ € K, and K, is not cyclic (because ged(p, p) = p # 1), our group of ¢, is not
cyclic. So it must be that it is isomorphic to Z/pZ x Z/pZ = K,,.

So we have our desired result:

Theorem 1.2.8. Given
D : Aut,,p(Hp) — Sp(K,) = SLy(F,),

ker(®) = K, and v, € Aut,,(H,) is mapped to c € K,,.
An automorphism ¢ € Aut, (H,) is symmetric if it commutes with the action
(a,z,y) = (a, —x,—y) on H,. We also have a theorem for symmetric automorphisms.

Theorem 1.2.9. For symmetric automorphisms,
® : Aut,"™(H,) — Sp(K,) = SLy(F,),

ker(®) = K,[2], the subgroup of 2-torsion of K,.
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Proof. Let ¢ = (¢1,¢y). By definition of a symmetric automorphism, we must have

¢C<A’ -, _y) = ¢c(/\; Zz, y)

Since
Ye(A =, —y) = (G227, —x, —y)
and
be(A ,y) = (NG, 2, y),
we have
ep(c; (=2, =y)) = ep(c, (2,9)).
Since

eplc, (z,y)) " = (Clow=2)) =l = (Paviiar — ¢ (—c, (2,y)),
we have that
ep(c) x, y) = ep(—C, X, y)

which implies ¢ = —c. In field whose characteristic is not two, i.e., p > 3, ¢ = 0. For

p = 2, we have ker(®) = K,[2]. O

1.3 Explicit Weil Rep. for induction by the modulation subgroup

We have H), as our Heisenberg group. There is a unique map
o: H,— GL,(C) = GL(V)
such that it is irreducible and v, C H, acts by scalar multiplication. Explicitly,

V = { functions: Z/pZ — C}
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where dim¢ V' = p has a canonical basis of “delta functions”: 6, : Z/pZ — C where
0—0,1—0,---,z+—1,:,p—1+0. S0 o: H, — GL(V) has three types of maps:

(1) Scaling: (¢,0,0) — (3, — (0,) where (6, — (J,) in matrix form is

0 0 -0

0¢ 0 -0
00 0 - ¢

(2) Translation: (1,0,y) — (6, +— 6,_,). To see how translation works, take p = 5 and

= 1. Then
(1,0,1) = (6, = d,—1)

What is it in matrix form? ¢(1,0,1)d, = §,_;. In matrix form, the action is given

by

100 00

(3) Modulation: (1,x,0) + (8, = (~2%6,). To see how modulation works, take p =5

and y = 3. Then since (1, 3,0) = (1,1,0)3. So the action in matrix form is

— -3 — - - -

1 0 0 1 0 1 0 0 1 0 10 0 1 0
0¢2 0 0 0 0¢S 0 0 0 0¢* 0 0 0
00 ¢c* 0 o =100 ¢2 0 o0/]=1]00¢o0 0
00 0 (% 0 00 0 ¢® o0 00 0 ¢ 0
00 0 0 ¢* oo 0o 0 ¢* |oo0o 0 0 ¢
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For p > 2 take 1) € Aut(scyxm. Consider the commutative diagram

H, —— GL,(C)

o e

H, —= GL,(C)
Since 9 fixes the center, o is irreducible, and v, acts by scalars, this implies that o = ¢¥.
In turn this implies there exists a matrix M (1)) € GLy(C) such that

M(¥)o = oV M ().

1.3.1 Case S
Take S = [ '] and let ¢g be the lift of S, a := (1,2,0) and b := (1,0, y) the two

squares commute:

AN Ve AN Ve
]\,fi(wg)l lz\xf(ws) ; z\,fi(ws)l Lwrf(ws)
o¥s (a o¥
v S ( ; v v S (b) v

We note that
o((1,2,0))6, = C*%5, and o((1,0,4))d, = d,_,.
Recall that ¥s((\, z,y) = (A?*, —y, x). Making the following definitions

0*3((L,2,0)) = o(¥s(1,2,0)) = 0((1,0,)).

a¥s((1,0,7)) := o(¥s(1,0,y)) = o((1, =y, 0)),

we see that

M(s)a((1,2,0)) = o((1,0,2)) M(¢s)

and

M(@s)o((1,0,y)) = o((1, =y, 0)) M ().



55

So, what is M (15)? We claim that is a discrete Fourier transform. The discrete Fourier

transform, DF'T, is defined to be

-1

DFT(8,) =Y (2"6,,

bS]

=
Il
=)

satisfies these two conditions. That is, taking M (1)g) to be the discrete Fourier transform

satisfies this property.

Explicitly,
-1 1 1 .. 1 i
1 C_Z —4 ... C—Q(p—l)
M(ys) = |1 ¢ (S (41
1 (2= (7D L (2D

Lets verify that this is indeed the case. Take a basis vector ¢,. Then

M wS)C_QVxél/

-1

M(w5>0<<17 z, 0))51/

bS]

<72V,u<72,u,x (S,u

”?t
11

C(Vﬂ)(*?u) O,

=
Il
=)

|
-;

FT(6V+96)7

which is the Discrete Fourier transform of ¢, shifted by x and so is

p—1

0((17 0, x))M(d}S)&V = 0((1a 0, :E)) Z C_ZVM(S/L

u=0

= DFT(6)40).
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Also, we have
M(¢S)J<<1’ 07 y))5l/ = M(¢S)5V—y
p—1
- S,
pn=0
- Z C—QV(quy)(;u

HEFp

— Z C_QVyC_QVu(Sp

HEFp

= (™ DFT(5,),
and
p—1
(1, =y, 0)M(tbs)d, = o(1, —y,0) > _ "5,
n=0
= ("*DFT(,).

1.3.2 Case action of modulation negative and translation positive for S
Take S = [? '] and let g be the lift of S, a := (1,2,0) and b := (1,0, y) the two
squares commute:

U(a

U(b

\% \%
ﬂs)l l ) Us)l l (¢s)
V V

We note that
o((1,2,0))6, = C*%5, and o((1,0,4))d, = d,1y.
Recall that ¥gs((\, x,y) = (A(~2*¥, —y, x). Making the following definitions

d&@((l’x’())) = U(¢5(1,$,0)) = 0<<1’O?$))7

1/15((17 07 y)) = J(wS(L Ovy)) = U((L -y, 0))7
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we see that
M(s)o((1,x,0)) = a((1,0,2)) M(ys)
and
M(s)a((1,0,y)) = o((1, =y, 0)) M (¥s).

So, what is M (15)? We claim that is a discrete Fourier transform. The discrete Fourier

transform, DFT, is defined to be
p—1
DFT(5,) = ("5,
n=0

satisfies these two conditions. That is, taking M (1g) to be the discrete Fourier transform

satisfies this property. Explicitly,

-1 1 1 ... 1 ]
1 (2 —4 e (20D
M(ys) = |1 ¢ () . (§—4(p—1))
1 ¢l (¢rAemh) L (2 De-)

Lets verify that this is indeed the case. Take a basis vector 9,. Then

M ()70,

—1

M(wS)U«L L, 0)>5u

i

CfZV;LCfZ,u,:): (S,u
0
—1

11

C(Vﬂ)(*?u) 5#

=
Il
=)

I
-;

FT((SVHU)a
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which is the Discrete Fourier transform of ¢, shifted by x but
p—1
0((1’ 0, x))M(¢S)5V = U((la 0, ZE)) Z C_2VM5M
pn=0

=D M

HEFy

— Z <—2V(u—m)5ﬂ

neF,

= DFT(0,_.)
is shifted by —z. It does not work. Also, we have
M(ws)(j((la 07 y))51/ = M(wS)éz/fy
p—1
— Z Cizy‘u(su—y
p=0

— Z ¢~ ty)g,

welFy

_ Z C72uy<—72uu§#

HEFp

= ("™DFT(5,),

and it does not agree with

p—1
o(1, =y, 0)M(¢hs)d, = o(1,—y,0) Y _ ("4,

n=0

= (™DFT(5,).
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1.3.3 CaseT
Now for the case T' = [{ 1]. Let ¥r be the lift of T, a := (1,2,0) and b := (1,0,y)

the two squares commute:

AN Ve VAN Ve
‘[(1/}1 ) J/]\/[(Ul ) 9 ]\[(uj> ]\[(’L T )
v ey, v Oy,

Recall that ¥ ((\, z,y)) = ()\Cy2,x+y,y). So ¢r((1,2,0)) = (1,2,0) and 7((1,0,y)) =

(¢Y*,y,y). Making the following definitions

a¥7((1,2,0)) :== o(r(1,2,0)) = o((1,2,0)),

0¥ ((1,0,9)) := 0 (¢r(1,0,9)) = o((¢"", 4,y))

and noting the commutativity of the squares we see that

M (r)o((1,2,0)) = o((1,z,0)) M (¢r)
and

M(¥r)o((1,0,9) = o((C"", 4, y) M (¥r).
So, what is M ()7)? Since o(1,x,0)dy = (72705, = o, we have
M(pr)o(1,2,0)60 = M (r)do.

Since the square commutes, we have

O-wT((lv Z, 0))M(¢T)50 = 0((17 T, 0))M(¢T)60
= M(¢r)o(1,2,0)d,

= M(%Z)T)éo
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implies that M (¢r)dy is an eigenvector of ALL the operators o((1,x,0)) of eigenvalue
1. This implies that M (¢r)dy = ¢ - §. Take ¢ = 1. So the first column of M (¢r) is

{1 0 ... O}T.

We can write 6, = do—(—,) = 0((1,0, —v))d. Then we have

M (tr)d, = M(1pr)o((1,0,—v))d
= 0"7((1,0,=v)) M (¢r)d
= (¢, =, —v)) M (¢r)d
= o((¢",0,0))a((1,0,—))o((1, =1, 0)) M (dr)do
= o((¢",0,0))a((1,0, =)o ((1,=1,0)) - - &
= o((¢",0,0))a((1,0,—v)) - ¢ o ((1, —v,0))dy
= o((¢**,0,0))0((1,0,—v)) - ¢+ &
= ((¢**,0,0)0((1,0, =v)) - 1+ by
= o((¢",0,0))a((1,0, —v))d
= ((¢",0,0))3,

- CVQ 5V7
which shows that M (i) is a diagonal matrix:

10 0 -0 0

0¢ 0 -0 0
M@r)=10 0 ¢ -~ 0 0




61

1.3.4 Summary for S and T
For g, M(s) a modified DFT, and for vy, M(¢r) is diagonal. We know that
5% = —1 = (ST)3. Letting M'(¢s) := (Qp)) ™ - M (1bg), we have the equality

(M'(vs))* = (M'(¢ps)(M ()",
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CHAPTER 2 Integral Representations

Nobs and Wolfart[23][24] show us how to construct all of the irreducible representa-
tions of SLo(Z/p*Z). We will compute them for primes 3 and 5 in the following chapters.
Our goal is to find the smallest rings of integers for which we can write these representa-
tions. Riese[20] characterizes those rings. We will attempt to explain those results in this
chapter. For the computation of those integral representations of the Weil characters, we
will use results of Wang[36] and Zemel[44]. Using Nobs and Wolfart’s methods, we can
construct integral representations that have “denominators”, that is, Z[(,, %] In this sec-
tion, we explain how those integral representations with denominators, e.g. over Z[(, %],
tell us the existence of that integral representations over Z[(,]. We then compute the
integral representation of the p-dimensional irreducible principal series representation
of SLy(F,) for p an odd prime. Last we construct the reducible integral representation
1+ St.

Let G be a finite group of exponent exp(G) = g. Riese[20] proves the following:
Theorem 2.0.1 (Thm 1, Riese). Let G = SL(2, q) for some prime power q = p’. Every
irreducible complex character x of G can be written in R = Z[u,] with n = n(x) being
a proper divisor of exp(QG), except possibly when x is a (cuspidal) character of degree
q — 1. In the exceptional case x can be realized over R[%] with n = %exp(G).

In the case of ¢ = p, we have a tight bound for those rings.
Corollary 2.0.2 (Riese). Every character of SL(2,p) can be realized over the ring of
integers of the exp(G)th cyclotomic field.
2.1 Definitions and useful facts

We provide the definitions of terms[I0] that we will use along with some useful facts

and examples.

Definition 2.1.1 (Ring of Integers). The ring of integers[{Z] of an algebraic number
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field K is the ring of all integral elements contained in K. An integral element is a root

of a monic polynomial with integer coefficients,
2" 4+, 4+ + o

This ring is often denoted by Ok or Ok.

Since any integer number belongs to K and is an integral element of K, the ring Z
is always a subring of Og.
Example 2.1.2 (Z). The ring Z is the simplest possible ring of integers. Namely, 7. =
Ogq where Q 1s the field of rational numbers. In algebraic number theory the elements of
Z are often called the “rational integers” because of this.
Definition 2.1.3 (Lattice). For any finite dimensional K-space V', a full R-lattice in

V' is a finitely generated R-submodule M in V' such that K - M =V, where
K -M= {Z a;m;(finite sum) : o; € K,m; € M}

In ring theory, a lattice is a module over a ring which is embedded in a vector space

over a field, giving an algebraic generalization of the way a lattice group is embedded in
a real vector space.
Definition 2.1.4 (Order). An R-order in the K-algebra A is a subring A of A, having
the same unity element as A, and such that A is a full R-lattice in A. A is both left and
right noetherian, since A is finitely generated over the noetherian domain R.

An order in the sense of ring theory is a subring O of a ring A, such that

(1) A is a finite-dimensional algebra over the rational number field Q
(2) O spans A over Q , and
(3) O is a Z-lattice in A.
Example 2.1.5 (Maximal Z-order). Let 7 be the golden ratio (1 + /5)/2. For any

positive integer n, A, = Z+ 7 -n\/5 is a Z-order in Q(\/g), and 7.+ 7. - T s the unique
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maximal Z-order.

The ring of integers of an algebraic number field is the unique maximal order in the
field.

Property 2.1.6 (Og). The ring of integers Ok is a finitely generated Z-module. It is a
free Z-module and therefore has an integral basis: by, ..., b, € Ok of the Q-vector space

K such that each element x in O can be uniquely represented as

T = z”: a;b;
i—1
with a; € Z. The rank n of Ok as a free Z-module is equal to the degree of K over Q.
The rings of integers in number fields are Dedekind domains.
Example 2.1.7 (Integral Basis). If p is a prime ¢ a pth root of unity and K = Q(()
is the corresponding cyclotomic field, then an integral basis of Ox = Z[(] is given by
(1,¢,¢2,...,¢P72).

Let K = Q(\/ﬁ), where p is an odd prime. The minimal polynomial of Vd over Q
is X2 — p which has roots +,/p. The extension K/Q is Galois and the Galois group
has order two: it consists of the identity automorphism and automorphism ¢ that maps
a+by/p to a—b/p.

Lemma 2.1.8. [2, Lem 7.2.1] If a and b are rational numbers (in Q), then a + b\/p is
an algebraic integer if and only if 2a and a®> — pb® belong to Z. In this case 2b is also in

Z.

Proof. Let x = a + b,/p and then o(z) = a — b\/p. This implies x + o(z) = 2a € Q and
ro(r) = a®—pb* € Q. If x is an algebraic integer, then z is a root of a monic polynomial
f € Z[X]. Since o is an automorphism, f(o(x)) = o(f(z)), o(z) is also a root of f and
hence an algebraic integer. 2a and a? — pb? are also algebraic integers as well as rational
numbers. Since Z is integrally closed, 2a and a? — pb? belong to Z. The converse holds

because a + by/p is a root of (X — a)® = pb* or equivalently, X? — 2aX + a* — pb* = 0.
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If 2a and a® — pb* are rational integers, then (2a)* — p(20)? = 4(a® — pb*) € Z. If
2b & 7., then its denominator would include a prime factor p;, which would appear as p?
in the denominator of (2b)?. Multiplication by (2b)? by p cannot cancel the p? because

p is a prime, and the result follows. ]

We modify an argument from [2, Ch. 7] to obtain the following proposition which we
will require later.
Proposition 2.1.9. Let p = 1 mod 4 be a prime. Then 1 and 5(1 + /p)] form an

integral basis of the algebraic integers of Q(,/p).

Proof. We claim that if p =1 mod 4 the set of algebraic integers of Q(/p) consists of
all § 4 5./p, u,v € Z, where u and v have the same parity (both even or both odd).
Lemmatells the algebraic integers of Q(,/p) are of the form & +%,/p where u,v € Z
and “TQ — 1%2 € Z. So we have u?> — pv> = 0 mod 4 and that implies © and v have the
same parity because the square of an even number is congruent to 0 mod 4 and the
square of an odd number is congruent to 1 mod 4. The case where both u and v are
odd can only occur when p = mod 4. The case where both are even is equivalent to 5
and ¢ are in Z.

To see that 1 and (1 + ,/p) span the set of algebraic integers of Q(,/p), consider
+(u+ vy/p) where u and v have the same parity. Then

u—"v

s v = (5 e (304 i)

with (v —v)/2 and v € Z. Next to show linear independence, assume that a,b € Z and
1
Then 2a + b + b,/p = 0 which forces a = b = 0. O]

Remark 2.1.10. Pmposition gives us the ring of integers O of Q(,/p) to be Z[%(l—l—
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VP) forp=1 mod 4. If p=3 mod 4 then —p =1 mod 4. So for p =3 mod 4, the
ring of integers of Q(y/=p) is (1 + /=p). We will need this observation later.

Proposition [2.1.9) can be modified to for any square-free integer d as illustrated by
the next example.

Example 2.1.11 (Integral basis for a ring of quadratic integers). If d is a square free
integer and K = Q(\/c_i) s the corresponding quadratic field, then Ok is a ring of
quadratic integers and its integral basis is given by (1,(1 4+ V/d)/2) if d = 1 (mod) 4
and by (1,V/d) if d = 2,3 (mod) 4.

Definition 2.1.12 (Realizable Character). x € Irr(G) is “realizable” over a ring R if
X s the character of a representation py : G — GL(R).

Definition 2.1.13 (R-lattice). K is field, Fix W a vector space over K. An R-lattice
for W is an R-module U such that U @ K = W.

Let G be a group of finite order g, and let K be a commutative ring. We denote by
K|[G], the group algebra over K[2§]; this algebra has a basis indexed by the elements
of G, and most of the time we identify this basis with G. Each element f of K[G] can
then be uniquely written in the form

f= Zass, with a, € K,
seG

and multiplication in K[G] extends that in G.

Let V be a K-module and let p : G — GL(V') be a linear representation of G in V. For
s € Gand x € V, set sx = p,x; by linearity this defines fx for f € K[G] and 2 € V. Thus
V' is endowed with the structure of a left K[G]-module; conversely, such a structure
defines a linear representation of G in V. In what follows we will indiscriminately use
the terminology “linear representation” or “module”.
Definition 2.1.14 (Algebra over a field). [43/ Let F' be a field. An algebra A over F

1s a ring which has a structure of a F-vector space which is compatible with the ring
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multiplication in the following sense: (Aa)b = A(ab) = a(\b) for all X € F and a,b € A.
An algebra is finite dimensional (one also says of finite rank) if its dimension as F -
vector spaces is finite. A homomorphism of algebras is naturally a ring homomorphism
which s also a linear transformation.

As an algebra over a field is a ring, we can look at modules over it, which will be
automatically endowed with the structure of an F-vector space.

Definition 2.1.15 (Ideal Class Group (or Class Group)). In number theory, the ideal
class group (or class group) of an algebraic number field K is the quotient group
Ji | Pk where Jx is the group of fractional ideals of the ring of integers of K and Pk
15 its subgroup of principal ideals. The class group is a measure of the extent to which
unique factorization fails in the ring of integers of K. The order of the group, which is
finite, is called the class number of K.

If R is a Dedekind domain and M is a finitely generated R-module, then M has no
torsion iff M is projective ( = a direct summand of a free R-module), iff M is a direct
sum of a free R-module and a fractional ideal J of R. The class of J in the class group
CI(R) is an invariant called the Steinitz class of M.

The following material is from Conrad[7]. The ring of integers of a number field is
free as a Z-module. It is a module not just over Z, but also over any intermediate ring
of integers. That is, if £ D F D Q we can consider O as an Op-module. Since Og
is finitely generated over Z, it is also finitely generated over O (just a larger ring of
scalars), but O may or may not have a basis over Op.

When we treat Og as a module over Oxp, rather than over Z, we speak about a
relative extension of integers. If O is a PID, then Og will be a free O p-module, so O
will have a basis over Op. Such a basis is called a relative integral basis for F over
F.

What we are after is a classification of finitely generated torsion-free modules over a
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Dedekind domain, which will then be applied in a number field setting to describe Op
as an O module. The extent to which Og could fail to have an Og-basis will be related
to ideal classes in F'. A technical concept we need to describe modules over a Dedekind
domain is projective modules.

Definition 2.1.16 (Projective Module). Let A be any commutative ring. An A-module
P is called projective if every surjective linear map f : M — P from any A-module
M onto P looks like a projection out of a direct sum: there is an isomorphism h : M =
P® N for some A-module N such that h(m) = (f(m),*) for allm € M. The condition
h(m) = (f(m),*) means f(m) = 0 if and only if h(m) is in {0} & N, which means h
restricts to an isomorphism between ker f and {0} & N = N.

When A is a domain, any submodule of A" is torsion-free, so a finitely generated
projective module over a domain is torsion-free. Therefore, a finitely generated module
over a domain that has torsion is not projective. The important thing for us is that
fractional ideals in a Dedekind domain are projective modules.

Lemma 2.1.17. [7, Lem. 5] For a domain A, any invertible fractional A-ideal is a
projective A-module. In particular, when A is a Dedekind domain all fractional A-ideals
are projective A-modules.

Theorem 2.1.18. [7, Thm. 6] Every finitely generated torsion-free module over a
Dedekind domain A is isomorphic to a direct sum of ideals in A.

Remark 2.1.19. [7, Rem. 7] Using equations rather than isomorphisms, Theorem 6
says M = My @ --- @& My where each M; is isomorphic to an ideal in A. Those ideals
need not be principal, so M; need not have the form Am;. If M 1is inside a vector space
over the fraction field of A, then M = @le e, for some linearly independent e;’s,but
be careful: If a; is a proper ideal in A then e; is is not in M since 1 & a;. The e;’s are

not a spanning set for M as a module since their coefficients are not running through

A.
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Lemma 2.1.20. [7, Lem. 8] Let A be a Dedekind domain. For fractional A-ideals a and
b, there is an A-module isomorphism a &b = A @ ab.

Example 2.1.21. [7, Ex. 5] For A = Z[V/=5], let p» = (2,1 + /=5), so py is not
principal but p3 = 2A is principal. Then there is an A-module isomorphism py @ py =
A®p2 = A@ A This is intriguing: ps does not have an A-basis but ps @ po does!.
Working through the proof of Lemma[2.1.20 will show one how to write down a basis of
Po @D po explicitly.

Recall that the definition of an A-module homomorphism: Let A be a ring and let M
and N be A-modules. A map f: M — N is an A-module homomorphism if it respects
the A-module structures of M and N:

(a) flx+y)= f(x)+ f(y) for all x,y € M and

(b) flax)=af(x) foralla€e A, x € M.
An A-module homomorphism is an isomorphism of A-modules if it is both injective
and surjective.

We claim that f : A A — A @ 2A defined by (a,b) — (a,2b) a,b € A, is an
A-module isomorphism. Let x = (a1,b) and y = (ag,by). Then f(x +y) = f(ag +
az, by + by) = (a1 + ag,2(b1 + b2) = (a1,2b1) + (a2,2b2) = f(x) + f(y). Let ¢ € A,
Then f(cz) = f(cay,cby) = ca; + 2¢by = c(ag + 2by) = cf(x). So f is an A-module
homomorphism. Next, f is clearly surjective. Since it sends only (0,0) to (0,0), that
is, since ker f = 0, it is injective. So f is a bijection A-module homomorphism. We are
done.

Theorem 2.1.22. [7, Thm. 10] Let A be a Dedekind domain. For fractional A-ideals
ai,...,aq, there is an A-module isomorphism a; @ -+ @ ag = A1 D a; - - - ag.
Corollary 2.1.23. [7, Cor. 11] Let E/F be a finite extension of number fields with

[E : F]=n. As an Op-module, Op = (‘)7}_1 @ a for some non-zero ideal a in Op.

Proof. Since O is a finitely generated Z-module it is a finitely generated Op-module
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and obviously has no torsion, so Theorems 6 and 10 imply Op = Ow%‘l @ a for some
d > 1 and nonzero ideal a in Op. Letting m = [F' : Q|, both O and a are free of rank
m over Z while O is free of rank mn over Z. Computing the rank of Oz and O% ' @ a

over Z, mn =m(d — 1) +m = md, so d = n. O

Thus Of is almost a free Op-module. If a is principal then Of is free. As an Op-
module up to isomorphism, O}_l @a only depends on a through its ideal class, since a and
any za (x € F*) are isomorphic Op-modules. Does Orﬁl @ a as an Op-module, depend
on a exactly through its ideal class? That is, if O% ' @ a = O% ' @ b as Op-modules,
does [a] = [b] in C1(#")? The next two theorems say the answer is YES.

Theorem 2.1.24. [7, Thm. 12] Let A be a domain with fraction field F'. For fractional
A-ideals a and b in F, a = b as A-modules if and only if a = xb for some x € F*.
Theorem 2.1.25. [7, Thm. 13] For nonzero ideals ay,...,0, and by,...,b, in a
Dedekind domain A, we have a1 & --- D a,, = by B --- D b, if and only if m = n and
lay...ay] =[b1...b,] in CI(A).

Example 2.1.26. [7, Ex. 1] F = Q(v/—6), E = F(v/=3), and Op = O @ p where
p = (3,v/=6). We can show O is not a free Op-module: if it were free then Op = 0%,
$0 Op®p = 0pBOp as Op-modules. Then Theorem 13 implies p = Op as Op-modules,
so p is principal, but p is nonprincipal. This is a contradiction.

We can now associate to any finite extension of number fields £/F a canonical class
in CI(F), namely [a] where Op & 0% & a as Op-modules. Theorem assures us
[a] is well-defined. Since the construction of [a] is due to Steinitz (1912), [a] is called the
Steinitz class of E/F.

2.2 An Existence Theorem for Integral Representations

We will use the following result, including the proof as it is instructive, from Keith

Conrad’s notes[9].

Lemma 2.2.1. [9, Lem. 1] Let R be a domain with fraction field K. For a finitely
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generated R-module U, KQgrU is finite dimensional as a K-vector space and dimg (K ®pg
U) is the mazimal number of R-linearly independent elements in U and is a lower bound
on the size of a spanning set for U. In particular, the size of each linearly independent

subset of U 1is less than or equal to the size of each spanning set of U.

Proof. It z1,...,x, is a spanning set for U as an R-module then 1 ® x,...,1® x, span
K ®r U as a K-vector space, so dimg (K ® U) < n.

Let yq,...,yq be R-linearly independent in U. Suppose Zf_l ci(l1 ® y;) = 0 with
¢; € K. Write ¢; = a;/b using a common denominator b in R. Then 0 = 1/b®Z?:1 a;y; in
K®grU. This implies that Zle a;y; belongs to a torsion submodule of U, so Zle ra;y; =
0 in U for some nonzero r € R. By linear independence of the y;’s over R every ra; is 0,
so every a; is 0 (since R is a domain). Thus every ¢; = a;/bis 0. So {1 ®y;} is K-linearly
independent in K ®g U and therefore d < dimg (K ®@g U).

Now to show U has a linearly independent subset of size dimg(K ®pg U). Let
{e1,...,eq} be a linearly independent subset of U, where d is maximal. (Since d <
dimg (K ®pgU), there is a maximal d.) For every u € U, {ey, ..., eq,u} has to be linearly
dependent, so there is a nontrivial R-linear relation aie;+- - -+ aqgeq+au = 0 with a # 0.
If a = 0, then all the a;’s are 0 by linear independence of the ¢;’s. In K ®z U,

Zai(1®ei)+a(1®m)zo

=1

and from the K-vector space structure on K ®g U we can solve for 1 ® u as a K-linear
combination of the 1 ® e;’s. Therefore {1 ®e;} spans K ®p U as a K-vector space. This
set is also linearly independent over K by the previous paragraph, so it is a basis and

therefore d = dimy (K @ U). O

We will use a definition and a theorem from Curtis and Reiner’s[10] treatment with
some modifications for notational convenience. Let R be a Dedekind domain with quo-

tient field K and let G be a finite group.
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Definition 2.2.2 (R-order). Let A be a finite dimensional algebra over K with a unity
element e. An R-order in A is a subset X of A with satisfies

(a) X is a subring of A,

(b) e€ X,

(¢) X contains a K-basis of A,

(d) X is a finitely generated R-module.

If the representations of a finite group H is given by matrices with entries in R, then
RH is an R-order in K H. As another example, the ring of all algebraic integers in an
algebraic number field L is a Z-order in L.

We embed K in KG by the mapping o — ae,a € K; this also embeds R in KG.
Given an KG-module U*, we shall always make U* into a K-module by setting am =
(ve)m, o € K, m € U*. Since em = m, m € U*, this makes U* into a vector space over
K.

A RG-module U can be embedded in the KG-module U* where U* = K ®z U. The
embedding of U in U* is given by u +— 1 ® u. Lemma 1 tells us that K ®x U is a finite
dimensional vector space. That is, U* is a finite dimensional K-space; we have defined
the R-rank of U [denoted by (U : R)| to be (U* : K) which is the dimension of the
vector space U*. Then (U : R) is just the maximal number of R-free elements of U. The
action of KG on U* is given by (ax)(f ®@u) = af @ zu. o, f € K, z € RG, u € U. We
write U* = KU to indicate that U* consists of all K-linear combinations of U (in this
case U* is a full lattice). Now for the theorem from Curtis and Reiner[10].

Theorem 2.2.3. [10, Thm. 75.2] Let U* be an KG-module that is of dimension n as a
K-vector space. Then U* contains a RG-module U of R-rank n such that U* = KU.

Proof. Let U* = Kuj @ --- @® Ku,, where the u] are the basis elements of U* and U is
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the j-th summand of U*. Define

U= zn:(RG)U; = {iju;‘ D xj € RG} :
Then
(RG)U € > (RG)™uw; C Y (RG)u; =U

since RG is a ring. Next U is a finitely generated R-module because RG is. Further
e € RG and that each uj € U, so that U* = KU. m

We can now prove the following theorem for integral representations.
Theorem 2.2.4. Let G be a finite group. Let K = Q((n) be the cyclotomic field with its
ring of integers R = Z[(n] C K (R = {ag+ai(y+asC3+---+ay_1(NY). V is a finitely
generated KG-module that is free as a K-module (since it is a finite dimensional vector
space over K ). Then there exists an RG-module U that is projective as an R-module,

such that V 2 U ®gr K.

Proof. Since R is the ring of integers of K, R is a Dedekind domain and it is finitely
generated. Using the definition of U from Theorem 75.2, we see that U is a finitely
generated R-module. Noting that vector spaces are torsion free, U is a subset of a finite
dimensional vector space U*, and R is a subset of K we have that U is a torsion-free
R-module. So U is a projective R-module since finitely generated modules over Dedekind
domains are projective if and only if they are torsion-free. We then apply Lemma 1 to
show that U ®pz K is indeed a vector space. It is clear that U ®zp K = K ®z U. Next

Theorem 75.2 constructs U explicitly which proves its existence. O

2.3 Riese’s Lemma 3 and an alternate proof

Lemma 2.3.1. [26, Lem. 3] Let R = R[}%] for some rational prime p. If U is an RG-

lattice then U = RU ~ R ®rU 1s an EG-lattice, and to every RG-lattice U there exists
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an RG-lattice U with this property. U is é-free if and only if the Steinitz class of U can

be represented by an ideal of R lying above p.

Proof. Recall that in a Dedekind domain, R, every non-zero fractional ideal is invertible.
So the set of fractional ideals forms a group under multiplication. Also, every ideal in R
has a unique factorization as a product of prime ideals. So the prime ideals of R can be
viewed as generators of the group Frac(R). To be more precise, the ideal group of R is
the free abelian group generated by its nonzero prime ideals p.

Let R = R[%]. Next define the map ¢ : Frac(R) — Frac(R) by where it sends its
prime ideals: p — ép. Then ker ¢ is generated by those prime ideals p of R which contain
p (pNS #0D). ¢ is a split epimorphism. Defining 1) : Frac(é) — Frac(R) by p — pN R,
we have the following split short exact sequence

0 —— ker(¢) —— Frac(R) AN Frac(R) 120

since ¢ o1 = 1. That is, p — (PN R) — E(Eﬂ R) = p.
We have the canonical homomorphisms ®; : Frac(R) — CI(R) where p — [p] and

®, : Frac(R) — CI(R) where p + [p]. This gives us the following commutative square:

Frac(R) AN Frac(R)

Jo Js

CI(R) —2— CI(R)
If p = (7) is a principal prime ideal of R and p=pNR, then
Rp=R(PNR)=RpNRR=pNR=p

and 7T = lk for some 7 € p and some k > 0. It follows that
b

Rr=Rp*%=Rp=p

and that Rm = pJ for some ideal J of R containing p. Thus we have an epimorphism
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Cl(R) — CI(R) whose kernel is generated by the classes of the (prime) ideals of R lying

above p. Diagrammatically we have the following:

Frac(R) AN Frac(R)

Jo Jo

0 —— ker(p) —— CI(R) —2—» CI(R) — 0.

2.4 An Isomorphism Theorem of Class Groups

Given the short exact sequence
0 — ker(p) —— CI(R) —=» CI(R) —— 0

with R = Z[¢,] and R = Z[1/p,¢,], we want to show that ¢ is an isomorphism. From
the previous discussion, ¢ is surjective so we need to show that it is injective, that is,
ker p = [0]. We will use two lemmas from Washington[37] to show that (p) is not a prime
ideal in Z[(). O

2.4.1 Lemmas from Washington

Lemma 2.4.1. [37, Lem.1.5] Suppose r and s are integers with (p,rs) = 1. Then ({; —

1)/(¢y — 1) is a unit of Z[(y|.

Proof. (Noting that GCD is multiplicative, 1 = (p,rs) = (p,7)(p, s) implies (p,r) = 1
and (p,s) = 1. So () and (; are primitive roots of unity). Let 7 = st mod p for some ¢.

G-1 ¢'-1

=1+G+--+ GV e zlG)

G-1 ¢-1
Similarly, writing s = rv mod p for some v,
G —1
€ Z[¢,).
G —1 :

]

Lemma 2.4.2. [37, Lem.1.4] The ideal (1—C,) is a prime ideal of Z[(,) and (1—,)P~" =
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(p). Therefore p is totally ramified in Q((,) (prime ideal factoring in an extension so as

to give some repeated prime ideal factors).

Proof. Since

p—1
prl_i_XP*Q_i_—'—X—l—l:H(X_C;)a

i=1

we let X = 1 to obtain

p—1
p=1]0-¢).

=1

From Lemma [2.4.1] we see that (1 — () and (1 — ¢}) are associate, so we have equality
of ideals (1 — (,) = (1 — (). Therefore (p) = (1 — (,)P~". Since (p) can have at most
(p— 1) = deg(Q(¢,)/Q) prime factors in Q((), it follows that (1 — ¢) must be a prime
ideal of Z[(,]. Alternatively, if (1—(,) = A- B, then p = N(1—(,) = NA- NB so either
NA =1or NB =1 since p is prime in Z. Therefore the ideal (1 — ¢) does not factor in

Z[G)- ]

Remark 2.4.3. Robert Ash[1] also proves these two lemmas and are worth reading.

Theorem 2.4.4. With R = Z|[(,| and R=17 L—lj, Cp}, CI(R) = CI(R).

Proof. So we have (p) = (1 — (,)P"! and Lemma 1.4 showed that (1 — (,) is a prime
ideal in Z[(,]. Since Z[(,] is a Dedekind domain, it is also a maximal ideal. It is clear
that (p) is not a prime ideal in Z[(,] nor is it prime in Z[%, (p) either since p is a unit
in Z[L, ). Now (p) = (1= &) € (1= ) since (1 —¢,) divides (1— G, (1— )
is a principal ideal and since the class group is a quotient of the fractional ideals by
the principal ideals, (1 — (,) € [0]. Since (1 — (,) is maximal, nothing else, namely no

non-principal ideal divides (contains) (1 —¢,) so ker(¢) = [0]. Thus ¢ is an isomorphism

of class groups. |

What this isomorphism tells us is if we have an integral basis for the representations
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for é, then we have an integral basis over R. We will calculate the representations of
SLy(Z/3Z) and SLy(Z/5Z) using Nobs and Wolfart’s methods[24], using bases developed
by Wang[30], and using bases developed by Zemel[44]. We will also compare the results
with Riese’s|26] results. Riese refers to R(1,+) (as well as R(n, +)) as the Weil character
€ of degree 3(p+1) and R(1,—) (as well as R(n,—)) as the Weil character ¢ of degree
$(p —1). He proves the following for these two characters (where g, is the p-th root of
unity).

Proposition 2.4.5. [26, Prop. 2] The Weil characters can be realized over R = Z[ju,)
by representations which are stable under all field automorphisms of G = SL(2, q).
Proposition 2.4.6. [20, Prop. 3] Assume that ¢ =3 wmod 4. Then the Weil character
& can be realized over R = 7 [%jp] )

Proposition 2.4.7. [26, Prop. 4] Suppose that ¢ = p™ is a rational square or that ¢ =5

mod 8. Then the Weil character £ can be realized over R = 7 [14—2\/75]

The non-trivial irreducible representations for SLy(Z/p*Z) are the Steinberg St, prin-
cipal series (R(1,%), R(n,+£), and Ny(x)), and cuspidal representations.
2.5 The p+1-dimensional irreducible principal series integral representation

We can also construct the p-dimensional principal series representation of SLo(Z/pZ)
by inducing a non-trivial one-dimensional representation of the Borel subgroup of
SLy(Z/pZ). Its entries will be over Z[(,—1]. This agrees with Riese[26, Prop. 1]. We can
do so by inducing the one dimensional character of its Borel subgroup and the Bruhat
decomposition. We will use use this method in Chapter 4 Section 2 to compute the
representation that is integral over Z[(4] = Z][i].
2.5.1 Non-trivial one-dimensional character of the Borel subgroup of

SL(2,p)
Kirby[16] gives a complete calculation of the character tables of T', the subgroup of

diagonal matrices, and B, the Borel subgroup. With p an odd prime, let F,, = Z/pZ. Let
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G = SLy(F,). Its Borel subgroup is given by

u y
B = ruelk), zel,
0 u!

With £ := exp(2mi/(p — 1)), and Iy = [} ], the trivial and non-trivial characters of B

are given in Table [2.5.1]

a 0 e 1 e a
B el 0 a 0 ¢ 0 ¢
e€{th} | a € F;\ {+} a€ fy,
a is a non-square
|class| 1 p (p—1)/2 (p—1)/2
#classes 2 p—3
X0 1 1 1 1
X; o & - o

Table 2.5.1: Character Table of the Borel Subgroup

2.5.2 Inducing the Borel subgroup
We review the notions of restricting a representation and inducing a representation.
Definition 2.5.1. Let H be a subgroup of G and let m : G — GL(V') be a representation

of G. The restriction of = to H, denoted Res% (r), is defined by

[Resfy (m))(h) = ¢(h)

for all h € H. If x is the character of w, write res% () for the character of Res%(x).
Definition 2.5.2. Let G be a finite group, H subgroup of G and let o : H — C* be a one
dimensional character (representation) of H. The induced representation, IndS (o),

has vector space
V = Indjj(0) ={f : G = C: f(hg) = o(h)f(g), Vg € G, h € H}

and representation p : G — GL(V), given by the G-action [p(g)f](x) = f(zg) for all
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x,g € G. The dimension of the induced representation is given by the index of G and

H, ie.,
dim(Ind% (o)) = [G : H].
The character of Ind% (o)) is given by

indf(o)l(9) = >, olzga™).
r € H\G

g€ x'Hx

In particular, [ind%(o)](g) = 0 unless g is conjugate to an element in H and if g = 1,
then [ind% (o)](1) = dim(V).
2.5.3 The Bruhat Decomposition

From Lang[20], we learned of the Bruhat decomposition. We corrected/clarified the
conclusion of lemma. Let F' be a field. A Borel subgroup of GLs or SLs is a subgroup

which is conjugate to the standard subgroup consisting of all matrices

1 b
u(b) = , beF
01
We let A be the group of diagonal matrices, . We let
0 d
a 0 0 1
s(a) = , a€F* w=
0 a! -1 0

For the rest of this section we let G = SLy(F), or GLo(F).
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Lemma 2.5.3. The matrices

10 10
X (b) = , and Y(c)=
01 c 1

generate SLy(F).

Proof. Multiplying an arbitrary element of SLy(F') by matrices of the above type on the
right and on the left corresponds to elementary row and column operations (e.g., adding
a scalar multiple of a row to the other, etc.). Thus a given matrix can always be brought

into a form

by such multiplications. Let W(a) = X(a)Y(—a™') (correction to the lemma begins
here). Then,
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and since

W(a)W(=1)X(=1)Y(-a) =

we are done.

If we let U be the group of lower matrices,

10

then we see that

Let V be an element of U. Then

wVw™' =




1 0
= e U.
—c 1
Also note the commutation relation
a 0 . 0 1
w w =
0 d -1 0
0 d
—a 0
d
0
shows that w normalizes A. Similarly,
wBw™' = B.
Letting [¢ %] € B, we have
a b ;) 0 1
w w =
0 d -1 0
0 d
—a b
d 0
-b a

82

ol [0 -1
dl |1 0
~1
0
(2.5.1)

bl [0 —1
dl |1 0

~1

0

is the group of lower triangular matrices. We note that B = AU = U A and also that A

normalizes U. There is a decomposition of GG into disjoint subsets, G = BLIBwDB. Indeed,

view G as operating on the left of column vectors. The isotropy (little or stabilizer) group
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of

is obviously U. The orbit Be'! consists of all column vectors whose second component is

zero. On the other hand,

and therefore the orbit Bwe! consists of all vectors whose second component is # 0, and
whose first component is arbitrary. Since these two orbits of B and BwB cover the orbit
Ge', it follows that the union of B and BwB is equal to G (because the isotropy group
U is contained in B), and they are obviously disjoint. This decomposition is called the
Bruhat decomposition.

Remark 2.5.4. Sury[33] has the most general proof and cleanest example for us. It is

completely trivial to deduce a corresponding Bruhat decomposition
SLn(K> = |—|wESnBOwBO-

Here, By = BN SL,(K). For n = 2, this is explicitly given as follows. If g = [¢ 4] €
SLy(K), then g € By if c = 0. If ¢ # 0, then

2.5.4 Cosets of SL(2,p)/B

We need to compute the cosets of SLy(F,)/B in order to induce the one-dimensional
representation of B. The Bruhat decomposition gives a glimpse of what they may be.
Let G = SLy(F,) and B its Borel subgroup. |G| = p(p — 1)(p + 1) and |B| = p(p — 1).

So, [G : B] = p+ 1 tells us that there are p 4+ 1 cosets.



84

The first one is the easiest one, I B. So let I be its representative.

The second coset has a representative of the form

where x € F and y € [F,,. Call this representative My. For this case all matrices of the

this form are in the same coset.

0 —z||a b 0 —za~!
MyB; = =
by 0 at ar™' br™l +ya~!
11
There are p(p — 1) elements mapped to p(p — 1) elements. If we let By = , then
01
0 —xf (1 1 0 —
MQBI — =
x b oy | ]0 1 r ! oy+at

So we have 2 of the p+ 1 cosets. The claim is that remaining coset representatives take

the form (fix a and range c over F):

al 0
c a
10 10
Let P. = and Py = be two of the p — 1 representatives. Then
c 1 d 1
1 0 10 1 0
(Pa)"'P. = =

—d 1 d 1 d—c 1
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So (P)"'P.¢ Bitd +#c.

b 0 z7b 0| |t b ax~! br~!
B — et
Yy x y x 0 a ay by+xa™?
10 1 0f [at b a b
B p— pu—
y 1 y 1 0 a ay by+al

Let Xo--- X, be the coset representatives for SL(2,p)/B. Let x denote x; with j = 1,

the non-trivial character of the Borel subgroup Then the p-dimensional integral

and irreducible representations, D (x)(S) and D;(x)(T"), for the generators of SL(Z/pZ)

are given by

X(Xy'SXo) x(Xg'SXy)
Y(XT'SXp) x(X7'SX))

Di(x)(5) =
_X(Xp_ISXo) X(X,15X71)
and
(X7 TX0) X (X TXY)
X7'TXy) x(X7'TX,
DT = X( ) x( )

_X(Xp_lTXo) X(Xp_lTX].)

X(XJISXP)
X(Xl_lsXp)

X(Xp_ISXp)

X(X5'TX,)
X(Xl_lTXp)

X(Xp_lTXp)

(2.5.2)

(2.5.3)

We will explicitly compute the p-dimensional principal series representation for p = 3

and p = 5.

2.6 Method for constructing the reducible integral representation of 1 + St

We can construct a reducible p+ 1-dimensional representation of SL(2, p) by inducing

the trivial character of the Borel subgroup[16]. Again, we X, --- X, be the coset repre-

sentatives for SL(2, p)/B. Let x denote the trivial character of the Borel subgroup [2.5.1]
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Then the p-dimensional integral and irreducible representations,D;(x)(S) and Dy (x)(7T),

for the generators of SL(Z/pZ) are given by

(X7'SX0) W(X5'SX)) - X(X5'SX,)
X715 X X;718Xy) - x(X7SX,
Di(x)(5) = A _ ) ' ) . . _ ) (2.6.1)
X(X,1SX0) x(X,1SX0) - X(X1SX)
and
(XX X(XF'TX)) o (X7,
X'TX, XXy o x(XT'TX,
Dy(T) = x( | ) x( | ) | X( | ) (2:62)
X (X, 'TXo) x(X,'TXy) -+ X(X,'TX,)|

where for 0 <i<pand 0 <1 <p,

0 if X,5X, ¢ B
1 if X;9X; € B
and

0 it X;,TX; ¢ B
X(XiTX;) = . (2.6.4)
1 f X,TX, €B
We will explicitly compute this p41-dimensional principal series representation for p = 3

and p = 5. We will then construct the integral (over Z) Steinberg representations for

p =3 and p = 5. We will do both in the following chapters.
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CHAPTER 3 The Irreducible Representations Of SL(2,3)
3.1 The Weil Representation

We will use Nobs and Wolfart 11[24], Kloosterman[I8§] and what we learned from
Reeder[25]. |SLo(Z/pZ)| = p(p* — 1). So | SLa(Z/3Z)| = 3(9 — 1) = 24. Using the fact
that the order of the group is equal to sum of the squares of the dimensions of the

irreducible representations, we have
24 =12+ 12+ 12 +22+22 4+ 2243 =1+14+1+4+4+4+09,

giving us three irreducible representations of degree 1, three of degree 2, and one of

degree 3. It agrees with Nobs and Wolfart[24] (Nobs and Wolfart do not list the trivial

representation).
Representations
of Level 1, p=3 Degree Number Remarks
Dy (x) X €8 p+1l=4 1(p—3) =0 NONE. Theorem 1[24]
Ni(x) X <€B p—1=2 s(p—1)=1 Theorem 2[24]
+1
Ri(1,£), Ri(n,+£) (E) =-1 pT =21 4 Theorem 4
p
Ni(x1) p=3 1 “Steinberg

Representation”

Table 3.1.1: The type and number of irreducible representations of SL(2, 3)

So how are they constructed from the Weil representation? Using Theorem 2 and
Eq(7) from Nobs[23]: we have Q(z) = x2/p, B(z,y) = 2xy/p, Ay = M = Z/p*Z. With
A=1,p=3,wehave Ay =Z/pZ = Z/3Z, |M| =3, r = 1.
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With Sg(a) = [M|712Y \,e(—aQ(x)), we have

So(=1) =372 " e(~(~1)Q(x))

zeM

=372 e(Q)

= 3712 (exp(27i(0%/p)) + exp(2mi(1%/p)) + exp(2mi(2*/p)))

= 3742 (exp(0) + exp(2mi/3) 4 exp(87i/3))
=371/ (1— L —|—i§— L +2\/—§>

2 272
=372 (1-1+4V3)
=1
which agrees with Nobs’ I, Lemma 1: with r =1,p=3, A =1,

1 if A even

(f) e(p) if A odd

p

distinguishes ¢(d) = 1 or 4, depending on whether d = 1 or 3 mod 4. So, Sp(—1) =
(%) e(p) = (%) e(p) =1-1 =1 where e(p) = i since p =3 mod 4. With M an abelian
module and @ a quadratic form on M, Nobs[23] calls the pair (M, Q) a quadratic
module. According to the comment after Nobs[23] Definition 3, the representations of
SLs(A,) in the case p # 2 correspond to the quadratic modules with M = Ay, Q(x) =
prz?r#0 mod p, A > 1 are called Ry(r).

Recall the definition of a quadratic form on an abelian group. We now define a Gauss
sum|[32].

Definition 3.1.1. Let q(x) = 2*/p be a quadratic form. Let (, = exp(2mi/p). Then

i-y/pP if p=3 mod4

Qp) ==Y ¢ =
x VP if p=1 mod4
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1s a Gauss sum.

Remark 3.1.2. We have the following relationship between the Gauss sum and Sg(—1):

o) = Ty

VM ) So(-1)

We will use this fact when we perform computations using SAGE.

3.1.1 Representation of the action by T

Theorem 2 from Nobs[23]tells us that

= exp(2miz?/p)d,

2

= 70,

It is a diagonal matrix as before.
3.1.2 Every rep. of a finite group is equivalent to a unitary rep.
We will make use of the following lemma[31] for our calculation for S. That is, relating
Nobs’ “S”, [ ° §] to the standard “S”, [§ ']
Lemma 3.1.3. Fvery representation of a finite group is equivalent to a unitary repre-

sentation.

Proof. Let G be a finite group. Let ¢ : G — GL(V') be a representation with dim V' = n.
Since very vector space has a basis, choose a basis B for V. Let T' : V. — C" be the
isomorphism taking coordinates with respect to B. Defining p, = T, 7' for g € G

yields a representation p : G — GL,(C) equivalent to ¢. Let (-, -) be the standard inner
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product (Euclidean dot product) on C™. Next define

(U7 w) = Z<pgvv pgw>'

geG

It meets the definition of an inner product since it has the three properties:
1. Linearity
(crv1 + covp,w) = Z(pg(clvl + Cav2), pgw)
geG

= Z[cl (Pgv1, pgw) + (c2(pgv2, pyw)]

geG
=0 Z<ng1, /)gw> + ¢ Z<pgv2a pgw>
geG geqG

= c1(v1,w) + ca(vg, w).

2. Conjugate Symmetry

(w,v) = Z(pgw7pgv>

geG

= Z (pgw; pgv)

geG

= (v, w).
3. Positive Definiteness. Since each term (p,v, p,v) > 0,

(U7 U) = Z<ng,pgv> > 0.
geG
If (v,v) =0, then > ;(pyv, pgv) = 0 which implies (p,v, pyv) = 0 for all g € G.
So 0 = (pyv, pgv) = (p1v, p1v) = (v,v). So v = 0.
Next, we verify the representation is unitary with respect to this inner product.

(prv, prw) = Z(Pgﬂh% PgPRW) = (PghV, PghPghW).
geG

Substituting x = gh, x ranges over all the elements of GG since G ranges over all G. To
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see this, let k € G, then if g = kh™!, x = k. So, we have our desired result:

(o, o) = 3 (a0, pa) = (v, w).

zeG

3.1.3 The representation of the action by S
Taking f(x) = 0., applying the fact that the inverse of a unitary matrix is its
conjugate transpose, recognizing that the right hand-side of the equation is a symmetric

matrix,

[%8] f(2) = So(=1)|M[™2 ) " e(B(x,y)) - &,

yeM
allows us to apply Lemma to give
0 —1
S0, = Oz
1 0
= So()|M|™2 ) " e(=B(x,y)) - 4,
yeM
= So()|M|72 " exp(—2mi/p - (22y)) - 3,
yeM
_ —1 Z C—Qazy . 5y
v M yeM .

which agrees with our previous result.
3.2  Explicit Computation of the action of S from Theorem 2 for p =3

We will brute force compute the action of S from Theorem 2 for p = 3 from Nobs[23].
Take M =Z/37Z. |M| =3.p=3. (= (3 and f(x) = d,. Since

(28] @) = So(=1)IM|72 Y e(B(z.y)) - f(y)
=75 (COF(0) + ¢ (1) + 2 £(2))
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(1 F(0) + ¢ (1) +¢7£(2))

we have
’ 12f()—i " Niw+e | Hrwre | Y e
10 VBl o 10 10 '

0 1 T 1 900 2.0-1 2.0-2
_[ ]f(o)ﬁ%@ F(0) + (1) + 02 (2))

= S (O + 1) + £(2)

A W= 0 )+ ),
= T () CIO) + ().
l m 0 1 9) — -1 . (2.2.0 0 2.2-1f(1)+c2-2.2f(2))
I BN FIC R R Gt (DR .
= (0 + )+ ).
So,
0 1 -1
{ 1 0] flz) = 5 [(f(0) + F(1) + f(2))
+ ¢ (F(0) + R + ¢ f(2))
+C7 (FO)+ P+ CPF2) ]
Next
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+ ¢ (f0)+ )+ F(2)
+ ¢ (FO)+ ¢ )+ P F(2) ]

0 1
_{ 1 o] [(L+C+¢7)f(0) + (L + ¢+ ¢"¢H f(1)

LA EAfO)]
= AT OO + £+ 1)

+ (1 + ¢+ CC)(F0) + ¢ f(1) + ¢ f(2))
+ (1 4+ ¢*¢C+ ) ((F(0) + ¢ (1) + ¢ f(2))) ]
_7 [+ +C)0) + (L 4+ + ) f(L) + 1+ + () f(2)

+ (14 +C7CH F(0) + (14 ¢*°¢ + ¢7¢HE (1)
+ (14 + 7 F2) + (1 + ¢+ ¢7¢) £(0)+
F (14 + ) ) + (L4 5+ () (2) ]
LI € 4 ¢7 o 14 352 4 (7 + 1+ CC 4 C5C2) £(0)

E
H (L4 + ) + (L4 + )¢
+ (14 ¢ ¢+ ¢¢) ()
(14 + 1+ ¢+ )+
+ (14 ¢+ ¢ f(2) ]

[(3+C2x _’_gx +C2x+2 +§x+1 _’_€2x+1 +Cx+2)f( )

I
+ (1 + Cl + <2 4+ CZ:B 4 CB 4 C21v+4 4 C:B+3 4 C2x+2 4 Cw+3)f(1)
4 (1 + Cl + C2 + <2x + Cx 4 C2m+3 4 <w+2 4 C21+3 4 <x+4)f(2) ]

— \3_/_% [ (3 + CQz + Cm + C23:+2 + Cﬂ:—i—l + C217+1 + Cﬂ:+2)f(0)

i (C2x 4 Cx 4 <21+1 4 Cz + <21+2 4 Cm)f<1>
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(G T T4 P T T f(2))
_ __Z x x+1 x+2 2z 2z+1 2z+2
= 5,/5[(3% HCT T CT T T £(0)
+ (3{90 + CQ.I + C2x+1 + C2x+2)f(1)
(7T T30 £(2) ]

= 513 (CO+ M+ )"+ (14 ¢+ ) f(0)

+ (3¢ 4+ (" + ¢+ ) F(1)
+((C+ T+ )T +3C)f(2)]
7 [(B1(0) + (3¢)1(1) + (3¢*)/(2) ]

{
3
l

7B
= 7 O+ + 1)
= O+ )+ )]
- % > )
So, :
_01 ; f(x) = (1) _01 f(x) = ;—;—'y%é”yﬂy)

agrees with our previous calculation for S.

This illustrates that the action of [ '] on basis elements ¢, results in the the
conjugation of the action by [ % §]. It was already symmetric so the transpose had no
effect. Applying Lemma is much easier. But this was an instance in which brute
force worked reasonably well.

3.3 Ri(1,%)

Lemma 1 from Nobs[23] tells us that the quadratic module (M, @) generates the Weil

representation W (M, Q) of SLy(Ay). According to the comment after Nobs[23] Definition

3, the representations of SLy(A)) in the case p # 2 correspond to the quadratic modules



95

with M = Ay, Q(x) = p~ra? r #0 mod p, A > 1 are called Ry(r).
Recall,

S0 = = D exp(=2mifp- (2ay)) by = = 30 ¢,

yeM yeM

and
75, = (4,

Nobs[23] provides two methods for the decomposition of Weil’s representations.
331 U={-11}

Aut(M, Q) is the group of automorphisms of M invariant under @, i.e., for every
0 € Aut(M,Q), Q(p(z)) = Q(x) for all x € M. So since M = Z/3Z and Q(z) = x?/p,
Aut(M, Q) will consist of the identity and the inverse maps. Aut(M,Q) = {1,—1} =
7.)27 = Cy. Aut(M, Q) has the trivial subgroup and itself as the only two subgroups

since it is of prime order. So let 4l = {1, —1} and let y be a character of 4, then
V(x):={feCY| fex) = x(e) f(x) Ve € U, Vo € M}

is a subspace of V = CM that is invariant under SLy(Ay). If you write W (M, Q, x) for

the sub-representation of W (M, Q) in the space V (), then
W(Mv Q) - 6BXVV(]\4a Qv X)a

where y runs through all the characters from .
3.3.2 Basis Choice 1

For our case, there are two characters, x; the trivial character and y, the non-trivial
character of the abelian group 4.

Let’s start with ;.

Vix) ={f € C"| fex) = x(e) f(x) Ve € U, Yz € M}
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={feCM| flex) = f(z) Ve € U, Vx € M}
={feC” | f(1-2)= f(z) and (-1 2) = f(z) Vo € M}
={f€C"| f(-2) = f(x) Yz € M}

So even functions meet the criterion. Let fo(z) = do(z). Then dy(—0) = do(0) = 1,

Jo(—1) = 60(2) = (1) = 0, and dy(—2) = (1) = dp(2) = 0. It holds.

() = do(x) — 81(x) — d5(). Then

f1(=0) = 00(=0) = 61(=0) = 65(0) = 1 =0 = 0 = £1(0) = 00(0) — 61(0) — 65(0).

Fi(=1) = [1(2) = 00(2) =61(2) =02(2) = 0-0—1 = fi(1) = 6o(1) —=01(1) = (1) = —1.
fi(=2) = fi(1) = (1) =01 (1) =02(1) = 0=1-0 = f1(2) = 60(2) —=01(2) = 02(2) = —1.

It too holds.

Let f1 J])

V(x1) = {fo, f1}- So it’s a two dimensional subspace.

Next we have y2(1) = 1 and y2(—1) = —1. Our subspace is given by
Vix2) = {f € CY | f(ex) = x2(e) f(x) Ve € U, Vo € M}.

Applying the relation gives f(1-0) = y2(1) - £(0) = 1- £(0) = £(0)
fL-1)=x2(1)- f(1) =1 f(1) = f(1)
f(1-2) =x2(1)- f(2) =1 f(2) = f(2)
(=1-0) = f(0) = x2(=1) - f(0) = =1+ f(0) = — f(0)
f(=1-1) = f(-1) = f(2) = x2(-1) - f(1) = =1 f(1) = —f(1)
f(=1-2)=f(=2) = f(1) = x2(=1) - f(2) = =1 - f(2) = = f(2).
So for £ = 1, we have f(z) = f(z). Fore = —1, f(0) = — £(0) which implies £(0) =
F(1) = —f(2) = — f(—1). So odd functions meet the criterion.

Let fo(z) = 01(x) — d2(x). Then

f2(—1'0) = f2(0) = 51(0) —52(0) =0= Xz(—l)fQ(O) = —(51(0)—52(0)) =—-0= _f1<0)7
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fo(=1-1) = f2(2) = 01(2) = 82(2) = =1 = x2(=1) fo(1) = —(d:(1) = 62(1)) = —1,
and
fa(=1-2) = fo(1) = 01(1) — 02(1) =1 = x2(—1) f2(2) = —(51(2) — 92(2)) = 1.

V(xz2) = {f2}. So it’s a one dimensional subspace. We need to perform a change of basis

on matrix 7T,

1 0 O
Ly=10 ¢ o0
0 0 ¢
that results by the action of [} ¢]. Let
1 1 0

M=10 -1 1
0 -1 -1
Then M contains as column the vectors of the new basis B = {fo, f1, f2} with respect
to the canonical basis {dg, d1,d2}. M represents the matrix of change of basis from B to
the canonical.

To determine the new coordinates with respect to the new basis,

Ty = M '"TyM
_1§§__100 1 1 0
=10 —2 =11 ]0 & o]0 -1 1
0 5 —2110 0 ¢&||0 -1 -1
PN PR T
ol B 1 L A
0 5 2] [0 -G -G
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1 1-¢ o
=10 @ 0
0 0 &

So we have our desired block diagonal matrix for the matrix representation of the action
by T' = [} %] with respect to the basis vectors { fo, f1, f2}:

1 1-¢1|0

Try=10 ¢ |0

0 0 |¢&
Ry (1,+) corresponds to the 2 x 2 block and R;(1, —) corresponds to the 1 x 1 block.

Letting 7= [{ 1], we see that

1 1-G
Ri(1,+)(T) =
e
- B
aE 1—<—§+173)
0 -1+
. y
_ 1 %—273
W
0 —3 + ¥t
and
1 V3
Ri(1,-)(T) = -3 +z§.

Now for the action by [{ ']. Call this matrix S, and it is

1 1 1

S = 2
b_% INNCENE:
1 & G

Applying the similarity transformation gives us the matrix with respect to the new
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basis

SfZM_ISbM
1 1+ 1 1 1 1|1 1 0
— o —r 1| =Ly 2l 1o -1 1
2 2| 3 G G
0 & —3 1 G G| [0 -1 -1
13 1N -1 0
—i
=750 —5 =3 |1 GG+l GG
0 4 [ -G-6t GG

2 =G -G 0

—i
SAT Gte-1 0
00 G-G
2 1 0
T
Al
(00 (3 — (3
In block diagonal form,
2 1 0
—1i
Sp=—7=| -1 =2 :
f /3 0
0 0 |G-G

Ry(1,+) corresponds to the 2 x 2 block and R;(1,—) corresponds to the 1 x 1 block.

Letting S = [{ '], we have

—2iv3  —iV3
Ri(1,+)(5) = iﬁ &g
3 3
and
—i\/g )

Rl(lu_)(s): 3 (CS— 3)
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—iV3 | -1+iV/3 —1-iV3
3 2 2

_ig‘/g i3

= 1.

3.3.3 Basis Choice 2
For our case, there are two characters, x; the trivial character and y, the non-trivial

character of the abelian group 4. Let’s start with y;.

Vixi) ={f € C" | f(ex) = x(¢) f(z) Ve € U, Yz € M}
={feCM| flex) = f(x) Ve € U, Vo € M}
={feCY | f(1-2) = f(z) and f(~1-2) = f(z) Vo € M}
={f €C"| f(-2) = f(x) Yo € M}

So even functions meet the criterion. Let fo(x) = do(x). Then do(—0) = Jp(0) = 1,
Let fi(xz) = 01(z) + d2(x). Then

f1(=0) = 61(=0) + d2(=0) = 0+ 0 = 0= 0,(0) + d2(0)

fi(=1) = f1(2) = 0:(2) + 62(2) =0+ 1 = fi(1) = 6:1(1) + d2(1),

and

fi(=2) = f1(1) = 0:(1) +05(1) = 1 = f1(2) = 02(2) + 02(2) = 1.

It too holds and V' (x1) = {fo, f1}. So it’s a two dimensional subspace.
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Next we have y2(1) = 1 and xa(—1) = —1.
Vixe) = {f € CM| f(ex) = xa(e) f(x) Ve € U, Vo € M}.

Computations show f(1-0) = x2(1)- f(0) =1- f(0) = £(0),

J-1) = xa(1) - f(1) = 1- f(1) = f(1),

F(1-2) = x2(1) - f(2) = 1- F(2) = f(2),

J(=1-0) = f(0) = x2(=1) - f(0) = =1 f(0) = = f(0),
=11 = f(=1) = f(2) = x2(=1) - f(1) = =1- f(1) = = f(1),
f(=1-2) = f(=2) = f(1) = xa(=1) - f(2) = =1- f(2) = = f(2),

that for ¢ = 1, we have f(z) = f(x). For ¢ = —1, f(0) = —f(0) which implies
f(0) =0, f(1) = —f(2) = —f(—1). So odd functions meet the criterion.
Let fo(x) = 01(z) — d2(x). Then

f2(=1-0) = f2(0) = 61(0) = 02(0) = 0 = x2(=1) /2(0) = —(61(0) = 62(0)) = =0 = = f1(0),

fo(=1-1) = fo(2) = 61(2) — 52(2) = —1 = x2(—1) fo(1) = = (61 (1) — 62(1)) = —1,

and

fo(=1-2) = fo(1) = 01(1) = 62(1) = 1 = x2(—1) f2(2) = =(01(2) — 62(2)) = 1

show that V(x2) = {f2}. So it’s a one dimensional subspace. We need to perform a

change of basis on matrix T,

1 0 0
Ly=10 ¢ o0
0 0 ¢
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that results by the action of = [} %]. Let

1
M =

0
0

o

NI= N

o

1
2

N =

Then M contains as column the vectors of the new basis B = { fo, f1, fo} with respect

to the canonical basis {dg, d1,d2}. M represents the matrix of change of basis from B to

the canonical.

To determine the new coordinates with respect to the new basis,

Ty = M'T,M
1o o]t o o]0 o
=10+ 2|0 o011 1
0 5 —2110 0 ¢&|]01 -1
PR R
=10 =3 —3| (0 & &
0 3 = |0 & ¢
10 o
=10 ¢ 0
00 ¢&

So we have our desired block diagonal matrix for the matrix representation of the action

by [§ %] with respect to the basis vectors { fo, f1, fa}:

1 0

0 ¢
0

Ty =

0

0
0

b
3
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Letting T'= [} }], we see that

1 0
0 G
1 0
0 —1442L2
and
1 3
Ry(1,—)(T) = —3 —1—2'\/7_.

Now for the action by [{ ']. Call this matrix S, and it is

1 1 1

S, = — 2
b_ﬁ 1 C3 <3
1 & G

Applying the similarity transformation gives us the matrix with respect to the new basis

Sy =M"'S,M
10 0 1 1] 1o o
2055;—%1(353?011
0 5 —3 1 G ¢Gl|o1 -1
Lo o1 2 0
=503 H| ]t @ g+
0 5 3|1 G+6 G-G
I 0
oy LR
0 0 G+ G
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1 2 0
S
7 _
0 0 -G+
In block diagonal form,
1 2 0
S;=—11 -1] o
f \/g )
0 0 |G-G

Ry (1,+) corresponds to the 2 x 2 block and R;(1,—) corresponds to the 1 x 1 block.

Comparing the results from Basis Choice 1, the characters agree as they should. Letting

S =[%7'], we have

—i\/g
Ri(1,+)(S) = _fﬂ

and
R = =26 - )

—2iV/3

3
iv3
3

—iV3 | -1+iV/3 —1-iV3

3 2

= —13\/32\@

2

So these representations are realized over Z [%(1 ++/-3), %] =7 [Cg, %] By Theorem

2.4.4] integral representations over Z[(3] exist. We construct them in the next section.

3.4 Wang’s Basis for R(1,+)

Wang[36] provides an integral basis for the R(1,+) and R(n, +) representations from

the Weil representation of T'= [} 1]. Let v = Zf:_ol

0, and p(7T') be the Weil representa-
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tion of 7. Then an integral basis over Z[(,] is given by

{v,p(T) 0, (p(T)2 v, (p(T) P32y (p(T))P~V/2. U} .

Using SAGE, we verify that the representations are integral over Z|[(3]. Since (5 =
(1 ++/=3), they are also integral over Z[3(1 4 /=3)]:

R(1,4)(S) = —e-l G and R(1,+)(T) = 0 6 ,

—(3 Gz +1 1 G+1

and
R(1,—)(S)=1and R(1,—)(T) = (.

3.5 Candelori’s Bases for R(1,+) and R(1,—)
Let p(S) and p(T') be the Weil representations for S = [{ '] and T' = [§ 1] respec-
tively. Define vy := 1 + 0(,—1) and v_ := 6, — §(p_1). Define p(U) := p(S) - p(T) - p(5).

Then a basis for R(n,+) is conjectured to be

{ve, pU) - vy, (p(U))* - vsy - (p(U) P20 (p(T) P02 0, }

and a basis for R(n,—) is conjectured to be

(o U)oy (PO v (U2 o, (V)72 0}

Using SAGE, we verify that the representations are integral over Z[(3] = Z[5(14v/=3)]:

R(1,+)(S) = Gl R(1,+)(T) = G 1 ,

Gz —(3 0 1

and

R(1,-)(S) =1 and R(1,—)(T) = Cs.
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3.6 Ri(2,+)
Since 02 = 0 mod 3, 12 =1 mod 2, and 22 = 4 = 1 mod 3, we have that 2 is a

2
quadratic non-residue modulo 3. So, (g) = —1. We take r = 2. Our quadratic form is

2
Q(r)=3712-2% = §x2 and the associated bilinear form is

2

4
B(r,y) = Qz +y) — Qz) — Qy) = §($2 + 2zy + ) — §x2 — §y2 = gzpy.

Using Theorem 2 and Eq(7) from Nobs[23] [24]: We have Q(z) = 2z /p, B(z,y) = 4zy/3,
A=1,p=3 Ay=M=7/pZ = A, = ZJ3Z, |M| = 3, r = 2.

Sola) = |M[72 ) e(—aQ(z))

zeM

So(=1) =372 e(~(~1)Q(x))

reM

=372 " e(Q(x))

zeM

= 3712 (exp(2mi(2 - 0?/3)) + exp(2mi(2 - 1%/3)) + exp(27i(2 - 22/3)))
= 3712 (exp(0) + exp(4mi/3) + exp(167i/3))

— 312 1_1_2'@_1_@@
5 "9 T3 'y
:3_1/2<1—1—i\/§>

= —i

which agrees with Nobs’ I, Lemma 1: with r =2,p=3, A =1,

a\? 1 it A even
Ma= (%) sat-1)-
p (f) e(p) it A odd
p
distinguishes e(d) = 1 or 4, depending on whether d = 1 or 3 mod 4. We have Sgp(—1) =

2
(I) e(p) = <—> e(p) = —1-i = —i where (p) =i since p =3 mod 4. So our actions
p p



For our given M and p = 3,

are
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L —4-2-1
73 |

—4-2.2
C3

implying

And

— e(bQ(x)) - 4,

_ 2bx? 5
- Cp " Uz
gives

1 0 0
=10 ¢* 0
0 0 ¢

3.6.1 ={-11}

Aut(M, Q) is the group of automorphisms of M invariant under @, i.e., for every
v € Aut(M,Q), Q(¢(z)) = Q(z) for all x € M. So since M = Z/3Z and Q(x) = 222 /p,
Aut(M, Q) will consist of the identity and the inverse maps. Aut(M, Q) = {1, -1} =

7.)27 = Cy. Aut(M, Q) has the trivial subgroup and itself as the only two subgroups
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since it is of prime order. So let 4 = {1, —1} and let x be a character of i, then
V(x):={f € C"| f(ex) = x(e) f(x) Ve € 4, Yz € M}

is a subspace of V = CM that is invariant under SLy(Ay). If you write W(M, Q, x) for

the sub-representation of W (M, Q) in the space V (), then
W(M,Q) =&, W(M,Q,x),

where y runs through all the characters from &l.
3.6.2 Basis Choice 1
For our case, there are two characters, x; the trivial character and y, the non-trivial
character of the abelian group 4. Let’s start with y;.
V(xi) ={f € C" | f(ex) = x(¢) f(z) Ve € U, Yz € M}
={feCM| f(ex) = f(x) Ve e U, Vo € M}
={feC” | f(1-2)=f(z) and f(-1 =) = f(z) Vo € M}
={feC"| f(-2) = f(x) Yo € M}.
So even functions meet the criterion. Let fo(x) = do(x). Since do(—0) = 6o(0) = 1,
do(—1) = 0p(2) = do(1) = 0, and dp(—2) = do(1) = dp(2) = 0, it holds.
Let fi(x) = 0o(z) — d1(x) — d2(x). Then

f1(=0) = 00(=0) = 61(=0) = 92(0) = 1 = 0 = 0 = f1(0) = do(0) — 61(0) — d2(0),

fi(=1) = f1(2) = 80(2) = 01(2) —92(2) =0—0—1 = f1(1) = do(1) — 61(1) — 52(1) = —1,

and

fi(=2) = [1(1) = 00(1) = 6:1(1) = 02(1) = 0 =1 =0 = f1(2) = d0(2) — 02(2) — 02(2) = —1

show it holds and that V(x1) = {fo, fi}. So it’s a two dimensional subspace.



110

Next we have y2(1) =1 and xa(—1) = —1. With
V(xe) = {f € CM| f(ex) = xa(e) f(x) Ve € U, Yz € M}

f(1-0) = x2(1) - f(0) =1- f(0) = f(0),
fA-1)=x2(1) - f(1) =1 f(1) = f(1),
f1-2) =x2(1)- f(2) =1 f(2) = f(2),
f(=1-0) = f(0) = x2(=1) - (0) = =1 f(0) = — f(0),
(=1-1) = f(=1) = f(2) = x2(=1) - f(1) = =1 f(1) = —f(1),
and
f(=1-2) = f(=2) = f(1) = x2(=1) - f(2) = =1 f(2) = = f(2),
show that for £ = 1, we have f(z) = f(z). For £ = —1, £(0) = — f(0) which implies
£(0) =0, f(1) = —f(2) = —f(—1). So odd functions meet the criterion.
Let fo(z) = 6(z) — 6a(x). Then

f2(_1'0) = f2(0) = 51(0) _52(0) =0= X2(_1)f2(0) = _(51(0)—52(0)) =—-0= —f1<0),

fo(=1-1) = [»(2) = 61(2) = 62(2) = —1 = xa(—1) fo(1) = = (61(1) = 62(1)) = —1,

and

fo(=1-2) = fo(1) = 01(1) = 62(1) = 1 = x2(—1) f2(2) = —(01(2) — 62(2)) = 1

shows that V(x2) = {f2}. So it’s a one dimensional subspace.

We need to perform a change of basis on matrix 7,

1 0 0
Ty=10 ¢* 0
0 0 ¢
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that results by the action of [1§]. Let

1 1 0
M=10 -1 1
0 -1 —1
Then M contains as column the vectors of the new basis B = {fo, f1, f2} with respect
to the canonical basis {dg, d1,d2}. M represents the matrix of change of basis from B to
the canonical.

To determine the new coordinates with respect to the new basis,

Ty = M "TyM

PR B PR N PR

=10 =2 =il |0 & o0 -1 1
0 3 —i110 0 &G0 -1 -1
-155_-11 0

=0 -+ —4 0o -@ ¢
03 o e -
_11—§b0

=10 ¢ 0
0 0 2

So we have our desired block diagonal matrix for the matrix representation of the action
by [§ %] with respect to the basis vectors { fo, f1, fa}:
1 1-¢*| 0

Tr=10 2b 0

0 0 |¢&
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11
Letting T' = , we see that

0 1

Ri(2,+)(T) =

and
Ri(2,-)(T) = -

Now for the action by [{ ']. Call this matrix S, and it is

S=71 ¢ G
1 G G

Applying the similarity transformation gives us the matrix with respect to the new basis

SfZM_ISbM
I 11 1)1
i
=10 | B G G| |0
03 =3 [t e o
LA -1
1
V- U
0 5 —3]|!

1 —G-G+1 G-
-G -G+l -G
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2 -GG 0
(4
ST Gt 0
|0 0 GG
2 1 0
- I -2 0
7= |-t -
(00 GG

In block diagonal form,
2 1 0
Sgp=—72| -1 =2 0 )
0 0 |G-G

R1(2,+) corresponds to the 2 x 2 block and R;(2, —) corresponds to the 1 x 1 block.

Letting S = [V '], we have

2V i3
By (2,4)(5) = _,33 _;fﬁ
i
and
R = ¢ - )
V3| -1-iv3  —1+iV3
3 2 2
:%5.(_2-\@
=1

3.6.3 Basis Choice 2
For our case, there are two characters, x; the trivial character and y, the non-trivial

character of the abelian group 4.
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Let’s start with ;.

V(xi) ={f € C" | f(ex) = x(e)f(x) Ve € &, Yz € M}
={feCM| f(ex) = f(x) Ve e U, Vo € M}
—{f €CM | f(1-2) = f(z) and f(~1-2) = f(z) Vo € M}

={feC"| f(-2) = f(x) Yo € M}.

Yo even fumctions meet the criterion. Let fo(x) — 0o(x). Then do(—0) = 8o(0) = 1,
So(=1) = 6o(2) = 65(1) = 0, and 5o(—2) = 65(1) = 66(2) = 0 show it holds.
Let fu(x) = 61(x) + 6a(x). Then
F1(=0) = 51(—0) + 85(—0) = 0+ 0 = 0 = 5,(0) + 5(0),
fi(=1) = fi(2) = 61(2) + 92(2) =0+ 1 = f1(1) = 61(1) + 62(1), and
fi(=2) = fi(1) = 61(1) + 62(1) = 1 = f1(2) = 61(2) + 62(2) =1
shows it holds and V(x1) = {fo, f1}. So it’s a two dimensional subspace.

Next we have y2(1) = 1 and y2(—1) = —1.
Vxe) ={f € CM | f(ex) = x2(e) f(2) Ve € U, Yz € M}.

Then f(1-0) = y2(1) - £(0) = 1- £(0) = £(0),

(
(
f(=1-0) = f(0) = x2(=1) - f(0) = =1+ f(0) = — f(0),
(—1-1)=f(=1) = f(2) = x2o(=1) - f(1) = =1 f(1) = = (1),
and f(~1-2) = f(~2) = f(1) = xa(~1) - f(2) = ~1- f(2) = —f(2) show that
for e = 1, we have f(z) = f(z). For ¢ = —1, f(0) = —f(0) which implies f(0) = 0,
f(1) = —f(2) = —f(~1). So odd functions meet the criterion.
Let fo(x) = 6,(z) — 8s(x). Then
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fo(=1-0) = f2(0) = 61(0) — 2(0) = 0 = x2(—1)f2(0) = —(6:1(0) — 62(0)) = -0 =
—f1(0).

fa(=1-1) = f2(2) = 01(2) = 62(2) = =1 = x2(=1) fo(1) = —(d1(1) — 62(1)) = —1.

fo(=1-2) = fo(1) = 61(1) = 62(1) = 1 = xa(—1) f2(2) = —(52(2) — 62(2)) = 1.

V(xz2) = {f2}. So it’s a one dimensional subspace.

We need to perform a change of basis on matrix 7},

10 0
Ty=10 ¢ 0

0 0 ¢
10
that results by the action of . Let
01
10 0
M=10 1 1
01 —1

Then M contains as column the vectors of the new basis B = {fo, f1, f} with respect
to the canonical basis {dy, d1,d2}. M represents the matrix of change of basis from B to
the canonical.

To determine the new coordinates with respect to the new basis,

Ty = M TyM
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10 0|1 0 Of|1 o0 O
=10 4+ (|0 off0o1 1
03 —3/|0 0 G001 —1

=10 =5 0§ &
0 3 -3 |0 & -¢&
_100
=10 ¢ 0
0 0 ¢

So we have our desired block diagonal matrix for the matrix representation of the action

by [§ %] with respect to the basis vectors { fo, f1, fa}:

1 010
Tr=10 ¢*| 0

0 0 ¢
11
Letting T = , we see that

0 1

1 0
Ry (2,+)(T) =

0 ¢
1 0
0 —1—i¥3

and
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0 —
Now for the action by . Call this matrix S, and it is
1 0
1 1 1
1
B=EAIL G G
1 G G

Applying the similarity transformation gives us the matrix with respect to the new basis

Sf:M_ISbM
10 0 1 1 1[(10 0
i
=10 3 3 7% |1 G G| |01 1
04+ -1 1 ¢ ¢Gl|0o1 -1
10 of]|1 2 0
_i 1 1 2 2
“ AV 2|l G+eG G —G
0 5 —4 |1 G+G G+
12 0

1 2 0
_ ! 1 -1 0
7 _
0 0 G-¢
In block diagonal form,
1 2 0
Sy = i 1 -1 0
f \/g - )
0 0 |-G

R1(2,+) corresponds to the 2 x 2 block and R;(2,—) corresponds to the 1 x 1 block.
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Comparing the results from Basis Choice 1, the characters agree as they should. Letting

S =[], we have

i3 2iV3
R(2,+)(S)=|?* °
1(2,+)(5) N
3 3

and

CCRTE RALTE M

VB -1-iVB  —144V3

3 2 2
s
=22 (-iv)

=1

3.7 Wang’s Basis for R(2,+)

Wang[36] provides an integral basis for the R(n,+) and R(n,+) representations
from the Weil representation of T = [31]. Let v = >.7-) 6, and p(T) be the Weil

representation of 7. Then an integral basis over Z[(,] is given by

{0.0(T) -0, (p(T))? v, (p(T)) =22 v, (p(T) D72 - 0}

Using SAGE, we verify that the representations are integral over Z[(3]. Since (3 =
(1 ++/=3), they are also integral over Z[3(1 + +/—3)]:

R(2,4)(S) = Goetl R )T = || Gl
G+1 —G I =G

and

R(1,-)(S) =1 and R(1,=)(T) = (.
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3.8 Candelori’s Bases for R(2,+) and R(2, —)
Let p(S) and p(T') be the Weil representations for S = [{ '] and T' = [§ 1] respec-
tively. Define vy := 61 + 0(,—1) and v_ := §; — §(p — 1). Define p(U) := p(S) - p(T') - p(.5).

Then a basis for R(n,+) is conjectured to be

(o0, p(0) - vrs () vy, ()T o (TP 0, )

and a basis for R(n,—) is conjectured to be

{om, p(U) v (p(U))? oy (p(U) T2 o, (p(U) 0w}

Using SAGE, we verify that the representations are integral over Z[(3] = Z[5(14v/=3)]:

R(2,4)(S) = ~e-l and R(1,+)(T) = ~G -1 s
—@—1 G+1 0 1
and
R(2,-)(S) =1and R(1,—)(T) = (3 — 1 = (3.
3.9  Ni(x)

Our table in Section I, (from Nobs and Wolfart[24]) tells us that

Ni(x) = Ri(1,—)® Ry(n,—) for y #1 and x* = 1.

N is also computed using M = Z/pZ & 7./pZ, Q(z) = p~ z1wy with A > 1.
N, is called the unbranched Weil representation[24].
For our case, A =1, Ay = Z/3%Z, M = Z/3Z & Z/37Z, Q(x) = 3 x 2.

B(r,y) = Q(r +y) — Q(z) — Qy)
=37 (21 +y1) (22 + 12) — (1122) — (192))

= 37N @122 + Y122 + 11y + Y1ya — (2172) — (Y192))
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= 3" (y129 + T110)

Aut(M, Q) is the group of automorphisms of M invariant under @, i.e., for every ¢ €
Aut(M,Q), Q(p(z)) = Q(z) for all x € M. Aut(M, Q) will consist of the identity, the
inverse maps, and « : (z,y) — (y,x). The effect of a € A on M will be defined by

L' = 2 ¢ince a is

a: (z,y) — (a7'z,ay). For a = 1, this is the identity map. For a = 2, a~
a unit of Z/37Z, the map is multiplication by 2. Multiplication by 2 is the same as the

inverse map:

2. (0,0) = (0,0) + (0,0) = (0,0) = —(0,0), 2-(0,1) = (0,1) + (0,1) = (0,2) = —(0,1)
2-(0,2) = (0,2) + (0,2) = (0,1) = —(0,2), 2-(1,0) = (1,0) + (1,0) = (2,0) = —(1,0)
2-(1,1) = (L,1)+(1,1) = (2,2) = —(1,1), 2-(1,2) = (1,2) + (1,2) = (2,1) = —(1,2)
2-(2,0) = (2,0) + (2,0) = (1,0) = —(2,0), 2-(2,1) = (2,1) +(2,1) = (1,2) = —(2,1)
2:(2,2) = (2,2) + (2,2) = (1,1) = —(2,2).

We summarize the calculations in the following tables.

a( 06 é\)f Qéa) (T)(,%)) %‘f)g)_l Q ((H(Oa))‘l)
0,1) | 0 |(1,0)| (2,0) 0
0,2) | 0 |(20)| (1,0) 0
(1,0) | 0 |(0,1)| (0,2) 0
(1,1) ;| (LY (2,2 3
(L,2) | 2 [(2,1)| (1,2 3
(2,0) | 0 |(0,2)| (0,1) 0
(2,1) | 2 [(L,2)| (2,1 2
(2,2) 3 (2,2) | (1,1) 3

Table 3.9.1: Part I of calculations for Aut(M, Q)



0,1) | 0 |(0,2)| (2,0) 0
0,2 | 0 |(0,1)| (1,0) 0
(LO) | 0 | (2,00 (0,2) 0
L1 | 3 |22 22 3
(1,2) 2 @2 (1,2 3
(2,0) | 0 |(1,0)| (2,0) 0
(2,1) 2 (1,2 (2,1) 2
(2,2) ;Y| (1,1 3
Table 3.9.2: Part II of calculations for Aut(M,Q)

We see that the x automorphism commutes with the inverse. Their composition is
of order two as well. With the exception of the identity, every automorphism is of order
two. So, Aut(M, Q) = Vj the Klein 4-group. So il can be the trivial subgroup, a subgroup

of order two, or the entire group. So let 4l = {1, —1} and let x be a character of L, then
V(x):={f € C"| f(ex) = x() f(z) Ve € U, Yz € M}

is a subspace of V = CM that is invariant under SLy(Ay). If you write W (M, Q, x) for

the sub-representation of W (M, Q) in the space V (), then

W(M, Q) = &, W (M, Q,x),

where y runs through all the characters from .

For our case, there are two characters, x; the trivial character and y, the non-trivial

character of the abelian group 4l
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Let’s start with ;.

V(xi) ={f € C" | f(ex) = x(e)f(x) Ve € &, Yz € M}
={feCM| f(ex) = f(x) Ve e U, Vo € M}
—{f €CM | f(1-2) = f(z) and f(~1-2) = f(z) Vo € M}

={feC"| f(-2) = f(x) Yo € M}.

Again, even functions meet the criterion.
f(=1-(0,0)) = £((0,0)) = f((0,0)),
f(=1-(0,1)) = f((0,2)) = f((0,1)), and
f(=1-(0,2)) = £((0,1)) = £((0,2)).

f(=1-(2,0)) = f((1,0)) = f((2,0)),
f(=1-(2,1)) = f((1,2)) = f((2,1)), and
f(=1-(2,2)) = f((L.1)) = f((2,2)).
Using the definition of §¢ from Nobs and Wolfart in the proof of Theorem 2[24], let

55(77){ 1 foréE=neM

0 otherwise
Then our basis functions are: fo = d(,0), f1 = d0,1) + 00,2), f2 = 01,00 + 02,0, f3 =
01) +90(22), and fi = d2) + 0(2,1)-
But this does not meet the dimension requirements of the irreducible representa-

tion given in the table. So we will use another method. We will use material from



Stromberg[32].

Let My = Z/37Z. Then Ny = Z/3Z x Z/3Z = M; & ]\/4\1 = M, ® M,. We have
established earlier that Q(x) = zy/3 for Ny. For My, let Q1 = 2%/3, My, let Q = 222 /3.
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Then Lemma 2.10 and Proposition 2.11[32] tells us that

W (N1, Q) = W(My,Q1) ® W(M,, Qo)

Summarizing what we have so far:

=~ (Ri(L,+)® Ri(1,-)) ® (Ri(2,+) ® Ri(2, -))

>~ (Ry(1,+) ® Ri(2,+)) @ (Ri(1,+) ® Ry (2, -))

D (Ri(1,-) @ R1(2,+4)) @ (R1(1,—) ® R1(2,—))

Basis 1 Basis 1 Basis 2 Basis 2
Representation | Generator S Generator T’ Generator S Generator T’
—2iv3  —iV3 1 3 _ iﬁ: —iv/3  —2iV3 1 0
R1<1a+) 1\?7:7, 21-?/3 _21 3/3 —’L;i/g l% |: —1 . 3:|
il B U o oy ol 0 5+
Ry(1,-) 1 = A 1 SL+ i
2iv/3 V3 3 1 ;3 iv3  2iV3
Ri(2,4) ol I R R 0
’ —iv3 =23 0 =L _;v3 V3 —iv3 0 =L _;v3
3 3 2 2 3 3 2 2
Ri(2,-) 1 = 1 =

The conjugacy
3.9.4

Table 3.9.3: Ry(1,+£) and Ry(2, %) for SLy(F3)

class representatives of SLy(F3) and their sizes are given in Table
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Conjugacy Class | Generated | Conjugacy Class
Representative By Size
[= ﬁ (1)J 54 1
P s :
U= [é ﬂ T 4
u = {(1) ﬂ T? 4
—u' = [g é] 1252 4
—u = [3 g] TS? 4
s = [(1) g} S 6

Table 3.9.4: Conjugacy class representatives of SLy(F3) and their sizes

3.9.1 Basis Choice 1

For Basis 1, the four dimensional representation of the generator S = [ '] is

-—21'\/:7) —iV/3 2iv/3 iV/3
Ri(1,4)® Ri(2,+))(S) = | * A I °
HemenE=| °0 0 tel 0
|3 3 3 3

i 2%/3 i3 2E 3

—2i/3 3 3 —iv/3 3 3

3 —iv3  —2iV3 3 —iv3  —2iV3

. 3 3 3 3

2iv/3 V3 2iv/3 V3

i3 3 3 2iV/3 3 3

3 —iv3  —2iV3 3 —iv3  —2iV3

| 3 3 3 3 i




The trace of this matrix raised to the fourth power is 4. The trace of the matrix
squared is also 4, corresponding to the trace of S* = 1 and S? = —1. The trace of this

matrix is zero. This agrees with the trace of representation 1 + St (S corresponds to s

in Reeder’s character table).

Wiy wlN

125

U
N e

Wik W~

Wl
9SSl

W=
1

Wi wiN

ol

Now for T'= [} 1] (which corresponds to u in Reeder’s character table).

Ri(1,4) ® Ri(2,+))(T)

Neither are in block diagonal form so we will need to perform another basis change. But

0

3 ;3
2 ?[ ®
-1 -\/3
2 Ty
3, V3
1 5—}-27
—1 \/g
0 T—ZT
3 /3
1 §—|—ZT
-1 \/g
O 7—27_
3 /3 3
2 TS 3
1 /3
T2 Tty
0 _
0
3 /3 3
2 TS 3
1 /3
2 Tty
0 _
0

3 /3
1 §+ZT
—1 \/g
0 7_17
34 V3
<§—Z—3) 1 2+7/2
2 2 0 -l 3
2 g
34 V3
(;1+ZL§)1 2+22
2 2 0 - 3
PR
— 343 3
3 /3 /3 3
0 _Z‘i‘ZT—?ﬂT—Z
FiS 3By givs 8
1,3
V3 T
—ZT 3
3, V3
0 —§+ZT
\/g 3 \/g
L iy
0 1
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we can verify that this indeed 1 6 St since it agrees with the characters on the conjugacy
classes and since it decomposes into two irreducible representations. It is readily verified
using a computer. Let’s try the second choice for the basis.

3.9.2 Basis Choice 2

For Basis 2, the four dimensional representation of the generator S = [ '] is

—iv3 =23 V3 2iV3
3 3 3 3
(Ri(1,+) ® R1(2,4))(5) = ®
—iV3 iV3 iv3  —iVv3
3 3 3 3
i3 2iV3 V3 2iV3
—iV/3 3 3 —2iV/3 3 3
3 W3  —iV3 3 i3  —iV3
o 3 3 3 3
V3 2iV3 V3 2iV3
—iv3 | 3 3 w3 | 3 3
3 i3 —iV3 3 i3 —iV3
3 3 3 3
12 2 4
3 3 3 3
1 =1 2 =2
|3 3 3 3
12 =1 =2
3 3 3 3
1 =1 =1 1
ERE 3 3 ]

Now for "= [} 1] (which corresponds to u in Reeder’s character table).

1 0 1 0
mODemeOND=| el
_O 7+ZT _O 3 _ZT
1 0 1 0
1 0- v
B 0 _71—273 0 _71—273
.t 0 o | 0
O —1 \/E 2 2 O —1 \/5
B 2 ]
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10 0 0
0 =8 0
"o o “Ls
1 3
0 0 0 -+
L 4+4_
10 0 0
0 =58 0 0
oo !
0 0 0 1

It’s not in block diagonal form so we need to perform a change of basis. For convenience,
let p1 = Ri(1,4), p2 = R1(2,+) and ¢ = exp(27i/3). Recall that V(x1) = {fo, f1} and
fo =100 and f; = &; + d5. Then we have

1 0
p(T) =
0 ¢
1 0
p2(T) =
0 ¢!
1 0 00
0 ¢t oo
p1® p2(T) =
0 0 ¢ 0
0 0 01
and
(=] °
P1 = —
\/g 1 -1




1 2 2 4
1l -1 2 =2
pL®p2(S) =3
1 2 -1 -2
1 -1 -1 1

p1 ® po(T) has an eigenvalue of 1 with multiplicity two. To determine the invariant

subspace, we consider the eigenspace generated by eigenvalue of 1.

VT = span((50 ® 50, ((51 + 52) ® ((51 + 52))

= span(dy ® do, 1 ® 91 + dy ® 01 + 01 ® 09 + 09 & O2)

F T - -

1 0
0 0
= span ,
0 0
0 1
\ L L 1 J
4 7 )
1 0
0 0
= span ,
0 0
1 1
\ L L 1 J

Next recall that (the Fourier “expansion”)

p1(S)(do) = 01 + d2 + d5
p1(S) (61 + 82) = 8o + (301 + 25y + o + (362 + (303
= 200 + (C3 + €3)01 + (G5 + (3)02

= 209 — 01 — 0s.
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Computing the Jordan form of p; ® p2(S) we obtain the Jordan matrix, J, and the D

the matrix of the associated generalized eigenvectors:

10 0 O 2 2 0 =2

01 0 O 10 -1 2
J: D =

00 -1 0 10 1 O

00 0 -1 01 0 1

So the invariant subspace Vg is given by

¢ T 7 7 )
2 2
1 0
Vs = span ,
1 0
0 1
\ L L d

So the invariant subspace spanned by the intersection is one-dimensional:

¢ T 7] ] ¢ I 7 F 7 )

1 0 2 2
0 0 1 0
Vr N'Vg = span ) M span , >
0 0 1 0
1 1 0 1
\ L L 1 J \ L L
(T 7))
2
0
= span
0
1
\ L 4/

= span(250 X 50 + (51 + 52) & ((51 + 52))

Since this is one-dimensional, it corresponds to the trivial representation in the decom-

position of Ry(1,+)® Ry(2,+). To find the Steinberg representation, we need to compute
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the basis of orthogonal complement of Vi N Vs. So,

(VenVg)t =span {v € V | v-w =0 for all w € (Vr N Vs)}

‘T 1 1 1)
1 0 0
0 1 0
0 0 1
-2 0 0
\ L . L L 1 J

= Span {(50 (029 (50 — 2((51 + (52) & ((51 + 52)),
do ® (01 + 02),

(01 + 02) ® o }-

Lets try to put this in block diagonal form with respect to the new basis (the above set

of linearly independent spanning vectors). Letting

2 1 00

0O 0 10
M =

0 0 01

1 =2 0 0

Ty =M (p1® po(T))M

100 0
010 0
00 ¢o0

00 0 ¢

It’s still block diagonal. So far so good.

So =M (p1 ® pa(S))M



131

1 1
1 Iz =
14 4

- 0 3 15 15
5 12
0 3 3 3

5 2 1

_0 3 3 3

It’s not block diagonal. Lets compute the others.

—iv3  —2iV3
1 2 — — 3
Ri(1,+) ® R1(2,—)(5) i3 i3




Let’s summarize what we calculated so far:

Representation I -1 u u’ —u —u’ s
Ri(1,-)®R((2,-) 1 1 1 1 1 1 1
= Trivial
Ri(1,+) @ Ri(2,+) 4 4 1 1 1 1 0
~1a St
R =p 2 =2 g4 goig - g 0
gR1<la_)®R1(27+>
B2 2 -2 j-if jhig —phiy —j-iy 0
gRl(17+)®Rl(27_)
Ri(1,—) =7 1 1 Ly 18 1yl 1 48
Ry(2,—) =l | T A 5 B Sy Y A |

Table 3.9.5: Ry(1,£) and Ry(2, %) for SLy(F3)

Nobs and Wolfart[24] tell us how to compute the Steinberg and the other two dimen-

sional Weil representations.
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3.10 Ny(x) redux
In Nobs Part I[23] Theorem 3, we have another binary quadratic form for M =

Z/pZ & Z/pZ: Q(x) = p~*(x? — ux3). Its bilinear form is given by

B(z,y) = Q(r +y) — Q(z) — Qy)
()’ —u(re ) (1) —u(ze)® (11)? — u(ye)?

p p P
(@2 4 200y + y2) — w3 + 20y + y2)) — 23+ uad — y? + uy?
>
>

_ 211Yy1 — 2uT2Yys
»

For our case, p = 3, A = 1, and u = 2. Since we know the automorphism group of M
will be GLo(Z/pZ), we will start there to compute Aut(M, Q).

The order of GLy(Z/pZ) is (p*> —1)(p?> —p). So | GLo(Z/3Z)| = (9—1)(9—3) = 8-6 =
48. Lets list them:

2 2 11 20 10 20 10 2 1 1 2
0 2 0 1 1 2 21 2 2 11 0 2 01
11 2 2 20 10 20 10 1 2 2 1
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1 2 2 1 11 2 2 21 2 2 1 2 11
2 2 11 1 2 2 1 2 2 1 2 11 2 1
01 1 2 0 2 11 2 2 01 21 0 2
11 2 0 2 1 10 2 0 1 2 10 2 2

Lets write the domain and image of Q(x).

T, wy ¢ 2 23 —222 Qx) = (22 —223)/3 € Q/Z

0 0 0 0 0 0
01 0 1 0-2 —2/3=1/3
0 2 0 4 0-8 —8/3=1/3
1 0 1 0 1-0 1/3=1/3
« 1 1 1 1 1-2 ~1/3=2/3
« 1 2 1 4 1-8 —7/3=2/3
2 0 4 0 4-0 4/3=1/3
« 2 1 4 1 4-2 2/3=2/3
x 2 2 4 4 4-38 —4/3=2/3

Now to determine the elements of Aut(M, Q). Since Aut(M, Q) is going to be a

subgroup of GLy(Z/37Z), its order has to be 1,2,3,4,6,8,12,16,24 or 48.
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10
We have the identity element: and its order is 1.
0 1
0 1] {0 0 0 1] 10 1 0
1 0f |0 0 1 0|1 0 1
0 1] |1 0 0 1] |1 1 0
1 0f |0 1 1 0] |1 1 1
0 1] (2 0 0 1] 1|2 1 0
1 0f |0 2 1 0] |1 2 1
0 1
is an element of order 2
10
0 2|10 0 0 2|10 2 0
2 0] 10 0 2 0] (1 0 2
0 2| |1 0 0 2] |1 2 0
2 0] 10 2 2 0 |1 2 2
0 2| (2 0 0 2| |2 2 0
2 0] 10 1 2 0|1 2 2
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0 2
is an element of order 2.

2 0
0 2] (0 0 0 2] 10
1 0f |0 0 1 0] |1
0 2] |1 0 0 2 |1
1 0f |0 1 1 0] |1
0 2| (2 0 0 2 (2
1 0f |0 2 1 0] (1

0 2

1 0
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2 0
is an element of order 2.
0 2
0 1] (0 0 0 1] |0
2 0] |0 0 2 0| |1
0 1] |1 0 0 1] |1
2 0] [0 2 2 0] |1
0 1] (2 0 0 1] |2
2 0] (0 1 2 0] |1
01
is an element of order 4
2 0
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20
is an element of order 2.
0 1
1 0f |0 0 1 0f |0
0 2] (0 0 0 2 |1
1 0] |1 1 1 0] |1
0 2] (0 0 0 2 |1
1 0] |2 2 1 0] |2
0 2] (0 0 0 2 |1
1 0
is an element of order 2. The elements
0 2
10 11 1 2 1
11 10 10 1
1 1
map to
0 1

The elements

1 2 2 2 0 2 2
0 2 0 2 1 2 1

map to




The elements

1

The elements

The elements

The elements

1
2

map to

0
1

2
1

0
1

2
0

1

2

1
2

2
1

1
0
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2
1

2
2

2
1

2
0

is not an element as it maps

2

2

1
to

1

2
1

0
2

1

2

2
0
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2 2 0 2
Neither is as it maps to

0 2 1 2
So since 37 elements are not in Aut(M, @), the order (cardinality) of Aut(M, Q) is

not greater than 8. So Aut(M, Q) will have to have order 8.

10 01 0 2 0 2 2 0 01 2 0 10
Aut(M?Q>: ) Y Y Y Y ) )

01 10 20 10 0 2 2 0 01 0 2
Now to show that Aut(M,(Q) is indeed a group. It inherits associativity from
GL4(Z/3Z). We have the identity element. Each of the elements has an inverse. Each of
the five elements of order two is an inverse to itself and the two elements of order four

are inverses to each other:

0 1f (0 1 10 2 0 (01 0 2 1 0] 1]0 1 01
2 0f (1 O 0 2 0 1 (1 O 10 0 2( (1 O 20
0 1f (0 2 2 0 0 2 (0 2 10 2 0 (0 2 01
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2
0

0
2

0
1

2110
0f (2

1
0

1
0

0
1




2 0f [0 1 0 2 2 0 (0 1 0 2 1 0] 1]0 1 01
0 2( (2 0 10 0 1 (2 O 2 0 0 2(1(2 O 10
0 1f (0 1 0 1

We have closure under the binary operation (matrix multiplication). So Aut(M, Q) is
a group. It is nonabelian. Letting » = [J{] and s = [9}], we can generate the eight

elements as follows:

01 01 20 0 2 10
5§ = T = ot = 1= srs = =5t = ,
10 2 0 0 2 10 01
10 0 2 2 0
rs = ris = s =
0 2 20 01

Since it has two elements of order 4, five elements of order 2, and the above relations

with the two generators r and s, it is isomorphic to the dihedral group of order 8:

Aut(M,Q) = (r;s | ' = s* =1, srs =1~ =717).
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It has an abelian subgroup of order 4 which is generated by either r or r—!. That is,
= (r|r*=1). So we will have characters of { that are not 1 or —1.
Remark 3.10.1. The orthogonal group O*(2,p) has a dihedral group of order 2(p+ 1)
as its automorphism group. One can refer to Taylor[34)] Theorem 11.4 for the details.
Theorem 2 in Nobs[23],
Theorem 3.10.2 (Nobs, 2). Let x, x1, X2 be primitive characters of L with x*, X%, X3 #
1.
a) Nyx(x) is irreducible of level \.
b) Ni(x1) = Na(xz) if and only if x1 = x2 or Xa-
This gives ((p* — 1)/2)p*~2 non-isomorphic irreducible representations of SLa(Ay) of
degree p*1(p — 1) for A > 1, p # 2, and for X > 3, p = 2. The corresponding numbers

1 forA=1,2
are (p—1)/2 forp # 2 and A =1, and p = 2.
2 for A\ =3

tells us that for Ny(x), there are (p — 1)/2 non-isomorphic irreducible representations
of SLy(Z/pZ) for A = 1. So for p = 3, there is (3 — 1)/2 = 1 irreducible representation.

Since 4 is a cyclic group of order 4:

(
1 0f [0 1] |2 0f [0 2
u: Y Y ) )
0 1| (2 0| [0 2] |10
\
SO,
10 01 2 0 0 2
X =1, x =1, X =-1 X ==t
01 2 0 0 2 10

6 € CM defined by

1 foré=neM
d¢(n) =
0 otherwise

Then the fe(x) = Y ..y x(€)d¢ form a system of generators of CY[24]. However, as
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we will see, we only obtain two linearly independent functions.

fg“”(k j)dt e [ ;Dé[f I
([ ZD&E i q j)&[ﬁ 8
R

This agrees with Nobs[24] (fe(x) = 0 if x is primitive and § € pM, well, pM = 0 and

since £ = 0, it agrees).
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1 1 2 2
1 2 2 1
SOf2 (X)—i-f2 (X):—f1 (x)
2 1 1

The two linearly independent generators are

frix) and  frq(x)
0 1

1 1

Nobs[24] has another approach. For a fixed x, V(x) is generated by the f¢ so that

from these only one system can be selected linearly independent. From

fre = x(7) " fe(x) for all v € 4,€ € M, x € Car U

we compute and verify the above equation.
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£ 76 x() x0T X)) fre x(O)THe(0)? = e

i
1 1 f f YES
0 0 0
0 0
i —1 —if f YES
0 0 0 0
R
1 1 ~f f YES
0 0 0
0 0
R
—1 ? if f YES
0 0 0
0 0




s s e s e S S ——

r. 11 - YT —"—>
000000000000
e s S s S ) A |

r.... . YT
000000000000
e s S e s N S ) A —

r.......... 11 71—
000000000000

000000000000
s s e S s S ) A —



| — | L | 1 1 | —— | — |
i
| — | e —— | e — | | S —— S — e —— |

r... 11 - Y
000000000000
s S e s S ) A —

e . s e [ s N S |
000000000000
e s Y e e s S ) A —

r.. .1 Y S Y Y
000000000000

000000000000
s s e S e s S ) A —



| | 1 1 | —— | 1 | — |
—
| — | L — | e —— | S — S —— N —— |

1 1 | — | 1 | — | | |
— — A AN AN o —~ A [\ N
S IS IS S

1 1 1 1 - 1 - 1
— — - - — A — A
 — I — | I — | I — | | ——— |

r.......... 11 71—
000000000000

000000000000
s s e S s S ) A —



| —— | | | | — | | — | 1 | — |
i —
N — |  —— | e — | S — S —  —— |

e O e s e [ s Y R |
111111111111
s s L S e s S ) A —

L e O s e N B E R |
222222222222
e s o e e s N ) A

r.. .1 Y S Y Y
000000000000

000000000000
s s e S e s S ) A —



| | | | 1 1 | ——
i
| — |  —— |  —— S ——— S ——

L — |
—_— o~ — _

r..... 2 .
2222222222
I s e e S S — |

1 1 1 1 | —— |
o o o o [\ N
I — S — I I I —

r........ 11 7
0000000000

0000000000
L s o S e s | S —
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v £ 76 x() x0T X)) fre x() T () = fre?

i — —if f YES
2 0ol [2] |1 2 P
2 1
2 0ol 2] |1
1 -1 —f f YES
o2 [2] |1 2 1
2 1
0o 2 [2] |t
— i if f YES.
1 o] |2| |2 2 1
2 2

Again, we have that there are two linearly independent generators as before:

frix) and  frq(x).
0 1

1 1

3.10.1 The representation of the action by T’

T
Letting £ = ', N(&) = 22 — uas.
x2

With v = 2. Following Nobs[24], § must contain exactly one £ with N(§) = a for

every for every a € AY. Soa=1ora=2.

0, = 1 corresponds to & = and 6, = 2 corresponds to £ =
1 1
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0
Theorem 2 from Nobs[23][24] tells us that for £ = |: ]
1

11
[ ] fe(x) = e(p*N (&) fe(x)

1
And for ¢ = |:],
1

[1 1] Fe(x) = e(pN(E) e ()
0 1




With respect to the basis vectors fr 1(x) and f1 1(x),
0 1

1 1

¢ 0
0 ¢

We verify that Tr(Ny(x)(T)) = (3 + ¢3 = —1. It does agree with Reeder[25]. The

N1O)(T) =

representation Ny(x) is referred to as m, and m,(u) = —1 where u is the representative

11
of the conjugacy class of T' =

01
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3.10.2 The representation of the action by S using Nobs’ method
Recall

_2xY1 — 2uzay2

B(x,y) =

So for our case,

Nobs and Wolfart[24] tells us that

0 1
fex) =p (=1 {
-1 0 neo €€

With A = 1,p = 3, we have

0 1 1 10 1 0| o] o
f(x)z;x e|B :

-1 0 0 0 1 0 1 1 1
1
0 1 0 1f (0O 0
+ X e| B ,
2 0 2 0| |1 1
2 0 2 0 |0 0
+ X e| B ,
0 2 0 2 |1 1
0 2 0 2 (0 0
+ X e| B , f
10 1 0] |1 1 0
1
10 1 0] |0 1
Y el| B ,

0 1 0 1 (1 1



[ — I | P -~ ~ ——— 0

—
- <t
— O
— — — = == s
\I/ L ] I . I — |
r ) Q - =) - —
- AN e L —— —
L ! o Ny O /l\ oA O 2(\
T 1 .Z /l\ B /l\ Q
L 1L ] < 1_ + M S~— M >
_________ N o — ? — +
~ ) =
o ~ ~ 2 + I
— —
m - P - PR 4
~—— —— — o o "o
) L T | L 1 1
N . o - - - =, o
T e ————— .
T = ! Q - ) — - @)
A e T 1 1 :
- ® h_ S — _ﬁ_ 2(\
L 1 ‘l._ e —— B o
> N e e N—
+ — Q —
e N —_— ~ 1
| | +
=
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() + (V3—iV3)- f

{0 1]f (0= |-V s 50

0

01 0 1] |1 0
+ X e| B

2 0 2 0] (1 1

2 0 2 0] (1 0
+ X e| B

0 2 0 2] |1 1






10 1 |1

+ 94X el| B ,

0 1 1 1

0 1 1 1
+ X B ,
2 0 21 |1

2 0 2 1
+ X B ,
21 |1

(220421 2204011\
3 3
ofZllmAley o (2010140201
3 3
2.2.1-4-2.1\  (2:2.1-4-1-1
() e ()

(x)







166

)=~ (—i\/g—\/ﬁ%fo (X) + V3 f
_ 1
=\/§J;i\/§-f0 (X)—?-f1 (X)-
1 1
(x)z%g- (X)+_¢§;N§‘f
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So with respect to the basis

( )
IRICONARICON.
0 1
1 1
\ Vs
The action of [ % §] is given by
V3 —V3+iV3
5 | V3| i 1+
\/54;2\/3 _’;/5 S l14+i i

So the action by S, call it Ni(x)(S), will be the conjugate transpose of the above

matrix:
—iv3  V3—iV3 :
Ni(x)(S) = 3 y i
1()(S) = V33 iv/3 V3 —1—1i i
3 3

Its trace agrees with the character table in Bonnafé[4]. The representation in that

text is called R'(i") and the conjugacy class of S is d’(¢). For T, the conjugacy class

is uy and its character also agrees. We verify the relations (Ny(x)(S))* = 1 and

(N0 (S)N100)(T))? = (M1 (X)(5))*.

1 —1 —1+1
(M (x)(9))* = ﬁ
1
T R R S I I S S|
Sl_1-4 S1—i
1l —14—2 114
Slic1—i+1 21




So, (N1(x)(S))* = 1. Recalling that

3 0
N(O(T) = [C ] |

0 ¢
we have
[ . —~1+iV3
NOS) - M@ =S| T T T 0
10X (X 73 L i ) i3
- 2
, [ i+43 (i—v3—1—iV3)
L 2 2
- V3 +i (V3D +i(1—V3)]
VG (1+\/§)fi(1—\/§) \/32_2-
- 2 2 1
_ 1 V3+i ~(V3+1) +i(1—V3)
23| (14 V) +i(1 - V) Vi |
V3 +i —[(V3+1)—i(1—+/3
(M()(S) - M) (T))? = = " (VB+1) —i(1 =3)]
(1+V3)+i(1—V3) V3 —i
. Vi ~[(VB4+1) —i(1 - V3)
(14 V3) +i(1—3) V3 —i

1 [ —6+2iV/3 —(64+2v3) +i(2v3 — 6)}
12
(

12 6 +2v/3) +i(2v/3 — 6) —6 — 2iv/3
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and finally
‘ 1 —6 + 2iv/3 —(6+2v/3) +i(2v/3 — 6)
Ny S) - Ny 1)’ =—=
(M0 - MET)" = 777 {(6—1—2\/5) +i(2v3 —6) —6-2iv3 ]
| V3+i ~[(V3+1) —i(1-V3)
(1+v3) +i(1 = 3) V3 —i
BRI I
243 0  —243
-1
= (M(x)(9))*

3.10.3 The representation of the action by S using the unreduced Nobs’

method
Let
h=frio=11-90 +17-0 —1-4 —3-0
0 0 1 0 2
1 1 0 2 0
and
fa=1Ff +1-0
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as before. Using the action from Nobs[23][24] we will compute the action of S.

0 1 0 1
fi(z) = 1-dpq+i-0pq7—1-6p7—i-9
-1 0 -1 0 0 1 0 2
1 0 2 0
0 1
1287 1 = Sa(=)IMI2 Y e(Blr, ) -,
-1 0 0 yeM
1
1 0
:—Ze B LY dy)
3
yeM 1

-1
=5 |G oGt e G
0 0 0
0 1 2
+€3—4-0‘5 +€3—4-1 5 +C3_425
1 1 1
0 1 2
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0 1 —1 2 1
1 (5 = — 5 '+C3'5 "I’Cg‘é‘ b
1 0 o 3 0 0 0
1 0 1 )
+Or GO Gy
1 1 1
0 1 9
+0p 7+ 0rq+¢G-0
9 9
0 1 9

yeM
1
=32 &
yeM
1 1 2
0
0 1 L]
+0p 1+ 6r1+G-6
1
0 1 M
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+0p 1+ 0pq+EG-0
2 2 2
0 1 2
0 1 | 2.1-y,—4-0-y
R e S e
-1 0 1 yeM
0
—i
:?Zg‘fyl Oy
yeM
S [ I T L )
3 0 0
0 1 2
+(6r 1+ G S +EG 6
1 1 1
0 1 2
+ (01 +G-0pq+¢G-0
2 2 2
0 1 2




+ ¢

+9

-0

+G -0

+¢-




—1
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+G -0

+ (-6




+

_|_

_|_

+

_|_
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+¢ -0
1

+ G0

(-G +@G—i+i)d -

W =
o

(-G +EG—i+i)dp -
0

W —

2

W =

(-1+1-i-G+i-¢3)0

1
1
S(CE+G - G i G) o

S (CG+@—i@rid)d
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+

Wl =

(-l14+1—i-G+i- ()6
2

+%(—g§+<§—z‘~<§+i-<§)5--

1
+o (-G +E i G i)y

2
_2_
0 1 1/. 1 , 1
{1 O} hile) = )51 +§<Z\/§)50 +§(—Z\/§)50 +§(—\/§)51
0 1 2 0
1/, L 1
+§(N§_¢§)51 +§<—2\/§—\/§)51 +§(«§)52
1 2 0
+§(¢\/§+\/§)52 +%(\/§—z’\/§>62
_1_ 2
iv3 -3 —iV3 V3
:T-(SO +T-5-1-+ 3 -50 +?-52
1 0 2 0
+7’\/_3_\/§5 M 33_\/§5 +\/§_3i\/§5
1 1 2
+¢\/§+z’\/§5

"
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ERACH PH R R
3 0 1 0 9
1 0 2 0
WERACH PYNED S
3 1 1 2 2
1 2 9 1

So,

{0 1] @) = Vs (ﬁ; ﬁ) b
1 0

—1 . —1 —1
=g L@ =g XA =y @,

yeM yeM yeM

=5 |G oG S G
0 0 0

0 1 2
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%‘Cé (140) .5 1 +‘<é (141) .5 1 +‘<é (14+2)

(2+0) Y (2+1) .5 (242)

+C3 +C3 +C3

+G b +G O +0

- Z C2y1 8y2 |

yEM

- Z <2y1+y2 .

yEM




W =

Wl
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6o 1+ G e

0 0

n Cg2(0)+2 5
0

Y P C§(1)+1 Y P C§(1)+2 5
1 1

0 1

+ C§(1)+0

+G0
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Ii —oY2
O

yeM
i 1 2
:§Zég+y'5y
yeM
ol E AR R IR At
3 0 0
0 1 9

+ C1+0 + C1+1 + C1+2
1 1 1

0 1 2

T C2+0 T C2+1 + C2+2
2 2 2

0 1 2

| =.

+ G0
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-1 -
- g,

yeM
-1
_ ? Z Cg1+2y2 i 5y
yeM
-1
= | G0 TG S+
0 0 0
0 1 2
GO G e T
1 1
0 1 2
+ §2+2 5 + €2+2 6 _I_ C2+2
2 2 2
0 1 2
-1 9
= ? o + CS ' + CS
0 0 0
0 1 2
+ ¢ +0r 1+
1 1 1
0 1 2
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+ 01+ Gop+0

+ (26

+ (-6




W | .
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+ 01+ GO+
2 2
1 2
Sr1+G-6r1+CG-6p1
0 0 0
0 1 2
+CG 01+ G 1+ 0y
1 1
1 2
+ G b+ +G 0
2
1
Sr1+¢G-6r1+G-0
0 0 0
0 1 2
+ GO+ +Go
1 1
1 2
+ G0+ GOy +6
2 2
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1
+§Pi@+g+z@

1
+§(—’i C3+C3 +7- C3

't
e
|

(i GH1+i-G—1) [



0 1

-1 0

|

So the action by
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—V/3—iV3
3

0

+<\/§+N§>6 +V3.0r 1 +iV3-dr
3 2 1
0 1
]h(x)(ﬁ“ﬁ) Srq4i-s
3 0 1
1 0
—iV3 |i-6p 1 —8r1—i-0
1 1
= (_\/5;“/3> fi(z) _i\/§f2<37>-
[ 9 4] is given by
V3+iv3 i3 |3 |
3 3

i

-1+
—1

So by our lemma the action of [{ '] will be the conjugate transpose of the action by

[—01(1)]3

Ni(x)(5)

o[

—1

—1+1
' l
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Then
4
V3 - —i+1 "
Solc1—i
Recalling that
G 0
Ni(x)(T) =
0 ¢

We have that

(N1()(S) - NiO)(T))* = (M (x)(9))*.

It agrees with the previous section.
3.11  Ni(xi1): the Steinberg Representation by Nobs and Wolfart
Recall

AUt(M7 Q) = Y Y Y Y ) )

Let x1 denote the trivial character.

V() ={f e C"| flex) = xa(e) f(x) Ve € Aut(M, Q), Vo € M}
={feCM| f(ex) = f(x) Ve € Aut(M,Q), Vo € M}.

Lets try the delta functions.

works.

1
0

0
2



0 1 0
f(z) =97 1(z) does not work for € = and r =
0 10 1
1
0 1 0
f(z) =01 1(z) does not work for e = and © =
0 10 2
2
0 1 1
f(x) =61 7(x) does not work for e = and r =
1 1 0 0
0
0 1 2
f(z) =91 1(z) does not work for € = and © =
2 10 0
0
filx)=|0p1+dp7+0p 17+ (x)
1 0 2 0
0 1 0 2
works.
falx)= |61 +6r1+6p1+6 (x)
1 2 1 2
2 1 1 2
also works.
Brute force computations show they work. € sends elements of the form to either
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0 d a b
or where a,c and d € {1,2}. And ¢ sends elements of the form to

c 0 e c
where a,b,c,e € {1,2}. We also exploit the property of the delta function. Now it is
clear that fy, fi and f, are linearly independent and orthogonal.

T

So we have an orthogonal basis. Letting = = ,7=0,1, and 2,
X2

11
fi(@) = e(Q(x)) folz)
01
= exp (_27?2’(95%3— 21:%)) fi()
=G (@),
So,
11
fo(z) = e(Q(z)) fo(z)
0 1
~ oxp <2m’(x%3— 226%)) fol)
11 P SQ_Q,OQ s
01 0
0 0
=07 7.
0
0
and that is equivalent to
11

fo(z) = -fo(x).
01
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Now for the action on the second basis function.

So,
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Now for the action on the third basis function.

11 11
fo(z) = dr1+0r1+dr7+0
0 1 o 1| 1] 2|l |2
of 1| |1l |2
S PR RN
0 1| [1 1 1
2 2 2
C s =@ =G
0 1| |2 2 2
1 1 1
S PR RN
0 1| 1 1 1
1 1 1
R RTRCE AN
0 1| |2 2 2
2 2 2
So,
11

fa(z) = G - fa(2).
01

Hence the action of T" with respect to the basis {fi(z), fa(z), f3(z)} is given by (using

the notation from Nobs and Wolfart[24]):
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1 0 O
Nx)T)=10 ¢& 0

0 0 ¢2

0 1
Now to compute the action by S by computing the action of first and then

-1 0
taking the conjugate transpose.
Theorems 2[23] and 3[24] tell us that
0 1 12
f(x) = So(=1)|M[72 ) " e(B(z,y)) - f(y)
-1 0 yeM
= (=DM " e(Blx,y) - f(y)
yeM
1 221y1 — 4xoys
=52 ¢ ( 3 ) fw)
yeM
-1 r1y1—4x
) Moy )
yeM
Next,
0 1 0 1
Jolz) = or 1(x)
-1 0 -1 0| |0
0
Z C2:p1y1 dzoy2
yEM
Z C2 0y1—4-0y2
yGM
= 9 Z C3 (v)
yeM
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yeM
-1
— — |6 40407 +0r 1 +0p1+0
31 |o il fo| J2| lo] |1
0 0 1 0 2 2
—1
:?(f0+f1+f2)~
Next, we compute the action on f(z)
0 1 0 1
filz) = drq(x)+dp1(z)+6
-1 0 -1 0 1 0 2
0 1 0
piecemeal as before:
0 1 -1
5 (l’) _ ? Z <§2z1y1—4zzy2) . 5y
-1 0 1 yeM
0
—1 = 214,40
=5 D G,
yeM
1 1
D DL
yeM
—11 . 2 0
=3 G-Or7+¢-0rq+G¢-0
0 1 0
0 0 1

+¢ -6
2




0 1

0 1
-1 0

dr 1(z

2
0
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GO H GO TGO Gl
1 2 1 2

2 1 1 2

—1 2z1y1—4w2y2
):?ZQ’E Y y)'éy

yeM

—1 Oy —d-1-
:?Zggow 41y2_5y

yeM

:—?1ZC§W'5@/

yeM

HGsOp 1+ GOy 1+ GO G0
1 2 1 2

2 1 1 2

—1 T1Y1—4T2Y2
5 (x):?Znyzly).gy

yeM

—1 \— 2.2, 40
_ ?Zg????h 4-0-y2 _5y

yeM

—1
:?Zgglﬁy

yeM

=5 | GO FGE O GO Gl
0 1 0 2

+(3-6

0
2



—1
= |GG G0
3 0 1 0
0 0 1
HGa O 1+ GO+ GO G
1 2 1
2

yeM

2

yeM

-FXa

yeM

+(5-6
1

G0
0

204142y

-1
=52 G

+G5 -0
1

+( -6
2
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0 1 —1 z1y1—4T2y2
0 (x):?§ grr o) g,
-1 0 [0]

'5y

+G-o
1

+(3-6

+ (26

+¢ -6

0

+G5 6
2 0



+ G-

+ G5

+G -

+ G5

+G -

+ G

+G3 -

(s -

116G

- +C§

1+

+G3 -

195

16

- +C§

116G

+G3 -

146G

- +<§

_ _|_(??

+ G

1460

1+G -9
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0

0 1 -1
{ ]fl(x) 4-0r 1+ (G +1+G+1)-0
1

0

+(14+G+14+G)-6
0

+(G+H1+¢E+1)-6

+ (1 +G+H1+E)-6

0 2

+(G+G+G+HE) 6 X

+(<3+c§+¢§+<3)-62

+(G+G+G+G)o . +(C3+C3+C§+C§)'5[2]

1 2

which simplifies to
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+(=2)-0r1+(=2)-0r7+(-2)-0
2 1 2
1 1 2
—1
= Wh(z) + filz) = 2f2(x))
Next, we compute the action on fo(z)
0 1 0 1
fa(z) = dr1(@)+dr (@) +0r7(z)+07 7(2)
-1 0 -1 0 1 2 1
2 1 1
piecemeal as before:
0 1 —1 r1y1—4x2y2
op () =5 D@,
-1 0 1 yeM
2
yeM
—1
— - Z §§y1+y2 .0,
yeM
—1
== |G O+ GO GO GO G
0 1 0 2
0 0 1
HGa O 1+ GO 1+ GO G0
1 2 1 2
2 1 1 2
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0 1 —1
S @) =5 2 G,
-1 0 2 yeM
1
—1 2.9.1 —4-1-
_ - Z & Y1 2 ‘5y
3 yeM
_ _?1 Z <—§/1+2y2 '5y
yeM
—1 0 1 2
— |Gy Hdr g+ Gee
0 1 0
0 0 1
HG5 O 1+ GO+ GO G0
1 2 1 2
2 1 1 2
0 1 —1
o) =5 2 G,
-1 0 1 yeM
1
—1 2.11 —4-1-
_ - Z & Y1 Y2 ‘5y
3 yeM
—1 2(y1+y2)
=5 Z C3 ! - 0y
3 yeM
—1 0 2 2
— |GG+ Gee
0 1
0 0 1

+G 0
2

+¢ -6
2

+¢ -0

+G 0

0
2

0
2



+¢9 -6
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+¢6p G0

1

2

— _?1 Z §§2I1y1*4x2y2) . 53,/

yeM

—1 Z 2241-42u 5

yeM

__1 Z Yyit+y2 |

yeM
—1 0 1 1
= | G0+ G Sy G
3 1
0 0 1
HGg O 1+ GOy GO G0
1 2
2 1 1 2
1 —1 0 2 1 1
fole)= 5 [ G 0p 1 +G -0 1 +G 07 1 +G
0 0 1
0 0 1

+ (26




4 .

+ G5 -

+¢

+ G

+ ¢

+ G

+¢

+¢

)
0
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2O A +C§'5"

e R T

O A +C§'5"

YR )

+(G+G+E+G) -

+¢3-

+G

+G3 -

+¢2-

- +C§

- +C§

+ (5

+(G+E+E+¢) 0

1460

1460

0
1
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+(GHE+G+HE) 0 ) +(G+G+G+E) -

0

+(GB+HE+1+1)-6
1

+(C§+C3+1+1)~5[
2

2

(1+1+C+¢)-6
1

1

+(1+1+¢G+¢G) -6
2

which simplifies to

F(=2)0r 1+ (=2)-6r1+(1)-0
2 0 1
1L

F (1) -6+ (1) 61+ (1)-08

2 1 2
1 1 L]

_ %1(4f0(x) —21(2) + fol2)).

1

I




202

0 1
So the action of with respect to the basis { fo, f1, f2} is given by
-1 0
1 4 4
-1
3 1 1 =2
1 -2 1

1 1 1
NS =5 4 1 -2
4 -2 1
Its trace is —1. We verify the relations: (Ni(x;)(S))* = 1 and
(M () (ST =  (Ni(x1)(S))2. For typesetting convenience X =
(M (x1) (S1) (N1 (x1)(T)))?. Since
_1 1 1 1 0 0
MO)EMO)M) =2 4 1 —2| [0 ¢ 0

I E 3
—1
:? 4 G —2C§ ’
4 =2 G

we have

A= (Ni(x)(S) (N (xa)(T))?
1 G 2 1 G & NG G
— ;_7 4 (3 =2 |4 G 2 |4 G -2
4 =203 G 4 =2 G 4 -2¢ @G



203

-1 (3 G 1 -3 -3 _3
::%% 4 G 2G| [4+4G-8G AG+HE+H4 4G -2 -2
4 -2 G| [4-8G 4G 4G-2¢ -2 4G +4+G
—1 € C?? 1 -3 -3 -3
- ;_71 4 G 20| | -12G -3¢ 6¢3
4 =26 G| (126G 66 3G
_1 3 G 1 1 1
:é 4G 2 A G 2

4 =2(; G 403 —2¢3 3

1+4+4 1+1-2 1-2+1

=é 4+4-8 44144 4-2-2
4—844 4-2-2 4+4+1
= 1.
Since
1 1 1|1 1 1 9 0 0
mumﬂﬁfzéz11 2|4 1 =2 =%()90 =1,
4 -2 1|4 -2 1 009

our verification is complete.
Note that the using this method, the Steingber representation will not be realizable
over Z. It is a well-known fact that the Steinberg representation is defined over Z. So

how can we realize it over Z7?



204

3.12  Ni(x1), the Steinberg representation realized over the integers
Inducing the trivial character of the Borel subgroup gives us the four dimensional

reducible representation 1 + St for S and T

0001 1000

0010 00 01
(1+5t)(9) = , (14 St)(T) =

0100 0100

1000 0010

Then using the basis

{fi=100—01, fo =01 — 02, f3=202— 03},

and SAGE, we find the three dimensional irreducible Steinberg representations of S and

T:

0 0 -1 10 0
St(S)=10 -1 0|, St(T)=11 0 -1

-1 0 0 01 -1
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3.13 The character table for SLy(Fs)
The following table lists the characters of SLy(F3). The choice of representatives are

as follows: u =T = [} }], v/ =T*=[1%] and s = S = [?Bl]'

Representation I —I U u’ —u —u’ s
Ri(1,-)®Ri(2,-) 1 1 1 1 1 1 1
= Trivial
RL)=p 2 =2 g4if joif i iy 0
= Ry (a)
=Ri(1,-) @ Ri(2,+)
Ri(2, V) == R (ap) 2 —2 L¢3 148 18 1 48
=~ Ri(1,+)® Ry(2,—)
Ry(1, =) =)= R, () 1 1 —L448 L8 14,8 1 _;v3 4
Ri(2,-)=mi =R (6) 1 1 —i—42 18 1 g8 1,8
Ni(x) 2, 2R 2 -2 -1 ~1 1 1 0
Ni(x1) = Stg 3 3 0 0 0 0 ~1

Table 3.13.1: Character Table for SLy(F3)

This agrees with Reeder[25] and Bonnafé[4]. We combined the notations of Nobs,

Reeder and Bonnafé.
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CHAPTER 4 The Irreducible Representations Of SL(2,5)
4.1 The 6-dim. Irred. Principal Series Representation

We want to compute the six-dimensional irreducible representation for SLy(Z/57Z).
This is a principal series representation. Since |SLy(Z/pZ)| = p(p* — 1), SLa(Z/5Z)| =
5(5%2 — 1) = 5- 24 = 120. Using the fact that the order of the group is equal to the sum

of squares of the dimensions of the irreducible representations, we have

120=14+36+32+ 1848425 =1+6+42+4% 432+ 32 +22 + 22 1 5%

giving us one irreducible representations of degree 1, two of degree 2, two of degree 3,
two of degree four, one of degree 5, and one of degree 6. It agrees with Nobs I1[24] (Nobs
does not list the trivial representation). So there exists a six-dimensional irreducible

representation for SLy(Z/57Z).

Representations

of Level 1, p=15 Degree Number Remarks
Di(x) X €8 p+1=6 s(p—3)=1 Theorem 1
Ni(x) X €°B p—1= %(p—l) =2 Theorem 2
Ri(1,£), Ri(n, +) (g) =1 ]% =3, 2 4 Theorem 4
Ni(x1) p=>5 1 “Steinberg”

Representation”

DI(X>2R1<1>+)@R1(TL7+) for XS_E'LLXZE ’
Ni(x) 2 Ri(1,-)® Ry(n,—) for x#1,x*=1,
Di(x1) = Ni(x1) @ C1 & Ch.
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We are interested in D;(x). According to Nobs and Wolfart[24] (see §3 The Disas-
sembled Row), D, is computed using M = Z/pZ & Z/pZ, Q((x1,22)) = p w129 for
A > 1. For our case, A = 1, A\ = Z/5Z, M = Z/5Z.® 7./57, Q((x1,72)) = 5 'x125. The

bilinear form is given by

B(xz,y) = Qz +y) — Qz) — Qy)
=57 ((z1 +y1) (22 + 92) — (2172) — (N192))
= 57N (@12 + 122 + 11y + 1Y — (T172) — (N192))
= 5" (1132 + 213p0).
We can use the same procedure as we used for computing N (). Aut(M, Q) is the group
of automorphisms of M invariant under @, i.e., for every ¢ € Aut(M,Q), Q(p(z)) =
Q(a) for all a € M. Aut(M, Q) will consist of the identity, the inverse maps, and x :

(x,y) = (y,z), and the action by ¢ € AY. The effect of ¢ € AY on M will be defined by

c: (z,y) — (c 'z, cy). Lets enumerate all four values of c:
10
¢ = 1. This is the identity map. So 1 : (z,y) — (z,y). That is, ¢; = .
01

c=2. c1'=3S0c: (z,y) — (3z,2y).

3 0

Qlea(z,y)) = Q((3 - 2)zy/5)) = Qay/5) = Q(z,y). c2 = .

c=3. c'=2 Socs: (x,y) — (2z,3y). -
2 0

Qles(z,y)) = Q((2-3)zy/5)) = Qay/5) = Q(z,y). 5 = . s

c=4. c'=4.Socy: (z,y) — (4z,4y).
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Qlea(w,y)) = Q((4-4)xy/5)) = Q(zy/5) = Q(z,y). cs =

Now to find the relations.

1) coc3 = e3¢0 = (61,6y) = (2,9) so o = c3' = 1.

(1)

(2) ¢&: (z,y) — (97,4y) = (4x,4y). So ¢3 = ¢.

(3) 2 : (x,y) — (4z,9y) = (4x,4y). So ¢z = ¢.

(4) ¢4 : (x,y) — (16x,16y) = (z,y). So i = 1.

(5) 2 =k*=1 and since ¢ =3 =c4, § =c§ =1.
(6)

6) We have (ko ¢;)(x,y) = k(ci(z,y)) = k(e tx, cy) = (ciy, ¢, 'x) and
(ciok)(x,y) = ci(y, z) = (¢; Yy, c;w), so k does not commute with ¢;.

We now rearrange the relations (so that we can use GAP or SAGE):
= Ci — (C9C4C3 = (C3C4C9 = (C2C3 = C3C9 — 1{2 — C3KRC3R = CaKC9KR = C4RC4RKR = 1.

Using the following script in SAGE,

F.<c2,c3,c4, k>=FreeGroup()

G=F/ [c274, c374, c4"2, c2*xcd*c3, c3*xcd*c2, c2*c3, c3*c2, kxk,
c3xkxc3xk, c2xkkxc2xk, cdxkkcdxk ]

G.order ()

G.list()

we see that the group is of order 8. Thus, Aut(M,Q) = Ds, the dihedral group of
order 8. The abelian subgroup 4l is cyclic of order four. So U = Ay = (Z/5Z)* = C,.

Al =1{1,2,3,4}. The invariant subspace is given by

V(x) = {f € C" | f(ax) = x(a) - f(z) Va €A}, x€ M}
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We define D) by the following operation of SLy(Ay) on CM[24]:
(S [)(X) = F(XS) for S € SLa(Ay), X € M

with X written as a row vector and XS is matrix multiplication. A basis of V)(x) is
obtained through functions fy [24] with
x(a) for X =aY, a € AY,
Hr(X) =
0 for X ¢ [Y],

where Y runs through a system of all straight lines in M. Note that

a E Y Y ?

Since (Z/572)* = ZJAZ, a € (Z/57)*, we compute x(a) as follows (a is represented by

a matrix and not a scalar):

1 0 3 0 4 0 20
X =1, x =1, X = —1, and y = —.
01 0 2 0 4 0 3

We list the equivalence classes of the elements of M = (Z/pZ x Z/pZ) below.
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Verification follows.

0 0
[ |I=

0 0

— >== T— T — __\

0 0 0 0 0
@2 [ (1= 0]

1 1 2 4 3

L \ L L L L Jd /

7 7 7 7 7 )

1 1 3 4 2
(3)[ ]: ) ) )

0 0 0 0 0

L \ L L L L Jd /

L *Ea2 E3 E3 F 34

1 1 3 4 2
@ [ |I= 0]

1 1 2 4 3

— (== —— —— ==<

1 1 3 4 2
G) [ (1= 0]

2 2 4 3 1

E = >== E = E = L o/

1 1 3 4 2
(6)[ ]: ) ) )

3 3 1 2 4

L \ L L L L Jd /

L Ea2 E3 E3 F 34

1 1 3 4 2
M1 1= 0]

4 4 3 1 2

L \ L L L L d J

Next, explicit calculations of the equivalence classes are given.
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S I I | I I [ I |
— ‘o — ‘o~ o ™! o < [ — — — o —
03 L L 1 ] 1 1 1
20 1 1 T
= o ™ o ™ o ™ o ™ o ™ o ™ o ™ o ™
N O N O N O ~N O, N O, N O N O N O
o < o o™ o o = ) <+ <f ~ o ~t ™
S I I | I I I I |
— = ‘o~ o ™! o < — o — — — — o
04 L L 1 ] 1 ] 1
<+ o
— o - o = o < o < o < o < o < o <
<+ o <+ o <+ o <+ o <+ o = <+ o <+ ©
= o < o — o ™) ‘O 0 N o < ‘o —
S I I | I I I I |
— o — o ™ o ™ o < — O — — — — o
02 L L ] ] 1 L ] ]
=
= o o ™ o ™ o~ o o™ o o o o o o
M o M o = M o = M o M o =
S
O — (el S AN o M o <t — O — — — o
— o

i
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N o < o < — <t < o~ ——T — on
S Il I | I I [ I |
— — <t ~N ol ‘N — N N o N < M o ‘o —
03 1 1 L ] 1 L
20 1 T
= o ™ o ™ o ™ o ™ o ™ o ™ o ™ o ™
N O N O N O ~N O, N O, N O N O N O
<t " o o < o o o ™ o — N o) N <
S Il I | I I I I |
— — <t ~N ol ‘N — N INEGe N < M o ‘o —
04 1 ] L ] 1 L
<+ o
— o < o < o <f o < o < o < o < o <
<+ o <+ o <+ o <+ o <+ o = <+ o <+ ©
™ o — O — o — < — — ~ O ~t ™
S I I | I I I I |
— — < K= N — N N ™ a < = o —
02 1 ] L ] 1 1 L
=
= o o ™ o ™ o o o ™ o ™ o ™ o ™
M o M o = M o = M o M o =
o — — <f = N — N N o < = o —
— o

i
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™

S Il I I I I [ I |

— ‘o~ M m ™ < ) < — < o~ < o <t <t
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4.1.1 Basis for D;(\)

Thus, our basis consists of functions fy where

Y e Y Y Y Y Y

We state the functions in terms of delta functions using our tables of equivalence

class calculations

1 1 2 4 3
fri=0r1+i-6r1+(=1)-077+(=i)-0
1 1 3 4 2
0 0 0 0 0
fr1=0r7+i-0p1+(-1)-dp7+(=i)-¢
1 1 3 4 2
1 1 2 4 3
fr1=0r1+i-0p1+(=1)-0p7+(=i)-¢
1 1 3 4 2
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4.1.2 Action of S on the delta functions

Since |M| = 25 and

Sa(a) = M2y " e(—aQ(x))

reM

Sa(=1) = (25)72 > " e(—(-1)Q(x))

xeM

—5 Y e(Q(a)

= 5_1(exp(2m'(() -0)/5)) + exp(2mi(0 - 1)/5)) + exp(27i(0 - 2)/5)+
+ exp(27i(0 - 3)/5) + exp(2mi(0 - 4)/5)) + exp(2mi(1-0)/5)+
+ exp(2mi(1 - 1)/5)) 4 exp(2mi(1 - 2)/5)) 4 exp(2mi(1 - 3)/5)+
+ exp(2mi(1 - 4)/5)) + exp(2mi(2 - 0)/5) + exp(2mi(2 - 1)/5))
+ exp(2mi(2 - 2)/5)) + exp(2mi(2 - 3)/5)+
+ exp(2mi(2 - 4)/5)) 4 exp(2mi(3 - 0)/5) + exp(27i(3 - 1)/5))+
+ exp(2mi(3 - 2)/5)) + exp(2mi(3 - 3)/5)) + exp(2i(3 - 4)/5)
+ exp(2mi(4 - 0)/5) + exp(2mi(4 - 1)/5)) + exp(2mi(4 - 2)/5)+
+ exp(2mi(4 - 3)/5) + exp(2mi(4 - 4)/5)
=5 I+ 1+ 1+ 1+ 1414+ G+ E+E+GHIF G+ G+ G+

14+ G+ G+E+C+HI+ G+ C+E+G)

we have

yeM

0 1
[ ] f(x) = So(=1)[M[72- > " e((B(x,y)) - f(y)

=51, Z (exp(2mi - (Y122 + x1Y2)/5) - f(x)) .

yeM



We compute the action of S = |

=51

+6p 7

+6p

+6r T

+9

01
—-10
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] on the delta functions.

+9

+Op

+ 6T

+6p 7

+ 6T

+6r

+Or T

+Or

+ 0T

+9

+0r

+ O

+ 0

+ O

+90

exp(2mi(y; - 04+0-y2)/5) -6

n

Y2

+0r 1+

+0p 1+

+6r 1+

+ 6 1+

+0




. Y1
5

+ G0y

+G -0y

+ G0y

+ (56

¥

2.5__
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N

Y2

+ G507

+ G0y

+G -0y

+ G0y

+ (56

: Z exp(2mi(y; - 14+0-1y2)/5) - 6

+G5 -0y
+ G0y
+ G507

+ G0y

+ (56
4

n

Yo

+ G507
+ G0y
+G 0y

+ G0y

+(5-6

+ G507

+ G0y

. +C525_

+ G0y

+(5-6
4




. 2y1
5

2.5__

+ G50y

+G 0y

+ G0

+ (-6

»)
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n

Y2

+ G507

+ G50y

+ G0y

+ G0y

+¢2-6

: Z exp(2mi(y; - 24+ 0-y2)/5) - 6

+G5 -0y
+ G50y
+ G0y

+ G0y

+¢2-6
4

n

Yo

+ G507
+ G50y
+G 0y

+ G0y

+¢2-6

+ G507

+ G5 0r

. +C§6_

+ G0y

+¢2-6




0
5

+ ¢

+¢

+ G

+ ¢
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exp(2mi(y; -34+0-1y2)/5) - 6

5 * 6
yl

Y2

Or A _|_<’g.§__

S+t

O A +C§'5""

Spq+Gor

S+ EGS

+G5 -0y
+ G0y
+ G0y

+ G- 07

+ (26
4

n

Yo

+ G507
+ G0y
+G -0

+ G- 0y

+G -0

+ G507

+ G0y

1+6 -0

+ G- 0y

+G -0




. 4y1
5

2.5__

+ G507

+G -0y

+ G50y

+ (-6

»)
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n

Y2

+ G507

+ G507

+G -0y

+ G0y

+( -6

: Z exp(2mi(y; -440-1y2)/5) - 6

+G5 -0y
+ G507
+ G0y

+ G50y

+( -6
4

n

Yo

+ G507
+ G507
+G5 0y

+ G5 0T

+( -6

+ G507

+ G- 07

. +C§>5_

+ G50y

+( -6
4




. Y2
5

+ G50y

+ G50y

+ G50y

+ (-6

¥

2.5__
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N

Y2

+ G0y

+ G0y

+ G0y

+ G0y

+( -6

> | exp(@mi(yr - 04 1-y2)/5) - 6

+ G0y
+ G50y
+ G507

+ G50y

+ (26
4

n

Yo

+ G0y
+ G0y
+G5 0y

+ G0y

+¢2-6

+ G0y

+ G- 07

. +C§6_

+ G- 07

+(5-6




> | exp(@mi(yr - 14 1-y2)/5) -6

Y1+y2
. E 5 )

+ G0y

+G 0y

+ G0y

+ (56

2.5__
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n

Yo

n

Y2

SNSRI RN CE R N ER N
+ GO G0 7+ G0y
+E O+ GO+ G0y

NGRS CRN I N CR N

+E O 1+ GO +G 0
4

+ G- 0y

+ G50y

. +Cé)6_

+ G0y

+ (26
4




> | exp(@mi(yr -2+ 1-42)/5) - 0

. Z C52y1+y2 .5

+ G50y

+G 0y

+ G0y

+ (-6

2.5__
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n

Yo

n

Y2

SNSRI RN CR IR IR ER N
+ GO 1+ GO 7+ G0y
+GE O+ GO+ G0y

HE O G Gy

+G O GO +G 0
4

+ G- 0y

+ G0y

. +C§>5_

+G5 -0y

+ (26




> | exp(@mi(yr -3+ 1-42)/5) -0

. Z C§y1+y2 .5

+ G0y

+G -0y

+ G507

+ (26

2.5__
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n

Yo

n

Y2

SNSRI RN CR IR IR ER N
+ G5O 1+ G 0 7+ G0y
+G oG+ Gy

+ G0 1+ G0+ Gy

+E OGO +G 0
4

+ G- 0y

+ G5 0r

. +C§6_

+ G0y

+( -6
4




> | exp(@mi(yr -4+ 1-y2)/5) -0

. Z C§y1+y2 5

+ G507

+G 0y

+ G0y

+ (-6

2.5__
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n

Yo

n

Y2

SNSRI RN CR IR IR ER N
+ G50 1+ GO 1+ G0
+ (0 1+ G0 g+ G0y

+ G0 4G O Gy

+E O F GO +G 0
4

+ G- 0y

+ G0y

. +C525_

+ G0y

+¢P-6




. 2y2
5

2.5__

+ G50y

+G5 -0y

+ G50y

+ (-6

»)
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n

Y2

+ G0y

+ G50y

+G -0y

+ G0y

+ (26

> | exp(@mi(yr - 042+ y2)/5) - 6

+ G0y
+ G507
+ G0y

+ G- 07

+ (56
4

n

Yo

+ G0y
+ G0y
+ G0y

+ G0y

+( -6

+ G0y

+ G0y

. +C§>5_

+ G0y

+¢2-6




> | exp(@mi(yr - 14+2-42)/5) - 0

Y1+2y2
. E : )

+ G0y

+G 0y

+ G0y

+ (56

2.5__
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n

Yo

n

Y2

HE O G Gy
+ G50 1+ GO 1+ G0y
+ (0G0 g+ Gy

SNSRI RN CRT R N ER N

+G OGO +G 0
4

+ G0y

+ G- 07

. +Cé)6_

+ G0y

+ (26
4




+ G50y

+G 0y

+ G0

+ (-6

2.5__
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. Z C52y1+2y2 )

+G

+¢

+G

+¢-

+¢2-

n

Y2

> | exp(@mi(yr 242 42)/5) - 0

- _|_C54,5__
1+G o
. _|_C§>§__

. +C§§-_

+ (26
4

n

Yo

+ G0y
+ G0y
+G3 0y

+ G5 0T

+(5-6

+ G0y

+ G50y

. +C525_

+ G- 0y

+( -6
4




+ G0y

+G 0y

+ G507

+ (26

2.5__
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. Z C§y1+2y2 )

n

Y2

+ G0y

+ G50y

+G -0y

+ G0y

+(5-6

> | exp(@mi(yr 342 42)/5) - 0

+ G0y
+ G50y
+ G507

+ G0y

+( -6
4

n

Yo

+ G0y
+ G507
+G 0y

+ G50y

+¢2-6

+ G0y

+ G0y

. +C§6_

+ G50y

+¢P-6




+ G507
+G -0y

+ G50y

+ (-6

2.5__
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. Z C§y1+2y2 5

+G

+ G

+ G

e

+¢E-

n

Y2

> | exp(@mi(yr - 4+2-42)/5) - 0

- _|_C54,5__
1+G 0
. +C§§--

. +C515-_

+¢P-6
4

n

Yo

+ G0y
+ G50y
+G 0y

+ G0y

+ (26

+ G0y

+ G5 0r

. +C515_

+ G50y

+(5-6
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exp(2mi(y; -0+ 3-y2)/5) - 6

3
yQ.(S
yl

Y2

Or A _|_<’53.5__
O+ Eop
O A +C53'5""

O A +C§"5"

S-S

+ G5+ 0 1
+ G0y
+ G5+ 0

+ G0y

+( -6
4

n

Yo

+ G0
+ G5+ 0 1
+G -0

+ G5+ 0 1

+G -0

+ G307 1

+G5 07

1+ -0y

+G5 07

+ (26




: Z exp(2mi(y; - 14+3-y2)/5) - 6

Y1+3y2
. E : )

+ G0y

+G 0y

+ G0y

+ (56

2.5__
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n

Yo

n

Y2

HE O G Gy
+ GO G0 7+ G0y
+GE O+ GO+ G0y

+ G0 1+ G0+ Gy

+E OGO +G 0
4

+ G507

+ G0y

. +C§6_

+G5 -0y

+( -6
4




+ G50y

+G 0y

+ G0

+ (-6

2.5__

233

. Z C52y1+3y2 )

n

Y2

+ G0y

+ G50y

+G -0y

+ G- 07

+( -6

: Z exp(2mi(y; -2+ 3-y2)/5) - 6

+ G0y
+ G0y
+ G507

+ G50y

+ (56
4

n

Yo

+ G0y
+ G0y
+G5 0y

+ G50y

+ (26

+ G507

+ G- 07

. +C515_

+ G0y

+¢P-6




+ G0y

+G 0y

+ G507

+ (26

2.5__
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. Z C§y1+3y2 )

+6

+ G

+ G

+ ¢

+¢2-

n

Y2

> | exp(@mi(yr -3+ 3-42)/5) - 0

- ‘|‘C51‘5"
146077
. +C§§--

. +C§§-_

+¢2-6
4

n

Yo

+ G0y
+ G50y
+G3 0y

+ G0y

+( -6

+ G507

+ G50y

. +C§>5_

+ G0y

+(5-6




+ G507
+G -0y

+ G50y

+ (-6

2.5__
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. Z C§y1+3y2 5

n

Y2

+ G0y

+ G50y

+ G0y

+ G50y

+(5-6

: Z exp(2mi(y; -4+ 3-y2)/5) - 6

+ G0y
+ 50T
+ G0y

+ G0y

+ (26
4

n

Yo

+ G0y
+ G0y
+G 0y

+ G0y

+¢P-6

+ G507

+ G0y

. _,_CQ&-

+ G- 0y

+¢2-6




. 4y2
5

2.5__

+ G50y

+G5 -0y

+ G50y

+ (-6

»)
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n

Y2

+ G0y

+ G507

+ G0y

+ G- 07

+(5-6

> | exp(@mi(yr -0+ 4-y2)/5) - 6

+ G0y
+ G0y
+ G0y

+ G0y

+¢2-6
4

n

Yo

+ G50y
+ G50y
+G 0y

+ G5 0T

+ (26

+ G- 0y

+ G0y

. +C515_

+ G0y

+( -6
4




> | exp(@mi(yr - 14+4-y2)/5) -0

y1+4y2
. E : )

+ G0y

+G 0y

+ G0y

+ (56

2.5__
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n

Yo

n

Y2

SNSRI RN CE R IR ER N
+ G5O GO 7+ G0y
+ GO+ G0 g+ Gy

+ G0 4G O GOy

+E O H GO+
4

+ G- 0y

+ G5 0r

. +C§>5_

+ G- 07

+¢P-6




+ G50y

+G 0y

+ G0

+ (-6

2.5__
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. Z C52y1+4y2 )

n

Y2

+ G0y

+ G0y

+G -0y

+ G50y

+ (26

> | exp(@mi(yr -2+ 4-y2)/5) - 0

+ G0y
+ 50T
+ G0y

+ G- 07

+( -6
4

n

Yo

+ G50y
+ G507
+ G0y

+ G0y

+¢P-6

+ G- 0y

+ G0y

. _,_CQ&-

+ G50y

+(5-6
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+ (26
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. Z C§y1+4y2 )

n

Y2

+ G0y

+ G50y

+G5 -0y

+ G0y

+( -6

> | exp(@mi(yr -3+ 4-y2)/5) - 0

+ G0y
+ G0y
+ G0y

+ G50y

+¢P-6
4

n

Yo

+ G50y
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+G5 0y
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+(5-6

+ G- 0y

+ G- 07
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+ G50y

+¢2-6




+ G507

+G -0y

+ G50y

+ (-6

2.5__

240

. Z C§y1+4y2 5
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n
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- _|_C53,5__
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4
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Yo
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4.1.3 Representation of S with respect to the basis of delta functions.

Combining the calculations gives the following matrix for S.

$1 11 1 1 1 1 11111111 1 1 1 1 1 1 1 1 1 1
L1 111G 666666 ¢686E¢E¢¢E 6666 6
1111 1¢ ¢ ¢ G &G &6 6 GG GGG a ¢ ¢ ¢
1111 18 ¢8¢¢G66G6GG6G66G6G6G66¢E¢C¢
11111666666 6&¢¢6¢¢EaEdGEadE6q
LG GG 6 166866 16866 1688¢E6 16866
LG &G 6 G & ¢ 6 168 ¢ 6 1¢ 66 16 ¢ 6 146 ¢ ¢
1GE¢ 6E¢6G 166 1EEGEdEs 1¢6 g ¢
LG ¢ & 66 16666 ¢E6 16 146 ¢¢¢¢6 G
TG & @G 6 G 1¢ ¢ ¢ ¢ G 1¢ ¢ ¢ ¢ 1¢ ¢ ¢¢¢ 1
LG 6 G ¢ 16668 1¢ 666G 18 6¢¢ 1866 ¢
136G ¢6¢ 1866 66¢ 1¢ 186666 ¢ 1¢
S=211¢ 66 &3¢ 66 ¢ 166 ¢ 1666 1¢6¢ 1¢ 6
L@ 66 ¢¢ 1¢E 6666 16666 ¢ 18¢EG6aE¢ 1
1@ 66 ¢ 66 ¢ 1¢8¢ 1¢ 666666 16¢ 166
L@ G 6@ 186 66 168666 168666 164666
LG G 6 & ¢ 6@ 1¢ ¢ 1¢ ¢ 6666 ¢ 16 ¢ 1466
LG G 6 ¢ & 166G 6 66 166666 1¢¢6§6 ¢ 1
1G G 6¢E¢6 66 114G 6¢ 1¢6¢ 1¢6G¢E 1¢ G 6
1@ G GG G & 16 ¢ ¢ ¢ 6 ¢ 1¢ 1¢ ¢ 66 6 ¢ 1¢
LG GGG 166 ¢ ¢ 16 ¢ EG 16666 1686846
16 G &G 6 166¢¢¢6 16¢¢EGE 1666 ¢ ¢ 1
LG G & GGG 16¢ 66 ¢6 16 16686646 16
TG G ¢ G & ¢ 1¢G ¢ 16 ¢ ¢ 6 E&@&ag 1¢¢ 16 ¢

LG G GG G & &G 168 ¢&¢ 168G 1666 1646 ¢
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4.1.4 Representation of 7" with respect to the basis of delta functions.
With b = 1, Theorem 2[23] tell us that

-0 =exp(Q(z)) - 6 = exp(2mi - x122/5) - § = ("0
0 1 T T T Ty

T T2 T2 T2
Applying the formula gives the following matrix. Due to the size of the matrix, it is

displayed on the next page.
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4.1.5 Actions of S and T on the basis functions of V()
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The actions of S and T on the basis of V() are given by

S fr -

Or -

+S i 6y

VS

1+8-i-8p

TS

145087

_ —FSZ(S'-

8- (=1) -6y 1

5 (=1)-6p

+ 8- (=1)-6p 1

£S5 (=1)-0r

+S-(=1)-5r

+ 8- (=1)- 6y

+5-

+5-

+ 5.

+5-

+ 5.
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and

1 1 2 4 3
T -fr1=T-0r7+T-i-0p17+T-(=1)-6p1+T-(—i)-9
1 1 3 4 2
0 0 0 0 0
T fr1=T-6p1+T i8¢ 1+T (=1)-0r1+T(—i)-5
1 1 3 4 2
1 1 2 4 3
T-fr1=T-0r7+T-i-0p1+T-(=1)-6p1+T-(—i)-9
1 1 3 4 2
2 2 4 3 1
T-frq9=T-0717+T-i-0p7+7T-(-1)-6p7+7T-(—9)-0
1 1 3 4 2
3 3 1 2 4
T-frq9=T-0p1+T-i-0p1+T-(=1)-6p7+T-(=1) -6 7.
1 1 3 4 2

4 4 3 1 2

Determining the coordinates of six by six matrices with respect to the basis of the
invariant subspace is rather tedious and will not properly fit on this paper size. Since we
have a product of i = v/—1 with (5, the resulting matrix entries will not be in Q[(s]. So

we will employ SAGE to compute it for us. We will enlarge our ring so that it contains

V-1
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(4.1.1)

—C30 — €30 — oo + Go
3o — Coo — 30 — Goo
—(So+ G0 — 2 +1

—C3o+ €5 — Coo+ G+ 3¢ — 1

—C30 + C30 — Goo + 220

—C30 — 50 — Goo + G5
—G30 + C3o + Gao + G50
30 — Goo + ¢ — m@o

—C30 — C30 + Cho — G0 — Coo + mnmo

0 —(30 — G50 — Gao + (o
o — oo — Gao — o 0
Dix)(S) = W . G0 — G0 — Gao — o ~(30 — C50 — Goo + o
Clo— €80 — Coo — G o — €80 — Cho + oo + o — 23 — 2Ca0 + 1
Cho—Coo— oo — Go —Coo + ¢+ oo — Coo — S + WAWO + m@o -1 o+ — o+ o+ Go— wmmo
| G0 — o — oo — Co Goo + G0+ Goo — Go
(30 — G0 — Gao + o ~C30 = G50 — Goo + o
—Co — €80 + Cho + 3o — o — 3¢5 + ECao + 1 (o + ¢S — Cho — oo + o + 2% — 2Cao — 1
Go+ Co = Goo — o + 3¢5 — 1 —Co+ Go + o + o — Go + 3¢
50 + 2o Go — G
(30 + G (30 — 2o

o — G50 — G0 — G + Gy — 2C20 —CJo — oo+ oo+ — 3¢5 + 1

- Co+Ch -G -3 +1

(5o — Coo+ 3¢5 — 1
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For T' = ,
01
1
0
0
Di(x)(T) =
0
0
0

0
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0 o 0 0]
0 0 0 0
4 0 0 0
0 Go—Cot+—-1 0 0
0 0 ¢ 0
0 0 0 =

We have our six-dimensional irreducible representations for the generators of SLy(Z/57Z).

Its entries are over Z[(y]. Can we find a smaller ring that contains the entries? Yes, as

stated in the previous chapter, Riese[26] gives a much tighter bound. He proves that the

ring is Z[(4] (the Gaussian integers). How can we can construct it?

4.2 The 6-dim Irred. Principal Series Rep. that is integral over Z[(,] = Z]i].

We will employ the procedure from Chapter 2 Section 5. We will also employ the

Frobenius Reciprocity Theorem. Let’s state it for our application.

Let G = SLy(F,). Fix the non-trivial one-dimensional character y = x; of B, inflated

from T, so that

for some j. Consider the representation (space)

V =Ind%(x) ={f:G — C: f(bg) = x(b)f(9),Vb € B,g € G}.

Let p be the representation of G on V. If H is subgroup of G and and ¢ : H — C* is

a one dimensional character (representation) of H, then the induced representation,
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Ind% (o), has vector space
V =Indj(0) = {f: G = C: f(hg) = a(h)f(9), Vg € G, h e H}

and representation p : G — GL(V), given by the G-action [p(g)f](x) = f(xzg) for all
x,g € G. The dimension of the induced representation is given by the index of G' and

H,ie.,
dim(Ind% (o)) = [G : H].)
Since x; = x is a one-dimensional character of B,
dim(V)=[G:B]-1=p+ 1.

Is (p, V) an irreducible representation? Yes, for the detailed proofs, see Kirby[16].
In Chapter 2, we learned the character table for B (Table [2.5.1)), how to obtain the
cosets of SLy(IF,)/B, and that the induced six-dimensional representation is irreducible,

we can construct it. The six coset representatives are

1 0 1 0 2 0
X, = X, = X, =

01 11 1 3

2 0 2 0 0 4
X3: X4— X5_ 9

3 3 4 3 1 4
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']. Then the induced six-dimensional representation of S is

0

Let S =Y

—_~ o~ o~ o~ o~ o~

~— — ~— N~ ~— =

s T s T T

~—— ~— ~— ~— v ~—

—_~ o~ o~ o~ o~ o~

~— N~ ~ @ ~ ~—

~~ ~~ ~~

~— — ~— ~—  —  —

~—~~ o~
— o/ — o/ o  —

[ VN S N
~— ~— o o

o~ o~ o~ o~~~
— o/ o o/ o  —

[ VT S SN
~— ~— ~— ~— "

—_~ o~ o~ o~~~
— o o o —  —

e VAN S S —

— N~ ~ @ ~ =

~ o~ o~ o~ o~ o~

—_— e e e e
~—_— ~— ~— ~— ~—— —

~—~ I~ N
— o o/ —  —

~— ~— ~—  ~— ~—  —

e T N T U NI N
— o/ o/ — o —

[ T S e S SR
~— ~— ~—  ~—  ~—  —

—G 0 0

0

0 0 -1

0

0

- 0 0

0

0

0

- 0 0 0

0 O

0 O

0

0 — O
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Let T'= [} 1]. Then the induced six-dimensional representation of T is

—_~ o~ o~ o~ o~ o~

~— ~— ~— ~—  —  —

—_~ o~ o~ o~ o~ o~

~— ~— ~—  ~—  —  —

~—~~ I~ N o~

~— ~— — ~—  —  —

—_~ o~ o~ o~ o~~~

~— ~— ~— ~—  —  —

—~ o~ o~ o~ o~ o~
— o/ o o —

[ A N S —
~— N~ ~ ~ ~—

—_~ o~ o~ o~ o~ o~

[ SN N S N S —
~—  ~— ~— ~— ~—

e T e e T T
— o/ o o/ —

~— ~— ~— ~— ~—  —

e T N T Y NI N
— — o — @ —  —

[ SR S
~— — ~—  ~— ~—  —

—~ o~ o~ o~ o~ o~
— — o — —  —

[ SN S —
~— ~— ~— ~— " ~~—

—~ o~ o~ o~ o~ o~
— o/ o o —

[ N N S —
~— — ~— ~— ~—

00 0 001

0 000

1

0

00 0 0 <¢ 0

00 -1 000

0

0

0

1

0

0 0 ¢ 0
00 -10 00

0

0

00 0 ¢ 0 0

Lets verify the relations (D1 (x)(S)-D1(x)(T))? = (D1(x)(5))? and (D;(x)(5))* = 1.

Let A = (Di(x)($) - Di(x)(T))*. Then
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o o o O

o O

e}
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- T\ 3
10 0 000
00 0 00 1
01 0 000
00 0 040
00 1000
00 0 00
3
00 0 -0 olloo o
00 0 0 1 0]]o 0 o0
00— 0 0 0 0[]0 —i 0
00 0 0 0 —i||0 0 0
00 — 0 0 0[]0 0 —i
1 0 0 0 0 0|1 0 o0
0 0 0 0 0 -1
0 0 —i 0 0 0
0 0 0 0 —i 0
—~ 0 0 0 0 0
0 -1 0 0 0 0
0 0 0 —i 0 0

e}

o o o O
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G4

—Ca
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-1 0 0 0 0 0

0O -1 0 0 0 0

ooy =0 L

0 0 0 -1 0 0

0 0 0 0O -1 0

o o0 o0 0 0 -1
-1 00 00O 0-
01 0O0O0O
001 0O0O0
N 000100
00 0O0T1FPO
00 0O0O01

= 1.

The relations hold. So the integral representations are over the the Gaussian integers.
This agrees with Riese’s Proposition 1[26]. Can we induce the other principal series
representations? The answer is yes. We can easily induce the (reducible principal series
representations): the 14-St representation and Ry(1,+) & R;(2,+) (also referred to as
06 @ po). To directly compute the irreducible ones, Nobs’ methods are the easiest to

compute (as we did for SLy(Z/37)). These reducible ones are calculated for completeness.
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4.3 The Steinberg representation, N;(x1)

Recall that when we computed the Steinberg representation of SLy(Z/37Z), we learned
that the Aut(M, @) is isomorphic to the dihedral group of order 2(p + 1) ([34] Theorem
11.4). We have M = Z/5Z & Z/5Z and Q(z) = 5 (2 — uz3) = 5~ (2% — 223) from [23]
Theorem 3. The bilinear form is B(z,y) = 51 (2z1y; — 4x2y2) = 571 (22191 + T2y2). We

proceed as before. Lets write down the domain and image of Q(z).

r om wy P i 2?2223 Qx)=(2?—223)/3€Q/Z

00 0 0 0 0 0
1 0 1 0 1 0-2 —2/5=3/5
2 0 2 0 4 0-38 —8/5=2/5
30 3 0 9 0-18 —18/5 = 2/5
4 0 4 0 16 0-—32 —32/5 =3/5
5 1 0 1 0 1-0 1/5

6 1 1 1 1 1-2 —1/5=4/5
71 2 1 4 1-38 —7/5=3/5
8 1 3 1 9 1-18 —17/5 = 3/5
9 1 4 1 16 1-32 —31/5=4/5
10 2 0 4 0 4-0 4/5

11 2 1 4 1 4-2 2/5

12 2 2 4 4 4-8 —4/5=1/5
13 2 3 4 9 4-18 ~14/5=1/5
14 2 4 4 16 4-32 —28/5 = 2/5

15 3 0 9 0 9-0 9/5=4/5




255

roxr my wr oxd a?—222 Qx) = (22 —223)/3€Q/Z
6 3 1 9 1 9-2 7/5=2/5

17 3 2 9 4 9-8 1/5

8 3 3 9 9 9-18 —-9/5=1/5

19 3 4 9 16 9-—32 —23/5=2/5

20 4 0 16 0 16—-0 16/5=1/5

21 4 1 16 1 16—2 14/5 = 4/5

2 4 2 16 4 16—8 8/5=3/5

23 4 3 16 9 16— 18 —9/5=3/5

24 4 4 16 16 16— 32 —16/5=4/5

Now grouping the images gives us the basis vectors 9.

Q(r) € Q/Z
T oxry wo P a3 22 —222 (22 —223)/5
0O 0 0 0 0 0 0
5 1 0 1 O 1-0 1/5
12 2 2 4 4 4-8 —4/5=1/5
13 2 3 4 9 4-18 —14/5=1/5
7 3 2 9 4 9-8 1/5
18 3 3 9 9 9-18 —9/5=1/5
20 4 0 16 0 16-0 16/5=1/5
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Qz) € Q/Z
r om wy w2 wi x?—2x5 (v?—223)/5
2 0 2 0 4 0-8 —85=2/5
3 0 3 0 9 0-18 —18/5=2/5
1 2 1 4 1 4 —2 2/5
14 2 4 4 16 4-32 —28/5=2/5
6 3 1 9 1 9-2  7/5=2/5
19 3 4 9 16 9-32 -23/5=2/5
1 0 1 0 1 0-2 —2/5=3/5
4 0 4 0 16 0-32 —32/5=3/5
7 1 2 1 4 1-8 —7/5=3/5
8 1 3 1 9 1-18 —17/5=3/5
22 4 2 16 4 16-8 8/5=3/5
23 4 3 16 9 16—18 —2/5=3/5
6 1 1 1 1 1-2 —1/5=4/5
9 1 4 1 16 1-32 —31/5=4/5
02 0 4 0 4-0 4/5
15 3 0 9 0 9-0  9/5=4/5
21 4 1 16 1 16 — 2 14/5 =4/5
24 4 4 16 16 16—32 —16/5=4/5




That is,

and

fo(x) =

fa(z) =

fa(z) =

+90

+90
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+9

+9
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We have our five basis vectors. Using SAGE, we determine the representations to be

= ~1 ~1 ~1 ~1
6 GH+EG+2 2 +2¢ 28 -2¢3-2 GG+l
MO =5 -6 2@ G-l G2 —a@-2
-6 —2¢¢-2¢¢-2 (GHE+2 -G-E+1 2G5 +2¢3
|6 —G-G+1 -2 -2¢2-2 2 +23 G+ +2
and
10 0 0 0
0¢G 0 0 0
NM)T)=10 0 ¢ 0 0

00 0 ¢ 0

00 0 0 ¢
Using SAGE we confirm that (N;(x1)(S))? = (N1(x1)(S))* = 1 and (Ny(x1)(S) -
Ni(x1)(T))? = (N1(x1)(S)?). We also confirm that characters agree with Reeder[25]:
Tr(N1(x1)(S)) = 1 and Tr(Ny(x1)(T)) = 0. Using Nobs and Wolfart’s[24] method, we
can realize the Steinberg representation over Z[(;]. However, as Riese[20] and others
state that the Steinberg representation can be realized over Z!
4.4 1+St, the 6-dim. reducible principal series representation of SL(2,5)
We can compute the six dimensional reducible principal series representation of
SLy(Z/57Z) that is the direct sum of the trivial and Steinberg representations: 1 + St.

We can do this by inducing the trivial representation[16].
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o~ o~ o~ o~ o~
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1

1

. Then the induced six-dimensional representation of T is

Let T

1

o~ o~ o~ o~ o~ o~
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~— ~— ~—  ~—  —  —

—_~ o~ o~ o~ o~ o~

~— ~— ~— ~—  —  —

—_~ o~ o~ o~ o~ o~

~— ~— ~—  ~—  ~—  —

—~ o~ o~ o~ o~ o~
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o T e e T Y

— e e e e e
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[ SR S
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~—~~ I~ N
— — o o/ —

[ S A S T
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01 00O0O

000010
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((14St)(S) - (14 St)(T))?

o o O

o o o O
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o o o O

o o o o
o o O

o
o o o o O

o o o O

o O

o jen)} ) o jen}
w

o o O

o o o o O
—

o o o o O
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e}

o o o o O
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o O

o o O

o o O

o o o O

o o o O

o o o o O
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So,

((1+8)(9)" =

o o o o O
o o o O

0001

The representations are not in block diagonal form but the characters agree (see
calculations in Reeder[25]). That is, 1 4+ St is realized over Z but can we realize the
Steinberg representation over Z?

4.5 The Steinberg representation is realized over Z

Since we computed 1 + St for the prime p = 5, we can extract the five-dimensional
Steinberg representation St out of 1+ St. We need the appropriate basis. Reeder[25]
states that 1+ St is just the permutation representation of G' on P1(Z/pZ), and 1 is the

subspace of constant functions, the vector space of St is given by

St =/ f:PYZ/pZ)(f) — C such that Y =0

tePH(Z/pZ)(f)

So what is a basis for this space St?
Proposition 4.5.1. For SL(2,5), the five dimensional Steinberg representation can be

realized over 7, with the basis

{(00 = 61), (01 — d2), (02 — 63), (03 — 64), (04 — 05) } -

Proof. Using SAGE, we explicitly compute the Steinberg representations of the genera-
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tors S = [? '] and T = [} 1]. They are

(0 0 0 0 -1 100 0 0]
0 0 -1 1 -1 100 0 -1
StS)=10 -1 0 1 —1f andSHT)=10 1 0 0 -1,
10 0 1 -1 010 -1 0
-1 0 0 0 0] 001 -1 0
and (St(S) - (St(T))? = (St(S))? and (St(S))* = 1. O

4.6 The 6-dim. rep. that is a direct sum of two 3-dim. irred. rep.
Let a be a generator of Z/pZ. Let ¢ denote the Legendre character of the diagonal
subgroup of SLy(Z/pZ):

a 0 1 if4is even
0 at —1 ifiis odd
We can induce a six-dimensional representation that is a direct sum of two three-

dimensional representations[16].
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Let S =[Y']. Then the induced six-dimensional representation of S is
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Let T'= [} 1]. Then the induced six-dimensional representation of T is
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Lets check the relations (p(S) - p(T))? = (p(S))* and (p(S))* = 1.
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_0 0 0 0
0O O 0 -1
o) =0 0 TP
0O -1 0 0
0O O 0 0
1 0 0 0

[
o = O
= o O
o o O
o o O
o o o o O

o o o O

o o o o O
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We also have

0 0 0 0 0 1 1 0000O

0o 0 0 -1 0 O 010000

) 0o 0 -1 0 0 O 001000
(p(9))" = =

0 -1 0 0 0 O 000100

0o 0 0 0 -120 000010

1 0 0 0 0 0 00 0O0O01

so that (p(S))* = (p(S))*> = 1. The relations are verified. They are not in block

diagonal form but the traces agree (see Reeder[25]).
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CHAPTER 5 Realization Of The Weil Characters For SL(2,p)

In this chapter we state a conjecture of Candelori, briefly discuss Zemel’s result [44],
introduce the Gauss sum, and attempt to show Wang’s basis[36] realizes R(1,+) and
R(n,+) over Z[(1+€,)/2] via a direct method. This direct method fails.

5.1 Candelori’s Basis (Conjectural)

Let t = [§1] and s = [Y']. Let p(s) and p(t) be the Weil representations of
SLy(Z/pZ) as before.

Let U = p(s) - p(t) - p(s), v+ = 9 + 0p—1 and v_ = §; — 6,—;. Then, Candelori

conjectures that a basis for R(1,+) and R(n,+) is given by

{v+, U-vy, U vg,--- Up’I-UJr}, (5.1.1)
and a basis for R(1, —) and R(n,—) is given by

{v,, U-v_, U*-v_,---, Up_l-v,}. (5.1.2)

For p=3,5,7,11,13,17,19, 23 and 29, we verified that these bases realize the repre-
sentations over Z[(,] but not for smaller rings.

We further conjecture that for 1 <a <p—1andif vy = d, 46,4 and v_ = d, —p_q,
then we also obtain an integral basis. The entries for the representations of R(1,+) and
R(n, £) restricted to their respective basis lie in Z[().

5.2 Zemel’s Basis

Zemel[44] gives an integral basis for the (p—1)/2 dimensional representations R(1, —)

and R(n,—). Let

—1 m —2m
'_(p )Cg _CpZ

2.

G-
= VP

3
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Then the integral basis is given by

{v. ()0, (V) 0, (p()"F v}

Using SAGE we verified that R(1, —) cannot be realized over a smaller ring.
Calculations with SAGE show that the multiplicative factor |/p is not necessary. So
let us see if we can prove integrality over Z[(,] without it. Let p be an odd prime. We

set the first basis vector as

0
=7
(r—1) C;’l B C’;4
vi= ) (GG = 8-GO
m=0

Cp72 o Cp—(P—Q)
P

Cp_l _ Q;(P*l)
| P ’

It is clear that the j-th coordinate of v is given by (¢7 —(,*). Recalling p(t) is a diagonal

matrix and that p(t);; = Q}ZQ for 0 < j < p— 1. Routine calculations show that

(0" )y = (G~ (G = ) = v — i = lnsl) _ ),
That is, for 0 <n <p—1,

0

2(n+1 2(n—1
Gt — gy

C;l(n+1) . C;l(nfl)

2(p—2)(n+1 2(p—2)(n—1
Cp(p )(+)—Cp(p )(n—1)

_gg(pfl)(nﬂ) _ gg(pfl)(nfl)
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Let B be the matrix of the basis vectors,

Bi={v, p(t)-v, (o) v, (p()"F v},

The characteristic polynomial of p(t) is 2? — 1 = (z — 1)(2?P ' + 2?2 + -+ 2+ 1) =
(x — 1)®,(z), where ®,(z) is the p-th cyclotomic polynomial. Let R(1, —)(t) denote the
(p — 1)/2-dimensional irreducible representation of t with respect to the basis B. Let
m(z) denote the minimal polynomial of R(1,—)(t). Then m(x) divides the character-

istic polynomial of p(t). R(1,—)(t) has the following form (after making the necessary

substitutions):
000 - 0 —ap-1p
100 --- 0 —Q(p—3)/2
R(L_)(t): 010 -0 —Q(p-5)/2| - (521)
000 -1  —a |

Let r = (p—3)/2. Using the fact that a matrix and its transpose have the same mimimal

polynomial and Wang’s Lemma 4[36], the minimal polynomial m(z) is given by

m(z) = 2" 4 ayx” +apx" o @z + ang. (5.2.2)

Since both polynomials are completely reducible over Q[(,], m(x) factors as (z —1)(z —
01)(x — 603)--- (z — 6,). The 0; are roots of 2P — 1 as well. C; where 0 < i < p—1 are

roots of 2P — 1. There are (p — 1)/2 roots of m(x). By a theorem of Viete (or Vieta)[35]
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we can write the coefficients of the polynomial in terms of its roots:

4y = —(1+ 01+ 0y + 05+ -+ 01y 2),
ap=(1-61+1-0+---+1-04_1)2)
(01 0y+ 0,05+ -0, -0 12)
+ (020340204402 01)2)
(5.2.3)

+ 0p—3)/2 - O(p-1)/2,

a(p—l)/Q —= (_1)(p71)/2 . 1 . 91 . 92 ..... e(p_3)/2.
Hence the representation R(1,—)(t) is integral over Z|[(,|.
5.3 The Gauss Sum

Riese’s Proposition 4]26] stated that the Weil character £ can be realized over R =

14+p
Z[ /P

] for p =5 mod 8 We will prove a stronger result that covers all odd primes.

For a prime p, the quadratic Gauss sum can be expressed as follows:

vp for p=1 mod4
€ — Z CSQ — (5.3.1)
e vV—p for p=3 mod 4
Remark 5.3.1. Murthy and Pathak[22] give a proof of this for any natural number n
that uses only elementary methods.

The Kronecker-Weber theorem tells us that every finite abelian extension of Q is
contained in a cyclotomic extension. So Q(,/p) C Q(¢,) and Q(v/—p) C Q((,) since
quadratic extensions are abelian. The fundamental theorem of Galois theory tells us
that for p > 5 we have

where (0) = Gal(Q(()) = Z/(p—1)Z. The generator o is the automorphism o : {, — ¢/
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Figure 5.3.1: Quadratic Extension of Q((,)

where ged(i,p—1) = 1. Then 02 : (, — C;f. Since 1 and 72 are squares, o sends squares
to squares. That is, if j is a square, then o2 : (¢ — ¢¥%*. Since a product of squares is a
square, 0> maps squares to squares. If j is not a square, then ¢” : {J — Cg'iQ. Since ji? is

2

not a square, o2 sends non-squares to non-squares. o> fixes QI? . For an odd prime p and

a an integer coprime to p, Euler’s criterion states

(9) =4"" mod p. (5.3.2)

p
So modulo an odd prime, there are (p — 1)/2 quadratic residues (excluding 0) and
(p — 1)/2 quadratic non-residues. We can write the quadratic Gauss sum strictly as a

sum of powers of (, that are squares:

(5.3.3)
=1+2 3 G
ke(Z/pZ)* k a square
Then
—1+e
k _
> G =—5— (5.3.4)

ke(Z/pZ)* k a square
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We can also write the quadratic Gauss sum strictly as powers of ¢, that are NOT squares:

€= Z Cf

i€(Z/pZ)

=1+2 > ¢

k€(Z/pZ)* k a square

=1+2[-1- > ¢

J€(Z/pZ)* j not a square

=12 2 G

JE(Z/pZ)* j not a square

(5.3.5)

Then

' —1—=¢
> G=—F (5.3.6)

Since

—1—¢ 14¢ —1—¢ —1+4¢
—( 5 )— 5 and—( 5 )—1— 5 (5.3.7)

we see that they are contained in Z[£]. Since Z[=] C Q(e), we have proved the
following lemma:
Lemma 5.3.2. Let a,b,c,d € Z. The Z-linear combinations

a-(Z g;;)+b and c-( > gg>+d

i a square j not a square
lie in Q(e).

We explore the cases p = 5,7,11,13,17,19, 23, and 29. The maps in red correspond
to exponents of ¢, that are squares modulo p and those in blue to exponents of ¢, that

are NOT squares module p.
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5.3.1 Primes congruent to 1 modulo 4
Case p=5
Since ged(3,4) =1, i = 3. We have

c:1—1

3 9 _ 4
g G =G =G (5.3.)

C4_>C12:C2
G-¢=d T

with |o| = 4. Then

o211 [
G-
Y ) , (5.3.9)
Cs — G5
G-

and |o?| = (5—1)/2 = 2. The Z-linear combinations of ¢J that belong to Q(¢) are those
that are fixed by o%. The ones that are fixed are a((s + (F) + b and ¢(¢2 4 ¢2) + d where

a,bc,d € Z. For p=>5, ¢ =+/5 since 5 =1 mod 4. We have
e=V5
-2 G

z€Z/57
=@+ + &+
=1+ C51 + Cgl + Cg + C516 (5.3.10)
= 1+G+GE+G+G
=1+2G +2¢
= 1+2(-1-¢ —2¢)

= -1+ —2(& +2¢).
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This implies

e +2\/5_ (5.3.11)

From our computation of R(1,+), we see that the entries are of the form ¢(¢Z + (2) + d.
So R(1,+) and R(n, +) are realized over Z[3(1 + v/5)].
Case p=13

Since ged(7,12) =1, i = 7. (5 does not work). We have

c:l—1
7 49 10
. : Ci3 = C13 = (g3
Ci3 — Ci3 o i .
) 14 . Crs — (i3 = (i3
Cis — Ci3 = (i3 0 . "
, o ) Cr3 = 13 = (i3
Crs — Ci5 = (i3 (5.3.12)
10 70 _ 5
A 28 ) 13 = Ci3 = (73
Crs — C3 = (i3
11 77 12
- . . 13 = Gz = (i3
Crg — (i3 = (i3
6 42 3
Crg — (i3 = (i3

12 84 6
13 = Ci3 = (3

with |o| = 12. Then

0?11
(s = (s
Gis = Ci3
(s — (i
(s — <173 ,
s = 3
Cf? - Cf’g 7 (5.3.13)
e )
Gz = Ci3 "
13 = (P
15 = (s
(s — (T

with |0?| = (13 — 1)/2 = 6. The Z-linear combinations of ¢J that belong to Q(¢) are

those that are fixed by 0. The ones that are fixed are a((j3+ s+l + s+ +¢13) +b
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and c(Ch + (3 + (& + ¢l + 8+ ¢3) +d. For p=13, ¢ = v/13 since 13 =1 mod 4. We

have

=113
= > & (5.3.14)

x€Z/13%
=1+ 2(C123 + Gr):s + C163 + 4173 + C§3 + <11§)
This implies

#1_3, (5.3.15)

C123 + Cir)?) + Clﬁd + C173 + Cfs + Cllé =
From our computation of R(1,+), we see that the entries are of the form c((Z; + (5 +
Cy+ ¢l + ¢+ ¢f3) + d. So R(1,+) and R(n, +) are realized over Z[3(1 + v/13)].
Case p =17

Since ged(3,16) = 1, i = 3. We have

711 7 Gl = (=
Gir = Gy 17— G = (7
Cir = Gy 17— G =G
Gy = Cis 17 = Gir = G
Gr = G o=k (5.3.16)
iy = Gir 17— G =Gy
(i = Gir = Ci 17— G =G
(ir = ¢ =Gy 1= G =Gr

8 24 7
Cr7 = Gi7 = Gy
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with |o| = 16. Then

0?11 o? (L (2
Cir = Cir 17 = i
i = G 7 =Gt
Cir = Gy 17 = (i
Cir = ¢ =G (5.3.17)
Cir = Giz 17 = (i
(= G B =7
Clr = G 17 = (i
Cir = Cir

with |0%| = (17—1)/2 = 8. The Z-linear combinations of ¢J that belong to Q(¢) are those
that are fixed by 0. The ones that are fixed are a((},+(E+(H+CE A +E+H2+8)+b
and (¢l + (P + CFy + Cly + Q7 + (7 + (7 + () +d For p =17, ¢ = V17 since 17 = 1
mod 4. We have

e =17
— Z Cf

2€Z/1TL (5.3.18)
= 14 2(¢r + G+ G+ o+ G+ U2+ 67+ )
=142(-1—=C = — (o — ¢ — QY+ (7 + 7 + ().

This implies

1= VI7 (5.3.19)

Qr + Qr + Qr + Cr + Q7 + G + G + Q7 = —

From our computation of R(1,+), we see that the entries are of the form ¢((}, + (77 +

o+ G2+ + 24 () +d. So R(1,+) and R(n, +) are realized in Z[$(1 + VIT)].
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Case p =29
Since ged(19,28) = 1, i = 19. We have |o| = 28 and |0 = (29 — 1)/2 = 14. The Z-

linear combinations of CI{ that belong to Q(¢) are those that are fixed by 2. For p = 29,

e =+/29 since 29 =1 mod 4. We have
e =+/29
-y

T€Z/297
=14 2(Cog + Cog + oo + (oo + (3 + Go + (oo + Cag + Cog + Goo + Cog + G
+ o) + Gs + Go) (5.3.20)

- 2 3 8 10 A1 12 14 415 17 418
=1+ 2(=1— (o9 — G0 — Co9 — Ca9 — Ca9 — G20 — G20 — Ca9 — Cag — Cao
_ Lo 21 38 _ oy
29 — G29 — Ga9 — Go9
_ 2 3 8 10 A1 12 14 15
= —1 =y — Co9 — Ca9 — Cag — Co9 — Ca9 — Ca9 — Cag
_ AT I8 gl g2 36 _ ooy
29 — G29 — G29 — G29 — Ga9 — Ga9)-
This implies

-1+ 29

5 = G o+ G+ Gog + Cog + Gog + Cog + g
(5.3.21)

+ Cag + Gag + Cao + G Cag + Cag).

From our computation of R(1,+), we see that the entries are of the form
a(G3o + oo + Coo + Cog + Cag + Cag + Cog + Gas

(5.3.22)

+Gag + Gop + Coo + Goa + Cog + Gag) + 0.

So R(1,+) and R(n, +) are realized in Z[3(1 + v/29)].
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5.3.2 Primes congruent to 3 modulo 4
Case p=7
Since ged(5,6) =1, i = 5. We have

c:1—1
G =g

GG =G (5.3.23)

GG =6

G
Goa'=¢
G- =

with |o] = 6. Then

o211
G = G
G = G
| ¢ — ¢S (5.3.24)
G = G
G =G
G =G

and |0?| = (7—1)/2 = 3. The Z-linear combinations of ¢J that belong to Q(¢) are those
that are fixed by 2. The ones that are fixed are a(¢; + (2 +¢7)+b and (3 + (2 +¢8) +d
where a,b,c,d € Z. For p =7, = +/—7 since 7 =3 mod 4. We have

e=+v—-T7
— ZC;’Q

T€Z/TL

=+ F+E+E+E T+ (5.3.25)
=1+ G+G+E+G+ P+

=1+ G+G+E+G+ G+ G

=1+2(G+ G +G).
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This implies

i%Ez (5.3.26)

GG+ =
From our computation of R(1,+), we see that the entries are of the form a((;+(2+(F)+b
So R(1,+) and R(n,+) are realized over Z[%(1 4 +/=T7)].
Case p=11

Case p = 11. Since ged(3,10) = 1, i = 3. We have

c:1—1
. s ¢ = G =
Ci1 = G . o "
) . Ci1 = G = (i
¢ — G
= G =Ch (5.3.27)
G = G

5

C11 — Cn = (11
10 30 8
1~ 1 =

1
§11 — Cn =611

(= Gy = Ch
with |o| = 5. This does not generate the entire Galois group. With i = 7, ged(7,10) =1

and we have

c:1l—1

h = G =
Ch — G =i
¢ — ¢ = Ch (5.3.28)
= =G
1o = ch

¢h = Ch

¢h = G = ¢l
G — ¢ = it
Gh— ¢ =
¢ — G = Ch
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with |o| = 10. Then

o211

) : ¢ =
Ci1 — (i . )
) 0 Gi1 = ¢

1 =~ Cn

Cfl N §171 (5.3.29)

G = G 0 )
| . G — G
C1 — (i " .
11—

¢h = G
with |0?| = (11 —1)/2 = 5. The Z-linear combinations of ¢J that belong to Q(¢) are
those that are fixed by o2. The ones that are fixed are a(Cl; + ¢ + ¢ + ¢ + (1)) +0
and (¢ + 8 + ¢+ G+ ) +d. For p=11, e = /=11 since 11 = 3 mod 4. We
have

e=+—11
— Z gf

z€Z/117Z

= G (5.3.30)
¢+ + G+ ¢+ Y

= 1+2(Cy + G+ G+ G+ )

This implies

14 oII
LG+ + = % (5.3.31)

From our computation of R(1,+), we see that the entries are of the form a((];, + () +
Gy + ¢+ ¢y) + b So, R(1,+) and R(n, +) are realized over Z[5(1 4 +/—11)].
Case p=19

Since ged(13,18) = 1, ¢ = 13. We have |o| = 18 and |0 = (19 — 1)/2 = 9. The

Z-linear combinations of (IZ that belong to Q(g) are those that are fixed by o?. The
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ones that are fixed are a((ly + (g + (Fy + iy + (o + (o + Clg + ¢l + (i) + b and
oGy + Gy + Clo + g + Gid + G5 + g + Gig + G5) + d. For p =19, & = /19 since
19 =3 mod 4. We have

e =+v-—19

= > ¢ (5.3.32)

T€Z/19Z
=14 2(({g + Cio + (o + o + Clo + Glo + Cio + (g + Clg)-

This implies

Clo+ Clo+ o+ (o + Clo + (o + G + s + (g =

-1 +2V -1 (5.3.33)

From our computation of R(1,+), we see that the entries are of the form a({{g+(io+Ce+
(Fo+ g+ T+ + S +Cg) +b. So R(1,+) and R(n, +) are realized in Z[5(14+/—19)].
Case p =23

Since ged(19,22) = 1, ¢ = 19. We have |o] = 22 and |0* = (23 — 1)/2 = 11. The
Z-linear combinations of ¢J that belong to Q(e) are those that are fixed by o*. The
ones that are fixed are a((yg + (33 + (55 + (55 + (Js + (35 + (33 + (35 + (3) + b and
oGy + Gy + Gy + G + G + Gai + Gy + G + G3) + d. For p = 23, & = /=23 since
23 =3 mod 4. We have

e =+v—-23

= > & (5.3.34)

z€Z/237%
=14 2(Co3 + (33 + Cos + Co3 + (55 + (55 + 5 + (a3 + o3 + G5 + (35)-

This implies

I s +2V —2  (5.3.35)

Ca3 + (o5 + Cos + Cos + (o5 + (o5 + (o5 + G253 + G + Gos + G =
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From our computation of R(1,+), we see that the entries are of the form a((l; + (3% +
(33 Cois + (3 + Gy + G35+ Ca3 + (33 + G5 +G35) +b. So R(1, +) and R(n, +) are realized
in Z[1(1+ /=23)].
5.4 Direct verification of the integrality of Wang’s basis

Let s = [§ '] and t = [§ 1]. We want to prove that all of the entries of R(1,+)(s)
and R(1,+)(t) lie in Z[(1 + €)/2] where ¢ is the Gauss quadratic sum. Let p > 5 be an
odd prime. We will soon see that we encounter the very difficult problem of determine
quadratic residues and non-residues for an arbitrary prime. In other words, this direct
methods fails absolutely for the computation of R(1,+)(s).

Let v be vector of dimension p whose entries are 1. That is,
vi=(1,1,---,1). (5.4.1)

Given the quadratic form Q(z) = 2% /p, we know that p(t), the Weil representation of t, is
a diagonal matrix whose (7, j)-th entry is CIZQ. We also see that p(t)* where 0 < k <p—1

is also a diagonal matrix whose (j, j)-th entry is C]’;‘jQ. Then

p(H)F v = (1, Cﬁ; ka’ C22k7 e ,ngpfl)zky' (5.4.2)

The invariant subspace W’s basis is given by {v, p(t)v,- -, p(t)P~1/2p}. Index the basis

vectors as b; where j is the exponent of p(t). So by = v, by = p(t)v, - - - ybp1 = p(t)P=D/2y,

That is,
bo=(1,1,---,1), (5.4.3)
by = (17C;7<§7C37 ;C;()p_l)Z), (544)
by = (17 Cg’ Su C;87 o 74'5(17—1)2)’ (545)

bS = (17 CS) C;27 C;??a e 74}3(1?_1)2)7 (546)
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and so on until
b%l = (179(]13—1)/2’ @32-(10—1)/27C;’)’>2~(p—1)/27 e 7@(}(1)—1)2(1)—1)/2). (5.4.7)

We wish to find the coordinates of R(1,+) with respect to this basis. So we multiply p(t)
by each of these basis vectors. Then the image of p(t) - by is the basis vector by = p(t)v.
The image of p(t)-b; is the basis vector by = p(t)?v. So p(t)-b; = b;, for 0 <i < (p—1)/2.

For the basis vector bp-1, we have
2

0= p(t) -pr—l

= p(t) - (7

_ p(OP2 .y

(5.4.8)

= (1’C£p+1)/2’<}g4-(p+1)/2) ’ng(p,l))z(pﬂ)ﬂ)

?

So the (j)-th coordinate of ¢ is gf‘(p“)/? For the first coordinate, j = 0, it is 1. The

second coordinate is of £ is C,(,p /2 Denote the i-the coordinate of the a vector v as v(i)

and denote the coordinate vector of ¢ with respect to Wang’s basis as w. Then
0 =w(0)by +w(1)by + - +w((p —1)/2))bp-1)/2- (5.4.9)

In coordinates, the vector ¢ is given by

RONEECCE 0 () b (0)
(1) w(0)bo(1) w (51) bo-s (1)
(2) | _ | w(0)b(2) . w (557) b1 (2) (5.4.10)
0(3) w(0)by(3) w (54) bp-i (3)

-] |wOm (5] w (552 e (551) |




9(p+1)
2

Cp

P

That is,

(1) = ¢

(=12 (p+1)
2
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= w(0) - bo(1) + w(1) - by (1) + - - +w((p = 1)/2) - bp-1)/2(1)

— w(0) + w(1)- G+ + wl(p — 1)/2)- PV

0(2) = C;:(erl)/?

= w(0)-bo(2) +w(1) - b1(2) + -+ +w((p —1)/2) - bp-1)2(2)

w(0) +w(1)- G+ wl(p—1)/2) - GO,

(5.4.11)

(5.4.12)

(5.4.13)

(5.4.14)
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and so on until
tp—1) = C}gp—l)2~(p+1)/2
= w(0) - bo(p — 1)) +w(1) - ba((p— 1) + -
+w((p—1)/2) - bp-1)2(p— 1) (5.4.15)
= w(0) +w(1) - ngpfl)/2 4o
+w((p — 1)/2) - (D@D,
It is clear that b;(0) =1 for 0 <i < (p—1)/2 and by(k) =1 for 0 < k < (p — 1). These

relations show that Cf‘(ﬂl)/?

is an O-linear combination of the sums of squares of C]f )
We want to show that O is Z[1=].

Let B denote the px ’%1 dimensional matrix consisting of the basis vectors by, - - - b Pt
The matrix B has full column rank so it has a unique left inverse (BTB) !BT. Let L be
the px 2£1-dimensional matrix whose column vectors are p(t)-by, p(t)2-bg, -+ - , p(t) "2 by
Denote W as the coordinate matrix of L with respect to Wang’s basis. Then L = BW

and since B has a left inverse,
W=B"'L=(B"B)"'BT- L.

So the coordinates of ¢ with respect to Wang’s basis are given by (BTB)"!BT - (. Next,

we see that
| blbo  blb1  biby - bgbp%l -
blbg  bJby  blby .- b{b%l
BTB = | blby  blby  blby - b;pr—l (5.4.16)
_bl%lbo bl%lbl bL%le e bl,%lb%_
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It is clear that blby = p, blb; = €. Equations [5.3.5 and [5.3.3| showed that

e=1+2 > ¢k

ke(Z/pZ)* k a square

(5.4.17)
=12 2 ¢
JE(Z/PZ)* j not a square
If k£ is a square modulo p, then
p—1
bibr = Y _bi(i) = (i = (5.4.18)
i=0
and if k£ is not square modulo p, then
p—1
bibr = > bi(i) = —e. (5.4.19)
i=0

By a result of Gauss[17], we know that

%ggﬁ - (9) e (5.4.20)

=0 p
where (E) denotes the Legendre symbol. For j, k € Z/pZ,
p

p—1

Db = > b ()b (i)

i=0 (5.4.21)
1

I
N
Sa
+
=
%

So we have that

i+ k
blby = (‘L) ‘. (5.4.22)
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That gives us

e
CRe (e (),
oo e () (e o ()] o

<<p—1>/2>8 ((1»+1>/2>)3 ((p+3>/z>6 ((p—n)g
L P P P

e e
B G ()
S G RO R G I
_((p—;>/2) (<p+;>/2) ((p+§>/2> (@;))_

So we proved the following
Lemma 5.4.1. All but one of the symmetric (p+1)/2-dimensional matriz BTB’s entries
are of the the form +e. The (0,0) entry is p.

Also we have the following lemma.

Lemma 5.4.2. The determinant and cofactors of e 'BTB lie in Z[e].

Proof. The first row of the adjugate matrix of 1e BTB (the cofactors) are all integers. So

computing the determinant using the first row yields Cyoe + d where d is an integer. [

The characteristic polynomial of p(t) is a? —1 = (x — 1)(a? ' + 2P 24+ +1) =
(x —1)®,(z), where ®,(x) is the p-th cyclotomic polynomial. Let R(n,+)(T) denote the
(p + 1)/2 representation of T'. Let m(z) denote the minimal polynomial of R(n,+)(T).

Then m(z) divides the characteristic polynomial of p(t). R(1,+)(7) has the following
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form (after making the necessary substitutions):

000 ---0 —a(p+1)/2
100 --- 0 —a(pfl)/g

Rin, +)(T) =10 1 0 -+ 0 —aps)2| - (5.4.25)
000 - 1 —ar

Let r = (p—1)/2. Using the fact that a matrix and its transpose have the same minimal

polynomial and Wang’s Lemma 4[36], the minimal polynomial m(z) is given by

m(z) = 2"+ a " + a4 Gy (5.4.26)

Since both polynomials are completely reducible over Q[(,], m(x) factors as (z —1)(z —
01)(x — 63) -+ (z — 6,). The 0; are roots of 2P — 1 as well. C;; where 0 < i < p—1 are
roots of z? — 1. There are (p + 1)/2 roots of m(z). By a theorem of Viete (or Vieta)[35]
we can write the coefficients of the polynomial in terms of its roots:
ap=—(1+0+0,+03+ -+ 04p-1)2),
ag=(1-01+1-0y+---+1-0p_1))
+ (0102460054 ---01-0p_1))2)
+ (0203 +0-0s4---05-0_1y)2)

(5.4.27)

+ 0p-3)/2 - Op-1)/2:

A(p+1)/2 = (=1)PHD/2.1.0, -y - 0p-1))2-

The number of summands in a; is given by

<(p +.1)/2). (5.4.28)

]
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First we consider the a(,41)/2 term. Since 6; = P2,

(r—1)/2 (p—1)/2
p+1 H 0, = (— p+1)/2 H Cap 7/
(5.4.29)
_ 1)/2 rx
— (_1)(p+ )/ 5
where
(p—1)/2
r= Y jlp—j)/2
§=0
1(p—l)/2
=3 il —1J)
7=0
1(17—1)/2
=5 > p—3"
=0 (5.4.30)
1|p/p—1 p+1 1 -1 p+1 p—1
= — |- — ) — — -1 2. +1
212 2 2 6 2 2 2
_1fp(p—-1 p+1 1 -1 p+1 )
22\ 2 2 6\ 2 2 W
_ 12 (p=1 ptl
2|6 2 2
- +1)
24

We claim that (p—1)p(p+1) is divisible by 24. One of the three terms p—1,p, or p+1 is
divisible by three. Since p — 1 and p+ 1 are consecutive even numbers, both are divisible
by two and one of them is divisible by four. Let k be an even number. If p —1 = 2k then
p—11is divisible by 4 and p — 14+ 2 =p+ 1 =2k + 2 = 2(k + 1) is divisible by 2. If
k is odd, then p + 1 is divisible by four while p — 1 is divisible by 2. So (p — 1)p(p + 1)

is divisible by 3 -2 -4 = 24. If we require p > 3, then (p — 1)(p + 1) is divisible by 24.
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Denote this quotient by m. Substituting for = yields

(p—1)/2
p+1 H 9] —(_ p+1)/2<-13)c
: 2

(1) 2 g (27 P D)
P 24
omi - (p* — 1) (5.4.31)

_ (@02 2mi-(p” —1)

(=1) exp 5l

= (—=1)P+D2 exp (270 - m)

— (_1)(p+1)/2'

S0 a@ps1y2 = 1 or apy1)2 = —1 for p >'5.
For the a; term, which consists of ((p+11)/2) = (p + 1)/2 summands, we note that is

the negative of the trace of the representation R(n,+)(T"). That is,

ap=—14+60;+--- 9(p—1)/2)

—ay = (1401 +---0p1)2)

=1t )G

X a square

== 2 G

y not a square
1—¢
2

= Tr(R(n,+)).

(5.4.32)

The trace of a matrix is an invariant. The character table of SLy(Z/pZ) tells us that the
trace of R(n,+)(T) lies in O = Z[3(1 + €)]. So we have a candidate ring as a,.1)/2 is
also contained 0. So a; can be expressed either as the sum of (J where z are all squares
(including zero) or non-squares.

We did try to use two facts from number theory. First states that a positive square-
free integer can be written as a sum of three squares if the squares are not congruent to

7 modulo 8. However, the set of quadratic residues does not form a group under modulo
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addition so that approach will not be practical. This issue is evident when we attempt
to determine ay. The ay term consists of ((p+21)/2) = (p+1)/2-(p—1)/2-1/2 = (p*—1)/8
elements. By the formula for as, we see that it contains —a; — 1. —a; — 1 is in O. Let’s
investigate this pattern and see if we can generalize it to all primes. Let x = —a; — 1
and let p = 13. Then (p+1)/2 =7 and (p —1)/2 = 6. Then
ay = —x + 6105 + 0105 + 0,0, + 0,05 + 0,06
+ 0205 4 0204 + 0205 4 020
+ 0304 + 0305 + 0305

+ 94(95 + 9496

+ 0506
(5.4.33)
= —x+01(x —6)
+ Oy(z — 6, — 02)
+ 05(x — 0, — O — 63)
+04(x — 6, — 0y — 03— 0)
+05(x — 60y — 0y — 03 — 0, — 05).
Expanding the terms yields
ay = —x + b1z — 03
+ o — 6,0, — 03
+ O3 — 030, — 0305 — 63 (5.4.34)

+ 94.%‘ - 94&1 - 9492 — 8493 — QZ

+ 95ZE - 9591 - 9592 - 8593 - 0594 — «9§
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Rearranging gives us
a9 = —[E+$(91+82+03+€4+05)
— 01(61 + 62 4 054 0, + 05)
— 02(05 + 05 + 6, + 65)
(5.4.35)
—03(05 4 04 + 05)
— 04(04 + 65)

- 95(96)7

a9 = —X +QZ($ — 96)
— 81 (JI — 96)
— 92(1’ — 91 — 06)
(5.4.36)
— 93(1‘ — 91 — ‘92 — 06)
—94(1'—81—‘92—93—66)
—95(1‘—91—02—93—94—‘95)
which does not simplify enough. This direct approach fails. In the next chapter, we use

Galois-theoretic methods to prove our result.
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CHAPTER 6 SL(2,p)’s Minimal Integral Models Of ¢;
6.1 Introduction

Let p: G — GL(V) be an irreducible complex representation of a finite group G of
exponent e. A famous theorem of Brauer states that there is a choice of basis for V' (i.e.
a model for p) so that p(g) is a matrix with entries in the cyclotomic field Q((.), for all
g € G. Since the entries of the character table for G are always algebraic integers, it is
natural to formulate a much stronger conjecture stating that, in fact, the basis can be
chosen so that the matrix entries lie in the ring of integers Z[(.| C Q(¢.) [5],[19]. In this
case, we say that p has an integral model over the ring R = Z[(.]. Proving the existence of
such integral models is a notoriously difficult problem in integral representation theory.
Even when existence can be ascertained, the arguments often cannot be directly adapted
to explicitly construct such integral models.

In the case G = SLy(F,), for p > 3 a prime, Udo Riese [26] proved the existence
of integral models over Z[(.]. The question remains however whether the result is best
possible, or whether for this particular family of groups there are integral models defined
over proper subrings R C Z[(.]. For each irreducible character x, the entries of the
character table provide a minimal ring of definition R,.;,(x), but it is not clear a priori
whether such a minimal integral model over R,,;,(x) actually exists. For example, the
character of the Steinberg representation y = St (the unique irreducible character of
dimension p) has entries in Z, thus R,,;,(St) = Z. It can be shown that an integral
model for St exists over Z [26], Prop. 1], [14], thus providing a minimal integral model
for St. Similarly, minimal integral models can easily be found for the characters belonging
to the irreducible principal series of G.

In this chapter we explicitly provide minimal integral models for the Weil characters

arising from the reducible principal series of SLo(F,). For each p > 3, there are pre-
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cisely two non-isomorphic such irreducible characters (representations) & and &, each

of dimension (p + 1)/2. The entries in the character table give

Rpin(&i) = Z {—1 +2@} , € L ifp=1 modd

—1 ifp=3 mod4
for both ¢ = 1,2. We therefore seek explicit integral models defined over this quadratic
ring R = R,in(&), which in all cases coincides with the ring of integers of Q(,/p).
In [26], it is conjectured that such minimal integral models should always exist, and

existence is proved under the restriction p =5 mod 8 |26, Prop. 4]. The methods of [20]

are based on class-field theory and do not provide explicit integral models even under

the more restrictive assumptions. In this chapter (Theorems |6.3.1] and [6.3.3) we prove

the existence of minimal integral models for any prime p, with no restrictions, and we
provide them explicitly. Our methods are based on recent work of Yilong Wang [36], who
provided explicit integral models for &; over Z[(,]. By extensive explicit calculations, we
observed that in fact Wang’s models are defined over the minimal rings R, (&;). This is
what we prove in this chapter, by studying the action of the Galois group Gal(Q((,)/Q)
on Wang’s integral models.

We now summarize the contents of this chapter. In Section [6.2] we collect all the
necessary formulas in the section regarding the Weil representation and define a more
modern set of notation. The notation will differ from the previous chapters. We explain
how to obtain explicit models for the Weil characters of SLy(FF,) from the Weil repre-
sentation, and we recall Wang’s construction of integral models for & and & [36]. In
Section [6.3] we prove our main results Thms. [6.3.1] and [6.3.3] which show that
Wang’s integral models are in fact minimal. Finally, in Section we provide explicit

examples of the minimal integral models for p = 7 and p = 13 and for both & and &.
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6.2 Integral models for Weil characters
We write the Weil representations of the generators of SLy(F,),s = [{ '] and t =

[31], in terms of a quadratic form @ and its associated bilinear form B:

1 1 1 - 1
1 e 2miB(L1) e—2miB(1,2) e—2miB(1,p-1)
1
po(s) = M(s) = \/_é_p 1 e 2miB(2,1) e—2miB(2,2) e—2miB(2,p-1) (6.2.1)

—2miB(p—1,p—1)

1 e—2miB(p—11) ,—2miB(p—12)

L € ]
and
1 0 0 o o0 |
0 ee® 0 0 0
pot) =M@y =10 0 @ ... g 0 . (6.2.2)
0 0 0 coo (0 e2mQ(-1)

The isomorphism class of each Weil representation only depends on the equivalence
class of the quadratic form (). Note that there are two nonequivalent quadratic forms

on C, = (Z/pZ,+):

Qi(z)=2%/p and Qa(z) = ca®/p (6.2.3)

where ¢ is a quadratic non-residue modulo p. Therefore we obtain two non-isomorphic

Weil representations
p1, p2 : SLo(F,) — GL(V), (6.2.4)

along with their explicit (non-integral) models defined over the ring Z[1/p, ¢,].
The Weil representations p1, po defined by (6.2.4) decompose into irreducible repre-

sentations p; = & ® m;, ¢ = 1,2. The characters &, & are the two Weil characters of
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SLy(FF,) of dimension (p+1)/2; they belong to the principal series of SLo(F,). The other
two Weil characters 7y, mo are of dimension (p — 1)/2 and they belong to the cuspidal
series.

We now construct an explicit integral model over Z[(,] for the principal series Weil
characters &, &, following [36]. Let V* C V' = {functions: C}, — C} be the subspace of
even functions, satisfying f(—x) = f(x) for all x € C,. This subspace is an invariant
subspace for both p; and p,, and the principal series Weil characters &;,&; are the
restrictions of p1, po to V. To write down an explicit model for these characters, consider

the basis for VT given by the even delta functions:
ba_ := 0o, bi” =01+ 0p1, o, b?;?—l)/Q = 5(p_1)/2 + (5(p+1)/2.

Then the explicit model for the Weil representation given by (6.2.1)) and (6.2.2]) can be
used to give an explicit model for & and & over the ring Z[1/p, (,]. Let S and T" denote
the matrices of the Weil representations p(s) and p(t) respectively, restricted to the basis

of even functions. Then

)
VEP 0<j<landk=0

ep
2./¢

Sy = 6pp j=0and 1<k <2t (6.2.5)

1

\ Vgp

(e—QﬂiB(j}k‘) + €2m’B(jJ€)) otherwise

and

e2miQW) if j = k
Ti = (6.2.6)
0 otherwise.

Note that these models are not integral, since they can only be defined over the ring

Z[1/p, gp]'
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Remark 6.2.1. The (p — 1)/2-dimensional cuspidal series representations m and o
can be constructed similarly by restricting p to the subspace V=~ C V of odd functions,

those satisfying f(—x) = —f(x). This subspace has basis

by =01 —0p-1), -, b(_pf?))/Z = 0(p—1)/2 = O(p+1)/2-

Let S and T' denote the matrices of the Weil representations p(s) and p(t) respectively,

restricted to the basis of odd delta functions. Then S and T are given by

Sy =

(€f2m'B(j+1,lc+1) B 2m’B(j+1,k+1))

e

Y

™ —_
3l

and
e2mRUTY)  4f =k
0 otherwise.

These formulas provide explicit models for m and my over Z[1/p, ().

Wang [36] provides an integral model for & over the ring Z[(,|, by using a basis
consisting of circulant vectors. His construction can also be employed to provide an
integral model for &, also defined over the ring Z[(,]. Note that the existence of such
integral models for &, & was proved by Riese in [20], but no explicit integral models
were given. As far as the authors know, the first integral models for & were later given
by Gilmore, Massbaum, and van Wamelen[I3] and Wang [36] was the first to provide
integral models for &,.

To recall Wang’s construction, let ) = ()1, Q2 be one of the quadratic forms ,
corresponding to each Weil character &;,&. Let 7 = (p — 1)/2 and let §; = >0 for

0 < j <, be the eigenvalues of the T-matrix (6.2.2)). Note that 6; # 6 for all j # k.
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Consequently, the Vandermonde matrix

11 1 1 1
16, 62 63 0
16, 62 63 - o
Vo=1| = 7 ? (6.2.7)
19, 62 63 ... o
19, 62 63 ... o

is invertible. Wang proves the following:
Theorem 6.2.2 ([36], Thm. 1). Suppose p > 5 is an odd prime. Let S,T be the matrices
(6.2.5) and (6.2.6). Then the matrices VélSVQ and VélTVQ have entries in Z[(,).

By Wang’s theorem, setting
&i(s) = Vo, SV, &(t) =V ! TV,

yields explicit integral models for &;, ¢ = 1,2 over the ring Z[(,|.
Remark 6.2.3. In his proof, Wang shows that the representation & is defined over
Z[Cp) for p =1 mod 4 and Z[(,,i] for p =3 mod 4. However, upon further inspection
of Proposition 2.4, the proof readily generalizes to show integrality over Z[(,] for all odd
primes and for both & and &.
Remark 6.2.4. As mentioned in the previous chapter, Zemel [{4] has recently con-
structed integral models over Z[(,| for the cuspidal series Weil characters m and .
6.3 Minimal integral models and proof of the Main Theorem

In this section we prove that the integral models given by Theorem |6.2.2] are in fact
defined over the ring of integers of Q(/2p), thus providing minimal integral models
for £ and &. We do so by analyzing the action of the Galois group Gal(Q(¢,)/Q) on
the integral models. The key observation in this analysis is a surprising compatibility

between the Galois actions on the Vandermonde matrix Vp and on the entries of the
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matrices of the Weil representations pg, for Q = @1, Q2. Investigating this compatibility
for more general quadratic forms () might be of independent interest.

Recall that for an odd prime p, the quadratic Gauss sums can be evaluated as follows:

yp for p=1 mod 4

> G =
x€Z/pL
v—p for p=3 mod 4,
and therefore the quadratic field Q(,/€p) is always contained in Q((,). By the fun-

damental theorem of Galois theory, this subfield must correspond to the subgroup

H C Gal(Q(¢p)/Q) of index 2,

Q(¢) {e}
Qep) =  H={() (6.3.1)
Q ()

where in the diagram we chose a generator (y) = Gal(Q((,)/Q) ~ Z/(2r)Z and r =
(p — 1)/2. The generator v can be written down as an automorphism 7 : ¢, — ¢J where
ged(7,2r) = 1. Then 72 : ¢, — Cf acts on the exponents of (, by sending squares to
squares and non-squares to non-squares. We can write the sums of square exponents and

sums of nonsquares exponents in terms of the quadratic Gauss sum:

—14/ep . —1—\/ep
k _ _

2, =g ad > G=—
ke(Fp)*, k a square Jj€(Fp)*, j not a square

and from Remark [2.1.10} it is clear that they are always contained in the ring of integers

Z[5(1+ vEp)] € Q(v/2p).
Let S and T be the matrices given in (6.2.5) and (6.2.6)), let V; be the Vandermonde

matrix (6.2.7), and let 7" = V; 'TVy. We first prove the integrality of 7" over the

quadratic ring:
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Theorem 6.3.1. The matriz entries of T lie in Z[5(1 + \/2p)|, the ring of integers of

Q(v2p).

Proof. Note that T" is the following circulant matrix

000 -+ 0 —am
100 -0 —a,
T"=1010 - 0 —a._q|-

000 -+ 1 —a |

whose characteristic polynomial m(z) € Q({,)[x] is given by

m(z) = 2" 4 ayx” + a4 4,z + ang.

Thus to prove the Theorem it suffices to show that the coefficients of m(x) are contained
in Z[3(1 + \/ep)]. Since T" and T" are conjugate matrices, we know that m(z) splits as
(x —1)(x —01)(x — 02) - (x — 6,) in Q((,), where the ;s are the eigenvalues/diagonal
entries of T'. In the case ) = @1, each 0; is of the form (;, where s is a square mod p,
while in the case Q) = @2, each 6; is of the form (7, where n is not a square mod p. In
each case, the set of roots of the polynomial m(z) is permuted by the index 2 subgroup
H C Gal(Q(¢,)/Q) defined in (6.3.1). So H fixes the coefficients of m(z), since those
are expressible in terms of elementary symmetric polynomials in the 8;’s. Therefore the
coefficients a; of m(x) lie in the quadratic extension Q(,/gp). In addition, since all the
roots of unity Cg belong to the ring of integers Z[(,] and since the symmetric polynomials

have integral coefficients, it must follow that the coefficients a; actually belong to the

ring of integers of Q(/2p). O

For any element a € Gal(Q(¢,)/Q) and any matrix M = (mj;) with entries m;j, €

Q(¢p), we define a(M) = (a(m;i)) to be the matrix obtained from M by applying the
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field automorphism « to each entry. More generally, if p : G — GL,,(Q((,)) is a model
for a group representation, we denote by p® the model for the group representation
p*(g) = a(p(g)), obtained by applying the field automorphism « to each matrix entry
p(g), g € G.

In particular, let 7 = 42 be the generator of the subgroup H of the Galois group
of Q(¢,) defined in (6.3.1)). Clearly we have |7| = |H| = r. Consider the action of 7
on the Vandermonde matrix Vg. Since 7((;) = ¢} where z,y are either both squares
or both non-squares mod p, and since 7 fixes the number 1, it follows that 7(Vg) is a
matrix obtained by permuting the rows of V. Let P denote the permutation matrix

corresponding to this permutation of the rows of Vj:
(Vo) =P Vo (6.3.2)

Since |7| = r, the order of P is also r. P fixes the first row and therefore P! also fixes
the first row. We can consider P as a 7 — 1 cycle. We also note that P~! = PT, since the
inverse of a permutation matrix is its transpose.

Interestingly, it turns out that the permutation matrix P also gives the Galois action
of 7 on the Weil representation models for &;,& given by the matrices S, defined
in and . This non-trivial compatibility between the Galois action on the
Vandermonde matrix Vi and the Weil representation models is the key observation of
this article:

Theorem 6.3.2. Let &,& : SLo(F,) — GL,11(Q((,)) be the explicit models for the
principal series Weil characters determined by &;(s) = S, &(t) =T, where S, T are given
in (6.2.5) and . Then for each i = 1,2 and all primes p > 2, the permutation

matriz P given in (6.3.2)) satisfies

&(g)=P&g) P!
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for all g € SLy(F,).

Proof. As is well-known, the character table entries for & are defined over the quadratic
field Q(,/€p). Since this the fixed field of the subgroup H = (1) C Gal(Q((,)/Q), it
follows that the character table entries of &; and £ are the same, so £ =2 &;. This implies
that there exists a matrix M € GL(V) (uniquely defined up to multiplication by a

scalar) such that

&lg)=M" &(g)- M (6.3.3)

for all g € SLy(F,). We want to show that M = AP~! where A € C and P is the
permutation matrix (6.3.2)), determined by the relation 7(Vg) = PVj. First, recall that
the matrix 7" = Vi '"T'Vq has entries in Q(,/2p), by Theorem (6.3.1} and therefore 7(1") =

T'. Tt follows that
(T)=7(Vo)- T -7(Vg) ' =PV -T' - Vy'P~' = PTP".
On the other hand, we know from that
7(T) = M'TM

so that the matrix 7" must commute with the matrix PM. Since T is a diagonal matrix
whose entries 6; are all distinct, it follows that PM = D is also a diagonal matrix, and
M = P~'D. We want to show that D = X\ - 1 in fact scalar. To show this, we also need

to employ the S-matrix. Let

A 0 0 - 0




305

Again recall from (6.3.3]) that 7(S) = M~-S - M, so that
r(SY=M-S-M*=P'D.S-D'P

Recall that S has the form

1 2 2 -2

g Vep |1 s si2 o sy
= - ,

1 Sr1 Sp2 0 Spp

for some entries sj;. In particular, since the first row and first column of S consists
of elements of Q(,/2p), the action of 7 leaves them fixed. In addition, by definition the
permutation matrix P also fixes the first row and the first column, and so does P~ = PT.

Therefore we can write

1 2 o 5 ]
Py pi o Y |L e e )
R R oL
_1 Tpi Trp Ty
for some entries x;;’s. So
| 1 2000 2005 .- 2/\1>\;1_
D’1~P-T(S).pfl.D:@ ATk X .
ep
_)‘T)‘Il * * x|
1 2 2 9 |
_ @ 1 S11 S12 -+ Sir .
ep |- - . '
_1 Sr1 Sr2 tt Spr)
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Equating the first column and row of these matrices we conclude that \; = A\, = A are

all equal, and thus M = AP~ L. O]

Let now S’ := Vo l.g. Vo. Theorem enables us to prove the following theorem.

Theorem 6.3.3. S’ has matriz entries in Z[3(14/gp)], the ring of integers of Q(,/2p).

Proof. Again let 7 be the generator of the subgroup H C Gal(Q((,)/Q) defined in
(6.3.1). We want to show that 7(S") = S’. By Theorem [6.3.3, we have:

7(S") = T(Vél -5 Vo)
=7(Vg') 7(8) - 7(Vo)
:vQ—l.p—l.p.S.p—l.p.VQ
= vQ—l SV
=9
Since 7 fixes S’, the entries of S’ lie in the quadratic extension Q(,/gp). But we also

know from Thm. that the entries of S” belong to the ring of algebraic integers Z[(,),

therefore they must lie in the ring of integers of Q(,/p). O

By Theorems [6.3.1] and [6.3.3], setting

i(s) = S and &(t) =T

gives integral models for the principal series Weil characters over the ring of integers of
Q(/€p), therefore giving minimal integral models for these characters.
6.4 Examples

We now show the computations giving the explicit minimal integral models for &;
and & for the primes p = 7 and p = 13. We used SageMath[30] and MATLAB|21] to

make and verify the computations.
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Example 6.4.1. Let p = 7. For the equivalent representation of &1, let ¢ = 1. So,

Q1(x) = 22/7, Bi(z,y) = 2zy/T and the Gauss sum is given by

Yo F =2 +2G+26+1=V-T.

z€L[TL

Then we have

1 2 2 2
g VT GG GG GG
Tl g @G G+ @
1 F+G G+&G G+
1 0 0 0
Tzog()o,
00 ¢ 0
00 0 ¢
1 1 1 1
1 2 3
P LR
1 G & @
1 G & G
~1 $(1—=+/=7) 0 0
-1 - /-7 1 0 0
g:@@%ZZ( ) :

s1-V=-7) 1+v=-7) 0 -1
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and
0 00 —1
100 21-v-7
T =Vy'TVy = ol !
010 1
00 1 L(1+VD)
For the equivalent representation of &, we choose ¢ = 3. So, Qs(x) = 322/7,

By(x,y) = 6xy/7 and the Gauss sum is given by

Yoo = o -2 -2 - 1=~V

x€L/TL

Then we have

1 2 2 2
VT GG GG GG
Tl @+@ @G+ S+

1 G+&G G+G G+

1 ¢ & &

6 5 4
1 7 7(7
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~1 T(1+v=7) 0 0
=1+V-7) 1 0 0
S =Vy'SVp = |? ,
T(14+V=7) 11-v=7) 0 -1
1 ~1 1 0
and
000 ~1
100 21+7)
T =Vy'TV, = ’
010 1
001 i1-v7)

Example 6.4.2. Let p = 13. For the equivalent representation of &, let ¢ = 1. So,
Q1(z) = 2%/13, Bi(z,y) = 2zy/13 and the Gauss sum is given by

x2
Z (s = —2¢13 — 2¢85 — 2¢15 — 2¢05 — 2¢35 — 2¢f5 — 1 = V13,

x€Z/13Z

Then we have

1 2 2 2 2 2 2

L Cl3+ ¢ GG G+ ¢+ Gy +Gs G+ Qs
1 C+ Gl B+l Ui+as 9+l G+ i+¢h
L (+ (s Ci+Gs Gk Gy +Ch G+ G+
Lo+ G+ s+ G+ GF+ G s+
LGS +Gs Cst+Cs GstGis G +Gs Gs +CFs G+ G

1 11?? + 613 11§ + C123 11:? + Cig’g G)s + Gl?, C§3 + <153 <173 + C?S_

=3
w| =
w
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e}

Gz 0 0 0 0 0
00 ¢y o0 0 0 0
'=10 0 0 ¢y 0 0 0
00 0 0 ¢35 0 0
00 0 0 0 ¢2 0

00 0 0 0 0 (9

11 1 1 1 1 1

1 G (5 G G (s G
LGy Gy GE Gy s G
Vo= 11 (s ¢ s CF ¢ Ch
LGy Gy Gy GF Gy s
L GE Gs Gs G Gy G

10 7 4 11 8
_1 CIS C13 C13 €13 13 €13_

3B3+VI3) 31+ VI3) 0

—16+v13) —-1(3+V13) 0

3+vV13  16+V13) 0

S=Vy'SVo=| —4-vI3 -1(6+VI3) 0
3+vV13 13+V13) 0

—L+V13) —11+V13) 0

| 33+ V13) 1 —1
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and

000000 1
100000 —i1+V13)
010000 i3+V13)
T'=Vy'TVo=10 0 1 0 0 0 —1(5+13)
000100 L>5+13)
000010 —13+V13)
000001 L1+13)

For the equivalent representation of &, let ¢ = 2. So, Qo(x) = 22%/13, By(x,y) =

4xy/13 and the Gauss sum is given by

DGl =200 + 208 + 2T, + 208 + 2C% + 2 + 1 = —V13.
x€Z/13%

Then we have

1 2 2 2 2 2 2

1o+ s+l Ci+Gs 8+ o+ ¢+
Lo+ G+ G+ 3+ G +Gs G+ (s
S = 13 1 C5+Gs Cs+ (s 9+ s+ s+ s+
LG +¢s ety Gt GE+Gs G+ G+
I (fs+ ¢ G +Gs (4 Gs+Chs G+ G 8+

1 Ca+Cs C(a+¢s G+ &+ 9+ 3+ Gs




e}

(i

o

1 1
INE
LGy
Vo= |1 (3
Ly

11
1 13

1

1(3 - V13)

3—13
—4+/13)
3—13

S =V,18V, =

3(3 = V13)

0
0

0 i

0

o o O

1
Cis
Cis

10

13

12
13

Cis

C13

1(—5+V/13)

1(=5+V13)
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0 0 0
0 0 0
0 0 0
5.0 0
0 ¢35 0
0 0 ¢
0 0 0
1 1 1
s s G
i3 (s G
(s (s G
(s Gis Gl
(s Gy (s
(s (s G
1(1—/13)
H(=3+13)
1(5 - V13)
L(—5+13)
13— V13)
(—1 4+ /13)
1

7
13 |

12
13

Cis
Cis

10
13

Gi3

i |

o o o o o o




and

T =V,'TVg =

313

—_

L(—1++13)
13- V13)
=5+ V13)
15— V13)
=3+ V13)
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SUMMARY

We gave a construction of Weil representation from the Heisenberg group. We used
the results from Nobs[23] and Wolfart[24] explicitly compute all of the irreducible rep-
resentations of SLy(F,) for the primes p = 3 and p = 5. The explicitly calculations
provide concrete examples which are not found in existing literature. In addition, we
noted that Yilong Wang and Samuel Wilson wrote a GAP package to compute all of the
irreducible representations of SLy(Z/nZ). For the examples given, we readily see that the
non-trivial representations are not integral using the methods/bases given in Nobs[23]
and Wolfart[24]. We discussed the existence of integral representations using Riese’s pa-
per and provided an alternative proof regarding existence. We explored the integrality
results of Wang, Candelori, and Zemel. Then we defined the notion of a minimal integral
model was defined.

Using Wang’s basis, we proved that we achieve the minimal integral model for the
principal series Weil representations. So we answered Riese’s question “Can £ be realized
over the ring of integers of Q(,/2¢)?” when ¢ is a prime. Our result gives a stronger
statement than Riese’s Proposition 4 for odd primes g:

Proposition 4. Suppose q is a rational square or that ¢ = 5 mod 8. Then the Weil
character can be realized over R = Z[(1+ \/q)/2].

since our proof shows the minimal integral model is the ring of integers of Q(e,/g). This
is our central result.

The following questions remain:

1. Is the minimal integral model for the principal series Weil representation was

unique?

2. What is a basis that yields the minimal integral models for the cuspidal series Weil

representations of SLy(F,)?

3. What is a basis that yields the minimal integral models for the discrete cuspidal
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series of SLy(F,)?
4. How about all of the above for SLy(F,)?
5. We know that Nobs and Wolfart’s[23][24] methods do not yield integrality for
SLy(Z/nZ). So what bases will? What are the minimal integral models?
These questions will require different techniques and we encourage the reader to pursue

these questions either independently or with us.
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The aim of this work is to determine for which commutative rings integral represen-
tations of SLy(Z/nZ) exist and to explicitly compute them. We start with R = Z/pZ
and then consider Z/p*Z. A new approach will be used to do this based on the Weil
representation. We then consider general finite rings Z/nZ by extending methods de-
scribed in [26]. We make extensive use of group theory, linear representations of finite
groups, ring theory, algebraic geometry, and number theory. From number theory we
will employ results regarding modular forms, Legendre symbols, Hilbert symbols, and
quadratic forms. We consider the works of André Weil[3§], Alexandre Nobs[23][24] and
Udo Riese[26]. We explicitly compute the irreducible representations for several odd
primes using Nobs and Wolfart’s methods. Then we will explore Riese’s[26] construction
of the integral representations of SLo(A,) and explicitly compute them as the paper
only proves the existence. We will use integrality results of the Weil representations by
Luca Candelori, Shaul Zemel, and Yilong Wang (to appear). Then we will extend Reise’s

results to construct integral representations for rings that are not of the form A,.
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