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Chapter 1 

Introduction 

Digital image processing techniques allow for the extraction of quantifiable information from 

complex images. Image analysis tasks range from reading simple bar-coded tags [1] to more complex 

facial recognition [2]. Scientific image analysis is important because it enhances quantitative 

information for hypothesis testing. Moreover, fluorescence imaging provides molecular specificity 

and single-molecule resolution. Improved image analysis of fluorescence images can, thus, enable the 

assessment of single-cell behaviors and metabolic pathways. 

Image processing methods are rapidly advancing with the application of artificial neural network 

algorithms that can recognize complex patterns and analyze information by grouping and categorizing 

raw input with machine perception. Neural networks recognize numerical patterns encoded in vectors; 

therefore, all input data must be converted into vectors so that their patterns can be recognized. 

Segmentation of complex biological images, in which regions of the image are distinctly labeled, 

is the first step in image analysis. Ilastik is a software designed to perform image segmentation using 

neural networks [3] [4] [5]. Ilastik enables the classification and segmentation of images in a 

consolidated and easy fashion, as it does not require any expertise in image processing or neural 

network programming. Ilastik handles complex textures by employing an intuitive graphical user 

interface. 

The results from Ilastik can be analyzed using general purpose programming languages for the 

custom needs of each experiment. Python is an exemplar programing language for this purpose with 

numerous scientific applications, good programing flexibility, ease of programming, and efficient 

performance. 

This thesis reports on the development of a workflow that incorporates the Ilastik neural network 

software to analyze fluorescence images for the construction of single-cell data. We combined 

multiple colored fluorescence tissue images to analyze the growth and metabolism of lipid droplets 

(LDs), which are spherical organelles comprising a neutral lipid core surrounded by proteins and a 

phospholipid monolayer. They play a fundamental role in the regulation of cellular homeostasis. LDs 
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grow and detach from the endoplasmic reticulum during energy storage. The LDs reduce in size upon 

times of energy need via the lipolysis of triglycerides and free fatty acid release. Many prokaryotic 

and eukaryotic cells produce LDs to regulate their metabolism. 

The mobilization of triglycerides stored within LDs is regulated by the protein, α/β-hydrolase 

domain-containing protein 5 (ABHD5), which activates an enzyme adipose triglyceride lipase 

(ATGL). ATGL is the rate-limiting enzyme involved in the breakdown of triglycerides from LDs into 

free fatty acids. Mutations in ABHD5 are associated with lipodystrophy, lipids accumulating in cells, 

and Chanarin–Dorfman syndrome. 

ABHD5’s ability to stimulate ATGL is affected by various natural and synthetic pathways. 

Isoproterenol (ISO), for example, is a positive control that stimulates lipolysis through an androgen 

receptor agonist. Compound SR3420 was identified using a high-throughput screen that disrupted the 

interaction between ABHD5 and PLINs and was later shown to stimulate the lipolysis of brown 

adipocytes and muscles [6]. SR3420 is typically delivered to cells via the delivery agent, dimethyl 

sulfoxide (DMSO). DMSO is one of the most used solvents in cell biology, and it has a high polarity 

and can dissolve ionic and non-ionic compounds [7] [8]. 

Finally, forskolin (FSK) is a lipid-soluble compound that can penetrate cell membranes and 

stimulate the enzyme, adenylate cyclase, which increases intracellular cyclic adenosine 

monophosphate levels to stimulate lipolysis [9]. This study reports the use of neural-network-based 

fluorescence image analysis to measure single-cell triglyceride storage and ABHD5 expression upon 

stimulation with ISO, SR3420, DMSO, and FSK. 
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Chapter 2 

Methods 

A workflow for the analysis of two-dimensional (2D) fluorescence images with single-cell 

masks is shown Fig. 2.1. The images to be analyzed included adherent COS7 cells transfected to 

express ABHD5-mCherry. The night before imaging, the cells were exposed to oleic acid and 

incorporated into the LDs. Three hours before imaging, the cells were incubated with the lipophilic 

fluorophore, BODIPY, and one of the four stimuli. Lipolysis (i.e., BODIPY incorporation) and 

ABHD5 expression levels were stimulated to varying degrees. The cells were imaged by using a 

spinning disk confocal microscope (Olympus IX81 DSU) and an sCMOS camera (Andor Zyla 4.2). 

The images were saved as 8-bit TIF images and were input into the imaging pipeline developed for 

this study. The analysis process began with Ilastik, owing to its built-in capabilities for image analysis 

via neural network incorporation. We identified individual pixel classes and sorted them into multi-

pixel objects. The Ilastik objects were then loaded into Python with the H5 file type. The center-of-

mass was calculated from each DAPI object and used to make single-cell masks using a Voronoi 

diagram. Finally, the fluorescence images in the non-DAPI channels were analyzed with single-cell 

masks to reveal the single-cell fluorescence brightness and variability. 
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Figure 2.1: Two-dimensional analysis of images in Ilastik and Python. We used Ilastik because of its 
built-in capabilities for image analysis with neural networks. We performed pixel classification and 
object classification of the DAPI images to identify single cells as separate objects. The DAPI objects 
and raw data from other colors were imported into Python via H5 and TIF files, respectively. The 
centers-of-mass for each DAPI object were used to create Voronoi diagrams and isolate image regions 
corresponding to each cell. Next, the other color channels were analyzed using the Voronoi diagram 
mask. This process was repeated with images from all repetitions and conditions to test the effects of 
stimulating conditions with statistical hypothesis testing. 
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2.1. Ilastik pixel classification 

Pixel classification was performed using Ilastik with fluorescence DAPI images by analyzing 

each pixel and its neighbors’ fluorescence intensities. Pixels corresponding to each class were visually 

identified and graphically labeled, including classes used to represent the cell nucleus, cytoplasm, and 

extra-cellular spaces. These user-defined classes were used to train the neural network, which was 

then applied to all pixels across all DAPI images to perform the pixel classification, as shown in 

Fig. 2.2. 

Pixel classification workflow consisted of five major steps (Figure 3): 

• Create a new project by selecting "Pixel Classification" on the graphical user interface, after 

which the system prompts for a filename to save the project. 

• Load the data into the project. 

o Load raw 8-bit data (2D) by adding separate images. 

o In the dataset properties editor, the correct order of the X and Y axes should be 

entered as necessary in the “Raw data” field. 

• Select the pixel features and their scales to distinguish between different classes for the 

neural network using “Feature Selection.” 

• Select annotations from the image to train a classifier and label each pixel class to be 

separated (e.g., background, dim, medium, or bright). 

Figure 2.2: Ilastik analysis of DAPI images was used to determine individual cells through pixel 
classification and object classification. The process started with the raw image, with which we used a 
computer mouse to draw the shapes as annotations on the image. These annotations were used to train 
the neural network for pixel classification across all DAPI images. The results from pixel 
classification were further analyzed to perform object classification for the identification of single 
cells; therefore, Ilastik recognized and saved the individual, separate objects. 

DA
PI
	

Raw	
Data	

User	
annotated	

Pixel	
Classification	

Object	
Classification		
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• Export the results as an H5 pixel classification using “Prediction Export,” then, using 

“Export Setting,” choose “Probabilities” in the source. 

 The pixel classification process performs semantic segmentation rather than instance 

segmentation and outputs a probability map for each class rather than for individual objects. 

2.2. Ilastik object classification 

After individual pixels were classified, we identified the multi-pixel objects representing each 

nucleus and converted the probability map into individual objects to identify individual cells from the 

DAPI images, as shown in Fig. 2.2. 

The object classification workflow comprised five major steps, as shown in Fig. 2.4: 

• Create a new project by choosing "Object Classification [Inputs: Raw Data, Pixel Prediction 

Map]," by which the user is prompted to name the new file to be saved in the project. 

Figure 2.3: Pixel classification workflow. Pixels are categorized according to their features and user 
annotations: (A) graphical user interface used to create a new project for pixel classification; (B) 
loading raw data to be classified into a project and checking the order of axes; (C) recognizing 
different pixel classes; (D) training a classifier by manually drawing annotations; and (E) exporting 
the results of this workflow (pixel classification) as H5 files. 

C 

A 

E D 

B 
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• Load 2D raw data and the pre-computed probability map using “Pixel Classification,” and in 

"Threshold and size filter," 

o Select the "Simple" filter method, 

o Select the input channel corresponding to the object, 

o Adjust the threshold value and the filter scale, after which the resulting connected 

components of the foreground pixels are assigned random colors. 

Figure 2.4: Object classification workflow to identify individual cells and transform the probability 
map into individual objects based on the object-level features and user annotations: (A) graphical user 
interface used to create a new classification project; (B) loading raw data and a pre-computed 
probability map of pixel classification into the project; (C) applying the selected threshold and size 
filter, and the resulting connected components of foreground pixels assigned random colors; (D) 
inferring the object type; (E) training a classifier by labeling a few cells for each class; and (F) 
exporting the results of the workflow (object classification) as one H5 file for each DAPI image. 

B 

E D F 

A C 
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• Select "All excl. Location" in the “Object Feature Selection” area to infer the object type. 

• Label a few cells for each class in "Object classification" based on the features, as computed 

in the previous applet. 

• Select “Object Probabilities” to the image export in the export source and export images and 

tables as H5 files in "Choose Export Image Settings "and "Configure Feature Table Export" 

to obtain a table that includes all information about the objects used during classification as 

HDF5. 

2.3. Creating single-cell masks 

The DAPI object classification from Ilastik was reduced to a single center-of-mass point for each 

object by importing the H5 files from Ilastik for each DAPI image into Python. The center of mass of 

each DAPI object became the input to a Voronoi diagram (i.e., Dirichlet tessellation) across the entire 

image. Each region from the Voronoi image (i.e., Dirichlet regions, Thiessen polytopes, or Voronoi 

polygons) corresponded to a region of the image for a single cell, as shown in Fig 2.5. 

Each Voronoi polygon was converted to the same size as that of the TIFF image for easy 

multiplication and single-cell isolation. All single-cell masks were then saved in the "all_masks" array 

for application to other colored images, including those of BODIPY and ABHD5.  

Objects	classify	DAPI	
image	
 

Identify	the	separate	
polygons	from	the	Voronoi	
diagram	
(Voronoi	DAPI	COM)	

Make	a	mask	for	all	polygons		
from	the	DAPI	data	
	
	

Multiply	the	masks	to	the	
ABHD5	TIF	image	
	

x 

Figure 2.5: Analysis of additional color channels using single-cell Voronoi diagram mask. The 
Voronoi diagram was analyzed from the center-of-mass of each DAPI object, and we identified 
separate polygons and constructed a mask the same size as that of the TIFF image with ones for 
polygons and zeros otherwise. Upon TIFF-image multiplication and using a mask that resulted in 
zero for all areas not corresponding to the particular cell of interest, we isolated the fluorescence data 
under the mask. 
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2.4. Analysis of fluorescence images with single-cell masks 

ABHD5 or BODIPY data were loaded, and masks were applied. The images were then analyzed 

under each mask to calculate the cell area, mean brightness, and brightness standard deviation of the 

ABHD5 and BODIPY per cell by adding code that finds the pixel inside the polygon. Furthermore, if 

there is a point inside the polygon, the code changes the values in the pixels to one. Therefore, it is 

possible to see under the mask. Histograms of data were created to characterize the distribution of 

single-cell properties, as shown in Fig. S1. Experimental analysis was then performed, and we 

determined whether the four different conditions resulted in significantly different cell brightness 

under conditions of three or four repetitions. 

Additionally, swarm plots were created to show how the different conditions (i.e., DMSO, FSK, 

162, and ISO) resulted in significantly different results, as shown in Fig. 2.6. 

A B C 

D E 

Figure 2.6: Analyses of single-cell brightness, brightness variance, and areas for each cell’s ABHD5 
and BODIPY fluorescence from DAPI-generated masks. Swarm plots show the single-cell and 
population differences for each condition (i.e., DMSO, FSK, 126, and ISO). The four conditions were 
compared, and all comparisons provided p-values less than 0.001. apart from the comparison of ISO 
and 162 (0.0017 in ABHD5), between ISO and FSK (0.18 in BODIPY), between FSK and 162 (0.88 
in BODIPY), and between ISO and 162 (0.32 in BODIPY). 
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2.5. Plotting of results and statistical testing 

Checking the confidence levels of the various conditions provided independent mean values of 

cell brightness (see Fig. 2.6). The p-values of six different sets of comparisons were thus calculated 

(i.e., FSK vs. ISO, FSK vs. 162, ISO vs. 162, DMSO vs. 162, DMSO vs. FSK, and DMSO vs. ISO) 

for both ABHD5 and BODIPY to determine whether the null hypothesis could be accepted or 

rejected. Additionally, a two-tailed test was applied using Python to identify any differences between 

the datasets. 

We used p = 5% as the threshold for a good decision. If the p-value from the statistical analysis 

is lower than 0.05, there is a significant difference between datasets, and we can reject the null 

hypothesis. However, if the p-value is greater than 0.05, then there is no difference between the 

datasets. In such a case, we will likely not be able to reject the null hypothesis. 

The t-test is used to analyze the average of the difference between the means of the samples and 

provides the difference between the two measures within a normal range. However, the p-value is 

performed to gain confidence that we can reject the indifference between the averages of the two 

samples. Thus, the p-value focuses on the extreme side of the sample to provide an extreme result. 
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Chapter 3 

Results and discussion 

Ilastik-supervised machine-learning software was used to perform pixel and object classification 

on DAPI images, resulting in recognized individual objects. A Voronoi diagram from the DAPI 

objects masked the entire image into regions corresponding to each cell and analyzed the color 

channels by changing the pixel values to one if there was a point inside the polygon. Moreover, the 

single-cell swarm plots captured the stimulation condition of ABHD5 expression, and the p-value 

results of all sets of comparisons were found to be less than 0.001, apart from ISO vs. 162 = 0.0017. 

This implies that there was no difference between ISO and 162. Finally, because our method could be 

easily extended to more images, we ingested hundreds more for the automated analysis of treatment 

concentrations. 

A limitation of our study is that it depended largely on the user expertise of neural networks. For 

example, a user with slightly different training habits or familiarity with other DAPI analysis 

automation software and threshold identification would probably produce a slightly different result. 

Nevertheless, our findings contribute to a better understanding of neural-network-based fluorescence 

image analysis to measure single-cell triglyceride storage and ABHD5 expression upon stimulation 

with ISO, SR3420, DMSO, and FSK. Additionally, the results of the image segmentation produced by 

Ilastik were reliable. Furthermore, the Ilastik method described herein may allow the simplified 

identification of significant biological differences in ABHD5 stimulation in low-contrast images in a 

considerably less time than with conventional methods. 

We formulated an algorithm that can be applied to large datasets automatically, which allowed 

us to test variable dosages and produce a dose-response script (e.g., obtaining a swarm plot with 

BODIPY vs. SR concentration and quantifying BODIPY changes). As a next step, we plan to 

consider other types of ABHD5 for analysis. It is possible that mutant ABHD5 may have a different 

response; hence, the efficacy of ABHD5 behaviors should be examined next. 
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Chapter 4 

Conclusion 

In this study, we analyzed multi-color fluorescence images of tissues to determine the growth 

and metabolism of lipid droplets. Our study makes a significant contribution to the literature, as our 

novel neural-network-based image analysis technique software, Ilastik, offers simple and detailed 

image processing of fluorescence images to molecular specificity and single-molecule resolution. 

Furthermore, Python scripting provides additional interpretations of the Ilastik results. 
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APPENDIX A 

 

 
 

  

Figure S1: Analyses of cells stimulated by (A) 162, (B) ISO, (C) DMSO, and (D) FSK. We 
characterized the cells of the ABHD5 TIFF images by calculating cell area (pixels), mean brightness 
per cell, and brightness standard deviation to show similarities and differences between repeats (i.e., 
files with the same name but different numbers). 
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APPENDIX B 

# -*- coding: utf-8 -*- 

"""Munirah code ch4 + ch 1 

Automatically generated by Colaboratory. 

Original file is located at 

    https://colab.research.google.com/drive/1z9eYc-

rbmtgeBRjRepkPBxx2MYDXPfTa 

""" 

from google.colab import drive 

drive.mount('/content/drive') 

#Import these libraries 

import os 

import h5py as hh 

import matplotlib.pyplot as plt 

import numpy as np 

from scipy.spatial import Voronoi, voronoi_plot_2d  

import pandas as pd 

from scipy import ndimage 

import matplotlib 

import tifffile as tiff 

from pathlib import Path 

"""# **Loading the h5 files (open and read)**""" 

target_dir = "/content/drive/MyDrive/CH4CH1 " #All ch1.tif, 

ch4.tif, and H5 files in this folder 

 #We made this a larger range to get more data analyzed. 

analysis_range = [700,1300] 
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#listing the files in the target directory of channel 4 

files_list = os.listdir(target_dir) 

all_ch4_h5_files=[] 

for f in files_list: 

  if f.find('ch4.h5') > 0: 

    all_ch4_h5_files.append(f) 

#This for loop confirms all the necessary files are in the 

appropriate folder 

for whichfile in range(12): #Using the13 files of  ch4.h5. 

  h5_file =  target_dir+'//'+all_ch4_h5_files[whichfile] 

  ABHD5_file = h5_file[:-7] +'_ch1.tif' 

  DAPI_file = h5_file[:-7] +'_ch4.tif' 

  #Making a test 

  f1 = Path(DAPI_file) 

  if not f1.is_file(): 

      print('DAPI file does not exist - ', DAPI_file) 

  f1 = Path(ABHD5_file) 

  if not f1.is_file(): 

      print('ABHD5 file does not exist - ', ABHD5_file) 

  f1 = Path(h5_file) 

  if not f1.is_file(): 

      print('H5 file does not exist - ', h5_file) 

# To look if a point belongs inside a polygon of Voronoi 

Diagram  

def ray_tracing_method(x,y,poly): 

    n = len(poly) 
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    inside = False 

    p1x,p1y = poly[0] 

    for i in range(n+1): 

        p2x,p2y = poly[i % n] 

        if y > min(p1y,p2y): 

            if y <= max(p1y,p2y): 

                if x <= max(p1x,p2x): 

                    if p1y != p2y: 

                        xints = (y-p1y)*(p2x-p1x)/(p2y-

p1y)+p1x 

                    if p1x == p2x or x <= xints: 

                        inside = not inside 

        p1x,p1y = p2x,p2y 

    return inside 

# print(files_list) 

for whichfile in range(13): # using the ch4.h5. Select any 

intenger 0 through 12 for this variable. 

  h5_file =  target_dir+'//'+all_ch4_h5_files[whichfile] 

  ABHD5_file = h5_file[:-7] +'_ch1.tif' 

  DAPI_file = h5_file[:-7] +'_ch4.tif' 

#load tiff image 

  d2 = tiff.imread(ABHD5_file) 

  print("Working on file:", ABHD5_file) 

  h5f = hh.File(h5_file,'r') 

  LDtable = h5f['table'] 

  LDimages = h5f['images'] 
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  numLD = LDtable.shape[0]##The shape attribute for numpy 

arrays returns the dimensions of the array.  

##If Y has n rows and m columns, then Y.shape is (n,m). So 

Y.shape[0] is n. 

#labling CM for the mask  

  m=np.zeros(len(LDimages)) 

  b=np.zeros(len(LDimages)) 

  for i in range(len(LDimages)): 

    m[i] = LDtable[i]['Bounding Box Minimum_0']#x 

    b[i] = LDtable[i]['Bounding Box Minimum_1']#y 

#labeling center of mass 

  CM_all=[] 

  for i in range(len(LDimages)): 

    a=np.array(LDimages[str(i)]['labeling']) 

    CM= ndimage.measurements.center_of_mass(a)  

    CM_all.append(CM) 

  CM_all= np.array(CM_all) 

  ##Purple arrow (from (0,0) redbox to (0.0) black box )  

  p_0=m 

  p_1=b 

  ##Purple arrow + red arrow ( from (0,0)redbox to CM ) 

  pO_0= CM_all[:,0]+p_0 

  pO_1= CM_all[:,1]+p_1  

#Plotting a Voronoi Diagram 

  p=np.zeros((len(pO_0),2)) 

  p[:,0]=pO_0 
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  p[:,1]=pO_1 

  vor = Voronoi(p) 

#Make a mask for all polygons 

  ##Make the masks from the DAPI data 

  all_masks = [] ##All_masks is list of masks 

  for region in vor.regions: 

    mask = np.zeros((d2.shape)) 

    if not -1 in region: 

      polygon = [vor.vertices[i] for i in region] 

      if len(polygon) > 0: 

        p = np.array(polygon) 

        mini = np.max([int(np.floor(np.min(p[:,0])))-10,0]) 

        maxi = 

np.min([int(np.ceil(np.max(p[:,0])))+10,mask.shape[0]]) 

        minj = np.max([int(np.floor(np.min(p[:,1])))-10,0]) 

        maxj = 

np.min([int(np.ceil(np.max(p[:,1])))+10,mask.shape[1]]) 

        if maxj < analysis_range[0] or maxi < 

analysis_range[0] or minj > analysis_range[1] or mini > 

analysis_range[1]:  

          continue 

        for i in range(mini,maxi,1):#p[:,0]=X value  

          for j in range(minj,maxj,1):#p[:,1]=y values 

            if ray_tracing_method(i,j,polygon): 

              mask[j,i] =1 
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all_masks.append(mask[analysis_range[0]:analysis_range[1],anal

ysis_range[0]:analysis_range[1]]) # each element of 

"all_masks" is a list of mask 

d3=d2[analysis_range[0]:analysis_range[1],analysis_range[0]:an

alysis_range[1]] 

#Characterize "cells" of the tiff image of ABHD5  

  means = np.zeros(len(all_masks)) 

  stds = np.zeros(len(all_masks)) 

  areas = np.zeros(len(all_masks)) 

  for masknow in range(len(all_masks)): 

    if np.sum(all_masks[masknow])>0: 

      dnow = d3*all_masks[masknow] 

      stds[masknow] = np.std(dnow) 

      areas[masknow] = np.sum(all_masks[masknow]) 

      sumnum= np.sum(dnow) 

      means[masknow] = sumnum/areas[masknow] 

  keep= means>0 

  stds=stds[keep] 

  areas=areas[keep] 

  means= means[keep] 

  np.savez(ABHD5_file[:-4], 

                means = means, 

                stds = stds, 

                vor=vor, 

                all_masks= all_masks, 

                areas = areas) 
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"""# **Plotting**""" 

#The tiff image of ABHD5 

plt.imshow(d3) 

plt.show() 

#The center of mass 

plt.plot(pO_0,pO_1, '.') 

#The Voronoi Diagram  

fig = plt.figure() 

voronoi_plot_2d(vor) 

#The range of axes 

plt.xlim([analysis_range[0],analysis_range[1]]) 

plt.ylim([analysis_range[1],analysis_range[0]]) 

plt.show() 

#Place a colored Voronoi diagram over the ABHD5 tiff image 

plt.plot(vor.points[:,0],vor.points[:,1],'.w') 

plt.xlim([analysis_range[0],analysis_range[1]]) 

plt.ylim([analysis_range[1],analysis_range[0]]) 

plt.imshow(d2) 

#Colorize 

for region in vor.regions: 

   if not -1 in region: 

        polygon = [vor.vertices[i] for i in region] 

        plt.fill(*zip(*polygon), alpha=0.4)      

#d3=d2[analysis_range[0]:analysis_range[1],analysis_range[0]:a

nalysis_range[1]] 
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        plt.xlim([analysis_range[1],analysis_range[0]]) 

        plt.ylim([analysis_range[1],analysis_range[0]]) 

plt.xlim([analysis_range[0],analysis_range[1]]) 

plt.ylim([analysis_range[1],analysis_range[0]]) 

plt.show() 

#Histogram for Characterize " cells" of the ABHD5 tiff image 

for loop 

for whichfile in range(13): #Using the ch4.h5. Select any 

intenger 0 through 12 for this variable. 

  h5_file =  target_dir+'//'+all_ch4_h5_files[whichfile] 

  ABHD5_file = h5_file[:-7] +'_ch1.tif' 

  DAPI_file = h5_file[:-7] +'_ch4.tif' 

  f=np.load(ABHD5_file[:-4]+'.npz') 

  means=f['means'] 

  areas=f['areas'] 

  stds=f['stds'] 

  fig = plt.figure(figsize=(15,4)) 

  ax = fig.add_subplot(1,3,1) 

  ax.hist(areas, 25) 

  ax.plot([500,500],[0,29],':k') 

  ax.plot([7000,7000],[0,29],':k') 

  ax.set_xlabel('Cell Area (pixels)') 

  ax.set_title(ABHD5_file[26:-4]) 

  ax.set_ylim([0,29]) 

  keep = np.all([areas>500,areas<7000],axis=0) 

  ax = fig.add_subplot(1,3,2) 
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  ax.hist(means[keep],25) 

  ax.set_xlabel('Mean brightness per cell') 

  ax.set_title('Analysis of ABHD5 under DAPI-Voronoi masks') 

  ax = fig.add_subplot(1,3,3) 

  ax.hist(stds,25) 

  ax.set_xlabel('Brightness standard deviation') 

  plt.tight_layout() 

  plt.savefig(ABHD5_file[:-4]+'_hists.jpg') 

  plt.show() 

masknow = int(len(all_masks)/16) # make choose any number less 

than len(all_masks) 

d= tiff.imread(DAPI_file) 

fig = plt.figure(figsize=[15,8],dpi=150) 

ax = fig.add_subplot(2,3,1) 

ax.set_title('DAPI image') 

plt.fill(*zip(*polygon), alpha=0.4) 

d0=d[analysis_range[0]:analysis_range[1],analysis_range[0]:ana

lysis_range[1]] 

##ax.imshow(d0) for see image with caler 

ax.imshow(d0,cmap='gray')   

#This is the mask=0 and the code finds the pixel inside 

#If a point is inside the polygon،the code will change the 

value in pixels to one (e.x mask[900:1000,:]=1 I choose which 

values equal 1 .) 

ax = fig.add_subplot(2,3,2) 

ax.imshow(all_masks[masknow],cmap='gray') 
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#Demonstrate multiplying a mask by the TIF image 

ax = fig.add_subplot(2,3,3) 

d0=d[analysis_range[0]:analysis_range[1],analysis_range[0]:ana

lysis_range[1]] 

m = d0 * all_masks[masknow] #The TIF image is now Zero exept 

under the mask(so you can see what under onle in the part not 

0) 

ax.imshow(m) 

ax = fig.add_subplot(2,3,4) 

ax.imshow(d3) 

ax.set_title('ABHD5 image') 

ax = fig.add_subplot(2,3,5) 

ax.imshow(d3*all_masks[masknow],cmap='gray') 

plt.tight_layout() 

plt.savefig(ABHD5_file[:-4]+'_'+str(masknow)+'.jpg') 

plt.show() 

 

"""# **Show similarity and differences between repeats the 

files with the same name but different numbers**""" 

#4 different conditions: 

#1-'fsk 3hr_13342','fsk 3hr_13340','fsk 3hr_13339','fsk 

3hr_13341' 

#2-' dmso_13336',' dmso_13338',' dmso_13337' 

#3-'liso 3hr_13344','liso 3hr_13343','liso 3hr_13345' 

#4-'162 3hr_13347' ,'162 3hr_13348','162 3hr_13346' 

whichfiles_list = [0,2,5,8] # for condition 1(fsk) 
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#whichfiles_list = [3,4,10]  # for condition 2(dmso) 

#whichfiles_list = [1,6,11]  # for condition 3(lso) 

#whichfiles_list = [7,9,12] # for condition 4(162) 

#The all files in all condeations 

lab =['fsk 3hr_13342','liso 3hr_13344', 

      'fsk 3hr_13340','dmso_13336','dmso_13338', 

      'fsk 3hr_13339','liso 3hr_13343','162 3hr_13347', 

      'fsk 3hr_13341','162 3hr_13348','dmso_13337','Iso 

3hr_13345','162 3hr_13346'] 

col = 'rgbm' 

fig = plt.figure(dpi=120) 

bins = np.linspace(0,2500,50) ##Return evenly spaced numbers 

over a specified interval(start , stop , Number of samples to 

generate) 

##Defining a list in the range(0,2500) with 50 sample values. 

binx = (bins[1:]+bins[:-1])/2 #bins[1:] includes all the 

values in the list except 1st index item. 

# bins[:-1] includes all the values in the list bins except 

the last index /2 to see the center  

for i,whichfile in enumerate(whichfiles_list): #Enumerates 

runs a loop with a counter alongside 

  h5_file =  target_dir+'//'+all_ch4_h5_files[whichfile] 

#Basic string concatenation and storing ultimate string into 

h_file 

  ABHD5_file = h5_file[:-7] +'_ch1.tif' #Includes all the 

values in the list h_file till 7th index from the last and 
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then string concatenation 

  print(lab[whichfile],' corresponds to ', ABHD5_file)  

#Choosing whichfile index from the lab list and print three 

values in a space separated manner 

#loads pickled objects from .npz files, filepath defined by 

ABHD5_file[:-4]+'.npz'  

#which includes all the values till 4th index from the last 

and concatenated '.npz' extension. 

  f = np.load(ABHD5_file[:-4]+'.npz') 

  means = f['means'] 

  f.close() 

#Create a histogram, bins add the int or sequence of scalars, 

which is optional 

  H = np.histogram(means,bins=bins) 

  print(len(means)) 

  plt.plot(binx,H[0], 

           '-'+col[i], 

           label=lab[whichfile], linewidth=2) #Plot the graph 

with the points defined in the binx list 

plt.legend() 

plt.ylabel('Number of cells') 

plt.xlabel('Brightness per cell') 

#plt.show() 

"""# **Show how the different conditions result in different 

data**""" 

import matplotlib.pyplot as plt 
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import numpy as np 

whichfiles_list2 = ([3,4,10],  # for condition 1(dmso) 

                    [0,2,5,8], # for condition 2(fsk) 

                    [1,6,11],  # for condition 3(lso) 

                    [7,9,12]) # for condition 4(162) 

means4 = [] #list of conditions 

[0,1,2,3]which[dmso,fsk,iso,162] 

areas4=[] 

stds4=[] 

for i in range(len(whichfiles_list2)): 

  whichfiles_list = whichfiles_list2[i] #The list of every 

condations 

  means_temp = [] 

  areas_temp = [] 

  stds_temp = [] 

  for whichfile in whichfiles_list: 

    h5_file =  target_dir+'//'+all_ch4_h5_files[whichfile] 

#Basic string concatenation and storing ultimate string into 

h5_file 

    ABHD5_file = h5_file[:-7] +'_ch1.tif' #Includes all the 

values in the list h5_file till 7th index from the last and 

then string concatenation 

    f = np.load(ABHD5_file[:-4]+'.npz') 

    means = f['means'] #Test the shape of (f =3 items) 

    areas=f['areas'] 

    stds=f['stds'] 
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    keep=np.all([areas>1000,areas<5000],axis=0) 

    means=means[keep] 

    areas=areas[keep] 

    stds=stds[keep] 

    areas=areas[means >0]*0.36 

    stds=stds[means >0]**2 

    means= means[means >0] 

    f.close() 

    means_temp.append(means)  #This should be a list of 3 or 4 

"means", one from each image/file; test the shape of this 

    areas_temp.append(areas) 

    stds_temp.append(stds) 

  means4.append(np.concatenate(means_temp)) #This will 

eventually have 4 entries, one from each condition; test the 

shape of this  

  #Temp is a list of every image by combining together these 

images for each condition 

  #means4 is all data from each files  

  areas4.append(np.concatenate(areas_temp)) 

  stds4.append(np.concatenate(stds_temp)) 

# Plotting swarm plot inside the boxplot 

import matplotlib.pyplot as plt 

import numpy as np 

import seaborn as sns 

data =[means4,areas4,stds4] 

title= ['brightness','areas','brightness variance'] 
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ylab= ['Intensity (a.u)' , 'Area (µm^2)','Brightness Variance 

(a.u)'] 

for i in range(3):   

  fig = plt.figure(figsize = (5,4),dpi=150) 

  fs = 12 # fontsize for axis labels 

  fs_tick = fs 

  lw_axis = 1.5 

  matplotlib.rc('xtick', labelsize=fs_tick) 

  matplotlib.rc('xtick.major',width=lw_axis,size=10) 

  matplotlib.rc('ytick', labelsize=fs_tick) 

  matplotlib.rc('ytick.major',width=lw_axis,size=10) 

  matplotlib.rc('axes', linewidth=lw_axis) 

  #Swarm plot 

  ax = 

sns.swarmplot(data=data[i],palette=sns.color_palette("pastel")

, zorder=0 , size=1.5) 

#Boxplot 

  sns.boxplot( data=data[i], notch= True, 

                  showcaps=True,boxprops={'facecolor':'None'}, 

                 

showfliers=False,whiskerprops={'linewidth':1}, ax=ax) 

  plt.xticks([0,1,2,3],['DMSO' , 'FSK' , 'ISO' , '162']) 

  ax.set_ylabel(' Single-Cell '+ ylab[i], fontsize=fs) 

  matplotlib.pyplot.title('Single-cell ABHD5 '+title[i]+' upon 

simulation' ,fontsize=fs) 

  plt.show() 
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"""# P-value 

I have three different sets of comparisons to make 

""" 

from scipy import stats 

means_dmso=means4[0]  

means_fsk=means4[1] 

means_iso=means4[2] 

means_162=means4[3] 

print("Comparison1:(fsk - iso)") 

print(stats.ttest_ind(means_fsk,means_iso,equal_var = False)) 

print("Comparison2(fsk - 162)") 

print(stats.ttest_ind(means_fsk,means_162,equal_var = False)) 

print("Comparison3(iso - 162)") 

print(stats.ttest_ind(means_iso,means_162,equal_var = False)) 

print("Comparison4(dmso - 162)") 

print(stats.ttest_ind(means_dmso,means_162, equal_var = 

False)) 

print("Comparison5(dmso - fsk)") 

print(stats.ttest_ind(means_dmso,means_fsk, equal_var = 

False)) 

print("Comparison6(dmso - iso)") 

print(stats.ttest_ind(means_dmso,means_iso, equal_var = 

False)) 
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Lipolysis is a metabolic pathway in which free fatty acids are mobilized from stored 

triglycerides. The rate-limiting enzyme in this process is adipose triglyceride lipase, which is 

regulated by α/β-hydrolase domain-containing protein 5 (ABHD5) via both natural and synthetic 

pathways. With advanced artificial neural networks, image processing methods can extract 

quantitative results from fluorescence images. The segmentation of complex biological images, in 

which regions of the image are labeled as distinct masks, is the first step in image analysis. Ilastik, a 

machine-learning software, performs image segmentation with a user-trained neural network and 

custom key feature labels. The software’s results are evaluated using a custom Python script, resulting 

in a new workflow that incorporates Ilastik for the construction of single-cell data from confocal 

fluorescence images. We analyzed multi-color fluorescence images of tissues to determine the growth 

and metabolism of lipid droplets. Moreover, the use of neural-network-based fluorescence image 

analysis to measure single-cell triglyceride storage and ABHD5 expression upon stimulation with 

isoproterenol, SR3420, dimethyl sulfoxide, or forskolin is reported. We demonstrate enhanced 

quantitative information for hypothesis testing in the assessment of single-cell behaviors and 

metabolic pathways. 
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