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CHAPTER 1 The Evolution of Artificial Intelligence 

1.1  Ambitions Through History 

In his seminal work The Structure of Scientific Revolutions, Kuhn challenged the narrative 

that scientific advancement occurs through a gradual and continual process. Instead, he described 

the advancement of scientific thinking as long periods of the status quo, or “normal science”, where 

the focus is on accumulation of knowledge for an existing scientific theory and the ever-increasing 

complexity in puzzle solving. Then, the periods of normal science are interrupted by landmark 

developments, referred to as paradigm shifts, which spur rapid progress. These shifts alter how 

problems are solved, the complexity of solutions, how existing data is analyzed and the future 

roadmap of investigation in a field. Often, the catalyst for a paradigm shift is advances in logic, 

new availability of data, advances in adjacent areas of study or improvements in computational 

technology. Historical examples of paradigm shifts include the transition from classical to 

relativistic mechanics used to explain high velocity systems or the shift from Ptolemy’s to 

Copernicus’ model of the solar system, vastly simplifying planetary dynamics. 

In many fields of research, artificial intelligence has unlocked new approaches to data 

analysis and problem solving, making it the zeitgeist for the last half decade. While artificial 

intelligence has recently pervaded contemporary discourse, the aspirations and applications for 

artificially intelligent systems have existed for millennia. Only recently has the combination of 

generalizable computational frameworks and affordable, powerful hardware allowed for the 

widespread adoption of artificial intelligence, thus sparking the paradigm shift many fields are 

currently experiencing. 

Ancient writers and philosophers have long imagined the potential for artificially 

intelligent systems to assist humans, augment our abilities or perform superhuman tasks. But as is 
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a common theme throughout history, visionaries are often constrained by the limits of technology. 

In The Illiad, Homer described the workshop of Hephaestus, the god of blacksmithing, who created 

golden tripods, called automatons, which could be programmed by wrapping spools of rope around 

each wheel. With careful programming, the spools would unwind, and these tripods would 

autonomously enter Mount Olympus, serve the gods, and return to the workshop again. But 

Hephaestus greatest automaton was Talos, a giant crafted from bronze, built to protect Europa on 

the island of Crete. Talos would thrice daily circumnavigate the island and throw boulders at 

pirates and marauders who attempted to kidnap Europa. In one rendition of the story, Medea 

tricked Talos into believing he could become immortal if Medea removed the nail from Talos’s 

ankle. Unbeknownst to Talos, within him ran a tube from head to toe containing ichor, the ethereal 

blood of the Gods, and the nail plugged the only opening. So, when Medea deceived Talos and 

removed the nail, the life-giving fluid within Talos drained and he became but bronze once again. 

Three hundred years later, Aristotle mused that instead of assisting humans, Hephaestus’s 

automated tripods could be used to replace humans in the most mundane of tasks, freeing slaves 

from tending fields and cleaning homes:  

“There is only one condition in which we can imagine managers not needing 

subordinates, and masters not needing slaves. This condition would be that each 

instrument could do its own work, at the word of command or by intelligent 

anticipation, like the statues of Daedalus or the tripods made by Hephaestus, of 

which Homer relates that "Of their own motion they entered the conclave of Gods 

on Olympus", as if a shuttle should weave of itself, and a plectrum should do its 

own harp playing.” - Aristotle 

Although an ambitious vision, Aristotle conceded that the technology simply did not exist 

to automate labor and his idea of automated labor freeing the slaves remained but a dream. So, as 

would be the case throughout much of history, the paradigm did not shift and throughout the next 

millennium, artificial intelligence would remain but a fantasy for writers and philosophers. 
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In the 16th century, mechanical parlor tricks drew attention to entertain and mystify royalty. 

Experts of the time designed intricate and unique machines to imitate the external behavior of 

intelligent life. One of the most spectacular examples was Jacques de Vaucanson’s Digesting Duck 

(Figure 1.1), which was able to quack, flap its wings, digest grain, and move its head. To Homer 

and Aristotle, this duck would likely have been artificially intelligent. But, to our contemporary 

understanding, we would not categorize Vaucanson’s duck as artificially intelligent, just as we 

don’t apply that designation to other complex mechanical devices like typewriters or clocks. 

 
Figure 1.1: A lithograph of Vaucanson’s automatic Digesting Duck. Inscriptions designate clockwork (A), pump 

(B), mill for grinding grain (C), intestinal tube (F), bill (J), head (H) and feet (M). (Public Domain).  

Furthermore, while the Digesting Duck displayed an increasing mastery of mechanical 

design, this approach was decidedly non-generalizable. The creation of the Digesting Duck 

required immense effort to design and create the unique solution to the task of automating a duck. 

For artificially intelligent systems to become widespread, a more generalizable approach to 

encoding and solving problems was first required. 
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At the same time as Vaucanson was mystifying aristocrats, the German mathematician 

Gottfried Wilhelm Leibniz published a dissertation titled On the Combinatorial Art. In this work, 

Leibniz proposed a generalizable, logical symbolic framework capable of solving any task. Born 

out of the idea that all human thought was comprised of logical subcomponents (akin to letters 

within a word), Leibniz proposed deconstructing any idea into its constituent parts. This logical 

framework would allow for the user to encode their thoughts, and thus their problems, into a system 

of fundamental logical variables. The mathematical field of symbolic combinatorics could then be 

applied to this system of variables to solve for the solution to the system of thought equations. 

Finally, the resultant solution could be re-encoded back into a human level thought to answer the 

given problem. Leibniz envisioned that this machine could be used to solve all intellectual 

problems and when debate arose, one could proclaim “lets calculate”, encode their problem into 

the machine and compute the definitive answer. 

In essence, Leibniz had theorized a primitive programming language, but like his 

predecessors, Leibniz was constrained by the state of his era’s computational power. In fact, 

throughout his life Leibniz became more disillusioned with the idea of a general, logical calculator. 

Ultimately, the closest he got to achieving his vision was the ‘stepped reckoner’, a simple 

mechanical calculator with a decimal registry capable of 8-digit addition, subtraction, 

multiplication, and division. For the next two-hundred and fifty years, mechanical computers grew 

in complexity, but like Vaucanson’s duck and Leibniz’s stepped registry, they required complex 

and unique design to solve individual tasks with predetermined solutions. What was required was 

a more generalizable framework of encoding and solving problems, forgoing the need to devise a 

unique solution to every new problem. To facilitate this computational framework, computing 

devices orders of magnitude more powerful than the stepped reckoner would be required.  
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1.2 Scientific Inspiration 

The investigations into modern artificial intelligence were in the late 1940s. These 

researchers, mostly mathematicians by training, were inspired by advancements spilling over from 

other scientific fields, namely neuroanatomy (e.g., neural connections), psychology (e.g., 

behavioral theory), and electrical engineering (e.g., vacuum tubes, magnetic tape drives, ferrite 

core memory). 

In 1906, the Nobel Prize in Medicine was given to two Spanish neurologists, Santiago 

Ramón y Cajal and Camillo Golgi, in recognition of their work on the structure of the nervous 

system. Cajal share of the award was for his discovery that each neuron within the nervous system 

behaved as a unique entity, and complex actions of the system resulted from synapses sharing 

impulses throughout the system. Each neuron is comprised of a body, dendrites and long tail(s), 

the axons, which nearly connect to the dendrites of the surrounding neurons. Throughout the 

nervous system, every neuron is constantly sending or receiving electrical pulses through its 

dendrites or axons. Depending on the frequency and strength of these pulses, the neuron may either 

activate, continuing the pulse onto its neighbors, or not. It is only through a system of billions of 

these simple, binary actors does the complexity and intelligence of evolved life begin to emerge. 

In response to this discovery, Canadian neurologist Donald O. Hebb proposed that when a 

dendrite-axon pair is frequently simulated, it induces changes within the cells and increases the 

expression of this synapse. His proposal went on to claim that the repeated activation of neurons 

changed their expression to stimuli and their weighting within the system, thus resulting in learning.  

 The popularity of behavioral theory and psychology grew in the early 20th-century, and 

while many of the scientific “developments” of the field were motivated by biases and prejudices, 

the work of B.F. Skinner attempted to legitimize the scientific method within psychology. Skinner 
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focused his career on the study of human free will and what he called “reinforcement theory”. In 

essence, Skinner theorized that human free will was illusionary and instead an individual’s current 

personality was a function of past reinforcement of specific behaviors. He derived this theory from 

the lens of evolutionary biology, where certain traits are expressed in a species through subsequent 

generations of survival (reward) or death (punishment). In Skinner’s theory, reinforcement could 

come as acute or continuous reinforcement and could be either negative (punishment), positive 

(reward) or extinction (absence of rewarding) which also weakened behavior. Therefore, Skinner 

claimed that with proper incentivization in place, an individual could be conditioned to strengthen 

a desired behavior. 

 John Ambrose Fleming, an electrical engineer, worked at a transatlantic radio company in 

1904. When tasked with improving signal strength, Fleming looked back at his experiences at the 

Edison Electric Light Company and devised a variant of the electric lightbulb where the heated 

electrical filament generated thermionic emissions, and the electrons were attracted to a positive 

plate (the anode). Due to the difference in charges, the flow of current was restricted to one 

direction and the current could be quickly switched on or off by changing the relative potential 

voltage between the filament (cathode) and the anode. Fleming’s invention, the vacuum tube, was 

successful in improving the signal-to-noise ratio of the transatlantic radio, and would be eventually 

used in nearly every advanced electronics system of the era. This simple lightbulb derivative would 

become foundational to the early development of electronics and computer engineering. 

 While neuroanatomy, psychology and electrical engineering drew little inspiration from 

one another at the time, at the intersection of these fields was the bourgeoning study of computer 

science and artificial intelligence. These researchers possessed the same aspirations of the many 
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dreamers who came before them, but due to the surrounding new technology, they found 

themselves at the precipice of a paradigm shift that would revolutionize how problems were solved.  

1.3 Early Investigations into Artificially Intelligent Systems 

Early pioneers in the artificial intelligence sought to harness computational power to model 

human intelligence, but this goal was reliant on first defining human intelligence. A reasonable 

starting point was to determine tasks, games or activities which were expressive of key traits of 

intelligent life. Examples of the toy problems, intelligent traits they aimed to express, and 

researchers involved in that field are given in Table 1.1. 

Table 1.1: Original problem classes in artificial intelligence research and the pioneers who advanced the fields. 

PROBLEM CLASS EXAMPLES RESEARCHERS 

PLAYING GAMES Chess and Checkers Allen Newell, Arthur Samuel 

PATTERN RECOGNITION 
Numeral identification, 

Shape Identification 
Gerald Dinneen, Oliver Selfridge 

NATURAL LANGUAGE 

PROCESSING 

Language translation, Artificial 

language creation 
John McCarthy 

NEUROLOGICAL MODELING 
Neural networks to simulate 

cognition 
Karl Lashley 

SYMBOLIC PROCESSING Writing symbolic logic proofs Allen Newell, Herbert Simon 

 

From our contemporary view, a few of these toy problems may appear to be quite simple 

(e.g., playing checkers), but it is important to fully consider the state of computers in the 1950s. 

From 1954 to 1963, the world’s most power computer was the Naval Ordnance Research 

Computer (NORC), which was owned and operated by the US Navy Bureau of Ordnance. This 

supercomputer could complete 15,000 operations a second (compared to trillions, or more, now), 

it possessed 3600 words of memory (64 bits per word) and cost $2.5 million (in 1950s money). 

Recognizing the limitations of computers from the start, in the official proceedings the first 

conference of artificial intelligence held in Los Angeles in 1955, the chairman wrote: 

“This group of papers suggests directions of improvement for future 

machine builders whose intent is to utilize digital computing machinery for this 

particular model technique. Speed of operation must be increased manyfold; 
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simultaneous operation in many parallel modes is strongly indicated; the size of 

random-access storage must jump several orders of magnitude […] With such 

advancements and techniques discussed in these papers, there is considerable 

promise that systems can be built […] which will imitate considerable portions of 

the activity of the brain and nervous system.” – Willis Ware 1 

Therefore, the work conducted by researchers of the time was limited to even more 

primitive computers, custom built systems or what limited computational power they had available. 

This unfortunately meant that many problems remained computational infeasible at the time and 

researchers had to resort to other means of testing their hypothesis. In a particularly dramatic 

example, Herbert Simon, an early pioneer in symbolic processing, prototyped his first thinking 

machine by enlisting his children to simulate the working register of a computer.  

An early pioneer of pattern recognition was Oliver Selfridge who devised a hierarchical 

approach to pattern recognition. At the foundation of an artificial intelligence algorithm were “data 

demons” who were responsible for the basic digestion of incoming data: edge enhancement, 

vertical line, horizontal line, or vertex recognition and so forth. The post-digested data was then 

passed upwards to subsequently higher ordered demons who identify higher order features, like 

squares or triangles. Selfridge described each middle demon’s identification of a feature as a shout, 

where the loudness of their shout was proportional to their confidence in having identified that 

feature. In the second highest order of this pyramidal system existed the cognitive demons who 

convert these series of higher order features into complex concepts, such assembling a collection 

of shaped related shouts into a number. Finally, the highest order demon would synthesize the 

information from the lower order demons and make the final decision for the classification of the 

image which was originally provided. 

Selfridge proposed that this collection of demons could be incrementally improved by 

amplifying the shouts of certain demons over that of others. Alternatively, modifications could be 

made by replacing the higher-order demons, allowing for new interpretation and classification of 
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the digested data. Furthermore, behavior could be reinforced by replacing the demons which 

overall shout the least and are thus least useful. These demons could then be mutated, or fully 

replaced, with the hopes of evolving to a new demon descendent who proves more useful. 

Ultimately Selfridge realized two notable limitations to his proposed demon model: design and 

computation. For Selfridge’s model to work, it required designing individual demons to impose 

unique abilities upon them, as he did not have a way for these demons to learn their behaviors 

artificially. Additionally, the ambitions of Selfridge’s model far exceeded the computational power 

of the general computing systems of the time. To overcome this, Selfridge attempted to build an 

electrical prototype of his model where inputs of binary images were encoded as a series of 

connected wires in a grid (like a switch board) with the final output displayed by a series of lights. 

The demons were then subsystems of vacuum tubes which performed designed computational 

tasks, such as line or vertex identification. Another shortcoming of Selfridge’s design was that it 

heavily relied on human intuition and perception to create the individual demons that together 

worked proficiently as a system. Alternatively, the idea of mutation and replacement required 

immense, and unobtainable, computational power. The accumulation of these limitations and 

workarounds resulted in Selfridge’s demon collection becoming akin to the Vaucanson’s digesting 

duck – a manually and uniquely designed system capable of mimicking the behavior of a human 

but incapable of generalized learning. Despite lacking generalizability, he had imagined, 

Selfridge’s preliminary theorization for an artificial intelligence system for use in pattern 

recognition was revolutionary. In fact, as we will discuss later, our contemporary understanding 

of deep neural networks has not strayed far from Selfridge’s proposal more than 65 years ago. 

As Selfridge and the other researchers of the 1950’s and 1960’s ran up against the 

computational ceiling, they began to realize their bold ambitions for artificial intelligence were 
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unobtainable at the time. Many researchers shifted their focus to other tasks and advancement 

stalled. Artificial intelligence had again fallen into a period of reduced academic focus and 

development. 

1.4 Convolutional Neural Networks 

For over thirty years, Selfridge’s numeral recognition problem remained mostly 

unobtainable until two algorithmic discoveries solved the problems of generalization and 

computational requirements. The first key discovery was an algorithmic change proposed to 

entirely invert the existing paradigm of training an artificial intelligence system. Instead of 

evaluating the least active node within the neural network from the bottom up, the error in a 

prediction can instead be back-propagated top down through the model 2. Using the same 

incentivization philosophy proposed by B.F. Skinner, the training of a neural network would be 

dictated by a loss function, which would compute the error between a model’s prediction and the 

known ground truth. Then, the partial gradient for each weight within the model would be 

computed and the contribution of each model weight to the error would be determined. With the 

known contributors to the prediction’s error, these weights could then be altered in relation to their 

contribution, thereby making future predictions less likely to repeat that error. While this concept 

seems conceptually simple (the paper was only three pages), the impact it had on the computational 

efficiency of training neural networks was substantial. Prior to backpropagation, the loss function 

was a system of equations relating to each individual weight in the model. To compute the changes 

to every weight in a 1,000-parameter model, a separate prediction would be required for each loss-

weight pair. Therefore, the data would need to pass through the model 1,000 times to modify each 

of the weights individually. Contrast this with the backpropagation paradigm where the data only 

needs to pass through the model a single time and then the individual model weight gradients of 
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the loss function are backpropagated throughout the network. This discovery completely changed 

the computational complexity of artificial intelligence research and overnight allowed for far more 

complicated neural network designs. 

Soon after the discovery of backpropagation, more complex and sophisticated neural 

network designs began reviewing unsolved problems of the past. One such problem was that of 

numerical recognition, such as handwritten zip codes on postcards and magnetic numerals on bank 

checks. Spurred on by the discovery of backpropagation and the newly unlocked complexity of 

trainable models, researchers began to apply more complex mathematical operators to neural 

network designs. One such addition was the convolutional operation to create a “convolutional 

neural network” 3. Instead of a system constructed with multiplication and addition operators, the 

convolutional neural network allowed for the training of the convolutional kernel. These 

convolutional kernels could then learn pattern, texture or edge detection as needed to satisfy the 

loss function. Unlike Selfridge’s model where the data digesting demons were manually, 

individually designed to detect edges or vertices, trainable convolutional operations were able to 

artificially learn those features as a cohesive system. The impacts of convolutional neural networks 

were immediately apparent, with the first application able to correctly identify 16x16 pixel 

handwritten digits with only a 1% error rate on the test set. Within years, these convolutional neural 

networks quickly revolutionized the United States Postal Service and the check processing 

industries. Despite these nearly immediate impacts in banking and postal service, the 16x16 pixel 

images were too small to find useful applications in radiation oncology or medical image analysis. 

1.5 The Contemporary Paradigm 

What was required to make artificial intelligence widespread was the availability of 

inexpensive and powerful computational hardware designed to calculate convolutional operations, 
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which are simply matrix multiplications. It just so happens that in the late 1990’s home desktops 

were becoming a popular platform for at-home video games and the demand was increasing for 

high-quality graphics. To facilitate this, silicon chip manufacturers, like Advanced Micro Devices 

(AMD) and Nvidia Corporation, began designing specialized computational devices for computer 

graphics. Nvidia’s first offering, the GeForce 256 was released December 13, 1999, and AMD 

released The Radeon on April 1, 2000.  

In essence, the graphics displayed in a video game are comprised of numerous triangles, 

which the vertices are stored as matrices. When players input changes to the video game, the 

rotations and translations are applied to the vertex matrix through matrix multiplication. To 

achieve a responsive video gaming experience, the matrix multiplications necessary to update the 

screen needed to be completed in a fraction of a second. The strength of a computer’s CPU is the 

ability to conduct many tasks within the computer, but this makes it poorly suited to repeat a simple 

task many times, such as matrix multiplication. Therefore, manufacturers designed GPUs with 

relatively primitive computational cores, but were able to fit 100’s or 1,000’s of these nodes in 

parallel. This meant that the specialized hardware in GPUs could compute matrix multiplications 

orders of magnitude quicker than CPUs. The only issue was GPU manufacturers did not make the 

graphics drivers, the software which communicates with the hardware, available to researchers to 

harness the GPU’s power for other tasks. 

In 2007, Nvidia released Compute Unified Device Architecture (CUDA), an application 

programming interface (API) designed to allow for the leveraging GPU hardware for general 

computing applications. The release of CUDA unlocked the power of GPU hardware for 

researchers and removed the last computational barrier of widespread machine learning adoption. 

Suddenly, cards costing hundreds of dollars were able to compute matrix operations with similar 
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performance to CPU bound supercomputers. This allowed artificial intelligence research to push 

the envelope even further with model complexity and size, allowing for even more complex tasks 

to be solved. Building off the CUDA API, further tools (e.g., PyTorch, TensorFlow) were designed 

with more user-friendly interfaces and implementations of recently published scientific 

developments. Thus, these libraries democratized the power of the GPU, allowing non-computer 

science researchers to explore domain specific artificial intelligence and ignited a paradigm shift 

across many fields. 
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CHAPTER 2 Deep Learning Fundamentals 

2.1 How Does a Machine Learn? 

Traditional problem-solving algorithms define a problem and a specific set of steps 

required to arrive at a solution A. In contrast, a deep learning model is a statistical framework, 

which when trained, stochastically arrives at a solution. For the model to effectively converge to a 

solution, it must be able to evaluate the quality of candidate solutions as it learns. Loss functions, 

also called objective functions or cost functions, quantify the quality of a candidate solution during 

the model training process. For each step during training, the model’s weights are progressively 

updated to yield predictions which minimize the loss function. Because the loss function dictates 

the model’s measure of success and the degree to which the weights are updated, choosing the 

proper loss function for a given task is vital.  

 
Figure 2.1: The steps in training a deep learning model. Step 1, from the training data, a prediction is made. Step 2, 

using the loss function, the ground truth and prediction are compared, and an error is determined. Step 3, each 

weight is updated proportionally to the gradient of the error. 

At the beginning of training a model, the weights are randomly initialized and generally incapable 

of making any useful predictions. However, through backpropagation training, models can learn 

to solve tasks across many divergent domains. Take, for example, the simple problem of 

segmenting the skull on a CT image, as shown in Figure 2.1. 

 
A. Contents of this chapter were previously published in: Porter E, et al. Effect of Loss Functions in Deep Learning-Based Segmentation. 

Auto-Segmentation for Radiation Oncology. CRC Press. 2021; 133-150. 
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The backpropagation training process is broken into three steps: prediction, evaluation and 

back-propagation. During the first step, the training input data flows through the model which is 

simply a series of mathematical operations, most commonly convolutional operations. The data 

which returns from the model is referred to as a prediction. In the skull segmentation example, we 

provide the model with a two-dimensional CT image slice as input, from which the model 

generates a prediction for a segmentation mask. From the example in Figure 2.1, we can see that 

the current model’s skull prediction is non-ideal and further training, or updates to the model’s 

weights, is warranted. Next, the error of the prediction, in relation to the ground truth, is calculated 

using the loss function. In the final training step, the gradient of the error is calcualted with respect 

to each model weight. Then every weight is updated by the scaled gradient of the error, with the 

intent of minimizing each weight's contribution to the error in subsequent predictions. The scaling 

factor, commonly called the learning rate, is represented by 𝜆 in Figure 2.1. Therefore, to allow 

for backpropagation training, a loss function must have scalar-valued output and be differentiable 

with respect to the model weights. A complete training process repeats these three steps until the 

output of the loss function, or prediction error, is minimized. Ideally, upon finishing training, the 

model weights should converge upon a state capable of robustly solving the given task.  

In addition to dictating what is learned, a loss function can influence how easily a model 

converges upon a solution. Like many optimization problems, the training of deep learning models 

utilizes a multi-dimensional gradient descent. A simple visual representation of the training 

process would be the act of navigating to the lowest point on an uneven plane, such as those shown 

in Figure 2.2. If the plane possesses many depressions in addition to the true lowest point, it would 

be difficult to know if we are at the lowest point globally or merely locally; after all, our only 

knowledge is of our local surroundings, not if there is a deeper depression elsewhere on the plane. 
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To adapt this to deep learning terminology, the x-y axis of the surface represents all 

potential model weight combinations, and the z-axis indicates the loss function performance of the 

current weight combination. During training, the model is initialized randomly within the weight 

possibility space. Then, as the model trains, it explores the space of its possible weight 

combinations to minimize the loss function. Optimal loss functions therefore have an easily 

computed gradient path towards the global minimum. 

We refer to the set of weights which minimize the loss function as the global minimum, 

and the other sets of weights which produce loss functions lower than their surroundings as the 

local minima. If we chose a loss function completely unsuited to the data, it is unlikely the model 

will train at all, with a visualized loss space 4 example given in Figure 2.2.A. If we instead chose 

a poorly suited, but trainable, loss function, there will be both a global minimum and local minima, 

as in Figure 2.2.B. But, if we carefully choose a loss function well suited for our task, finding the 

global minimum will be both simple and efficient, as seen in Figure 2.2.C. 

 

Figure 2.2: A visual depiction of loss functions where the x-y axis is model weight combinations, and the z-axis is 

the loss function. With an incorrectly chosen loss function (A), a poorly suited loss function (B) and an easily 

trainable loss function (C). 

A well-chosen loss function has a significant role in reaching an optimal solution for a 

given deep learning task. In this chapter, we will cover: the necessary elements of a loss function, 

presenting a segmentation task for a loss function, common loss functions and their applications, 
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dealing with imperfect data, choosing a starting loss function, and troubleshooting methods to help 

overcome frequent challenges in medical image segmentation. 

2.2 Admissibility of a Loss Function 

To understand the importance of admissibility, let us imagine that two people are bidding 

to build a fence enclosure for a farmer’s sheep. The farmer only tells both designers that whoever 

designs the fence with the shortest length will be hired. The first designer, using his knowledge of 

geometry, designs a circular fence, large enough to encircle the flock. On the other hand, the 

second designer proposes to build a fence only around himself, declaring himself ‘outside’ the 

fence. Clearly, this second solution fails to enclose the flock, which is the original purpose of a 

building fence. However, the farmer presented the ideal solution as that which minimized fence 

distance, not that which minimized the danger to the sheep. In a deep learning context, the farmer’s 

loss function, length of fence, was not admissible to his true intentions behind building the fence.  

While the second solution may seem outlandish, deep learning models are inherently prone 

to converging upon these ‘lazy’ solutions. For segmentation tasks, common ‘lazy’ solutions are 

models which do not predict every structure, predict highly smoothed structures or models which 

uniformly predict a single structure. To prevent theses ‘lazy’ solutions, we must carefully choose 

a loss function which defines our ideal solution to the task, minimizes the risk of unintended results 

and ensures effective convergence to a robust solution.  

2.3 Presenting the Problem 

The remainder of this chapter covers the proper combination of ground truth data and loss 

functions and presents a selection of different losses useful for image segmentation. For our 

discussion, we consider a segmentation ground truth to be a label mask where each voxel is 

designated as either a member of the class or not. These ground truth label masks can be organized 
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as either a multi-label or multi-class segmentation tasks, both of which can be used to train a deep 

learning model. 

A multi-label segmentation allows for each voxel to be a member of multiple classes, as 

well as not a member of any class. An example of a multi-label segmentation is a patient with of 

multiple thoracic structures and a body contour. In this case, every voxel classified as ‘heart’ would 

also be member to the ‘body’ class. And, for any voxel exterior to the body, class membership 

would not be required. 

A multi-class segmentation is a restriction of a multi-label segmentation task, where each 

voxel is a mutually exclusive classification. This means that each voxel must, and can only, be a 

member of a single segmentation class. For example, if you are contouring the left and right lung, 

each voxel will be one of three classes: left lung, right lung or neither lung. Through the inclusion 

of the ‘neither’, also referred to as the ‘background’ class, the problem allows for every voxel to 

be a member of a class. To restrict voxels from having membership to multiple classes, or likewise 

to reduce a multi-label to a multi-class segmentation problem, binary operators (i.e. AND, OR, 

and NOT) can be utilized.  

Strict adherence to the multi-class labeling rules is important because any mislabeled 

voxels will interfere with the model’s training. Take, for example, a voxel which was not assigned 

any of left lung, right lung or neither. During the training process, a prediction of any class 

membership will falsely be evaluated as an error and will be backpropagated into the model 

weights, potentially interfering with the otherwise properly trained parameters.  

Although multi-class labeling restricts the preparation and data organization of the ground 

truth labels, doing so also restricts the complexity of any prediction. By reducing the degrees of 

freedom possible in a solution, the overall solution space is restricted and the gradient decent is 
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simplified. This means that, for most tasks, preparing the ground truth as a multi-class problem 

will result in quicker convergence to a solution. 

As depiction of both label types, Figure 2.3 demonstrates different representations of an 

arbitrary 2D image composed of a partially overlapping circle and triangle. Figure 2.3.B shows a 

“one-hot encoded” multi-label data set representation of the original image, Figure 2.3.A. In this 

case, a third dimension is added to the 2D image, with each position along this dimension called a 

channel, where each channel represents membership of the pixel position to different categories, 

or classes, of data. A pixel value of 1 in channel 1, Figure 2.3.B left, would indicate that the pixel 

belongs to the circle region, and a pixel value of 1 in channel 2 would indicate that the pixel belongs 

to a triangle region. It is important to note that in a multi-label representation of the data, a given 

pixel position may hold a value of 1 in either channel, indicating that the pixel position belongs to 

both the circle region and triangle region. This contrasts with multi-class representations of the 

data set, which must hold mutually exclusive classifications. In Figure 2.3.C, a multi-class label-

encoded data representation of Figure 2.3.A is shown. In this representation, a unique integer label 

is assigned to each pixel, which indicates which classification category the pixel belongs to: 0 – 

background, 1 – circle only, 2 – triangle only, 3 – intersection region of the circle and triangle. 

Because this is a multi-class representation, a new classification is needed to indicate membership 

of the pixel in the overlapping region. In Figure 2.3.D, a one-hot encoded multi-class 

representation of Figure 2.3.A is shown. In a similar fashion to Figure 2.3.B, multiple channels are 

again utilized to indicate the category a given pixel belongs to (from left to right): channel 1 – 

background, channel 2 – circle only, channel 3 – triangle only, channel 4 – circle and triangle 

intersection. As will be discussed later, though similar in their composition, the use of either a 
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multi-label or multi-class representation (Figure 2.3.B vs. Figure 2.3.D) for one’s data set may 

hold distinct advantages for loss functions and their application. 

 

Figure 2.3: A) The original image of a circle and triangle sharing an overlapped region is shown. B) A one-hot 

encoded multi-label representation of image A.  C) A multi-class label encoding (LE) representation of image A. D) 

A one-hot encoded multi-class representation of image A. 

The output of a neural network needs to match the dimensionality of the target ground truth 

labels. For segmentation, this requires a special output layer to convert the regression from the 

network into class probabilities for each voxel in the input. Multi-class segmentation requires a 

softmax function, which is a scaled activation which maps the neural network to a normalized 

distribution function representing the per-channel estimation of class membership (the sum of the 

classes for a given voxel predication is equal to one). Despite the output of a softmax activation 

being normalized, the model output should not be confused with a probabilistic (i.e., Frequentist 

or Bayesian) output for class membership. This means that probabilistic statistical tests or utilizing 

a probabilistic determination to inform clinical decisions is not a valid interpretation of a network’s 

output. Instead, during inference, each voxel has a class assigned to the channel with the highest 
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value, typically by applying a maximum argument (argmax) function, ensuring each voxel is a 

member of only a single class. However, during model training, the loss is computed from the raw 

outputs (without the argmax function applied) to compute and backpropagate the gradient of the 

error with respect to all possible classes.  

For a model to achieve multi-label segmentation, the model should conclude with a 

sigmoid function as the final activation. This ensures that the model outputs normalized, class-

independent, per-voxel class membership predictions. Since the sigmoid function is independent 

for each output channel, a voxel having membership in multiple classes is a valid prediction. Then, 

during inference, a sigmoid activated prediction is rounded to the nearest binary value, allowing 

each voxel the potential of being a member of multiple classes. And, similarly to multi-class 

segmentation training, the loss function should be computed on the raw, or unrounded, predictions. 

2.4 Evaluating a Loss Function 

In the Appendix A, I discuss many differing loss functions and their applications. With the 

numerous loss function choices, picking a starting point can be overwhelming. To help choose an 

initial loss function, I have included a decision tree (Figure 2.4) to narrow down the selection 

process. But, to get the most out of the chosen loss function, a user should understand how to 

evaluate and tune the loss function’s performance. 
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Figure 2.4: A flowchart to aide in determining the proper loss function for a given task. 

Typical deep learning strategy dictates a dataset be separated into three unique subsets: 

training, validation, and testing. The training set, as the name implies, is used to train the model 

and is the largest of the three subsets. During the training process, predictions made from this data 

are used for backpropagation weight updates. Following every epoch, the training model makes 

predictions from a smaller subset of data, the validation set, where predictions are made without 

updating the model’s weights. It should be repeated that deep learning models are lazy and will 

take whatever shortcuts are available. Commonly, this shortcut is memorization. When a model 

memorizes, it begins to perform outstandingly on the training data set without learning 

generalizable features, which means it cannot replicate this performance equally on an unlearned 

dataset, such as the validation set. By frequently predicting on the validation data set, we can 

monitor the model’s progress in real-time and prevent wasting time when the training is non-ideal. 

Typically, the relationship of training and validation loss falls into one of four categories, as shown 

in Figure 2.5. 
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Figure 2.5: A representation of different types of relationships between the training loss (red) and validation loss 

(blue). A) A model which does not train. B) A highly imbalanced data set with a poorly suited loss function. C) A 

model which overfits on the training set. D) A model which trains. 

A model that consistently performs poorly on both losses across all epochs, as seen in 

Figure 2.5.A, is indicative of a model that is not training. Unfortunately, there is no clear-cut reason 

why a model does not train, but troubleshooting should progress through the training process. 

Beginning with the data, this issue may arise from training data or ground truth labels that are 

incorrectly formatted or not properly corresponding. Within the model, errant graph connections 

or incorrect final activation and loss function pairings can prevent the model from properly 

backpropagating the gradient. Finally, hyperparameters may be poorly selected, causing weights 

to change too quickly or coarsely to successfully converge to the minima.  

A model which immediately produces outstanding and desirable results, like that shown in 

Figure 2.5.B, is indicative of a highly unbalanced task paired with an unbalanced loss function. At 
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the start of training, a model’s weights are randomly initialized, and are never expected to perform 

perfectly after only a few iterations of the training cycle. This behavior is typically characterized 

by a model becoming trapped in an overwhelming local minimum, such as predicting one class for 

the entire volume. This can be troubleshot through experimentation with alternative loss functions. 

An overfitting model, as given in Figure 2.5.C, has a loss function that consistently 

decreases while the validation loss remains unchanged. To prevent overfitting, common techniques 

may be to introduce dropout into the model or utilizing optimizer regularization. Additionally, the 

training data can be augmented to simulate a more diverse dataset.  

When everything comes together, and a deep learning model learns properly, we expect 

both loss functions to decrease relatively steadily and asymptotically to the same value, as shown 

in Figure 2.5.D. It is important to note that the rate of convergence will vary based on task, model, 

and optimizer. In this instance, the model was able to learn a generalizable feature from the training 

data and perform equally well on the validation set. The possibility exists, however, that the chosen 

loss function is not indicative of desired performance. To check this, the model’s predictions on 

the validation set should be compared to the ground truth with additional metrics. If these metrics 

also indicate strong performance, a final prediction on the test set can be created. 

For a deep learning model to converge upon a generalizable solution, the method in which 

it gauges performance, the loss function, must be carefully chosen. Because this loss function 

quantifies the fitness of the model’s predictions, the loss function dictates the backpropagation 

process, and in turn how a model learns. While educated guessing may assist in selecting a loss 

function, finding the ideal function typically requires experimentation with different loss functions 

or combinations. We described the most popular loss functions within this chapter, but there exist 

many niche functions which were not discussed. As techniques for medical image segmentation 
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evolve, pioneering individuals will continue to develop novel loss functions capable of greater 

admissibility and ease of trainability.  

2.5 Hyperparameter Tuning 

While deep learning model will statistically converge upon a solution as it trains, to achieve 

the best possible results still requires human input and intuition. The most notable role for humans, 

aside from model design, is the process of hyperparameter tuning. Hyperparameters are tunable 

variables in the model training system, most commonly in the loss function, optimizer, and the 

length of model training. The modification of these parameters alters for how long, how slowly 

and with what characteristics a model navigates the loss function space.  

2.6 Model Evaluation 

Traditionally the dataset used for training and evaluating a model is split into three portions: 

a training set, a validation set and a testing set. As the name implies, the training set is used to 

saturate the model and train its parameters. The model will see this data set repeatedly, with each 

full pass across the data set called an ‘epoch’. For each prediction made upon a training set data 

point, the loss is computed and backpropagated into the model parameters, training the model how 

to generate more accurate predictions. At the end of each epoch, the model performance can be 

tracked by comparing quality of prediction on a dataset the model has not been trained upon, which 

we refer to as the validation data set. This validation data set allows the practitioner to track the 

model performance on “unseen” data and ensure the model is not simply memorizing the training 

dataset. Validation data is also useful for trained model selection and the comparison of different 

model designs, allowing the user to pick the model most capable of predicting robust and accurate 

results. Although the validation dataset is not used to directly train the deep learning model, 

through the hyperparameter tuning process, it becomes easy to select model parameters which 
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overfit on the validation dataset. Therefore, it is necessary to have a third dataset held out until all 

hyperparameters are tuned. This third dataset is called the test dataset and a model is supposed to 

generate a single, final inference upon this dataset. By only having seen the test set a single time, 

these data points replicate the actual performance of the model on new and previously unseen data. 

Because the validation and test sets are typically smaller than the training dataset, it is important 

that these two subsets are selected carefully to ensure they accurately represent the diversity of the 

proposed application. 

An alternative means of validating robust performance across a dataset is cross-fold 

validation. During cross-fold validation, a dataset is split into N-constituent parts, say 10-parts 

where 8/10 are designated for training, 1/10 for validation, and 1/10 for model testing. Then, 

hyperparameter tuning and testing would be conducted upon that data split. To achieve 

convergence across the cohort, the hyperparameters would again be held constant and the training 

and testing data would be reorganized into each of the unique combinations of the data set split. 

In total, the number of trained models (M) is given by 𝑀 = 𝑁 ∗ (𝑁 − 1). When conducting the 

data splitting, the validation set can be handled in two ways. The first is that the validation set can 

also be shuffled through each of the possible combinations, giving the number of models trained 

as defined by 𝑀 = 𝑁 ∗ (𝑁 − 1) ∗ (𝑁 − 2). But, considering that some model architectures can 

require 10s of hours, or more, to adequately train, shuffling through all 𝑁 − 2  times more 

combinations could require weeks or months more computational time. Additionally, after 

completing hyperparameter tuning, the role of the validation set is small and poses little benefit in 

the overall analysis of the model performance. Therefore, it is not strictly necessary to conduct a 

complete iteration through all possible data set permutations. 
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CHAPTER 3 Hippocampal Avoidance and Treatment Planning 

3.1 Existing Paradigm 

Motivated by the high number of untreated brain metastases found in cancer patients upon 

autopsy, whole brain radiotherapy (WBRT), the complete irradiation of the brain parenchyma, was 

proposed as treatment for metastatic disease 5. In the 1954 paper, Chao et al. 5 stated that because 

brain metastases most often occur in multiples, the only logical treatment is to irradiate the entire 

brain to reduce missing small asymptomatic or sub-resolution lesions. Therefore, Chao et al. 

recommended the use of WBRT in all palliative patients with brain metastases to reduce symptoms 

and improve survival rates. With the limited technology at the time, the recommended treatment 

energy was 250 kV, used to deliver a total dose of 3000 rads (rads reported for historical accuracy, 

1 rad = 0.01 Gy). This prescription dose was chosen to deliver as close to 2000 rads to the midline 

without inducing moist skin erythema (dry skin erythema was expected). Treatment fractions were 

started at 50-100 rad/day and increased by 50 rad/day up to 350 or 400 rad/day, or until headaches 

began occurring 5 (likely due to acute encephalopathy 6). 

Following the initial proposal of WBRT, a search for the ideal fractionation schedule began, 

with accelerated fractionation schemes of 1500 rad in two fractions 6 and 1000 rad in a single 

fraction 6 both proving unsuccessful. In fact, in the single fraction trial, 3 of 54 patients died within 

48 hours of treatment due to cerebral edema and hemorrhaging 7. It was eventually decided that 

concurrent corticosteroids and treatment fractions 3 Gy or less could reduce the risk of cerebral 

edema 8. A Phase III clinical trial investigated an array of treatment schedules and settled upon 30 

Gy in 10 fractions to minimize adverse neurocognitive side effects, and increasing the palliative 

index (survival time in a neurologically improved state) 9. 
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In the 68 years since its proposal, the contemporary indications to WBRT have remained 

nearly unchanged. Though mercifully, our treatment planning and delivery has improved. 

Contemporary treatments no longer determine fractionation limits by induced headaches and dry 

skin erythema. Instead, WBRT of 30 Gy in 10 fractions is most often used when microscopic or 

gross disease is present, or targeted chemotherapeutics prove ineffective. Other uses for WBRT 

include prophylactic brain irradiation for small cell lung cancer and pediatric craniospinal 

irradiation. 

Despite the relative simplicity of WBRT, it has proven clinically effective, even for patients 

who present with few metastases. For patients who receive stereotactic radiosurgery for one to 

four brain metastases, the addition of up-front WBRT reduces the brain tumor recurrence rate by 

29.6% 10. Additionally, a trial showed that WBRT after surgery or SRS for one to three metastases 

reduced the 2-year relapse rate by 32% at the initial site and 10% at new sites 11. While this trial 

was successful at reducing the 2-year relapse rate, it failed to meet the primary end point of 

increased time of functional independence, as measured by a WHO performance status greater 

than 2 (10 months without WBRT, 9.5 months with WBRT). This paradox of a decreased disease 

but no improvement in functional status indicated that WBRT caused neurotoxicity and reduced a 

patient’s neurocognitive function. The declines in neurocognitive function induced by WBRT 

were found to be 31-57% at 3 months and 48-89% at one year 12.  

3.2 Why Avoid the Hippocampus? 

The hippocampus is a small, seahorse shaped structure located in the medial temporal lobes 

of the cerebrum, proximal to the temporal horn of the lateral ventricles. Hippocampal involvement 

in the formation of memories has been known since 1957 when two patients received a bilateral 

medial temporal-lobe resection and were described to have suffered from “a grave loss of recent 
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memory” 13. It was noted that the patients suffered no appreciable changes in personality or 

intelligence, only an acute loss in active memory and partial retrograde amnesia. 

Building upon these case reports of lobotomized patients, more sophisticated evidence was 

uncovered for the role and method in which the hippocampus contributes to the formation of 

memories. Progenitor cells were discovered to be contained within the subglanular region of the 

hippocampus dentate gyrus and these cells were shown to contribute to neurogenesis 14. It is known 

that the vertebrate brain continually produces neurons and these newly formed neurons contribute 

to the formation of trace-memories 15. Therefore, radiation induced damage to the progenitor cells 

is theorized to inhibit neurogenesis in the dentate gyrus, ultimately impacting the formation of 

memories and executive function 16. To validate this theory, clinical trials were undertaken to 

determine the neurocognitive impacts of hippocampal avoidance during whole brain radiotherapy. 

3.3 Proof Through Clinical Trials 

3.3.1 RTOG-0933 Phase II 

Radiation Therapy Oncology Group (RTOG) Trial 0933 investigated the efficacy of 

WBRT with hippocampal avoidance (HA-WBRT) 17. The trial was designed as a single-arm study 

with historical studies as the control. Adult patients with English proficiency and who presented 

with metastatic disease more than 5 mm outside of the hippocampus, a nonhematopoietic 

malignancy (excluding small-cell or germ cell cancer) were eligible for trial enrollment. Patients 

were excluded if a contraindication for MR imaging existed. 

 Patient cognitive function and health-related quality of life (QOL) were the primary study 

end points. To assess cognitive function, the Hopkins Verbal Learning Test-Revised (HVLT-R) 18 

was conducted at baseline and 2-, 4- and 6-months post-treatment. The HVLT-R tasks patients 

with memorizing 12 nouns, then recalling the words immediately and after a 20-minute delay. For 
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the test, patients must also identify the 12 nouns from a list of semantically related or unrelated 

nouns. These three components of the HVLT-R are designed to assess a patient’s cognitive abilities 

for total recall, delayed recall, and immediate recognition. Patient QOL was evaluated with the 

Functional Assessment of Cancer Therapy – Brain (FACT-BR) 19 and Barthel Index of Activities 

in Daily Living (ADLs) 20 questionnaires. A patient’s well-being in five categories (emotional, 

physical, social, functional and brain tumor specific factors) was quantified with the FACT-BR 

and the Barthel Index of ADLs was used to evaluate the patient’s ability to independently complete 

daily living tasks (e.g., feeding, bathing, dressing). A per-patient relative decline in assessment 

scores were tracked for each follow-up date, with the baseline used as a control. Of the collected 

metrics, the primary end point was the HVLT-R delayed recall, for which the historical control 

found a 30% mean (41% standard deviation) relative decline at 4-months relative to the patient 

baseline 21. 

For HA-WBRT treatment planning, patients were required to receive a 3D T1-weighted 

axial MR image with axial slice thickness ≤ 1.5 mm and a planning CT image with axial slice 

thickness of ≤ 2.5 mm. The MR image would then be co-registered to the CT volume and the 

aligned secondary MR image would be used for the delineation of the hippocampus. Manual 

segmentation of the subglanular zone of the hippocampus is defined by hypointense grey matter 

on the T1-weighted MR images. Per the protocol guidelines, the inferior border of the hippocampal 

contour is the medial extent of the temporal horn. From there, the hippocampal contour continues 

to follow the hypointense grey matter superiorly along the edge of the ambient cistern, with the 

contour terminating when the hypointense grey matter separates from the atrium of the lateral 

ventricle 22. The bilateral hippocampal contours were and expanded by 5mm to generate a 
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hippocampal avoidance region. To generate the PTV, the hippocampal avoidance region was 

subtracted from a contour of the brain parenchyma. 

A prescription dose of 30 Gy in 10 fractions to the PTV was used, matching the historical 

control study 21. Hippocampal dose constraints of 𝐷100 = 9 𝐺𝑦  and 𝐷𝑀𝐴𝑋 = 16 𝐺𝑦  were pre-

protocol, with 𝐷100 ≤ 10 𝐺𝑦 and 𝐷𝑀𝐴𝑋 ≤ 17 𝐺𝑦 as acceptable deviations. To achieve this level 

of dose contrast in the treatment plan, IMRT treatment planning were required.  Centralized rapid 

review was utilized during enrollment, with sites of three consecutive acceptable enrollments 

exempt from future pre-treatment review. 

RTOG-0933 implemented many of the clinical trial best practices to ensure minimal 

protocol deviation including: a contouring workshop, creation of a contouring atlas, pre-enrollment 

credentialing, pre-treatment centralized quality assurance and post-treatment plan review. Despite 

these measures, accurate hippocampal segmentation during trial enrollment proved difficult, with 

26% (26/100) patients having unacceptable clinical contours 23. 

This trial enrolled a total of 113 patients, 100 of which were analyzable. For the primary 

endpoint of HVLT-R at 4-months, 42 patients were analyzable. Among these 42 patients, cognitive 

decline, as measured by the HVLT-R delayed recall, was found to be 7.0% (95% CI: -4.7% to 

18.7%), significantly lower than the historical control of 33.3% cognitive decline at the 4-month 

follow-up. Total recall performance was also greater, with HA-WBRT resulting in 3.6% (95% CI: 

-2.9 to 10.1) decline relative to the historical control of 19.0% decline. Scores from the FACT-BR 

showed significant improvement of the emotional category (p=0.042) and no decline of the other 

categories relative to baseline. Barthel Index of ADLs follow-up time points showed no 

improvement or decline when compared to baseline. 
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Prior to the trial, one of the primary concerns of HA-WBRT was the risk of disease 

progression in the surrounding hippocampal avoidance region. This trial found that of the 67 

patients who developed intracranial disease progression, only 4.5% (3/67) of cases had disease 

progression in the hippocampal avoidance region. Overall, the trial found a substantial 

improvement of neurocognitive toxicity sparing through the inclusion of HA-WBRT with only a 

small increase in risk for disease progression. Therefore, this trial was considered a success and 

was selected for continuation as a Phase III, multi-institutional trial with control. 

3.3.2 NRG-CC001 Phase III 

From the positive results in the Phase II trial, the NRG Oncology group formed the CC001 

task group to conduct a Phase III HA-WBRT trial 24. Trial protocols expanded upon the design of 

RTOG-0933 with the inclusion of a control arm and administration of prophylactic memantine to 

both arms of the trial. 

Glutamate stimulation of the N-methyl-D-aspartate (NMDA) receptor is correlated with 

degenerative neurological disorders, like Alzheimer’s Disease 25. Memantine is an NMDA 

receptor inhibitor which prevents receptor overstimulation and has been shown efficacious in 

reducing neurocognitive decline in Alzheimer’s Disease 26. Further studies demonstrated 

prophylactic Memantine usage concurrent with WBRT to significantly reduce cognitive function 

failure (53.8% compared to 64.9% control) 27. As Memantine use during WBRT had become the 

standard of care, both arms of the NRG-CC001 trials would receive the drug during treatment. 

The primary objective of the trial was to determine if HA-WBRT increased the time to 

neurocognitive failure at specified time points (2, 4, 6 and 12 months). Neurocognitive function 

and quality of life were again measured as the primary end points. These factors were assessed 

using three tests: the Hopkins Verbal Learning Test-Revised (HVLT-R) 18 to evaluate total and 
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delayed recall and delayed recognition; Controlled Oral Word Association (COWA) 28; and the 

Trail Making Test (TMT) Part A and B 29. New to this trial, the COWA test gave participants a 

word category and provides them 60 seconds to verbally state words belonging to that category, 

thereby assessing a participant’s spontaneous word production ability. The Trail Making Test was 

used to evaluate a patient’s visual attention (Part A) and ability to switch between tasks (Part B). 

Part A of the TMT test provided patient with a sheet of paper with dots numbered 1 to 25 and 

participants were tasked with connecting the dots, in order, as quickly as possible. Part B modified 

the dot ordering by including both numbers (1-13) and letters (A-L) and the dots were to be 

connected in an alternating order (1, A, 2, …, L). All tests were conducted prior to treatment to 

determine a per-patient baseline score. 

Quality of life and severity of symptoms was assessed throughout the trial using the 

EuroQol 5-dimension, 5-level (EQ-5D-5L) 30 and the MD Anderson Symptom Inventory-Brain 

Tumor (MDASI-BT) 31 tests. The EQ-5D-5L is a descriptive system designed to measure five 

dimensions (self-care, usual activities, mobility, pain and depression or anxiety) on a 1-5 scale to 

quantify the level of problem (none, slight, moderate, severe, and extreme). MDASI-BT is a 

submodule of the MDASI specific to patients with brain tumors and is a questionnaire designed to 

determine the severity of 9 brain tumor specific symptoms: astasis, dysarthria, seizures, 

hemiparesis, difficulty concentrating, problems with vision, changes in appearance or bowl 

movements and irritability. 

Using this battery of tests, the primary end point of the study was to evaluate time to 

neurocognitive failure, defined as a consistent decline as measured by at least one test. Test scoring 

was performed by a qualified neurocognitive chair who was blinded to study arm assignment. 
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Secondary end points include progression free survival, overall survival, toxicity, quality of life 

and patient-reported symptoms.  

Patient enrollment was limited to adult patients with a Karnofsky performance score ≥ 70, 

without hydrocephalus, leptomeningeal metastases, prior WBRT or the ongoing usage of other 

NMDA antagonists. Patients with prior surgical resection or stereotactic radiosurgery were eligible 

for enrollment.  

Contouring guidelines and planning requirements remained unchanged from RTOG-0933. 

Pre-enrollment credentialing and rapid pre-treatment central review was again utilized in this trial. 

In this trial, if the initial treatment plan was deemed acceptable, all subsequent plans would be 

reviewed post-treatment only to assess plan quality and establish a channel of ongoing 

communication. 

In total, 518 patients across 112 institutions were randomly assigned to either study arm 

between July 2013 to March 2018, with nearly equal populations analyzable for WBRT (n=261) 

and HA-WBRT (n=257). Analysis showed that across the cohort, cognitive failure risk was 

significantly lower for HA-WBRT (hazard ratio = 0.76; 95% CI: 0.60 – 0.98), confirming the 

efficacy of HA-WBRT to reduce cognitive decline. Specifically, HA-WBRT showed significantly 

less decline when measured by TMT Part B (23.3% v. 40.4%; p=0.01) and the 6th-month follow-

up data point of HVLT-R total recall (11.5% v. 24.7%; p=0.049) and delayed recall (16.4% v. 

33.3%; p=0.02).  

Analysis of secondary end points also showed that at the 6th-month follow-up, patients 

assigned to HA-WBRT experienced reduced symptom interference (p=0.008) and fewer cognitive 

symptoms (p=0.01). No significant difference was found between treatment arms for percentage 

of deceased, overall survival (6.3 v. 7.6 months; p=0.31) or intracranial progression free survival 
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(5.0 v. 5.3 months; p=0.21). As was seen with RTOG-0933, recurrence within the hippocampal 

avoidance region was unlikely, occurring in 4.3% (11/257) of WBRT and 6.1% (16/261) of HA-

WBRT patients.  

The results of the NRG-CC001 confirmed the results of the RTOG-0933 trial and supported 

the hypothesis that conformal avoidance of the progenitor cells contained within the subglanular 

zone of the hippocampus reduces the neurocognitive failure of patients treated with WBRT. The 

findings of this Phase III trial have changed standard of care to HA-WBRT combined with 

prophylactic memantine for patients with brain metastases with an expected survival of ≥  4 

months. This change in the standard of care will necessitate that upwards of 200,000 radiation 

oncology patients per year receive a high-resolution MR imaging study prior to treatment planning 

to facilitate the manual segmentation of the hippocampus. For patients contraindicated for MR 

imaging or institutions unable to obtain MR imaging in a timely manner, without an alternative to 

manual hippocampal segmentation, the proven cognitive sparing benefits of HA-WBRT will 

remain inaccessible to patients. 
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CHAPTER 4 Hippocampal Segmentation with Deep Learning 

4.1 Introduction 

Whole-brain radiotherapy (WBRT) is the most widely used treatment for patients with 

multiple brain metastases. Past studies have shown that patients whose tumors regress due to 

radiation treatment experience increased quality of life due to improved neurocognitive function 

(NCF) 32. However, studies also found that WBRT is associated with an early decline in NCF, 

particularly deficits in learning, memory, and spatial processing 16. The hippocampus is a paired 

structure located in proximity to the temporal horn of the lateral ventricle and is critical to the 

process of memory formation. Radiation-induced injury to the hippocampus is known to alter 

learning and memory function 33–36.  

Hippocampal avoidance during WBRT treatment (HA-WBRT) has been investigated as a 

means to prevent hippocampal injury and subsequent NCF toxicity with decreased quality of life 

17,37. Studies demonstrate that sparing the hippocampus from radiation without altering the 

coverage of the rest of the brain decreases early NCF decline without compromising disease 

control. Dosimetric studies utilizing various techniques to spare the hippocampus including both 

intensity modulated radiotherapy (IMRT) and helical TomoTherapy treatment first demonstrated 

the feasibility of hippocampal avoidance during WBRT 22,38–41. RTOG 0933 was a multi-

institutional phase II trial of HA-WBRT for brain metastases 17. In RTOG 0933, only 7% (8 / 113) 

of patients experienced decline in memory as compared to historical controls with 30% 

experiencing NCF decline when irradiated without hippocampal avoidance. There was no decline 

in quality of life scores in study patients versus significant decline in historical controls 42. A phase 

III study (NRG CC001) has been completed and reported at national conferences 43,44, 
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demonstrating that conformal avoidance of the hippocampi during WBRT preserves NCF while 

achieving similar intracranial control and survival. 

HA-WBRT requires accurate delineation of the hippocampus. In each of the HA-WBRT 

studies to date, identification of the hippocampus is performed on high resolution T1-weighted 

MRI images 45 fused to radiation treatment planning computed tomographic (CT) images of the 

head 23. With an MRI, sufficient soft tissue contrast exists to delineate the hippocampus. The MRI 

is then fused to a CT, reducing geometric distortions inherent in MRIs, but fusion can possibly 

introduce other sources of error 46,47.  For example, differences in the axial spacing of the slices 

introduces errors from interpolation. In the RTOG 0933 multi-institutional trial, prior to 

participation in the study, treating physicians were individually credentialed, where an example 

patient MRI and CT volumes were fused, contoured and planned, with the results then reviewed 

by the RTOG centralized committee 23. A Hausdorff distance 48 of  > 7 mm between physician’s 

contours and the reference contour or errors in MRI-CT fusion were considered unacceptable 

deviations. For the trial, failures were significant, with 6.8% (8 / 113) of physicians failing 

credentialing and 15.85% (13 / 82) enrollees failing pre-treatment centralized review due to errors 

in either MRI-CT fusion or hippocampal segmentation.  

Deep learning provides a method to train computational models with the representations 

needed for object detection or classification 3,49. Deep convolutional networks, one class of models 

inspired by visual neuroscience 50, have achieved breakthrough success in the detection, 

segmentation, and recognition of objects in images 51–53. Convolutional operations are foundational 

to contemporary deep learning segmentation models. Since the first implementation with LeNet, 

the field has exploded with creative solutions to segmentation tasks 54, such as encoder-decoders 

55–57, residual connections 58 and inception blocks 59. Model complexity and input tensor 
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dimensions have been limited by the need to fit the entirety of the data within the Graphics 

Processing Unit (GPU) memory. The hippocampus is a 3D structure whose segmentation is best 

performed using volumetric (3D) image data. Fortunately, as GPU on-board memory and speed 

have increased, 3D convolutional networks have emerged, such as 3D U-Net 60 and 3D ResNet 61. 

The field of neuroimaging has explored 3D deep convolutional network models for brain 

structure segmentation, including hippocampal segmentation 61,62, but none have attempted 

segmentation from CT images directly without using MRI as input. Zhao et al. 63 demonstrated 

the feasibility of CT based segmentation by using a 2D deep learning model to generate synthetic 

MR images, after which a deformable atlas registration was used to segment structures from the 

synthetic MRI, including the hippocampus. Since Zhao et al., deep learning models have been 

shown to outperform deformable atlas-based segmentation techniques for hippocampal 

segmentation 64, and 3D neural networks have been shown to outperform 2D networks for both 

direct segmentation tasks 60 and synthetic image generation 65. Further spurred on by the 

development of deep learning specific computational cards, particularly Nvidia’s tensor cores, 

models have become deeper 66, more computational intensive 67,68, and expanded into three 

dimensions, either spatially 60 or temporally 69,70. Additional tools have been co-opted from other 

deep learning fields for segmentation purposes, most recently attention gates. Attention gating was 

first utilized for natural language processing 71,72 to direct the attention of deep learning models 

towards relevant words in a sequence. Attention gating has since been utilized for super resolution 

73, image classification 74, 2D image segmentation 75 and volumetric medical image segmentation 

76,77.  

Three-dimensional deep learning models have the potential to automate hippocampal 

segmentation and remove the need for additional MRI scans. As demonstrated by the credentialing 
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experience in RTOG 0933, removing the need for the MRIs to identify the hippocampus will 

reduce the need for a second imaging study for treatment planning, reduce the potential 

uncertainties associated with MRI-CT image registration, and reduce the cost and complexity of 

treatment. The vast diversity of developments in deep learning models and methodologies has 

provided a wealth of tools to improve patient outcomes in radiation oncology.  

HA-WBRT has the potential to benefit approximately 200,000 patients per year in the 

United States alone 78,79. In this study, we demonstrate that deep learning models, utilizing 3D 

convolutional neural networks, can delineate the hippocampus using only high-resolution non-

contrast CT images, with accuracy comparable to human physicians on a national randomized trial. 

4.2 Methods 

4.2.1 Image Data  

Under a Beaumont Research Institute Institutional Review Board approved retrospective 

study (2018-009), we collected high resolution CT and MRI images acquired for Leksell Gamma 

Knife (Elekta AB, Stockholm, SE) radiosurgery treatment planning. During treatment planning, 

each patient had a stereotactic frame placed by a neurosurgeon. Following placement, sequential, 

high-resolution imaging studies were conducted using 16-slice Siemens Sensation 16 CT scanner 

(Siemens Medical Solutions, Malvern, PA) and a gadolinium contrast enhanced T1-weighted 

sequence on a 3T Siemens Sonata MRI scanner (Siemens Medical Solutions, Malvern, PA). In 

total, 402 Gamma Knife patients were visually inspected and those with significant artifacts or 

anatomy-altering tumors (e.g., meningiomas) were excluded. Of those inspected, 390 patients were 

selected for this study. The selected cohort was either healthy brain (trigeminal neuralgia or 

vestibular schwannoma; 191 patients) or treated for metastatic disease (4 to 26 brain metastases; 

199 patients), with treatments between July 16, 2007, and July 19, 2018. Images suitable for this 
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study were then collected in a MIM workstation (MIM Software Inc., Beachwood, OH). Using 

MIM, the MRI volumes were rigidly registered and resized to the coordinate space and voxel 

dimensions of the CT volume (MR resampled from 1.0 × 1.0 × 1.0 to 0.5 × 0.5 × 1.0 mm). By 

using the fiducial markers on the stereotactic frame during image alignment, sub-millimeter 

accuracy in the rigid registration was achievable 80.  

4.2.2 Contouring the Hippocampus 

Contours of the hippocampus were created following the methods and guidelines of Chera 

et al. 45 and Gondi et al. 22 using thin-sliced (< 1.5 mm slice spacing) T1-weighted MRI images. 

The hippocampus contouring tutorial atlas from the RTOG 0933 study was used as a reference for 

contouring consistency 81. Following contour generation, a minimal smooth operation was applied, 

and the final contours were reviewed for anatomic accuracy.  

4.2.3 Image Processing 

In addition to the hippocampal contours, a body contour was generated using a threshold 

region grow tool. This body contour was used to mask out the Gamma Knife frame, preventing a 

deep-learning model from learning on the frame’s integrated spatial fiducial markers. Removing 

the frame also produced trainable image volumes which more closely resembled conventional 

WBRT simulations, which do not utilize a stereotactic frame. 

These patient CT images and structure sets containing the left and right hippocampus 

contours were anonymized and transferred to a research server for further processing. From the 

body contour, a center of mass was calculated for each patient and a global offset was applied to 

center the cropped volume at the level of the hippocampus. Image volumes for each patient were 

cropped to 200 × 200 × 35 voxels centered around a standard offset determined across the entire 

dataset. Cropping was used as opposed to down-sampling to reduce the theoretical loss in 
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segmentation accuracy caused during the down, and subsequent up-sampling process. A short 

investigation of these impacts of resampling are presented in Appendix B. All contours were 

converted from DICOM format into a binary mask for the left and right hippocampus. Then, the 

processing operations were repeated in an equivalent manner to the segmentation masks. 

To simplify and expedite training, the CT image was processed three ways for use in model 

training: soft-tissue window-level, bone window-level and an inverse-square distance map 

computed from the calculated center of mass (bottom row, Figure 4.1).  

The soft-tissue window and level was computed from the HU values within the cropped 

image volumes across the dataset. A Gaussian distribution curve was fit to the HU histogram, from 

which we included ±4𝜎 to maximize dynamic range. The resulting soft-tissue window and level 

had values of 80 and 56 HU. For the bone window-level, the standard settings in the MIM software 

suite were used, with a window of 2800 HU and a level of 600 HU.   

One method to reduce memory requirements is patch-based image segmentation, which 

segments small image patches, with results determined by majority voting. The small field of view 

(FOV) of these training patches can be difficult to learn from due to the low context and contrast 

of brain CT images. To maintain the relative spatial information of these small patches, providing 

a relative coordinate system can improve performance 82–84. In practice, during training a deep 

learning model should learn relationships between spatial regions and image features, although it 

cannot be assumed for all model designs and domains 85,86. But, akin to the challenges presented 

by small FOV patches, the initial convolutional operations in a neural network are limited to the 

kernel size (typically 3x3x3). Therefore, without explicitly providing spatial information, it can be 

difficult for these initial convolutional operations to derive any meaningful detail from their limited 

FOV on a low-contrast cranial CT image. Even in instances where spatial relations are developed, 
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the initial convolutional operations may be used ineffectively if few identifiable features can be 

learned. So, to ensure efficient convolutional operation utilization, we provide a channel of the 

input tensor which is an inverse-square distance map with the distance measured from the center 

of mass (Figure 4.1.F).  

 

Figure 4.1: Visualization of data processing steps (first row) and inputs (second row). A) MRI with ground truth 

(magenta) B) CT Image with body contour (green) C) CT Image with frame masked out, red box indicating cropped 

volume D) Cropped volume window, leveled to soft-tissue E) Cropped volume window, leveled to bone F) Inverse 

squared distance map from centroid. 

4.2.4 Model Design and Training 

Radiation oncology treatment simulation utilizes helically acquired CT scans which are 

reconstructed into a 3D image volume, from which anatomical structures can be segmented. A 2D 

deep learning model is not ideal for deep learning segmentation in this domain because it predicts 

each slice independent of surrounding slices, making the model inherently prone to predictions 

with disjointed surfaces or incongruencies which almost always perform worse than 3D models. 
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In this investigation, we only considered 3D deep learning models with a large enough 

field of view to segment the entire hippocampus at native resolution. This prevented the need to 

implement a work-around for a smaller FOV utilized in other models, such as two stage models 

87,88, predicted volume up-sampling or down-sampling 68,89–91, small FOV sliding window 

inference 92, and conditional random fields  89–91, all of which may limit model performance for 

our segmentation task.  

To develop the best model for our proposed segmentation task, we compared three existing 

models that have been utilized for brain segmentation tasks. Then, motivated by the specific needs 

of our task, we propose a fourth model of novel design. The three existing models tested include 

the 3D U-Net 60 (Figure 4.2, top), the Dilated 3D U-Net 93 (D-3D U-Net; Figure 4.2, bottom), and 

the High-Res3DNet 61 (3D ResNet; Figure 4.3, top). Our novel model is the Attention Gated 3D 

ResNet (AG-3D ResNet; Figure 4.3, bottom). For each model, hyperparameters were individually 

tuned and then their performance was compared using a nested cross-fold validation across our 

entire dataset. 
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Figure 4.2: A depiction of the 3D U-Net (top) and D-3D U-Net (bottom) models, where the 3D U-Net includes 

transposed convolutions during decoding and the D-3D U-Net uses 3D Up-sampling operations. The D-3D U-Net 

cascaded output matches image dimensions before addition with up-sampling as well. The number of convolution 

filters per operation is noted with a number above the convolutional operation or block. 
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Figure 4.3: A depiction of the 3D ResNet (top) and AG-3D ResNet (bottom). For both models, residual connections 

include a convolutional operation to match the number of filters prior to residual or attention gating addition. The 

number of convolution filters per operation is noted with a number above the convolutional operation or block. 

For the 3D U-Net we chose to implement the standard model, for which the model design 

and properties have been discussed elsewhere 60. Folle et al. 93 proposed the D-3D U-Net for 
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hippocampal segmentation on MR images. This model is a derivative of the U-Net design which 

replaces the lowest U-Net layer with a summation of four dilated convolutions, adds short residual 

connections in encoding blocks, replaces the transposed convolutions with 2D up-sampling 

operations, and generates the final prediction with a cascaded summation of up-sampled outputs 

from each decoding layer. In our implementation of the D-3D U-Net, we modified the number of 

convolutional filters to 64, 96, 128, 192, and 256 for each layer, respectively. By decreasing the 

filter sizes, we allowed for increased input dimensions, at no apparent decrease in model 

performance. The High-Res3DNet model is an implementation of 3D ResNet which allows for a 

larger field of view on the training input 61. We optimized the base model design by altering the 

location of dropout layers and adding an additional layer to the decoding structure.  

For most deep learning problems, most of the training data is irrelevant to accurately 

solving the task. Derived from natural language processing, attention gates were developed to 

focus the model to reinforce high yield regions of the training data such as nouns or verbs. From 

natural language processing, the application of attention gating has improved performance in 

segmentation tasks 72–77,94. During manual hippocampal segmentation, the lateral ventricles and 

white matter dictate most of the contour’s borders, suggesting that only a small portion of the 

image is critical to generating accurate segmentations. Motivated by this realization, we propose a 

novel model architecture called the Attention-Gated 3D ResNet (AG-3D ResNet), which 

introduces additive attention gates 76,94 in the residual blocks. During experimentation in model 

design, we found additive attention gating to significantly outperform multiplicative gates. While 

the inclusion of additive attention gating in residual blocks impedes the gradient back-propagation 

95, the difference does not prevent saturation of a model as small as the AG-3D ResNet. In 

exchange for decreased training speed, additive attention gating reinforces regions of particular 
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interest, which aids in segmenting small, low contrast structures. To maintain a comparable 

memory footprint to the 3D ResNet, the last set of the model’s residual blocks were decreased 

from 64 to 52 filters, and the second to last block was decreased from 160 to 64 filters. 

Input to each model was a three-channel tensor comprised of the soft-tissue and bone 

window-levels, and an inverse-square distance map (Figure 4.1.D-F). Both the 3D ResNet and 

AG-3D ResNet models were trained with the three-channel tensor at dimensions 200 × 200 × 35 

voxels. Due to the down- and up-sampling of the 3D U-Net design, the input tensor was limited to 

dimensions with a factor of two, so the tensor was cropped to 192 × 192 × 32. The D-3D U-Net’s 

increased memory footprint necessitated further limiting the input tensor to 192 × 192 × 16, 

which was randomly generated from within the 3D U-Net’s training dataset during training. Both 

the 200 × 200 × 35 and 192 × 192 × 32 included most of the hippocampus voxels (> 99%). For 

each model design, the output tensors had equivalent dimensions to the input tensors. For the D-

3D U-Net, final volumes were inferred from sets of three predictions, with majority voting used to 

resolve the overlapping region of the volume. In all model designs, the final layer culminated with 

a softmax activation, generating three channels corresponding to left hippocampus, right 

hippocampus, and background (neither). The number of model parameters and input tensor 

dimensions are given in Table 4.1. 

Table 4.1: Models with number of parameters and input tensor dimensions 

MODEL AG-3D RESNET 3D RESNET 
DILATED 3D U-

NET 
3D U-NET 

# OF 

PARAMETERS 
644,535 830,339 14.14 million 19.08 million 

INPUT TENSOR 

SIZE 

(200, 200, 35) x 3 

channels 

(200, 200, 35) x 3 

channels 

(192, 192, 16) x 3 

channels 

(192, 192, 32) x 3 

channels 

 

Hyperparameters were determined by training 10 models across the same train, test, and 

validation split, optimizing until the model consistently performed well. The hyperparameters for 
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each model are provided in Table 4.2. A nested cross-fold validation followed, which, due to the 

high number of trainings required, was parallelized across four Nvidia Titan RTX GPUs (Nvidia, 

Santa Clara, CA) with 24 GB memory and two Nvidia Quadro RTX 8000 GPUs (Nvidia, Santa 

Clara, CA) with 48 GB memory. All models were trained on a 312 / 39 / 39 split for train, validation, 

and test, respectively.  

Table 4.2: Hyperparameter settings used for each model during nested cross-fold validation. 

MODEL AG-3D RESNET 3D RESNET 
DILATED 3D U-

NET 
3D U-NET 

BATCH SIZE 2 2 2 2 

MAX EPOCHS 25 15 30 25 

LEARNING 

RATE (LR) 
2.5E-4 2E-4 7.5E-4 7.5E-4 

OPTIMIZER ADAM ADAM ADAM ADAM 

LR DECAY 0.0 0.0 2E-8 2E-8 

DROPOUT 0.175 0.15 0.25 0.25 

LR REDUCTION 0.25 After 2 epochs 0.50 After 2 epochs 0.5 After 3 epochs 0.25 After 2 epochs 

EARLY 

STOPPING 
After 5 epochs After 3 epochs After 5 epochs After 4 epochs 

 

For data augmentation during training, we generated images with transformations 

randomly chosen between ±10 mm x, y-axis shifts, ±2 mm z-axis shifts, ±10° rotation (roll) and 

a 50% likelihood of inclusion of between ±5% gaussian noise and 50% likelihood of flipping 

along the y-axis. During training of the D-3D U-Net, random 16 slice sub-volumes of the U-Net 

data set were generated during training. We found data augmentation to not significantly change 

overall training results (p > 0.25), which is likely attributable to our large and homogenously 

sourced dataset with single institution origin. 

4.2.5 Loss Function and RTOG Evaluation Metrics 

The accuracy and clinical applicability of segmentation in radiation oncology is dependent 

on both the similarity and maximum spatial separation between the predicted and ground truth 

contours. The most common metric used to determine segmentation similarity is the Dice 
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similarity coefficient 96. When using a Dice loss function 97 for tasks with large class imbalances, 

a model may tend towards segmenting only the largest volume class. To account for class 

imbalance, the generalized Dice loss 98 scales the per-class Dice loss by the relative class 

occurrence in the ground truth. For hippocampal segmentation, the background is orders of 

magnitude larger than the hippocampi and the generalized dice loss imbalance would be substantial. 

To simplify the training, we took the limit of the generalized Dice loss for a large background by 

simply excluding the background channel altogether. This exclusion meant we instead calculated 

the Dice loss from only the left and right hippocampus. To facilitate an equal comparison, we 

utilized this loss function when training all model designs. Coincidentally, excluding the 

background for the dice loss provides an accurate metric for model checkpointing, early stopping, 

and determining learning rate updates while training. While the Dice similarity score is robust and 

easily interpretable for determining the relative spatial agreement, absolute spatial disagreement is 

important in radiation oncology treatment planning. For this reason, RTOG 0933 utilized an 

acceptance criterion based upon the Hausdorff distance metric, given in Equation 4.1, which 

calculates the absolute spatial disagreement between two contours. The RTOG 0933 trial protocol 

determined a HD ≤ 7 mm as an acceptable deviation.   

Hausdorff(𝑋, 𝑌) =  max {sup
𝑦∈𝑌

inf𝑥∈𝑋 𝑑(𝑦, 𝑥), sup
𝑥∈𝑋

inf𝑦∈𝑌 𝑑(𝑦, 𝑥)}     (4.1) 

In addition to Dice and Hausdorff, we also compared Jaccard score, average surface 

distance, relative average volume difference, precision and recall between the predicted 

segmentation and corresponding manual hippocampus structure.  

4.2.6 Volume Inference and Nested Cross-Fold Validation 

A well performing deep learning model should be able to robustly segment the structure of 

interest on any given patient. But, with a single train / test data split, the test set is unlikely to fully 
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represent the dataset domain. Furthermore, a model may be unable to consistently learn features 

when trained repeatedly. This may either be due to a propensity to overfit, susceptibility to local 

minima or an incapability of consistently learning to identify features. To evaluate the true 

performance of our models, we performed a 10-fold nested cross validation which totaled 90 

trained instances of each model, each with 39 predicted volumes per test split, for a total of 3510 

predicted volumes per model type. Through the cross-validation process, we reduce any variances 

introduced by initial patient shuffling and splitting for a test set. Furthermore, the overall mean 

across all folds is computed from the entire 390-patient dataset, giving a more representative 

picture of model performance across a large cohort. In total, we trained 90 instances each of the 

3D U-Net, D-3D U-Net, 3D ResNet and AG-3D ResNet models, requiring approximately 46 GPU 

days to train the four models when parallelized across four Titan RTX GPUs and two Quadro RTX 

8000 GPUs. On both card types, test set inference occurred in less than one second per volume.  

4.3 Results 

4.3.1 Comparing Deep Learning Results to Physicians on RTOG 0933  

Across our entire cross-fold validation (3510 predicted volumes), the AG-3D ResNet 

generated predictions for left and right hippocampus which achieved a mean and standard 

deviation Hausdorff distance of 4.78 ± 2.53 mm and 4.63 ± 2.20 mm. This translated into an RTOG 

passing rate of 88.3 ± 31.4% and 88.9 ± 32.1% for left and right hippocampus. During the 

pretreatment centralized review of the RTOG 0933 trail, 82 patients were enrolled, with the 

treating physician contours having a mean Hausdorff distance of 5.47 mm. On the first attempt, 

13.41% (11 / 82) failed for hippocampal segmentation and 2.44% (2 / 82) failed for MRI-CT fusion 

for a combined failure rate of 15.85% (13/82). Because our workflow forgoes the need for MRI-

CT fusion, we compared our results to the RTOG population which passed on both contour and 
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registration evaluation. Considering that for the RTOG 0933 study, 6.8% (8 / 113) of physicians 

failed credentialing prior to patient enrollment, it is reasonable to assume the passing rate observed 

in the study is at least representative of the average clinical radiation oncologist. 

To mirror the workflow observed in the clinical trial where only bilateral hippocampi were 

compared, the model predictions for each patient were only considered passing if both the left and 

right hippocampi met the RTOG 0933 criteria independently. The total passing rate of the AG-3D 

ResNet was 80.2%, (2815 / 3510), which when compared to the RTOG 0933 study using a two-

sided t-test, the null hypothesis could not be rejected (p = 0.3345). For the other model designs, 

the 3D ResNet likewise could not reject the null hypothesis (p = 0.1677), whereas both the 3D U-

Net or D-3D U-Net performed significantly differently (p < 1E-5) from the RTOG-0933 trial.  

Using a two-sided Wilcoxon signed-rank test, the 90 trained model instances for each 

design were compared based on the RTOG passing criteria. We found both the ResNet style 

models to outperform either U-Net style model (p < 1E-5), and the AG-3D ResNet to significantly 

outperform the 3D ResNet (p = 0.045). Both the D-3D U-Net and 3D U-Net experienced complete 

failure rates (no hippocampus was predicted), as indicated in Table 4.3, while neither the AG-3D 

ResNet or 3D ResNet had any such failures. These failures are evident in the boxplot of the passing 

rates for the 3D U-Net (Figure 4.4) where an entire quartile failed for right hippocampus.  

To determine the impact of the inverse square distance map, we re-trained and tested the 

AG-3D ResNet with the distance-map channel replaced with zeros. The trained instances without 

the distance map were found to have performed significantly worse by both 95% Hausdorff 

distance and Dice score (p<0.05). Additionally, without the inverse square map, the AG-3D 

ResNet model experienced the only instances of complete failure to segment either hippocampus. 

For any such failing hippocampi predictions, the 100%, 95% Hausdorff distances and average 



 

52 

 

 

 

surface distance are undefined and are indicated in Table 4.3 as ‘INF’. To aide in visualizing the 

model predictions, a segmentation from each model is displayed in Figure 4.5. In this example, 

both U-Net models failed to predict one hippocampus each. 

Table 4.3: Metrics reported as median and interquartile range comparing AG-3D ResNet, 3D ResNet, Dilated 3D 

U-Net and 3D U-Net. Bolded text indicates the best performing model for the given statistic, determined by mean 

squared error from the ideal value. 

COMPARISON METRIC 
AG-3D RESNET 3D RESNET D-3D U-NET 3D U-NET 

Left Right Left Right Left Right Left Right 

DICE SCORE (%) 

73.8 

(68.8– 

78.5) 

73.7  

(68.5 – 

77.8) 

73.0  

(67.7 – 

78.0) 

72.7 

(67.7-

78.0) 

66.6  

(57.2 – 

72.1) 

65.4  

(53.6 – 

70.9) 

70.7  

(60.4 – 

76.9) 

68.0  

(00.0 – 

74.6) 

JACCARD SCORE (%) 

58.5  

(52.5 – 

64.6) 

58.3  

(52.1 – 

63.6) 

57.4  

(51.1 – 
63.9) 

57.1 

(50.8-
62.7) 

49.9 

(40.1-
56.4) 

48.5  

(36.6 – 
54.9) 

54.7  

(43.3 – 
62.5) 

51.5  

(00.0 – 
59.5) 

HAUSDORFF (MM) 

4.062 

(3.162 – 

5.523) 

4.153 

(3.240 – 

5.500) 

4.123 

(3.202 – 

5.612) 

4.272 

(3.240 – 

5.679) 

5.612 

(4.039 – 

8.559) 

5.679 

(4.123 – 

8.768) 

4.822 

(3.500 – 

8.031) 

5.500 

(3.742 – 

INF) 

95% HAUSDORFF (MM) 

1.803 

(1.414 – 

2.449) 

1.871 

(1.414 – 

2.449) 

1.871 
(1.414 – 

2.500) 

2.000 
(1.500 – 

2.500) 

2.236 
(1.803 – 

3.669) 

2.291 
(1.871 – 

4.243) 

2.121 
(1.500 – 

3.905) 

2.500 
(1.803 – 

INF) 

AVERAGE SURFACE 

DISTANCE (MM) 

0.548 

(0.421 – 

0.738) 

0.551 

(0.431 – 

0.713) 

0.557 

(0.433 – 

0.761) 

0.551 

(0.438 – 

0.720) 

0.645 

(0.477 – 

0.993) 

0.645 

(0.499 – 

0.982) 

0.644 

(0.462 – 

1.059) 

0.713 

(0.503 – 

INF) 
RELATIVE ABSOLUTE 

VOLUME DIFFERENCE 

(%) 

10.2  

(-8.2 – 

31.6) 

9.1  

(-9.9 – 

31.5) 

9.0  

(-10.7 – 

31.9) 

6.9  

(-12.9 – 

30.1) 

4.8  

(-26.0 – 

34.4) 

1.0  

(-31.9 – 

32.9) 

4.2  

(-27.6 – 

31.0) 

-8.9  

(-100 – 

22.7) 

PRECISION 

0.723 

(0.626 – 

0.806) 

0.722 
(0.632 – 

0.797) 

0.720 
(0.621 – 

0.807) 

0.722 

(0.689 – 

0.853) 

0.637 
(0.502 – 

0.742) 

0.631 
(0.491 – 

0.725) 

0.671 
(0.517 – 

0.777) 

0.623 
(0.000 – 

0.756) 

RECALL 

0.798 

(0.707 – 

0.859) 

0.786 

(0.701 – 

0.857) 

0.783 

(0.689 – 

0.853) 

0.773 

(0.672 – 

0.849) 

0.716 

(0.560 – 

0.815) 

0.695 

(0.502 – 

0.804) 

0.762 

(0.585 – 

0.856) 

0.694 

(0.000 – 

0.819) 

FAILURE RATE (%) 0.00 0.00 0.00 0.00 13.3 14.4 16.7 30.0 

RTOG PASSING (%) 88.3 88.9 87.1 87.7 64.5 66.4 70.8 59.7 

BILATERAL RTOG 

PASSING (%) 
80.2 78.5 44.6 39.5 
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Figure 4.4: Passing rates for left and right hippocampus for all four models. Points at 0% passing represent a 

trained instance where the model fails to predict one of the hippocampus volumes. Best viewed in color. 

 

Figure 4.5: Visual comparison of hippocampus segmentation, shown on axial (A, D), sagittal (B, E), coronal (C, F). 

Contours are Ground Truth (red), AG-3D ResNet (yellow), 3D ResNet (green), D-3D U-Net (cyan) and 3D U-Net 

(white). Note that sub-figures D and F show an example where both the D-3D U-Net and 3D U-Net failed to predict 

one of the hippocampus volumes; right and left, respectively. Best viewed in color. 
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4.4 Discussion 

4.4.1 Comparing Models 

Most of the performance difference between the 3D ResNet based and 3D U-Net based 

models is attributable to the 3D U-Net’s propensity to overfit. While we cannot scientifically 

conclude that the absolute optimal hyperparameters were chosen, and equivalent hyperparameter 

tuning grid search was used for all models, indicating that the U-Net derived models are more 

challenging to tune for this task. Although the cascaded output of the D-3D U-Net does partially 

alleviate the overserved overfitting, the detriment to the overall RTOG criteria pass rate is still 

significant. Furthermore, the U-Net style models have upwards of 30x more parameters than the 

3D ResNets, requiring a larger dataset to fully back-propagate the gradient throughout the model. 

(Discussed more in depth in Appendix B.2 ). With a larger number of parameters, when combined 

with the commonly used ADAM optimizer, the U-Net derived models are sensitive to becoming 

trapped in local minima during training 99, likely explaining why many of the cross-validation 

instances only predicted one hippocampi. A common solution to prevent local minima is to instead 

use the stochastic gradient descent (SGD) optimizer 100 which prevents momentum from trapping 

the model into local minima. Although, without momentum, the SGD optimizer traditionally 

requires more epochs to converge, which would have been unfeasible in this study considering the 

number of model instances that were trained during the cross-fold validation.   

As an alternative to the encoder-decoder style models, dilated convolutions with residual 

connections provide a large field of view with an efficient means of gradient backpropagation. 

Despite the limited number of parameters, residual networks behave as an ensemble of smaller, 

individual networks 95, providing an efficient way to encode complex structures. Though the 
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unsampled volumes of the AG-3D ResNet make it less efficient in the usage of GPU memory, the 

price and amount of on-card dedicated graphics memory has continued to become more affordable. 

4.4.2 Hausdorff Robustness for Contour Evaluation 

In the reporting for the RTOG 0933 Phase II enrollment results, to investigate the high 

segmentation failure rates, the trial’s administrators investigated the 7 mm HD cutoff and 

determined it was clinically appropriate 23. We sought to extend this investigation on the high 

sensitivity of the 100% HD metric and found that for volumes which failed (695 / 3510), many 

were failing with discrepancies less than the image voxel dimensions. Of the failures, 23.7% (165 

/ 695) deviated by less than the distance of one axial voxel (0.5 mm) and 30.1% (214 / 695) 

deviated less than one voxel diagonally (0.7 mm), shown in Table 4.4. 

Table 4.4: RTOG HD Metric Robustness from volumes generated from the AG-3D ResNet 

HD MARGIN 

(MM) 

LEFT RTOG 

PASSING 

(%) 

RIGHT 

RTOG 

PASSING 

(%) 

BILATERAL 

RTOG 

PASSING (%) 

POPULATION 

DIFFERENCE 

0.0 88.3 88.9 80.2 --- 

0.5 91.1 91.6 84.9 + 165 

0.7 91.9 92.5 86.3 + 214 

1.0 93.3 93.0 88.0 + 273 

 

The difference of a single voxel in the agreement of two contours is unlikely to manifest 

in significantly different treatment plans. This highlights the high sensitivity of the 100% 

Hausdorff distance metric as a stand-alone hard threshold for a clinical trial, and the need for an 

alternative or combined metric threshold. Furthermore, the RTOG protocol dictates treatment plan 

optimization should be performed to the 5 mm expansion of the combined hippocampi. To evaluate 

the agreement of the functional avoidance regions, we re-computed the statistics for the AG-3D 

ResNet predictions with a 5mm expansion, which are given in Table 4.5. While the Hausdorff 
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distance and average surface distance remain nearly unchanged, the volumetrically sensitive 

metrics (Dice, Recall, Precision, RAVD) increase substantially. 

Table 4.5: Metrics calculated between ground gruth + 5 mm and AG-3D ResNet  + 5 mm expansions, reported as 

median and interquartile ranges. Expansion improves volumetrically sensitive metrics (Dice, Jaccard, RAVD, 

Precision, Recall), while not improving spatially dependent metrics (HD, 95% HD, ASD).   

COMPARISON METRIC 
AG-3D RESNET + 5 MM EXPANSION 

Left Right 

DICE SCORE (%) 87.8 (84.9 – 90.1) 87.5 (85.0 – 89.8) 

JACCARD SCORE (%) 78.2 (73.7 – 82.0) 77.8 (73.9 – 81.5) 

HAUSDORFF (MM) 4.062 (3.162 – 5.500) 4.153 (3.202 – 5.477) 

95% HAUSDORFF (MM) 2.091 (1.732 – 2.915) 2.236 (1.732 – 3.000) 

AVERAGE SURFACE DISTANCE (MM) 0.624 (0.483 – 0.817) 0.637 (0.500 – 0.817) 

RELATIVE ABSOLUTE VOLUME 

DIFFERENCE (%) 
0.8 (-7.2 – 11.0) 1.2 (-8.6 – 11.7) 

PRECISION 0.885 (0.828 – 0.928) 0.883 (0.827 – 0.924) 

RECALL 0.896 (0.844 – 0.935) 0.895 (0.837 – 0.935) 

RTOG PASSING (%) 89.4 88.4 

BILATERAL RTOG PASSING (%) 80.7 

 

4.5 Conclusion 

Within this chapter, an investigation was conducted into the feasibility of using deep 

learning neural networks for the segmentation of the hippocampus from CT alone. Through the 

comparison of multiple model architectures, it was determined that the AG-3D ResNet model 

design yielded the highest and most consistent performance. We found that the segmentations were 

potentially comparable in protocol compliance to treating physicians on the RTOG-0933 Phase II 

trial. While this demonstrates the feasibility, the contours used for training and validating were all 

generated by a single institutional observer. Therefore, validation of the methodology using multi-

institutional data is required. In this chapter the applicability and robustness of the 100th-percentile 

Hausdorff distance metric for the evaluation of clinical comparable contours was brought into 

question. Due to the sensitivity and hard threshold of the metric, the 100th-perecentile Hausdorff 

distance may not strongly correlate to the ability to create clinically appropriate treatment plans. 

We intend to conduct a secondary analysis where a treatment planning study, as opposed to contour 
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comparison, is used as the primary end point of the trial to reduce reliance on the HD metric. From 

this, we can potentially propose an alternative contour comparison threshold which more strongly 

correlates to clinically equivalent treatment plans. 

The work presented in this chapter was published in a peer-reviewed journal article in 

Medical Physics in 2020 101. Publication of the CT, MR and hippocampal contours used in this 

investigation is on-going. We expect that the dataset will complete curation and be available via 

The Cancer Imaging Archive (TCIA) sometime in the second half of 2022. 
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CHAPTER 5 Methodology Validation Using the RTOG-0933 Dataset 

5.1 Introduction 

The lack of robust central quality assurance during prospective study of new radiotherapy 

paradigms leads to poor patient outcomes and may also reduce the statistical power of a study. For 

example, a post-hoc analysis of a TROG head and neck trial demonstrated a 20% reduction in 

overall survival for non-protocol compliant plans 102. Furthermore, a secondary analysis of RTOG 

0617 demonstrated that variability in heart contours reduced the power to detect survival 

decrements from heart dose 103. While credentialing and centralized pre-treatment quality 

assurance (QA) minimize protocol deviations 104,105, it is not ubiquitous among clinical trials. A 

review of 42 clinical phase III trials found that only 45% of trials required credentialing and 52% 

included pre-treatment review 106.  

Radiation induced damage to the neural stem cells have been shown to cause cognitive 

decline, namely in executive function and delayed recall 37. Conformal hippocampal avoidance of 

the subgranular stems cells in the hippocampus during whole brain radiotherapy (HA-WBRT) was 

shown to reduce the decline in neurocognitive function in a phase III trial 24. In the phase II 

feasibility trial (RTOG 0933), the subgranular zone proved difficult to contour, with 6.8% (8/113) 

of the RTOG 0933 trial participants failing credentialing on the first attempt, 62.5% (5/8) failed 

on the second attempt, and during enrollment, 26% (26/100) of clinical contours had unacceptable 

deviations utilizing a criterion of Hausdorff distance (HD) > 7mm from central reviewer contour 

17,23. Contour and treatment plan heterogeneity may have thus reduced the observed benefit of HA-

WBRT for some patients. 

Previous work has investigated the feasibility of deep learning, and specifically deep 

convolutional neural networks (dCNNs), for contour quality assurance on MRI 107 and CT 108–110 
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datasets.  Men et al. 108 performed lung contour QA by training a network on the 2017 AAPM 

Grand Challenge dataset and a subset of the RTOG 1308 contours, and evaluated their performance 

on the remaining RTOG 1308 data. Nijhius et al. 110 used a single-institution dataset to contour 

salivary glands on a subset of the EORTC 1219 dataset. These studies used bootstrapped cutoffs 

for contour acceptability based on the standard deviation of two agreement metrics: the Dice 

coefficient and the Haussdorff distance (HD) comparing the treating physician (TP) contours to a 

manually validated subset with subjectively assessed high-quality contours. 

Prior work has demonstrated that a CT-only dCNN hippocampal segmentation model can 

accurately delineate the subgranular zone hippocampal contours 111. This study sought to assess 

such a model’s ability to perform contour quality assurance. Specifically, we hypothesized that a 

single-institution CT-only hippocampus model would achieve a higher compliance with protocol 

criterion of HD<7mm on the multi-institutional RTOG 0933 dataset compared with the TP 

contours. We also hypothesized that such a model would provide utility as a first-pass QA tool. 

Uniquely, we benchmark the model’s quality assurance performance for detecting non-protocol 

compliant treating physician contours against a simulated expert principal investigator- here 

referred to as institutional observer (IO) – as opposed to subsets of the trial data as performed in 

prior work. 

5.2 Methods 

5.2.1 Training Dataset 

Images were collected under institutional review board approval for 390 patients treated 

between 2007 and 2018 at the Beaumont Gamma Knife Center. Of the 390 patients, 192 were 

treated for metastatic disease of unspecified origin (1-26 lesions) and 198 treated for benign tumors 

(acoustic neuroma or trigeminal neuralgia). Patients with anatomy altering tumors (i.e., large 
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meningiomas) were excluded from the dataset, but no restrictions on age, sex or prior medical 

history were made when selecting patients. The CT images were acquired at 120 kVp and variable 

mAs using either a Siemens Sensation (10, 16 and 64 slice; n=72, 305 and 1) (Malvern, PA) or 

Siemens Definition AS+ (128 slice; n=12) at a slice thickness of 1 mm and reconstructed to a 21-

30 cm axial field of view. T1-weighted, gadolinium-enhanced MR images were acquired using a 

Siemens Symphony TIM (n=242), Siemens Sonanta (n=143) or GE Signa HDxt (n=5) (Chicago, 

IL) at a slice thickness of 1mm utilizing a fast spoiled gradient echo sequence, reconstructed to a 

25-30 cm field of view. Gamma knife images were chosen for the training dataset because the CT 

and MR images were high resolution, acquired in back-to-back imaging studies, and could be 

accurately rigidly registered using the stereotactic frame. 

In MIM (Beachwood, OH; version 7.1.3), the T1 MR was rigidly registered to the planning 

CT. From the aligned secondary MR image, and using the RTOG 0933 contouring atlas as 

reference, three independent observers contoured the hippocampi (n=390; n=247; n=107) and the 

contours were saved as RTSTRUCT to the CT frame of reference. Because most patients (n=283) 

had only two or one observer contours, it was not feasible to compute a consensus contour (e.g., 

STAPLE 112) as substantial uncertainty would result in volumetrically smaller contours. The 

training dataset is expected to be made available on The Cancer Imaging Archive. 

5.2.2 Internal Test Set 

For use as an internal test set, all cases treated at Beaumont Health which contained 

bilateral hippocampal contours were collected. In total, 76 clinical cases were identified from at 

least 6 treating physicians, with treatments between 2013-2021. The CT images were acquired at 

120 kVp and variable mAs on a Phillips Brilliance Big Bore (16 slice; n=73) (Cambridge, MA) or 

a Siemens Sensation Open (24 slice; n=3) at a slice thickness between 1 and 3 mm and 
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reconstructed to a 35-66 cm axial field of view. T1-weighted, gadolinium-enhanced MR images 

were acquired using the vendor specific fast spoiled gradient echo sequence on either a Siemens 

(n=48), Philips (n=17), or GE (n=11) MR scanner at slice thicknesses of 1-6 mm and reconstructed 

to a 16-35 cm field of view. Every hippocampal contour was reviewed prior to usage to ensure 

contour completeness, but no alterations were made to the original contours.  

5.2.3 External Test Set - RTOG 0933 Dataset 

The Phase II RTOG 0933 multi-institutional data set was used as a hold-out external test 

set to validate our model and perform the simulated QA run. Enrollment for RTOG 0933 was 

limited to patients of age 18 years or older with a Karnofsky performance status greater than 70 

and who presented with brain metastases without hydrocephalus, leptomeningeal metastases, or 

tumors within 5 mm of the hippocampus 17. For treatment planning, the study protocol mandated 

T1 weighted MR image with axial slice thickness of at most 1.5 mm, and at most 2.5 mm for the 

planning CT 17. The study enrolled 113 patients, 96 of which were provided for this study with 

complete data including the treating physician contours, T1-MR and CT images. 

 Prior to enrollment, each physician underwent credentialling which consisted of 

contouring a trial case, registering the MR to CT, and generating a treatment plan. Following 

successful credentialling, rapid pre-treatment centralized QA was used for the first three 

consecutive patients per institution, with subsequent post-treatment review of remaining cases. 

The RTOG 0933 data set provided for this investigation included only those generated by the 

treating physician (TP). No alterations were made to the treating physician contours or avoidance 

volumes in the RTOG 0933 clinical data. As a surrogate for central review contours, an 

institutional observer (IO; author EP), blinded from existing contours, generated bilateral 

hippocampus contours on each RTOG 0933 patient following the contouring atlas guidelines. For 
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our simulated first-pass QA, these IO contours would be treated as the centralized reviewer ground 

truth to evaluate the sensitivity of the deep learning QA tool.  

5.2.4 Data Preparation 

The cohorts of Gamma Knife (n=390), internal clinical (n=76) and RTOG (n=96) imaging 

sets were anonymized and collected on a research server. On the research server the images were 

converted into NumPy arrays using our open-source image processing pipeline 113. During image 

processing, any completely or partially missing axial CT image slices within the RTOG 0933 

image data set were linearly interpolated. If the interpolated axial image slice resided within a pre-

existing contour, the contour was algorithmically interpolated 114. Each data set then underwent a 

similar processing pipeline of resampling, cropping, window leveling and normalization. For both 

test sets the images were resampled to a uniform voxel size (0.977 × 0.977 × 1.25 mm) using a 

nearest neighbor function for segmentations and a 3rd order spline function for images. Additional 

resampling ratios were used for the training set as a form of data augmentation resulting in a range 

of voxel dimensions between 0.5 × 0.5 × 1.0 − 1.5 × 1.5 × 2.0 mm (all voxel sizes given in 

Table 5.1). Following resampling, each constructed CT volume was window and leveled to both 

soft tissue (window =375, level = 40) and bone (window = 2800, level = 600) and then normalized. 

To reduce the model’s memory footprint and increase the training convergence, volumes were 

cropped around a centroid that was calculated on the Gamma Knife data set to maximize the 

inclusion of hippocampal contours. Maximal hippocampal inclusion was achieved with a cropped 

volume of 150x175x53 voxels and centroid defined in the axial plane by the center of mass of the 

skull, offset by 3.53mm posterior, 1.15 patient right and 92.7 mm inferior of the superior aspect of 

the skull (>100 voxels with 650 < HU < 2000). Every ground truth segmentation was cropped in 

an equivalent manner to the CT image volume. The resultant processed volumes were 
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146.5 × 170.6 × 66.25  mm and contained 99.998% of the RTOG clinical trial hippocampal 

volumes and 100% of the single-observer contours. The details of our cohort are summarized in 

Table 5.1. 

Table 5.1: Data set preparation parameters. For RTOG 0933 Test set, contours include treating physician (TP) and 

institutional observer (IO). 

 TRAINING SET 
INTERNAL TEST 

SET 
RTOG 0933 TEST SET 

PATIENTS 390 76 96 

HIPPOCAMPAL CONTOURS 

PER PATIENT 

Up to 3 (different 

observers) 
1 (clinical) 2 (TP, IO) 

RESAMPLED IMAGE 

RESOLUTION(S) 

0.5x0.5x1.0 mm 

1.0x1.0x1.0 mm 

1.0x1.0x1.25 mm 

1.0x1.0x2.0 mm 

1.5x1.5x2.0 mm 

1.0x1.0x1.25 mm 1.0x1.0x1.25 mm 

NUMBER OF INSTITUTIONS 1 1 63 

CROP SIZE 150x175x53 150x175x53 150x175x53 

CROP CENTROID OFFSET  

(A-P, L-R, S-I) 

(-3.35, -1.15, -92.7) 

mm 
(-3.35, -1.15, -92.7) mm (-3.35, -1.15, -92.7) mm 

WINDOW LEVEL (HU) 
W: 375, L: 40 

W: 2800, L: 600 

W: 375, L: 40 

W: 2800, L: 600 

W: 375, L: 40 

W: 2800, L: 600 

5.2.5 Model Design and Training 

Continuing from a prior work, an attention gated 3D-ResNet (AG-3D ResNet) was used in 

this study 111. The AG-3D ResNet model is derived from a 3D residual network design 115 with the 

addition of attention gates 76 in each residual block. In the interest of simplifying the data 

processing pipeline, the inverse distance map input used in prior work was excluded from the 

model inputs. The AG-3D ResNet model was implemented in TensorFlow (version 2.3.0) 116 and 

consisted of 642,215 trainable parameters. Training utilized a Dice loss function 117, computed 

excluding the background channel, and was conducted on two Nvidia Quadro RTX 8000 GPUs 

(Santa Clara, CA) with data parallelism. During training, the processed CT image and 

segmentation ground truth volume pairs were generated with pitch, yaw and roll rotation randomly 

chosen between -5 and 5 degrees for each axis. Data generation used a random ordered, 
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parallelized generator where each institutional observer’s contour, at each resampled resolution, 

was generated once per epoch. 

Model tuning and training were split into distinct phases. During the first phase, only 

Beaumont Gamma Knife data was used for hyperparameter tuning, with the data set split into 

training (n=350 patients) and validation (n=40 patients). A manual hyperparameter grid search 

was performed to tune learning rate, drop-out rate and learning rate drop to maximize performance 

on the validation set. The highest performing model parameters are given in Table 5.2. In the 

second phase, the hyperparameters were held constant and the model instance was re-initialized 

with random variables and re-trained 5 times on the Gamma Knife data with the same data split. 

Each trained model instance was evaluated on the internal test set by median Dice coefficient, and 

the highest performing trained instance was used for final inference on the RTOG 0933 external 

test data set. Boolean segmentation masks were generated form the inferred predictions on a voxel-

by-voxel basis by converting the highest predicted channel (between left, right and background) 

to one and all other channels to zero. This method was used instead of rounding to ensure each 

voxel corresponded to exactly one class. Predictions were cleaned-up with a binary fill holes 

operation and then only the largest contiguous structure was preserved. The final predicted 

segmentations generated from the RTOG test set were resampled to the original voxel dimensions 

for statistical evaluation against the unprocessed treating physician and our stand-in for central 

review contours (institutional observer).  

Table 5.2: Hyper-parameters used with the AG-3D ResNet during inference upon the RTOG-0933 dataset. 

HYPERPARAMETER QUANTITY 

BATCH SIZE 4 

EPOCH Up to 100 

TRAINING STEPS 

PER EPOCH 
876 

LEARNING RATE 0.005 

OPTIMIZER ADAM 

DROPOUT 0.175 
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LR REDUCTION 
½ After 3 epochs of plateau on 

validation set loss 

EARLY STOPPING 
After 8 epochs of plateau of 

validation set loss 

 

5.2.6 Evaluation 

The three sets of contours were evaluated using the MedPy library 118 to compute Dice 

correlation coefficient 96, 95%, 99% and 100% Hausdorff distance (HD) 119, average surface 

distance (ASD), relative absolute volume difference (RAVD), precision and recall. During 

enrollment in the RTOG 0933 clinical trial, contours with a HD < 7mm was defined as within 

protocol; therefore, we computed how many of the hippocampal volumes would pass this metric. 

The deep learning predictions generated from the RTOG test set were resampled to their original 

resolution and processed by filing holes and removing discontinuous voxels. The processed 

predictions were then compared to the non-resampled contours generated by both the single-

observer and RTOG clinical trial. The PTV avoidance volumes for each contour were generated 

from five-millimeter expansions and the evaluation metrics were repeated. 

5.2.7 Treatment Planning 

From the test dataset, 32 patients were randomly selected for treatment planning and further 

analysis. For each of the 32 cases, IMRT treatment plans were generated from each of the 

institutional observer (IO), treating physician (TP), and deep learning (DL) hippocampal contours. 

To ensure the plans were clinically applicable, all additionally required contours (optic nerves, 

chiasm, lens, brain stem and brain) were generated automatically using LimbusAI (Regina, SK, 

Canada). The generated contours were then manually reviewed and edited by a physician to ensure 

completeness and accuracy. Treatment plans were generated using RayStation (version 6; 

RaySearch Laboratories AB, Stockholm) for a commissioned 6 MV beam on an Elekta Versa HD 

linear accelerator with Agility multi-leaf collimator (Elekta AB, Stockholm). To reduce human 
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bias during planning, an automated script was created to generate and optimize the three plans for 

each patient. Optimizer dose constraints, given in Table 5.3, were chosen to generate plans 

compliant with the RTOG-0933 protocol. Planning was conducted in 7 sets of 50 iterations, with 

an intermediate dose plan generated every 25 iterations and a final dose plan generated every 50 

iterations. Dose grid voxel dimensions were set to the RayStation default dose grid size (3 × 3 × 3 

mm) and the grid extent was automatically created to entirely enclose the external contour. The 

treatment plan isocenter was set to the geometric center of the PTV and four VMAT beam 

segments (two co-planar arcs, two vertex beams) were created (Table 5.4), with each beam 

segment limited to 300 second delivery time. After completing all rounds of optimizations, the 

treatment plan was normalized to the prescription dose (𝐷95% = 3000 cGy). 

Table 5.3: Optimization constraints used for the RayStation planning script. 

STRUCTURE CONSTRAINT WEIGHT 

PTV_OPT 𝐷98% ≥ 2500 cGy 5 

PTV_OPT 𝐷95% ≥ 3025 cGy 30 

PTV_OPT 𝐷2% ≤ 3600 cGy 100 

HIPPOCAMPI 𝐷99% ≤ 900 cGy 15 

HIPPOCAMPI 𝐷𝑀𝐴𝑋 ≤ 1600 cGy 25 

EXTERNAL 𝐷𝑀𝐴𝑋 ≤ 3750 cGy 25 

OPTIC CHIASM 𝐷𝑀𝐴𝑋 ≤ 3000 cGy 5 

OPTIC NERVE (L/R) 𝐷𝑀𝐴𝑋 ≤ 3000 cGy 5 

GLOBE (L/R) 𝐷𝑀𝐴𝑋 ≤ 3000 cGy 5 

LENS (L/R) 𝐷𝑀𝐴𝑋 ≤ 700 cGy 5 

 

Table 5.4: Beam names and settings used for treatment planning. 

BEAM NAME COUCH ANGLE GANTRY ANGLE COLLIMATOR ANGLE 

CW 0˚ 180˚ to 179˚ 45˚ 

CCW 0˚ 179˚ to 180˚ 315˚ 

VERTEX CW 270˚ 179˚ to 0˚ 5˚ 

VERTEX CCW 270˚ 0˚ to 179˚ 355˚ 

5.2.8 Contour Comparison Statistics 

To determine the predictive power of the deep learning (DL) model, a receiver operating 

characteristic (ROC) curve was created from the DL to RTOG treating physician (DL:TP) 

Hausdorff distance for the prediction of institutional observer to treating physician (IO:TP) failing 
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contours. The area under the ROC curve was then computed. Additionally, the Wilcoxon signed-

rank test was used to compare Dice TP:IO to Dice DL:IO. To investigate the false negative cases, 

a two-sided Mann Whitney U test was conducted between the true positive and false negative 

samples comparing the Dice correlation coefficients of the IO:TP contours on both left and right 

hippocampus. Spearman correlation coefficients were computed for HD to Dice on TP:IO for left 

and right hippocampus. 

5.2.9 Dose Comparison Statistics  

Analysis and comparison of the three types of treatment plans was conducted via four 

techniques. The first was to review the treatment plans and ensure each patient would meet the 

per-protocol or acceptable deviations criteria of the trial, with reporting indicating either pass or 

fail. To ensure no bias existed in the treatment planning script, each plan grouping was compared 

using a two-sided Wilcoxon signed-rank test. Secondly, the dose volume histogram (DVH) for the 

hippocampi and brain were compared amongst the three plans per patient using a two-sided 

Kolmogorov-Smirnov test to determine histogram equivalence. Next, Spearman-R correlation 

coefficients were computed for the dose distribution within the brain between each plan pairing 

for a given patient. A Fisher-transform was then applied to the correlation coefficients to determine 

the mean, standard error the mean (SEM) and range. A Friedman’s Χ2 test was used to determine 

equivalence among the three plans and a two-sided Wilcoxon sign-ranked test was used to 

determine equivalence among plan pairings. Using the PyMedPhys python library (version 0.37.1) 

120, a 10x resampling gamma analysis 121 was conducted on the low-dose (< 25 Gy) regions within 

the brain segmentation. Due to the directionality of gamma analysis resampling, the comparison 

was conducted 𝛾(𝐴 → 𝐵) , 𝛾(𝐵 → 𝐴 ) with the average of the two gamma values reported.  

Limiting the analysis to only the hippocampal avoidance regions improved the power of the 
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gamma metric by excluding hot spots, external dose-falloff regions, and the lens avoidance region. 

For the cohort, the three plans were then compared for equivalence using a Friedman’s Χ2 test and 

individual pairings were analyzed with a two-sided Wilcoxon sign-ranked test. 

5.3 Results 

5.3.1 Contouring 

The RTOG 0933 image set provided for this study included 96 patients with both T1 MR 

and CT images. For the MR images, the median slice thickness and pixel spacing were 1.1 (range 

0.6 – 6.0) mm and 0.86 (range 0.39 – 1.09) mm, respectively. The CT images had median slice 

thickness of 1.375 (range 0.75 – 5.0) mm and pixel spacing of 0.977 (range 0.57 – 2.14) mm. The 

bilateral hippocampal contours from the trial had median volumes of 4.78 (range 2.06 – 10.2) mL 

and the single-observer contours had a median volume of 4.03 (range 2.16 – 6.72) mL. 

Upon visual inspection of the RTOG hippocampal contours utilizing MIM Software 

(version 7.1.3), the following data consistency issues were identified: missing slices (n=2), 

discontinuous volumes (n=1), slices with single voxel contours (n=3). In MIM, protocol compliant 

contour expansions (5mm) were generated from the RTOG treating physician hippocampi and 

compared to the provided avoidance volume. Inconsistencies were found between the two 

expansions, with 7 patients having a disagreement of a HD>3.5 mm. For compliance with the 

protocol mandated slice thickness, 5 patients had non-compliant CT images (slice thickness > 

2.5mm), 3 had non-compliant MR images (>1.5 mm) and 2 had both non-compliant CT and MR 

images. 

Using the trained AG-3D ResNet model instance, predictions were generated from the 

processed RTOG 0933 images, then each prediction was uncropped and resampled to the original 

voxel dimensions. The institutional observer (IO) and RTOG treating physician (TP) contours 
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were kept at their original resolutions. Contour correlation was quantified between each contour 

pairing DL to TP (DL:TP), TP to IO (TP:IO) and DL to IO (DL:IO), with the comparisons given 

in Table 5.1. For DL and IO contours, an avoidance volume was generated from a uniform 5 mm 

expansion of the hippocampi and correlation was again computed between the pairings (Table 5.2). 

Wilcoxon-signed rank test calculated between TP:IO, TP:DL, and IO:DL were statistically 

significant for 95th, 100th-HD and Dice coefficient for all pairings except TP:IO to DL:IO for right 

hippocampus Dice (p=0.12).  

Visualizations for a series of examples are provided in Figure 5.1, where the HD for TP:IO 

and TP:DL of each subplot (Figure 5.1, A-E) is indicated in Figure 5.2.A and Figure 5.2.B. Figure 

5.1.A represents a TN case where all contour sources agree well. The left hippocampus in Figure 

5.1.B depicts an example of a FN prediction for the DL model. Figure 5.1.C depicts a TN case 

where both the DL and IO vary significantly from the TP contour. Lastly, Figure 5.1.D, Figure 

5.1.E show examples of TN prediction for the DL QA, most notably the Figure 5.1.E depicts the 

only case where the DL model failed to predict a hippocampus, resulting in a TN prediction. 

To represent the relative HD performance of TP:DL, and TP:IO, Figure 5.2 (A, B) presents 

a scatter plot of each for the left and right hippocampus. Figure 5.2 (C, D) provides a vector plot 

for the change between 100th-percentile and 99th-percentile HD, as well as the ROC curve for both 

left and right hippocampus. The last row of Figure 5.2 gives a plot Dice coefficient (y-axis) plotted 

against HD (x-axis) for TP:IO left (Figure 5.2.E) and right (Figure 5.2.F). Indications are provided 

for cases where the DL model predictions were either TP or FN. Spearman correlation coefficient 

computed between the Dice coefficient and Hausdorff distance on TP:IO were 𝜌 =

−0.524 (𝑝 < 0.01) and 𝜌 = −0.366 (𝑝 < 0.01), for left and right hippocampus respectively. A 
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two-sided Mann Whitney U test conducted between the TP and FN groups gave p=0.419 and 

p=0.031 for left and right hippocampus. 

Comparisons were computed between each contouring source, with 100th-percentile HD, 

95th-percentile, average surface distance (ASD), relative absolute volume difference (RAVD), 

Dice, precision, recall and passing rate (HD<7mm) given in Table 5.5. Hausdorff distance (100th 

and 95th) represent the maximum spatial disagreement between two contours, for which the DL:IO 

were the closest amongst the cohort and ASD represents the mean spatial disagreement between 

two contours. From the RAVD, we can see that the DL contours were approximately 15% smaller 

than the IO contours and 27% smaller than the TP contours, which is supported by precision and 

recall which penalize over and under prediction. Pass rate and bilateral pass rate are the number of 

segmentations which agree by HD<7mm, the RTOG inclusion criteria, with the IO:DL agreeing 

most strongly (70.8% bilateral passing rate). The bilateral functional avoidance volumes were also 

compared with the same metrics, provided in Table 5.6.                                                                                                                                                                                                                                                               

Table 5.5: Contour correlation metrics computed on the RTOG 0933 images (n=96) for the left and right 

hippocampus structures between the different contour sources. Contours were generated either by institutional 

observer (IO), deep learning (DL) or by treating physician (TP) during the RTOG trial. Statistics reported as 

median and inter-quartile range. Bilateral pass indicates a patient which left and right hippocampus pass 

(HD<7mm) independently. 

COMPARISON 

METRIC 

TP:IO 

LEFT 

TP:IO 

RIGHT 

TP:DL 

LEFT 

TP:DL 

RIGHT 

IO:DL 

LEFT 

IO:DL 

RIGHT 

HD (MM) 
5.95 

(4.79 – 7.75) 

5.82 

(4.72 – 7.34) 

7.23 

(5.77 – 9.05) 

6.94 

(5.39 – 8.71) 

4.86 

(3.85 – 6.26) 

4.74 

(3.68 – 6.34) 

95TH HD (MM) 
2.95 

(2.45 – 3.78) 

2.65 

(2.22 – 3.53) 

3.77 

(2.97 – 5.49) 

3.21 

(2.76 – 4.76) 

2.40 

(1.95 – 2.93) 

2.50 

(2.00 – 3.13) 

ASD (MM) 
0.78 

(0.60 – 1.07) 

0.84 

(0.58 – 1.03) 

0.90 

(0.66 – 1.18) 

0.89 

(0.69 – 1.12) 

0.72 

(0.58 – 0.89) 

0.74 

(0.60 – 1.00) 

RAVD (%) 
-20.8 

(-31.8 - -3.2) 

-16.7 

(-26.5- -0.6) 

-28.9 

(-43.3 – -

20.0) 

-26.6 

(-42.1 – -14.2) 

-15.6 

(-25.0 – 0.20) 

-14.6 

(-26.1 - -1.2) 

DICE 
0.69 

(0.61 – 0.75) 

0.72 

(0.62 – 0.77) 

0.62 

(0.53 – 0.69) 

0.65 

(0.58 – 0.71) 

0.74 

(0.66 – 0.78) 

0.73 

(0.67 – 0.77) 

PRECISION 
0.79 

(0.66 – 0.87) 

0.76 

(0.67 – 0.85) 

0.77 

(0.64 – 0.85) 

0.77 

(0.63 – 0.87) 

0.81 

(0.71 – 0.86) 

0.81 

(0.69 – 0.86) 

RECALL 
0.64 

(0.54 – 0.71) 

0.67 

(0.54 – 0.77) 

0.54 

(0.43 – 0.61) 

0.55 

(0.44 – 0.66) 

0.69 

(0.62 – 0.76) 

0.68 

(0.59 – 0.76) 

PASS RATE (%) 69.8% 69.8% 47.9% 51.0% 81.3% 83.3% 

BILATERAL 

PASS 
55.2% 33.3% 70.8% 
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Table 5.6: Contour correlation metrics computed on the RTOG 0933 images (n=96) for the hippocampus avoidance 

structures (5mm expansion of hippocampi). Contours were generated either by institutional observer (IO), deep 

learning (DL) or treating physicians (TP) in RTOG trial. Statistics are reported as median and inter-quartile range. 

COMPARISON METRIC TP:IO TP:DL IO:DL 

HD (MM) 
7.15 

(5.53 – 8.65) 

8.18 

(6.49 – 9.78) 

5.55 

(4.50 – 7.12) 

95TH HD (MM) 
3.32 

(2.87 – 4.55) 

4.15 

(3.38 – 5.69) 

2.93 

(2.46 – 3.44) 

ASD (MM) 
1.14 

(0.92 – 1.47) 

1.29 

(1.06 – 1.72) 

0.97 

(0.84 – 1.15) 

RAVD (%) 
-18.4 

(-25.6- -8.2) 

-24.8 

(-33.2 - -15.3) 

-8.7 

(-15.0 – -1.30) 

DICE 
0.84 

(0.80 – 0.87) 

0.80 

(0.73 – 0.83) 

0.87 

(0.84 – 0.88) 

PRECISION 
0.93 

(0.89 – 0.96) 

0.93 

(0.88 – 0.96) 

0.91 

(0.88 – 0.94) 

RECALL 
0.76 

(0.70 – 0.83) 

0.71 

(0.62 – 0.77) 

0.83 

(0.79 – 0.88) 

PASS RATE (%) 49.0% 30.2% 70.8% 
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Figure 5.1: Deep learning (red), institutional observer (green), treating physician on RTOG trial (blue) 

segmentation examples for five cases: all contours agree (HD<7mm) (A), institutional observer contour deviates 

from treating physician and deep learning (B), treating physician contour deviates from institutional observer (C), 

deep learning deviates from institutional observer (D), an obvious failure of the deep learning (E). For each 

example, the percentage occurrence and HD values for each segmentation are provided in Figure 2. 
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Figure 5.2: TP:IO HD (x-axis) and TP:DL HD (y-axis) for left (A) and right (B) hippocampus, with the percentage 

of cases per quadrant indicated in each corner and dashed lines at the 7mm threshold. Circles and letters correlate 

with the segmentations provided in Figure 1. The change in Hausdorff distance from 100th to 99th percentile is given 

with a vector plot for both hippocampi (C). An ROC AUC is given for the predictive performance of TP:IO failure 

rate from TP:DL Hausdorff distance (D). Scatter plots of Dice coefficient and Hausdorff distance between TP:IO 

contours are given for left (E) and right (F) hippocampus. For cases which TP:IO HD>7 mm, indications for if the 

DL QA determined the case was a true negative (O) or false positive (X) for the RTOG exclusion criterion 

(HD>7mm).   
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5.3.2 Dosimetry 

Each of the three treatment plans per patient were reviewed by a physician to determine if 

the plan was per-protocol, or acceptable deviation, for the RTOG-0933 enrollment criteria. The 

results for that review are given in Table 5.7.  

Table 5.7: Physician determined plan adherence to the RTOG-0933 guidelines. 

PLAN PER-PROTOCOL 
ACCEPTABLE  

DEVIATION 

UNACCEPTABLE  

DEVIATION 

IO 5 27 0 

DL 3 29 0 

TP 7 25 0 

 

Dose volume histograms (DVH) for each treatment plan and each contour source pairing 

were created from data computed using MIM Software. A composite of every patient, plan, and 

contour permutation of the DVHs is given in Figure 5.3 and descriptive statistics are provided in 

Table 5.11. The DVHs given are for the hippocampus (blue) and the PTV (red). To quantify the 

agreement of the DVHs, a two-sided Kolmogorov-Smirnov test was used to determine if the 

hippocampi DVHs represented a statistically different population (p<0.05). Comparison was 

conducted between each treatment plan and contour pairing, and the number of hippocampi DVHs 

which differed statistically significantly are given in Table 5.8. 

Table 5.8: Number of DVHs with statistically significant DVH values, defined by Kolmogorov-Smirnov test. 

 PLAN IO PLAN DL PLAN TP 

CONTOURS IO DL TP IO DL TP IO DL TP 

IO 0 23 29 0 32 19 0 3 5 

DL -- 0 11 -- 0 22 -- 0 3 

TP -- -- 0 -- -- 0 -- -- 0 

 

To compute dose correlation across the entire brain treatment volume, a Spearman R 

correlation coefficient was computed for the dose limited to within the brain region of interest. 

Friedman’s Χ2  test was conducted to compare the mean of the three populations (p=0.216), 

indicating the null hypothesis that the three populations were drawn from the same distribution 
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could not be rejected. For further descriptive data, a Wilcoxon-signed rank test was then used to 

compute the pairwise per-patient correlation across the two treatment plans. The results of these 

two tests are provided in Table 5.9 and Table 5.10. 

Table 5.9: Mean, standard error of the mean (SEM) and range of the Spearman-R correlation coefficients of the 

dose within the brain region of interest for DL, IO, and TP treatment plans. 

 MEAN SEM RANGE 

DL:IO 0.370 0.0071 0.127 

DL:TP 0.360 0.0071 0.162 

TP:IO 0.362 0.0077 0.189 

 
Table 5.10: Wilcoxon signed-rank test between the Spearman correlation coefficients of the dose. 

 
WILCOXON SIGNED-

RANK TEST 

DL:IO V. DL:TP 0.0788 

DL:IO V. TP:IO 0.295 

DL:TP V. TP:IO 0.550 

 

 
Figure 5.3: Dose volume histograms for hippocampi (blue) and PTV (red) for each of the three contours from each 

of the three plans. Rows are for each of the different plans (top-to-bottom: IO, DL, TP) and columns are for each 

contour source (left-to-right: IO, DL, TP). Each plot has all treatment plans (N=32) overlaid one another.  
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Table 5.11: DVH Metrics (reported in Gy) for the different contour origins and treatment plans. Statistical 

significance was computed using a Wilcoxon signed-rank test between contour source and treatment plan (across 

rows). Insignificant (p>0.05) pairings are denoted with superscript numeral. 

DVH 

METRIC 

CONTOUR 

SOURCE 

 
TREATMENT 

PLAN 
 

IO DL TP 

HIPPOCAMPI 

D100% 

IO 9.00 (9.00-9.10)1 9.00 (9.00-9.10)1 9.10 (9.00-9.20) 

DL 9.00 (9.00-9.10)2,3 9.00 (9.00-9.10)2 9.10 (9.00-9.10)3 

TP 9.10 (9.00-9.10)4,5 9.10 (9.00-9.13)4 9.00 (9.00-9.10)5 

HIPPOCAMPI 

DMAX 

IO 16.8 (16.5-17.1) 22.3 (20.0-24.8) 18.6 (17.6-19.8) 

DL 18.3 (17.0-20.6)6 17.0 (16.8-17.2) 18.8 (17.4-19.7)6 

TP 25.6 (22.4-29.7) 29.1 (25.9-30.6) 17.3 (17.0-17.8) 

PTV D95% 

IO 29.9 (29.9-29.9) 29.9 (29.9-30.0) 29.2 (28.9-29.5) 

DL 29.8 (29.7-29.9) 29.9 (29.8-29.9) 29.0 (28.8-29.4) 

TP 30.4 (30.2-30.4)7 30.3 (30.2-30.4)7 29.9 (29.8-29.9) 

PTV D98% 

IO 24.8 (24.6-25.3) 25.2 (24.7-25.6) 23.4 (23.0-24.4) 

DL 24.6 (24.2-24.9) 25.2 (24.9-25.3) 23.4 (22.7-24.1) 

TP 26.1 (25.6-26.5) 26.4 (25.7-26.7) 25.3 (25.1-25.6) 

 

Using MIM, DVH metrics were generated for each of the trial specific metrics for 

hippocampus and PTV. When compared using a Wilcoxon signed-rank test, results showed no 

significant difference in the hippocampus D100% and the treatment plans for IO and TP generated 

comparable metrics to the DL contours for hippocampus DMAX. Likewise, the IO and DL plans 

generated equivalent coverage of the TP PTV with a median D95% from IO of 30.4 (IQR: 30.2-

30.4) and DL of 30.3 (IQR: 30.2-30.4). None of the treatment plans were comparable for D98%, 

with the TP plan generating significantly worse coverage to the DL and IO contours, while the DL 

plans yielded the highest coverage of the IO and TP contours. 

From each of the treatment plans, the low dose region (< 25 Gy) within the brain was 

compared using a 3%, 3mm gamma analysis, with median and interquartile range reported (Table 

5.12). For demonstration purposes, an example is given in Figure 5.4. Then, the gamma analysis 

between each treatment plan pairing was compared using a Friedman’s Χ2 to determine if the three 

shared an equivalent median (p<0.05) and a Wilcoxon signed-rank test (provided in Table 5.13) 

to determine the gamma analysis pairings. As this is a test of tests, gamma analysis between two 
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doses, say TP:IO and DL:TP, can be interpreted as a comparison of through an intermediate 

(DL:IO via TP).  

Table 5.12: Gamma analysis of low dose region (<25 Gy) results. 

 
3% / 3 MM  

MEDIAN 

3% / 3 MM  

IQR 

DL:IO 0.669 0.620 – 0.730 

DL:TP 0.670 0.606 – 0.768 

IO:TP 0.722 0.647 – 0.755 

 

Table 5.13: Wilcoxon signed-rank test to compare the gamma analysis scores. 

 
WILCOXON SIGNED-

RANK TEST 

DL:IO V. DL:TP 0.489 

DL:IO V. TP:IO 0.0017 

DL:TP V. TP:IO 0.0315 

 

 
Figure 5.4: A 3%, 3mm Gamma analysis (right) displayed with per-voxel passing (green) and failing (red) for the 

combined dose region of both plans. The given gamma analysis was computed between less than 25Gy regions 

within the brain contour of the DL treatment plan dose (left) and IO treatment plan dose (middle). 

5.4 Discussion 

5.4.1 Contour Discussion 

In this investigation we have demonstrated the feasibility of training a DL model on a single 

institution dataset for the application of hippocampal contour QA on a multi-institutional trial. As 

evidenced by the significantly higher performance of DL:IO over DL:TP across multiple metrics, 

deep neural networks are capable of strongly replicating the contouring style of the training 
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institution. This enables a DL model to function as a high-sensitivity, first-pass QA tool. A DL 

QA tool can also be published alongside the clinical trial results, ensuring the new radiotherapy 

paradigm is implemented in an equivalent manner. While the effort required to assemble a training 

dataset is non-trivial, the 390 patients used in this study is not indicative of the required number to 

saturate the AG-3D ResNet, and future investigations are needed to develop a specific cohort size. 

Alternatively, a multi-staged approach to training may be used where a model is trained from a 

smaller set and used to generate predictions on a larger dataset, from which the contours are edited 

and used to re-train a final instance. 

 Although the DL model replicated the contouring style of the training institution, 

the predicted contours were of smaller relative absolute volume difference (RAVD) than the 

ground truth. The smaller contours could be attributable to the non-functional mapping of the 

ground truth or from using a Dice loss function. In our training dataset, each image corresponded 

to up to three unique contours, creating the possibility that the DL model resorted to learning the 

intersection of the three contours. If that were the case, we would expect training on the consensus 

contour would result in larger predictions. An alternative explanation is that the Dice loss function 

incentivizes smoother, more certain predictions and could be addressed with a combined Dice-

Focal loss or rind Dice loss function. 

While we used the RTOG protocol acceptability criteria of HD<7mm, it is evident from 

the Spearman correlation coefficients computed between TP:IO (Figure 5.2.E, Figure 5.2.F) that 

Hausdorff distance and Dice correlation coefficient are weakly correlated on volumetrically small 

structures. The 100th-percentile Hausdorff distance is extremely sensitive to treatment planning 

system contour smoothing, expansion algorithms and image voxel sizes. This leads to high Dice 

coefficient contours which fail by a small margin, or low Dice contours which barely pass. 
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Furthermore, the segmentations designated as false negatives by the deep learning quality 

assurance were found to be significantly different (p=0.419 and p=0.031 for left and right 

hippocampus) when compared with a two-sided Mann Whitney U test, a non-parametric test of 

equivalence for un-paired data. The left hippocampus populations would have been significantly 

different if the outlier had been excluded. These results indicate that despite failing the RTOG 

inclusion criteria, the false negative predictions yielded large Dice correlation coefficients than the 

true negative predictions. 

The left hippocampus false negative outlier, within Figure 5.2.E, with low dice 

performance can be seen where the DL model failed to identify IO:TP disagreement. For this case, 

the T1-MRI provided had voxel dimensions of 0.9 × 0.9 × 6.0 mm and a CT of 1 × 1 × 1 mm. 

Generating contours on a thick slice MRI exacerbates the differences in the segmentation 

interpolation functions, and the contours created from MIM Software’s interpolation exhibited less 

smoothness than the RTOG treating physician contours. Alternatively, the treating physician may 

have generated contours on a higher-resolution sequence which was not provided for this study. 

While the DL:TP prediction for this case passed the RTOG criterion (HD=6.19mm) for left 

hippocampus, the Dice correlation coefficient was very poor (Dice=0.22). This highlights the 

relative insensitivity of HD for evaluating correlation and questions its utility as a stand-alone 

metric for segmentation comparison. Furthermore, this case exhibits the strength of a CT-only 

first-pass QA tool in that contours on the CT frame of reference are the ground truth. Thereby, 

predicting from CT-only eliminates uncertainty in contour interpolation and image registration 

seen across multiple institutions.  

The reliance on traditional correlation metrics for contemporary clinical trial QA places 

the burden on trial designers to select a robust and clinically correlated metric prior to enrollment. 
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This design process is akin to expert system feature engineering and faces many of the 

shortcomings we’ve seen deep learning address in recent years. While we have shown deep 

learning is capable of segmentation, the applicability of a QA tool is limited by this reliance on 

traditional metrics such as Dice and HD. In future work we intend to explore the application of 

deep learning models for the quantification of contour correlation to forego the need for classical 

thresholds. 

5.4.2 Dosimetry Discussion 

From the DVHs provided in Figure 5.3, as expected, the hippocampus dose is lowest for 

matching contour-plan pairs, with the TP-TP plan-contour pair having the largest variance in 

hippocampal dose and the IO-IO plan-contour pairing having the lowest. When we compare the 

non-matching pairs, it becomes clear that the volumetrically larger TP contours lend themselves 

to lower hippocampal doses on the IO and DL contours because the avoidance regions are 

generally larger. While the avoidance regions allow for more sparing, that is with the trade-off of 

reduced prescription coverage, which is not easily displayed in a DVH for a large PTV. 

Interestingly, the IO-TP and DL-TP pairings appear to be comparable in their hippocampal dose 

spreads, with both larger than the DL-IO hippocampal DVH spread. These DVH comparisons 

ultimately raise the question of the clinical goals for the patient treatment and the balance between 

coverage and neurocognitive function. For the future roll-out of a clinical tool for hippocampal 

segmentation, a model trained to bias volumetrically larger contours may be favored to generate 

plans comparable to those from the RTOG-0933. In instances where the eventual end-user treating 

physician is more concerned about PTV coverage than hippocampal avoidance, an alternative 

model with volumetrically smaller contours would allow physicians to tailor plans more well-

suited to a patient’s specific clinical needs. 
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5.5 Conclusion 

The work presented in this chapter demonstrates the feasibility of using a single-intuitional, 

non-HA-WBRT dataset to train a CT-only deep learning neural network to use as a first-pass 

hippocampal contour QA tool on a multi-institutional dataset.  
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CHAPTER 6 Techniques Translated to 4DCT-Perfusion 

6.1 Introduction 

Technetium-99m (99mTc) labeled macroaggregates of albumin (MAA) imaged with single 

photon emission computed tomography (SPECT) is considered the standard method for the 

quantitative determination of pulmonary perfusion 122. Spatially correlated x-ray computed 

tomography (CT) images allow for attenuation and scatter correction of SPECT 123,124, while also 

evaluating lung anatomy with accuracy rivaling CT angiography 125. While static CT images 

contain only anatomic information, dynamic (4DCT) images also contain functional information 

126. For example, 4DCT Ventilation Imaging (4DCT-VI) is a technique to derive ventilation images 

from the inhale and exhale 4DCT phases 127,128. An intrinsic convenience of this approach in 

oncology patients is that these images are extracted from routinely acquired treatment planning 

4DCTs. 4DCT-VI and its use in radiation therapy (RT) treatment planning to preserve pulmonary 

function 129,130 has been an active area of research and the subject of prospective clinical trials 131.  

Over the past three decades 99mTc-MAA perfusion imaging has been the focus of research 

to understand and reduce pulmonary injury following thoracic radiotherapy.  At 2-4 months post-

radiotherapy, pulmonary perfusion was found to decrease, with respect to pre-treatment values, in 

proportion to the local radiation dose 132. The dose dependent perfusion loss could be detected with 

SPECT imaging for 12 months following treatment 133. Lee et al. 134 performed a meta-analysis on 

radiotherapy planning studies which sought to use SPECT or PET functional lung imaging to avoid 

dose to the functional lung. Delivery of radiotherapy through hypo-perfused pulmonary regions 

for lung cancer treatment was shown to result in less pulmonary injury in a prospective trial 135. 

Additionally, a retrospective evaluation of two prospective studies found functional lung 

avoidance planning may promote increased post-treatment perfusion in low-dose regions for select 
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patients 136. Physiological images used in radiotherapy treatment planning for image guidance to 

avoid the irradiation of highly functional regions remains an active area of research 137,138. 

However, pulmonary functional imaging based on 99mTc-MAA SPECT is not broadly available 

for treatment planning in radiation oncology clinics. 

Reports indicate that respiration-induced lung blood mass variations are measurable on 

4DCT 127 and match the expected physiology changes 139. This finding was further characterized 

in a retrospective study of 89 patients who received 4DCT for radiation therapy treatment planning 

140, which found a relationship between pulmonary tidal volume and changes in pulmonary blood 

mass during respiration. Attempts to make 4DCT perfusion images calculated on a voxel-by-voxel 

basis resulted in unreliable measurements 141 as the signal is overwhelmed by random noise. 

Additionally, an exact relationship between the respiratory-induced pulmonary blood mass 

dynamics observed on 4DCT and pulmonary perfusion is unknown, complicating the production 

of pulmonary perfusion images from 4DCT. Deep learning allows computational models to 

identify intricate structures within a data set without an a priori knowledge of the relationship 49. 

Therefore, deep learning has the potential to detect the pulmonary perfusion signal from 4DCT 

alone.  

Prior work by Zhong et al. 142 utilized a deep learning network to generate synthetic 

ventilation images. As their ground truth, Zhong et al. used a synthetic image which 

was computationally derived from 4DCT using an image registration technique 143. Jang et al. 144  

generated SPECT perfusion from CT images with a 2D-UNet 57 based cGAN 145 model 

trained on the inhalation CT acquired during the SPECT/CT scan. As the authors note, the 2D 

model design presented inherent performance limitations, notably making the predicted volumes 

prone to discontinuities. Ren et al. 146 utilized a 3D-UNet 60 to generate 11-bin discretized synthetic 
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MAA-SPECT perfusion imaging from a single free breathing CT volume. Ren et al. 147 continued 

their investigation of generating discretized synthetic perfusion images with a modified model 

design and an expanded cohort with 12 out of 73 patients having lung cancer.  

We propose a convolutional neural network model to generate synthetic pulmonary 

perfusion images from 4DCT alone. Our technique utilizes a 3D deep learning model, is trained 

from clinically acquired data and forgoes manual lung segmentation prior to prediction. The 

resulting images to 99mTc-MAA SPECT-CT perfusion images along with derived F50 functional 

avoidance contours 148 derived from the synthetic images.  

6.2 Methods 

6.2.1 Clinical Data Acquisition 

A retrospective data set was compiled from imaging studies collected in an ancillary study 

to a prospective clinical trial 149 (NCT02528942). The ancillary study collected pre- and post-RT 

SPECT/CT perfusion and pre- and post-RT 4DCT images on the institutional subset of patients on 

the clinical trial. Average temporal separation between SPECT and 4DCT was 6 days (IQR = 3.5 

days) and pre- to post-treatment was 154 days (IQR = 12.5 days). The 4DCT images (120 kVp, 

3mm axial thickness) were acquired in a supine hands-over-head position during normal tidal 

breathing with a flat-couch 16-slice Philips Brilliance Big Bore CT scanner (Philips Healthcare, 

Andover, MA) utilizing the oversampled spiral 4DCT acquisition technique 150. Following 

administration of 4.0 mCi of 99mTc-MAA (Lantheus Medical Imaging, Billerica, MA), perfusion 

images were acquired in a supine hands-over-head position during tidal respiration using a curved-

couch dual head Siemens Symbia SPECT and 2-slice CT-scanner (Siemens Medical Solutions, 

Malvern, PA). The scanner was configured with a high-resolution parallel hole collimator, a 15% 

energy window with centerline at 140 keV and CT at 130 kVp and 50 - 100 mAs (weight 



 

85 

 

 

 

dependent). 3D attenuation corrected SPECT images were reconstructed transaxially using an 

iterative ordered subset expectation maximization (OSEM) algorithm and post-processed with a 

5mm gaussian blur. SPECT volumes were constructed with axial dimensions of 64 × 64 

(7.8125 × 7.8125 mm voxels) and 1.5 mm trans-axial slice thickness. All images were stored in 

the hospital PACS in DICOM format. 

6.2.2 Data Preparation 

Images were exported to a MIM workstation (MIM Software, Cleveland, OH) and to 

represent the typical planning image volume, an average intensity projection CT image (AIP-CT) 

was generated for each 4DCT.  Using the MIM rigid image registration algorithm, the CT image 

acquired during the SPECT scan was registered to the AIP-CT. The rigid registration algorithm 

was used instead of the deformable registration algorithm due to non-physiological shear in the 

deformable vector field in low-contrast regions, as evidenced by the deformable vector field curl 

(Appendix Figure C.1) 151. The resultant displacement vector field was used to register the SPECT 

to the AIP-CT image. For later statistical analysis, bilateral lung contours (excluding trachea and 

bronchi) were taken from the AIP-CT clinical treatment planning contours or manually created. 

Using python (version 3.8.5), each DICOM image was reconstructed into a NumPy array with our 

open source DICOM management package 113. On the AIP-CT, a body contour was generated 

from voxels greater than 25% of the maximum CT value. Using the body contour center of mass 

as the centroid, the images were cropped to 280 × 280 × 110 voxels. For image volumes with 

less than 110 axial slices, the superior border of the volume was padded with zeros. Then each 

image was down-sampled (2:1) with a mean value function, yielding image dimensions 

140 × 140 × 55 voxels (approximately 330 × 330 × 330mm). Resampling the inputs reduced 

the computational demands while maintaining resolution (2.35 × 2.35 × 6 mm) finer than the 
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configured SPECT imaging system (7.5 mm) 152. Finally, each cropped inhale-exhale CT pair and 

SPECT volume was normalized. 

6.2.3 Model Design and Training 

The processed data was used to train a model based upon the High-Res3DNet 61 (ResNet), 

implemented in Tensorflow version 2.3 153. The model (Figure 6.1) is a residual network consisting 

of three groups of increasing dilated convolutional operations (dilation of one, two and four). 

Within the network, each dilation level is repeated in three residual blocks. Each convolution 

operation has a kernel of size 3 × 3 × 3 × 𝑁 (N of 16, 32, 64 for each dilation level), with a 

rectified linear unit activation. In total, the network is comprised of 813,297 trainable parameters. 

The foundational model design was modified with the addition of dropout layers in each residual 

block and a sigmoid final activation. This model was trained to predict the SPECT perfusion image 

from the 0% and 50% phases of the 4DCT. The efficiency of this network has been explored in 

our prior publication on another CT-based imaging task 111. Furthermore, this model architecture 

has been demonstrated in other publications with state-of-the-art results in synthetic imaging tasks 

154,155. 

Table 6.1: Tuned hyperparameter values used for five-fold cross-validation. 

HYPERPARAMETER VALUE 

LEARNING RATE 1.25E-3 

LEARNING RATE 

REDUCTION 

0.5x after plateau of 3 

epochs 

DROPOUT RATE 0.25 

AUGMENTATION 
10 axial rotation 

10% xy-axis shift 

ASYMMETRY 

FACTOR 
1.35 

EPOCHS 40 epochs of 150 steps 

BATCH SIZE 4 

 

Mean squared error (MSE) and mean absolute error (MAE) are common loss functions for 

regression due to their simplicity and symmetry to over- and under-predictions. For tasks which 
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require increased penalization of under-prediction, relative to over-prediction, a logarithmic 

activation to MSE can be applied. For the accurate prediction of perfusion defects, we surmise that 

a loss function with greater penalization for over-prediction of the ground truth is required to 

prevent the model from uniformly predicting healthy perfusion and incentivize the proper 

prediction of hypo-perfused lung regions. To achieve this, we devised a tunable, asymmetrical loss 

function scaling factor (Equation 6.1) to alter the ratio of penalization for over-prediction relative 

to under-prediction. In Equation 6.1, 𝑓 represents a regression loss function (e.g., MAE, MSE), 

scaled by an asymmetrical factor dependent on the difference (∆) between the normalized ground 

truth and prediction. The asymmetrical factor is tuned via a positive scalar value ( 𝛼 ). The 

magnitude of the asymmetrical scalar (𝛽) is defined by Equation 6.2. When 𝛼 → ∞, 𝛽 → 1 and 

conversely, 𝛼 → 0, 𝛽 → ∞, dictating the relative penalization of false positive predictions. For 

training our model, we paired this asymmetrical scaling factor with the MAE loss function, 

yielding an asymmetrical mean absolute error (AMAE) loss function.  

 𝑓′ = 𝑓 ∗ 
log(2)

log(2+∆+𝛼)
        (6.1) 

𝛽 =
𝑓′(−∆)

𝑓′(∆)
=

log (3+𝛼)

log (1+𝛼)
     (6.2) 

Hyperparameter tuning was conducted on a subset of the validation set using a manual grid 

search. Final hyperparameters are reported in Table 6.1. Model training was parallelized across 

two Nvidia Quadro RTX8000 GPUs (Nvidia, Santa Clara, CA). A five-fold cross-validation, split 

by patient, was conducted for twenty instances per fold while holding hyperparameters constant. 

Inference required 0.45 seconds per volume when conducted on the Nvidia Quadro RTX8000.   

6.2.4 Evaluation Metrics 

A cross-fold validation was conducted for trained model instance selection prior to 

evaluation on a hold-out test set. Pearson and Spearman correlation coefficients were calculated 
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between the clinical and predicted perfusion images. Masked array type Numpy objects, created 

with manual lung segmentations, were used to limit the correlation coefficients to the lung voxels, 

thereby negating correlation biases (e.g., volumetric, background). Spearman and Pearson 

correlation coefficients were calculated with 20 iterative predictions (each from a sequentially 

trained, randomly initialized model). Standard error of the mean (SEM) and range of the 20 

iterative predictions was obtained for each image. Correlation metrics for the cohort were 

determined to be non-normally distributed by the Kolmogorov-Smirnov test. Therefore, the 

correlation coefficients were normalized using Fisher’s z-transformation. Next, the normalized 

coefficients were averaged for all cases. These average Fisher’s z-transformed coefficients were 

then converted back to correlation coefficients and reported with mean (standard deviation) and 

median (interquartile) summary statistics. An overall correlation coefficient, and 95% confidence 

intervals, was estimated using both fixed and random effects modeling for the three subsets (all, 

pre-, post-RT). For patients with pre- and post-RT imaging studies, we compared median 

coefficients using the non-parametric Wilcoxon signed-rank test. Statistical significance was 

accepted at P < 0.05, and all statistical analyses were performed as two-sided tests. All statistics 

were completed using R (R version 4.0.0 (2020-04-24)). 

For each pre-RT study (N=32), perfusion functional avoidance contours were generated 

with the 50th percentile binary threshold (F50) technique 148. The contours were cleaned with two 

morphological operations (binary closing and fill holes) to reduce any pinholes in the contours 

which may be problematic for treatment planning. The clinical and synthetic F50 segmentations 

were compared with Dice coefficient, average surface distance (ASD), 95th-percentile Hausdorff 

distance (HD95), relative absolute volume difference (RAVD), precision, recall and F-score. The 

per patient mean of the 20 iterative predictions was computed and a median and interquartile range 
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was reported for the cross-fold validation population. Contour comparison metrics were computed 

using python (version 3.8.5) with the MedPy library 118. 

From each of five folds, a top performing model was identified based upon Spearman 

correlation coefficient on the validation set. On a hold-out test set of five patients (eight studies) 

predictions were generated for each of the five models and the correlation coefficient, statistical 

analysis, forest plots and contour generation were repeated for those predictions. Final predictions, 

as would be used in a clinical setting, were created using two methods: majority voting amongst 

the five model instances and a single prediction from the model instance with the highest validation 

performance across all models. For both inference methods Spearman and Pearson correlation 

coefficients were calculated and F50 functional contour agreement was quantified. 

 
Figure 6.1: A representation of the AG-3D ResNet model, with the inhale and exhale volumes as input and the 

predicted SPECT volumes as output. 

6.3 Results 

Spearman correlation coefficients computed from the cross-fold validation on the pre- and 

post-RT studies are given (Figure 6.2, Figure 6.3) and Pearson correlation coefficients are provided 

in the appendix (Appendix Figure C.2, Appendix Figure C.3). Comparison of the pre- and post-
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RT populations shows no significant performance difference for either Spearman (p=0.19) or 

Pearson (p=0.29) correlation coefficients (Appendix Figure C.5). This indicates the model, on the 

validation set, does not uniformly predict the expected healthy lung behavior for all studies. As a 

visual representation of the population mean of the Spearman correlation for the cross-fold 

validation (0.730) a study with a nearly equal correlation (0.731) is given in Figure 6.4. A further 

spectrum of correlation coefficients computed on the individual 2D coronal slices (Appendix 

Figure C.2) is provided in the supplement to assist in visualizing the range of observed Spearman 

correlation coefficients. For each pre-RT validation case (N=24), the F50 functional avoidance 

contours were computed, and the comparative statistics are reported in Appendix Table C.1. 

From each cross-fold (N=5), the top performing model instance was selected by Spearman 

correlation on the cross-fold validation. Forest plots of Spearman (Figure 6.5) and Pearson (Figure 

6.6) correlation coefficients generated a fixed effects model estimate for Spearman correlation of 

0.63 (95% CI: 0.25-0.84) and Pearson correlation of 0.70 (95% CI: 0.36-0.88). Final predictions 

using both the single model and majority vote techniques are provided in Table 6.2. Visualizations 

of the majority vote predictions on the test set studies with the lowest performance (Figure 6.7) 

and highest performance (Figure 6.8) are also given. For both inference techniques, functional 

avoidance contours comprised of the well perfused lung was generated from the pre-RT clinical 

and synthetic perfusion images. The contour comparative statistics for the single model statistics 

are given in Table 6.3 and the majority vote technique is given in Table 6.4. The synthetic and 

clinical derived functional contours were found to correlate well, with the majority vote technique 

yielding results with a Dice score of 0.803 (IQR: 0.750 – 0.810) and average surface distance of 

5.92mm (IQR: 5.68 – 7.55). 
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Table 6.2: Performance of a single model inference and a majority voting for each study in the hold-out test set, 

with metrics calculated using the lung-mask technique. 

 SINGLE MODEL MAJORITY VOTE 

STUDY PEARSON SPEARMAN PEARSON SPEARMAN 

28_1 0.609 0.634 0.638 0.655 

29_1 0.681 0.712 0.730 0.753 

29_2 0.555 0.664 0.494 0.643 

30_1 0.639 0.677 0.753 0.777 

31_1 0.758 0.787 0.727 0.760 

31_2 0.661 0.739 0.685 0.764 

32_1 0.247 0.312 0.294 0.359 

32_2 0.473 0.517 0.475 0.513 

 
Table 6.3: Single model functional avoidance contour agreement statistics. 

STUDY DICE ASD (MM) HD95% (MM) PRECISION RECALL F-SCORE 

28_1 0.749 5.851 20.73 0.749 0.748 0.749 

29_1 0.798 6.333 18.00 0.793 0.804 0.798 

30_1 0.760 5.023 15.41 0.762 0.759 0.760 

31_1 0.839 5.828 15.23 0.839 0.839 0.839 

32_1 0.629 8.032 25.67 0.629 0.635 0.629 

 
Table 6.4: Majority vote functional avoidance contour agreement statistics. 

STUDY DICE  ASD (MM) HD95% (MM) PRECISION RECALL F-SCORE 

28_1 0.750 5.683 23.43 0.751 0.748 0.750 

29_1 0.810 5.918 16.78 0.811 0.809 0.810 

30_1 0.803 3.850 11.37 0.804 0.801 0.803 

31_1 0.825 8.028 19.22 0.826 0.824 0.825 

32_1 0.639 7.552 26.10 0.641 0.638 0.639 
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Figure 6.2: Forest plot of the validation set, pre-treatment Spearman correlation coefficients. Encoding of the study 

is by patient with ‘_1’ representing a pre-treatment imaging study. 

 
Figure 6.3: Forest plot of the validation set, post-treatment Spearman correlation coefficients. Encoding of the study 

is by patient with ‘_2’ representing a post-treatment imaging study. 
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Figure 6.4: A visual comparison of the ground truth (above) and prediction (below) for study 23_1 (Spearman 

0.731; SEM: 0.01), chosen as a representation of the population mean of the cross-validation (Spearman: 0.73; 

95% CI: 0.68-0.77). 

  

 
Figure 6.5: Forest plot of Spearman correlation coefficients for test set imaging studies. Encoding of the study is by 

patient followed by a number indicating pre-treatment (1) or post-treatment (2).  
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Figure 6.6: Forest plots of Pearson correlation coefficients for test set imaging studies. Encoding of the study is by 

patient followed by a number representing pre-treatment (1) or post-treatment (2).  

 

 
Figure 6.7: The test set study (32_1) with the lowest performance with prediction generated using majority vote 

inference. 
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Figure 6.8: The test set study (30_1) with the highest performance with prediction generated using majority vote 

inference. 

6.4 Discussion 

Mirroring algorithmic development trends in computer science, the use of statistical 

learning approaches to create synthetic functional imaging has seen renewed interest with the 

advent of deep learning architectures. The preponderance of existing synthetic functional imaging 

literature present mathematical model-based heuristics to create synthetic images. In contrast, a 

deep learning approach only presupposes that a solution to the task exists and that a signal is 

present within the data set 49. To solve a given task, a blank statistical framework, called a model, 

is trained until it converges upon a robust solution. Thereby, a deep learning technique surpasses 

many of the shortcomings of traditional problem solving, namely assumptions limited by human 

perception and the complexity required to devise a robust analytical solution 49. However, it also 

presents unique drawbacks in terms of reproducibility and interpretability. 
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To contrast the deep learning and heuristic approaches for synthetic perfusion creation, we 

can compare our results to the heuristic method used to calculate perfusion images from 4DCT 

presented by Castillo et al. (2021). In their investigation, Castillo et al. generated synthetic 

perfusion images using a deformable image registration and integrated Jacobian technique to 

identify local changes in blood mass represented by changes in Hounsfield units between the inhale 

and exhale image phases. In their study, Castillo et al. evaluated their mathematical model on a 

subset of the validation studies used in this investigation. They reported a Spearman correlation 

with a median of 0.57 (IQR = 0.305). Using a single-sided Mann Whitney U test, we can compare 

the results of Castillo et al. to the Spearman correlation for our cross-fold validation (p < 0.001) 

and majority vote test set (p = 0.0749). 

Despite training upon less pre-processed data, our method generates images that can be 

utilized to generate functional avoidance volumes with 4 of 5 test set patients having Dice 

similarity coefficients exceeding 0.7, indicating strong correlation 157. Likewise, the F-score for 3 

of 5 of our generated test-set predictions, with a median of 0.803 (IQR: 0.750 – 0.810), perform 

equivalently to the median F-score of 0.8 for a human observer in repeated segmentation 158. From 

our predicted perfusion volumes, we demonstrate the potential application of this technique in the 

delineation of well-perfused lung for functional avoidance treatment planning. Although further 

retrospective dosimetric analysis and prospective clinical investigation is required to determine the 

clinical utility. 

Within our test set, patient 32 represents a significant deviation in correlation from the 

other test set patients. At the time of their pre-treatment imaging sessions, patient 32 presented 

with emphysema and polycythemia, both of which are known to induce changes in SPECT 

perfusion 159,160 which potentially contributed to the hypo-perfused posterior region of the right 
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lung (seen in Figure 6.7). The diminished performance observed for this patient indicates a current 

limitation for the clinical applicability in patients with lung cancer and chronic obstructive 

pulmonary disease. This is not unexpected though for a deep learning task with a limited training 

dataset which likely fails to represent all co-morbidities. Therefore, we expect this limitation can 

be addressed by expanding the training dataset to represent various emphysematous changes. 

Additionally, if this problem is revisited with an expanded dataset, we intend to report the co-

morbidities represented in the training set to transparently declare the expected in- or out-of-

domain patients for which our methodology would be applicable. 

Radiation-induced injury to lung tissue correlates to a reduction of regional lung perfusion 

161. In a subsequent study, we intend to investigate whether our predicted post-RT perfusion is 

consistent with the observed radiation-induced reduction in perfusion. An extension would be the 

investigation of prognostic tools, such as a model capable of predicting post-RT perfusion when 

given a pre-RT 4DCT and dose distribution. Additionally, performance gains may be achievable 

through model distillation 162,163 to segment lobar fissures in the lung parenchyma to enforce 

anatomic boundaries on predicted defects. 

Although most functional lung imaging studies use SPECT imaging, it is not without 

setbacks: availability, cost, and image quality. While our approach overcomes the availability and 

cost limitations, the predicted image quality is limited by the resolution of MAA-SPECT. 

Harnessing the improved spatial resolution of 68Ga-MAA or 68Ga-aerosol (Galligas) PET perfusion 

imaging could increase the resolution of our predicted synthetic images. Similarly, our deep 

learning technique could be trained on a high-quality ventilation imaging, such as Technegas 

(Cyclomedica, Kingsgrove, AU).  In doing so, a well-trained deep learning model could 

disseminate the benefits of these limited and costly modalities for a fraction of the cost.  
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6.5 Conclusion 

Our work demonstrates an end-to-end deep learning model that predicts perfusion as 

demonstrated by statistical correlation and a pragmatic demonstration of generating well-perfused 

lung contours, which may enable the widespread adoption of perfusion-based functional avoidance 

radiotherapy planning. The work presented in this chapter was published in a peer-reviewed 

journal article in 2021 164. 
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CHAPTER 7 Open-Source Toolkit and Dataset 

7.1 DICOManager: An Open-source Data Processing Toolkit 

Digital Imaging and Communications in Medicine (DICOM) was created by the National 

Electronics Manufacturers Association (NEMA) in 1983 to unify the existing, and diverse, file 

formats used by the medical device manufacturers. To create a single standard, NEMA needed to 

allow manufacturers flexibility within the DICOM constraints to support legacy systems without 

acquiring re-approval from the FDA. Therefore, the DICOM standard can be wide-sweeping, non-

uniformly implemented and have multiple pathways to achieve any of the core tasks. Furthermore, 

DICOM does not necessitate compliance within the header fields which describe the associated 

image data. These factors often make the translation of code from single- to multi-institution 

difficult when the DICOM compliance unexpectedly changes. From the experience garnered 

during the aforementioned deep learning projects, I designed a toolkit for the organization, sorting 

and processing of DICOM files. 

7.1.1 Anatomy of a DICOM 

The DICOM standard supports multiple specialties and file subtypes, but the scope of 

DICOManager 113 is limited to CT, MR and nuclear medicine images, as well as the Radiotherapy 

(RT) sub-group of the DICOM standard, which covers treatment plans, structure sets and dose 

files. In the current implementation, DICOManager does not process data in relation to information 

stored in an RT plan file, therefore we will disregard it from the discussion. 

A DICOM image (CT, MR, NM, or PET) is fundamentally comprised of two basic parts: 

a header and image data. The DICOM header describes patient information, relevant image 

acquisition parameters, institution information, coordinate systems and conversion factors for the 

pixel values. The pixel data is then stored in a 2D- or 3D-array of 16-bit integer values which 
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correspond to a given HU-value, SUV or unitless value, depending on image type. Due to the age 

of the format, design choices were made to limit the memory and computational footprint of 

DICOM files. For this reason, it is most common for image volumes to be stored as a collection 

of 2D axial images, each corresponding to a given location in the so-called patient coordinates. 

The patient coordinate system is attached to the DICOM file at the time of image acquisition and 

is defined by the imaging system dimensions and coordinates, which are usually in millimeters. 

Segmentations generated during clinical treatment planning are saved in DICOM RT 

structure set. To reduce the file size of the RT structure set, each segmentation is reduced to 

individual axial slice alpha shapes, which are the minimum number of vertices required to 

reconstruct the surface of the axial slice. Each of the alpha shape vertices are then saved relative 

to the patient coordinate system, pointing to the unique identifiers to each of their corresponding 

axial images. Assembly of the RT structure set can prove tricky because the individual vertices do 

not necessarily fall on a given rasterized voxel index in the pixel array. Additionally, the RT 

structure set header lacks the necessary information to determine the original image volume 

dimensions (in voxels), which would be required to project the assembled segmentation into the 

volumetric array. Therefore, the reconstruction of an RT structure set is reliant upon the prior 

interrogation and reconstruction of the corresponding image volume. To account for these unique 

DICOM design choices, the accurate 3D reconstruction of a given patient’s image, segmentations 

and dose volume necessitate a careful organization of the files for efficient reconstruction. 

7.1.2 Assembly of DICOMs 

One point of difficulty when translating a deep learning technique to a multi-institution 

dataset is when 2D slices are lost in the data transfer. This either results in gaps in the assembled 

3D volumes or creates volumes which inaccurately represent patient dimensions. Therefore, 
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DICOManager is designed to reconstruct image volumes relative to the patient coordinate system, 

ensuring that missing slices do not result in assembled volumes of smaller dimensions than what 

was originally acquired. DICOManager allows users to interpolate or extrapolate contours and 

image volumes to account for any missing data. For patients with mixed slice thicknesses, 

interpolation can also be used to generate a single-slice thickness image throughout the volume. 

In addition to axial 2D image volumes, DICOManager supports assembly of RT structure 

sets. Originally designed when computer storage was at a premium, the DICOM format stores a 

3D contour as a list of 2D alpha shapes, which contain the minimum number of vertices required 

to encode the surface of a contour. For contours with inner and outer surfaces, the NEMA 8.8.6.3 

specification dictates that a narrow keyhole should be used to join inner and outer surfaces into a 

single alpha shape. For use in deep learning, structure sets are most useful when assembled as 3D 

Boolean arrays with equivalent frame of reference as their corresponding image data. 

Most contemporary nuclear medicine and PET imaging data is encoded as a single 3D pixel 

array, making reconstruction simple. The only additional steps required to generate a useful 

volume is to scale the raw pixel array by the requisite header fields to achieve a quantitatively 

useful image (e.g., SUV). Computing SUV may require adjusting for the isotope decay time from 

administration to imaging and the body weight of the patient. 

Dose volumes are the last major format supported by DICOManager. Due to the 

computational demands of computing a dose array, the coordinate systems used are usually coarser 

than image volumes or have smaller dimensions than the image volume. To achieve voxel-to-voxel 

correspondence between the dose and image coordinates, a bi-linear interpolation can be used to 

interpolate the dose to the image grid. For regions of the image volume which are outside the 
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computed dose grid, zeros can be used as filler. Then, from the interpolated dose grid we can use 

the grid scaling factor header to convert the dose to units of Gray. 

7.1.3 Disassembly of DICOMs 

For deep learning segmentation tasks, the conversion of a predicted Boolean mask back 

into RT structure set is critical for a clinical utility. DICOManager supports three methods of 

converting a Boolean mask back into an RT structure set. The first approach allows a user to 

append a new structure to an existing structure set without removing the preexisting contours. The 

second approach allows users to provide a reference structure set, from which a new, uniquely 

identified structure set can be created with the Boolean mask encoded as a contour. Lastly, a user 

can generate a new, unique structure set when provided a series of axial CT images. 

For each method, the Boolean mask encoding begins by determining each referenced CT 

image slice and storing the UID references in the DICOM appropriate format. Then each axial 

slice of the 3D contour is converted to an alpha shape and unraveled into the list of vertices. Finally, 

the DICOM header is created or updated as needed before the new RT structure set is saved to disk 

and sorted into the existing cohort group. 

7.1.4 Further Work 

In its current state, DICOManager has become cumbersome to organize and build upon 

due the complexity of the tree structure. The only sensible progression of the project is to refactor 

the code to use an imbedded database for file organization and querying. The default python 

interpreter comes bundled with an SQLite3 imbedded database, making it the most logical choice 

for this application. Furthermore, in its current formulation, DICOManager saves assembled image 

volumes as pickled Numpy dictionaries. Because pickled python objects are inherently executable 

when read, they pose a substantial security risk and should be replaced with an alternative during 
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the refactoring. An ideal alternative would be to utilize XArray objects, which are Numpy arrays 

with an attached coordinate system and metadata. Implementing XArrays in the DICOManager 

backend would vastly simplify the data structure organization and handling. Following the code 

base refactoring, user accessibility could be improved by increasing the project documentation and 

bundling the project as a python integrated package manager (pip) project, allowing for single 

command installation and native execution. 

7.2 Publication of Dataset through The Cancer Imaging Archive 

7.2.1 Purpose 

The Cancer Imaging Archive (TCIA) is a National Cancer Institute funded program, 

managed by the Frederick National Laboratory for Cancer Research. The TCIA repository was 

founded with the goal of hosting anonymized, large scale, publicly accessible medical data to 

facilitate the open collaboration and progress of medical research. Publication of a dataset begins 

with the proposal to a TCIA steering committee who determines the scope, value, and content of 

newly accepted data collections. If accepted, the uploading institution and TCIA agree to a data 

transfer agreement and the terms of data usage. Following the legal paperwork, the collected data 

set is organized, anonymized, and uploaded to TCIA servers for curation. Curation consists of first 

ensuring the integrity, uniformity, and completeness of the DICOM images and header tags. 

During this process, the DICOM header tag anonymization is checked to ensure no patient 

identifiable information (PHI) still resides. Images are then manually and individually checked to 

ensure no burned-in PHI (typically left by the reading radiologist) still exists within the image 

volumes. Following manual curation of both the DICOM header and image, the entire data set is 

sent to a second, separate curation team who repeats the process. Then, after the extensive check 

for anonymization, the dataset is ready for public hosting on the TCIA portal for public access. 
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Having collected data for the hippocampus segmentation work while waiting to receive the 

RTOG-0933 data, the decision was made to open-source our internal data set. Open sourcing this 

data has the benefit of allowing for outside validation of our results, facilitates other researchers 

to build upon our methodology and provides high-quality images for the use in other deep learning 

tasks. In addition to the images and hippocampus segmentations, the TCIA steering committee 

asked specifically for the Gamma Knife treatment planning data and potential collaborators 

requested we also upload any follow-up imaging studies patients had received. 

Gamma knife planning data was collected and exported from the Beaumont Gamma Knife 

Center’s Gamma Plan (Elekta AB, Stockholm, Sweden) treatment planning system. For each 

patient, the DICOM radiotherapy module files for plan, dose and structure set were exported in 

duplicate for each of the image series used during planning (CT and MR sequences). The structure 

names used in the Gamma Knife treatment planning files were not modified from their original 

state, thereby preserving any clinical importance or relevance of the contour naming scheme used 

for a particular patient. Aside from ensuring registration to the proper imaging sequence (discussed 

in Section 7.2.3), no modifications were made to the RT plan or dose files either.  

Follow-up imaging studies were collected from Beaumont’s Philips (Philips Healthcare, 

Andover, MA) picture archiving and communication system (PACS). Any follow-up MR imaging 

studies up-to two years after the patient Gamma Knife treatment, or their next Gamma Knife 

treatment, were collected for this data set. In total, this collection is comprised of 390 patients who 

presented with vestibular schwannoma (VS, n=73), trigeminal neuralgia (TGN, n=119) or 

metastatic disease (M, n=198) and were subsequently treated with Gamma Knife (Eleka AB, 

Stockholm, Sweden) stereotactic radiosurgery. For each patient, the treatment indication is 

designated with a suffix on their patient ID (VS, TGN or M). 
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7.2.2 Dataset Composition 

All patients in the data set are provided with at least one high-resolution (1 mm slice 

thickness) T1 FLASH trans-axial MR imaging study and their corresponding high-resolution axial 

planning CT. When available, treatment planning data (struct, dose, plan), alternative MR 

sequences (FLAIR, T2 CISS, etc.) and follow-up MR imaging studies were collected. Each MR 

image used during treatment planning was registered to the CT frame of reference and is provided 

with the DICOM registration file and the aligned secondary image. Additionally, for each patient 

in the cohort, hippocampal contours generated by multiple institutional observers are provided in 

a separate structure set. The total contents of the dataset published on TCIA are given in Table 7.1. 

Appendix Table D.1 is also provided in the appendix with the top 100 most common, case-

insensitive names of each region of interest in the treatment planning structure sets.  

Table 7.1: Composition of dataset by DICOM file type. 

DICOM FILE TYPE COUNT 

CT 390 

MR 3901 

REG 872 

DOSE 928 

PLAN 928 

STRUCT  

(PLANNING) 
931 

STRUCT  

(HIPPOCAMPUS) 
390 

 

7.2.3 Dataset Preparation and Organization 

Consistent organization and DICOM labelling are vital to ensuring that the data is easily 

accessible to future researchers. The original contour names generated during treatment planning 

were grouped into 219 categories to improve data accessibility, but care was taken to best preserve 

clinically relevant data while limiting the groups to a reasonable number. Renaming coverage of 

99% (9044/9130) of structures was achieved with the 219 groupings. While TG-263 convention 
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was used, when possible, most tumors were named by their specific anatomical location, which 

did not have definitions in the TG-263 standardize nomenclature.  

Prior to uploading the data to TCIA, measures were taken to ensure consistent DICOM 

structuring. While most of the Gamma Knife planning data exported from the Gamma Plan 

treatment planning system was consistent with the DICOM standard, a subset contained many 

critical flaws. These flaws included inconsistent DICOM unique identifiers (UIDs) which caused 

DICOM viewers, like MIM Software, to incorrectly read the 3D volumes as a time-series sequence 

of 2D volumes. Additional important and relevant image acquisition information had also been 

removed from the DIOCM image files. Flaws in the series continued to the plan, dose, and 

structure set files which had been stripped of the x-, y-axis patient coordinate systems. This 

inconsistency in DICOM headers and coordinate systems resulted in patient information which 

would be effectively unusable by future researchers. Fortunately, the original, unadulterated 

imaging studies used for the treatment planning were maintained in the Philips PACS. 

Unfortunately, the images within Philips PACS had different UIDS than the original and required 

careful pairing and reassociating the data to maintain integrity. To achieve this, a Python script 

was created to transfer the UID references of the planning data to the original Philips PACS images. 

After fixing the broken planning studies, additional steps were taken to create consistency 

among the cohort. For the imaging data these steps included: renaming one-off MR and CT series 

descriptions to a more common equivalent description, image series with mixed UIDs were unified 

under a consistent UID, references to Beaumont Hospital and location were removed and referring 

physician and operator initials were stripped from the file header. For the hippocampus research 

contours, the unused hippocampus contours were removed, the study description was changed to 

“Hippocampus Research Contours” to indicate the structure set was used for hippocampus 
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research and the initials of the contouring individual were replaced with an anonymized alternative. 

On each of the planning file subtypes, a study description of “Gamma Knife Planning Data” was 

added to easily indicate the file was used for gamma knife treatment planning, the diagnosis tag 

was checked for consistency between all plan files, and operator initials were removed from the 

header. All follow-up imaging studies were processed equivalently to the planning CT and MR 

imaging studies. Additional processing was the performed, including setting the study description 

tag to “Follow-up Imaging Set #” to sequentially denote the patient’s imaging studies, any 

secondary and projection images were removed from their respective series and references to 

specific hospitals and departments were stripped from the header tags. 

After ensuring the integrity of each DICOM file, additional steps were taken to improve 

the usability of the data. For each patient, MIM (MIM Software, Beachwood, OH) was used to 

generate a rigid registration between CT and each MR sequence and the registration accuracy was 

validated using the stereotactic frame fiducial markers. From each registration, a DICOM RT REG 

file and aligned secondary image volume are provided, with each aligned secondaries series 

indicated by “[original series description] Co-registered to CT” in the series description DICOM 

header tag. During export from GammaPlan (Eleka AB, Stockholm, Sweden), the treatment 

planning files was provided in duplicate for each imaging modality frame of reference (CT and 

each MR sequence).  

In total, 197 patients are provided with follow-up imaging studies, with a median of 2 

(range 1-13) follow-up studies provided per patient. A distribution of the number of patients and 

series in the follow-up imaging studies is provided in Figure 7.1. Each follow-up date exists in a 

unique frame of reference and was not co-registered to the original treatment planning CT volume.  
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Figure 7.1: Number of patients (red) and series (blue) that are from follow-up imaging studies. 

 

Three independent observers generated hippocampal contours from the CT aligned-

secondary of the T1-weighted MR image, with the resultant contours saved to the CT frame of 

reference. In total, 744 unique left, right contour pairs were generated (observer 1, n=390; observer 

2, n=247; observer 3, n=107). In addition to hippocampal contours, the region grow tool was used 

to generate a head contour (ROI name ‘head’) to mask out the stereotactic frame and remove most 

of the reconstruction artifacts on the inferior extent of the image volume. 

The dataset will be made available through TCIA’s data download portal following 

curation (expected Q3 2022). Availability of the dataset is expected to coincide with a published 

manuscript describing the dataset.  

  



 

109 

 

 

 

CHAPTER 8 Future Work 

8.1 Deep Learning Perfusion Validation 

In the techniques presented in Chapter 5, it is possible that the deep learning model was 

not extracting the pulmonary perfusion signal and was instead guessing and getting lucky on the 

perfusion images. Unfortunately, with only a five patient test set, this scenario could not be ruled 

out. Therefore, before further work can be done, additional model validation should be conducted. 

One way would be to see if the model could generate perfusion images which agrees with Galligas 

PET perfusion imaging, a superior modality for accuracy and spatial resolution. Higher spatial 

resolution imaging would provide higher certainty that the defects are being accurately identified. 

Additionally, if the neural network is accurately extracting the pulmonary perfusion signal from 

the 4DCT, we would expect the generated synthetic images to be consistent with the observed 

radiation induced damage 165,166. Additionally, we would expect that a model trained with the 

proper loss function selected (sensitive to small perfusion defects) would be able to detect the 

perfusion defects caused by pulmonary emboli. Although, the detection of pulmonary perfusion 

emboli may require further loss function adjustments as the defects tend to be much smaller. 

If any of these investigations proved the signal extracting ability of the neural network, the 

next step would be to investigate the planning utility of these synthetic pulmonary perfusion 

images. The images used in this investigation were also used during a functional avoidance lung 

trial which showed positive results 167, which means the functional avoidance regions and resulting 

treatment plans are proven to minimize radiation induced damage to lung tissue. The proven 

clinical outcomes of these contours make for an ideal comparison in treatment planning. If the 

resultant treatment plans generated comparable functional lung avoidance regions and treatment 

plans, it would indicate the potential clinical utility of this technology for functional avoidance. If 
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that were the case, it would indicate that further validation through prospective clinical trials may 

be warranted. 

8.2 Hippocampal Avoidance Clinical Application 

From the start, the goal was to clinically implement deep learning segmentation for 

hippocampal avoidance. To achieve this, a robust and stable version of both the trained deep 

learning model and DICOManager is required, thereby allowing the model to function hands-off 

at any institution. Once we obtain a stable model validated dosimetrically against RTOG 0933, the 

intent is to validate the implementation of the technology at an external institution. The most 

reasonable and safe means of implementing would be to allow physicians to generate contours 

during regular treatment planning. Each treating physician could then compare and ensure they 

feel confident with the technology during their regular clinical workflow. This way by the time a 

patient with a contra-indication for MR imaging, or whose clinical needs necessitate a rapid start 

to their treatment, the physician will have confidence in the deep learning model’s contour quality. 

At this point, a manuscript could be prepared from the perspective of a treating physician in the 

ease of implementation, quality of treatment planning and changes in patient logistics. 

Given enough time being implemented in a clinic with traditionally planned patients, and 

potentially any re-training upon detection of any gross failures, sufficient confidence will be built 

in the technology. From this point, explorations into the implementation of the methodology into 

clinics with less accessibility to MR imaging can be made. 

8.3 Clinical Trial Quality Assurance with Deep Learning 

In addition to clinically implementing the deep learning methodology for clinical care, 

additional explorations into its utility for quality assurance will be made in future work. The 

difficulty of hippocampal segmentation is well documented in the clinical trials and the ongoing 
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adoption of HA-WBRT will predominantly be by physicians who did not participate in the trial. 

Therefore, many of these physicians will not have participated in the contouring workshops, pre-

enrollment validation, and treatment plan feedback that the trial participating physicians received. 

For physicians and patients who do have easy access to MR imaging, there is still the concern that 

their treatment plans will be non-ideal due to sub-standard hippocampal contours. For this reason, 

a clinical QA tool which can detect systemic contouring bias would allow for clinics new to 

treating with HA-WBRT to validate their contouring style. This QA tool could run in the 

background and compare treating physician contours to the deep learning model prediction. When 

a certain level of disagreement is achieved with the model, the physician could be notified there 

may exist and contour style discrepancy and direct them towards reference material, if desired. 

The difficulty of this project comes from quantifying contour disagreement in a robust 

manner. One proposed means of achieving this is to leverage the deep learning model feature 

space. In attempts to understand what image features deep learning models use to generate 

segmentations, a new class of research in “explainers” has grown in popularity. In essence, an 

explainer model identifies what regions of the model are activated by which portions of the image 

to generate a segmentation of a particular class. If we could take this concept and invert the deep 

learning model, we could see which activations would generate a particular segmentation. With 

the activations for any given segmentation, we could compare the activation space between two 

segmentations to quantify their agreement free from the existing analytical metrics, like Dice and 

Hausdorff. Through comparison to our planned cases, a threshold of disagreement in contour space 

which strongly correlates to dose disagreement could be identified. This would mean that when 

applied to contour quality assurance, we could detect systemic bias not from Hausdorff distance 

or Dice coefficient (which may or may not correlate to dose), but a deep learning derived, contour-
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site specific metric which strongly correlates to dose. That way when systemic bias is identified 

and the contouring style is adjusted, the treatment plans will be brought in line with NRG-CC001 

and patients will receive the same improvement in their quality of care. 



 

113 

 

 

 

APPENDIX A  

A.1 Common Loss Functions 

A.1.1 Mean Squared Error 

Mean squared error (MSE) is one of the simplest loss functions used in deep learning. MSE 

is computed by the mean of the squared loss between the prediction and ground truth, given by 

Equation A.1.1. 

 𝑀𝑆𝐸 =  
1

𝑛
∑(𝑋𝑖 − 𝑌𝑖)

2

𝑛

𝑖=1

 (A.1.1) 

Throughout the chapter, we will denote X as the prediction and Y the ground truth. For 

each tensor, X and Y, there exist n classes, encoded as channels. Because it does not require multi-

class or multi-label segmentation input, MSE is applicable to both prediction types. However, 

unlike other functions (e.g., Dice loss), the MSE loss scores during training are not correlative to 

common segmentation comparison metrics, limiting MSE’s overall interpretability. While MSE is 

an acceptable loss function for certain situations, many more specialized loss functions are 

available for segmentation tasks. Mean squared error has a built-in implementation in TensorFlow 

and PyTorch. 

A.1.2 Cross Entropy 

The term “cross entropy” describes a family of logarithmic loss functions, typically 

referring to one of two types: binary cross entropy and categorical cross entropy. For both functions, 

they follow the same basic formula, as given by Equation A.1.2, but differ by the expected input 

prediction type.  

 𝐶𝐸 =  − ∑ 𝑌𝑖

𝑛

𝑖=1

log(𝑋𝑖) (A.1.2) 
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A.1.3 Binary Cross Entropy 

Binary cross entropy is a logarithmic loss function designed for multi-label problems, 

where the data is limited to a binary value designating class membership. This is most utilized with 

ground truth data which has been one-hot encoded. This is paired with a model with a sigmoid 

function as the final activation, providing an output vector with values from zero to one. To 

reiterate, a multi-label problem would be a task which has volumetrically overlapping 

segmentations. An example of this is the BraTS Challenge MRI dataset, a brain lesions dataset 

with structure for the enhancing tumor (ET), tumor core (TC) and whole tumor (WT). To allow 

for predictions with overlapping structures, the model should output a three-channel mask, with 

each channel corresponding to one of ET, TC or WT. Binary cross entropy has native 

implementations in TensorFlow and in PyTorch. 

A.1.4 Categorical Cross Entropy 

Like binary cross entropy, categorical cross entropy is a logarithmic function. Categorial 

cross entropy is designed to work with multi-class problems and is compatible with models that 

have softmax final activation. These models then predict the certainty that any given voxel belongs 

to each class. Typically, multi-class problems are most useful for segmentation tasks which do not 

have overlapping classes, such as segmentation of either left or right lung. To prepare the ground 

truth and model for a softmax activation, the output should have n + 1 channels, where n 

corresponds to the number of segmented structures. This leaves an additional channel to 

correspond to voxels which are not a member of any class, henceforth referred to as the background. 

Categorical cross entropy has native implementations in TensorfFlow and PyTorch. 
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A.1.5 Dice Loss 

The Sørensen-Dice coefficient, commonly referred to as the Dice coefficient, was 

developed for biostatisticians to determine the similarity between two populations 96. Although it 

was originally designed to work with tabular binary data, it has proven to be a useful tool for binary 

segmentation analysis as well 97. For a set of two contours, the prediction (X) and the ground truth 

(Y), we can determine the Dice coefficient with Equation A.1.3. 

 𝐷𝑖𝑐𝑒 =  
2|𝑋 ∩ 𝑌| +  𝜀

|𝑋| + |𝑌| +  𝜀
 (A.1.3) 

Where 𝜖 represents a small value to prevent from having zero division errors when both X 

and Y are empty and to ensure that Dice = 1 in that instance. Then, the Dice loss function is simply 

1 – Dice coefficient, or the negative of the Dice coefficient.  

An implementation of the Dice coefficient and Dice loss in Python code using Numpy, 

Keras and PyTorch are included. You may notice that each implementation looks somewhat 

different. This is partially because of the different functions and syntax of each library, but also 

because both the PyTorch and Keras implementations are designed to work with non-binary output 

data during the training process.  

A.1.6 Hausdorff Distance Loss 

With the previously discussed loss functions, the prediction agreement was determined by 

the relative similarity of the structures. This means a well performing prediction could be quite 

volumetrically accurate but have little penalization for discontinuities in the volume.  
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Appendix Figure A.1: A visual comparison of two volumetrically similar contours with poor Hausdorff Distance 

agreement due to the small blue dot having poor spatial agreement with the red circle. In this toy example, red 

represents a ground truth contour whereas blue indicates the prediction. 

Take Appendix Figure A.1 for example, where the prediction is generally in strong 

agreement with the ground truth, but the prediction also includes a small region with large spatial 

separation from the ground truth. To translate this to radiation oncology segmentation for treatment 

planning, while Appendix Figure A.1 has a high Dice coefficient, if this were a target volume, the 

resulting treatment plan would differ vastly from the ground truth’s plan. For radiation oncology 

treatment planning, an accurate segmentation is primarily one with relatively minimal spatial 

difference from the ground truth.  

To robustly determine the maximum spatial separation between two structures, we can 

compute Hausdorff distance (HD), as provided by Equation A.1.4.  

 HD =  max {sup
𝑦∈𝑌

inf𝑥∈𝑋 𝑑(𝑦, 𝑥), sup
𝑥∈𝑋

inf𝑦∈𝑌 𝑑(𝑦, 𝑥)} (A.1.4) 

Where sup, inf represent the supremum and infimum of the distances and the distances, represented 

as d(y,x), are computed between a point from each contour set. Effectively, this metric computes 

the minimum distance between every point from one surface to two and from surface two to one. 

Then, the HD is the maximum distance separation from the mappings in either direction, which is 

the greatest spatial discrepancy between the two surfaces. Unlike previous loss functions, like Dice 

loss, HD is only dependent on the contour surfaces, meaning a ring and a filled contour could yield 
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the same HD. Thus, HD is particularly sensitive to disjoint segmentations and, when used as a loss 

function, will reinforce accurate contour boundary predictions. The simplest way to create a HD 

loss is to compute the negative HD 168. An implementation of HD is contained within the excellent 

MedPy library.  

Shortcomings of the Hausdorff distance loss function is that it is spatially dependent and 

highly sensitive to outliers. If the individual image and segmentation masks used to train the model 

vary in field of view, or have inconsistent voxel dimensions, the HD will be non-uniform across 

the training set. Most commonly, image voxel dimensions vary in the z-axis, which, if uncorrected 

for, could yield inconsistent results on the superior or inferior boundaries of a contour. Correction 

can be achieved by either resampling the image to uniform voxel dimensions or generating the 

training data sets with corresponding voxel dimensions and passing them into the loss function. 

Further, the Hausdorff distance metric is sensitive to outliers, which may be overcome by 

substituting a percentile or mean Hausdorff distance, instead of the traditional total maximum 

distance.  

A.2 Dealing with Class Imbalance 

Despite the amazing capabilities of deep learning models, they can also be lazy and will 

frequently take any available shortcuts to get nearest to the correct answer. So, let us consider the 

lazy approach to the task of segmenting Appendix Figure A.2 into one of three classes: square, 

circle and triangle.  
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Appendix Figure A.2: A representation of an unbalanced segmentation task for two classes (purple, red) with 

background shown as black. 

Between the structures in Appendix Figure A.2, the red triangle is 0.5% of the total area, 

the purple circle is 23.3% of the total area and the black square is 76.2%. Now, if we are grading 

the deep learning model’s performance with an unbalanced loss function, the deep learning model 

could omit learning of the triangle completely and be within 99.5% accuracy of the ideal prediction. 

In this case, if we imagined each shape to represent an anatomical structure, failing to segment any 

necessary structure would constitute a clinically unacceptable prediction, independent of the 

accuracy of the other structures. 

When choosing a loss function, the task’s inherent class balance should be considered to 

prevent overfitting to only the most dominant classes. While there is no rule-of-thumb for when to 

choose a balanced or unbalanced loss function, when a task is in fact balanced, the majority of 

imbalance adjusted loss functions asymptotically approach their unbalanced counterparts. If the 

significance of class imbalance is unknown, it is recommended to begin with one of the following 

loss functions. 

A.2.1 Weighted Cross Entropy 

For tasks with a known and constant magnitude of class imbalance throughout the samples, 

the imbalance can be compensated for using weighted cross entropy 57. In similar fashion to the 
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standard cross entropy, weighted cross entropy is a logarithmic function compatible with either 

multi-label or multi-class data. However, the implementation differs by having a per-class scaling 

or weighting factor. A cross entropy a binary problem is given in Equation A.1.5. 

 𝐶𝐸 =  − ∑ 𝑤𝑖𝑌𝑖

𝑛

𝑖=1

log (𝑋𝑖) (A.1.5) 

Where wi represents the per-class weighting to compensate for class imbalance. If 𝑤𝑖 > 1, 

then the model will decrease false negatives and if 𝑤𝑖 < 1 then the model will decrease false 

positives. To understand false negatives and false positives in the context of segmentation, 

reference Section 5.e on sensitivity-specificity loss.  Weighed cross entropy is natively 

implemented in TensorFlow and in PyTorch, with the default implementations accepting weights 

as parameters. An example of this loss function is implemented in A.5.2.  

Using a similar implementation as weighted cross entropy, other weighted loss function 

exist (e.g. weighted Hausdorff distance 169). Furthermore, it is feasible that any multi-class loss 

function could be manually adapted to account for class imbalance by including defined class 

specific weightings.  

A.2.2 Generalized Dice Loss 

Dice loss is one of the most common loss functions, but it unfortunately is not entirely 

robust to class imbalances. To account for imbalances, the generalized Dice loss weights the per 

class Dice score with the inverse square of that class’s ground truth volume 98. This metric is then 

given by Equation 2.6. 

 𝐺𝐷𝐿 = 1 − 
2∗∑ 𝑤𝑙|𝑋∩𝑌|+ε𝑙

∑ 𝑤𝑙|𝑋+𝑌|𝑙 + ε
      where         𝑤𝑙 =

1

𝑌𝑙
2 (A.1.6) 
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Where the summation in numerator and denominator represents calculation on a per-class 

basis. Through inclusion of the weighting factor, the generalized Dice score biases towards classes 

with a smaller volume proportional to their under-representation.  

The strength of the generalized Dice loss function is that it does not require user 

hyperparameter tuning to compensate for class imbalance. Due to this lack of required tuning, 

generalized Dice loss is a good imbalance compensating loss function to test first. After 

experimenting with generalized Dice loss, the other loss functions with greater tunability can be 

explored to determine if any potential performance gains exist. A NumPy, Keras and Tensorflow 

compatible implementation of generalized Dice loss are provided in Appendix A.5.3.  

A.2.3 No-background Dice Loss 

The no-background Dice loss function is a boundary condition of the generalized Dice loss 

function for when only small structures and the background exist. To address the foreground-

background class imbalance, the Dice loss can be calculated on only the structures of interest, 

excluding the background altogether. During training, the reported loss function is then simply one 

minus the average Dice coefficient of the structures. Considering that this utilizes the standard 

Dice coefficient, the loss function only accounts for large imbalances between structures and the 

background class, not imbalances which may exist between classes. As such, this loss function is 

best suited for a model concluding with a softmax activation used to segment a single or paired 

small volume structure.  

A.2.4 Focal Loss 

Focal loss, as the name implies, adds a focusing mechanism into cross entropy loss which 

reduces the relative importance of high-confidence predictions 170. This is particularly relevant for 

multi-class problems with a final softmax activation where the predictions are certainties of class 
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membership. As the model trains and confidence increases for the membership of certain voxels, 

those highly confident predictions are down weighted in the loss function. When applied to 

imbalanced problems, the model will quickly and confidently learn that much of the image volume 

is a part of the background class. Once this occurs, the focal loss function will shift significance 

away from the background and on to the accuracy of the remaining structures.  

Focal loss achieves dynamic rebalancing by including a scaling factor which decays to zero 

as probability approaches one. In a simple n-class case, the focal loss is given by Equation A.1.7. 

 𝐹𝐿 = − ∑ 𝛼𝑖(1 − 𝑋𝑖)
𝛾𝑖  log (𝑋𝑖)

𝑛

𝑖=1

 (A.1.7) 

Where in the equation, Xi  is the predicted class membership certainty, 𝛼𝑖  is a user 

adjustable per-class weighting factor and 𝛾𝑖  is a user adjustable per-class focusing parameter. 

Although, most implementations leave the focusing parameter equal across all classes. When the 

focusing parameter is 𝛾 = 0, the loss function is equivalent to the cross-entropy loss function. But, 

as 𝛾 becomes larger, the magnitude of focusing increases. 

A.2.5 Sensitivity Specificity Loss 

To understand Sensitivity-Specificity loss, we should first understand how sensitivity, 

specificity, as well as precision and recall relate to medical image segmentation. During the 

calculation of each of these metrics, we consider the voxel-wise accuracy of the segmentations for 

the evaluation of true / false and positive / negative voxel-wise classifications. Given in Appendix 

Table A.1 is a description for the four classification classes related to segmentation of either a two-

class problem with either foreground or background. Then, from the individual voxel-wise 

classifications, we can build the definitions of sensitivity, specificity, precision, and recall, as are 

provided in Appendix Table A.2 with descriptions for the interpretation of the metric. 
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Appendix Table A.1: Classification types for binary segmentations. 

CLASSIFICATION 

TYPE 
DESCRIPTION 

TRUE POSITIVE (TP) Indicates a voxel correctly classified as a member of the class 

TRUE NEGATIVE (TN) 
Indicates a voxel correctly classified as not a member of the class. Depending on 

encoding, this may represent the background 

FALSE POSITIVE (FP) 
Indicates a voxel incorrectly classified as a member of the class, when the ground 

truth designates it as not a member, or as the background 

FALSE NEGATIVE (FN) 
Indicates a voxel incorrectly classified as not a member of the class, typically 

representing background over-prediction 

 

Appendix Table A.2: Metrics to evaluate binary segmentations 

STATISTIC EQUATION DESCRIPTION 

SENSITIVITY OR 

RECALL 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)⁄  

Represents a model’s ability to correctly segment the ROI, with score 

penalization due to structure under-segmentation, or the prediction of 

false negatives 

SPECIFICITY 𝑇𝑁
(𝑇𝑁 + 𝐹𝑃)⁄  

Measures the background segmentation accuracy, with penalization 

due to ROI over-segmentation 

PRECISION 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃)⁄  

A measure of a model’s capabilities to segment the ROI, with scoring 

penalization resulting from over-segmentation of the structure, or the 

prediction of false positives 

 

When we consider the Dice Loss, the function could be represented as the product of recall 

and precision, as shown in Equation A.1.8. 

 𝐷𝑖𝑐𝑒 =  
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (A.1.8) 

If we instead want to calculate sensitivity-specificity loss (SSL) 171, we could adjust the 

balance between the two terms with a factor, in this case r. This would then give the sensitivity-

specificity loss function as in Equation A.1.9. 

 𝑆𝑆𝐿 =  𝑟 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ (1 − 𝑟)

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (A.1.9) 

Which is computed as a combination of the mean squared errors between the prediction 

(sensitivity) and the background (specificity), which is provided in Equation A.1.10. 
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 𝑆𝑆𝐿 = 𝑟 
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑋𝑖𝑖

∑ 𝑋𝑖𝑖
+ (1 − 𝑟)

∑ (𝑋𝑖 − 𝑌𝑖)
2(1 − 𝑋𝑖)𝑖

∑ (1 − 𝑋𝑖)𝑖
 (A.1.10) 

Where we can account for the background to foreground weighting with the r factor, where 

a higher value of r places a larger emphasis on the sensitivity, or foreground voxels. Like weighted 

cross entropy, this loss function allows for user adjustable weighting to compensate for class 

imbalances present in the task.  

A.2.6 Tversky Loss 

If our segmentation task requires higher sensitivity to either false negatives or false 

positives, a variable index, such as the Tversky loss can be utilized 172. The Tversky index is given 

in Equation A.1.11. 

 𝑇𝑣𝑒𝑟𝑠𝑘𝑦 =  
|𝑋 ∩ 𝑌|

|𝑋 ∩ 𝑌| +  𝛼|~𝑌| + 𝛽|~𝑋|
=

𝑇𝑃

𝑇𝑃 +  𝛼 ∗ 𝐹𝑃 + 𝛽 ∗ 𝐹𝑁
 (A.1.11) 

Where the ~ operator indicates the relative compliment of the boolean array and the values 

of 𝛼, 𝛽  are hyperparameters corresponding to magnitude of the penalization for FP and FN, 

respectively. Through adjusting the ratio of 
𝛼

𝛽
, the performance of the loss function can be modified. 

In the instance that 𝛼 = 𝛽 = 0.5, the Tversky loss function become equivalent to the Dice loss 

function.  

The Tversky loss function’s strength is, if the user is so inclined, it can be adjusted to 

exactly counteract the task’s class imbalance or segmentation needs. For example, segmentation 

tasks which prioritize ROI coverage could have a lower ratio of 
α

β
 , whereas tasks which require 

minimal over-expansion of segmentations would utilize a higher ratio.  

A.3 Compound Loss Functions 

Many of the aforementioned loss functions exhibit unique properties which make them 

well suited for a particular segmentation task. Occasionally, however, problems require properties 
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at the intersection of multiple loss functions. Fortunately, different loss functions can be combined 

to span a larger set of properties.  

A.3.1 Dice + Cross Entropy 

The combination of cross entropy and Dice coefficient is a popular pairing for loss 

functions 173. Alone, the Dice coefficient is robust to minor class imbalances, but does not allow 

for weighting of false positives or false negatives. The two terms within a weighted binary cross 

entropy function, however, can be modified to increase or decrease the penalty for false negative 

or false positive values. When dice and cross entropy losses are combined, the result is a partially 

class imbalanced loss function with variable sensitivity for false predictions.  

A.3.2 Dice + Focal Loss 

A further example of combined loss function is Dice loss and focal loss 174. More precisely, 

their loss function implementation utilized the Tversky loss function with 𝛼 = 𝛽 = 0.5, although 

these hyperparameters could have been tuned differently for this task. Through the combination, 

this joint loss function combines both the volumetric dependency of the Dice coefficient and the 

focal loss property of increased importance of highly uncertain predictions.  

A.3.3 Non-linear Combinations 

To generate the most utility from a combined loss function, the balance between the terms 

should exhibit non-linear behavior. A strong loss function combination should choose loss 

functions which each possess unique properties. For some tasks, these behaviors can be more 

powerful at the early or late stages of training.  

For example, take the Hausdorff loss function. Traditionally, the 100th percentile Hausdorff 

distance is highly sensitive to spatial outliers which limits the usefulness during early training. 
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However, this becomes an asset during late training stages, as it can accurately discriminate against 

spatial outliers, thus fine-tuning performance.  

Another example of a potential non-linear combination is Dice and focal loss. In the 

original loss function implementation, the Dice loss term dominated for epochs with poor 

validation set performance. Then, the importance of the focal loss term increased as the validation 

set performance improved. This gradual shift in balance allowed the model to partially train on 

Dice loss before becoming dominated by focal loss and being penalized for high prediction 

uncertainty.  

It should be noted that non-linear loss function combinations will require additional 

hyperparameter tuning and are more likely to train inconsistently. A suggested workflow is to 

begin training the model with only the initially dominant term. Then, once hyperparameter-tuned, 

the loss function can be expanded with the minor terms, before re-tuning the hyperparameters. 

A.4 Dealing with Imperfect Data  

For most medical image segmentation tasks, the training data set must be large, diverse, 

and high quality. Unfortunately, particularly in medicine, creating such a training set is a time-

consuming undertaking. This is particularly problematic when the generation of ground truth labels 

requires an expert, whose time is likely at a premium.  

An ongoing field of research attempts to create methods and loss functions to train high 

quality models from imperfect data. In many clinical cases, only the relevant selection of all 

organs-at-risk are segmented. This means that the original clinical data set may not be densely 

populated with all structures on all cases. For cases that lack a labeled structure, gradient 

backpropagation will penalize a model’s potentially accurate prediction due to imperfections in 

the ground truth.  
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A few attempts to account for imperfect data, particularly sparsely labeled ground truths, 

have achieved success through modification of the loss function. For example, Bokhorst et al. 175 

trained a U-Net model from sparely labeled histology images by only backpropagating the loss 

function from channels which had ‘valid’ ground truth labels. Zhu et al. 174 extended this concept 

by not only masking for only ‘valid’ ground truths but weighting each class at the inverse of their 

occurrence. Through doing so, the loss function compensated for the inter-class imbalance 

deriving from the sparsely labeled ground truth. Although these are promising first steps, the 

further adaptation of loss functions to train robustly on imperfect data will continue to garner 

interest for medical image segmentation. 

A.5 Loss Function Code Examples 

A.5.1 Dice Loss 

A python code example of dice loss compatible with the Numpy array library. Code is 

designed to compute the dice coefficient of two arrays (output, labels) and return the dice loss. 

import numpy as np 
 
def dice_coef(output, labels): 
    # Computes the dice coefficient of two numpy arrays 
    eps = np.finfo(float).eps 
    intersection = np.sum(output * labels) 
    denominator = np.sum(output) + np.sum(labels) 
    return (2 * intersection + eps) / (denominator + eps) 
 
def dice_loss(output, labels): 
    # Computes the dice loss of two numpy arrays 
    return 1 - dice_coef(output, label) 
 

A.5.2 Weighted Cross Entropy 

Weighted binary cross entropy function, written in Python to be compatible with the 

TensorFlow Keras library. Weights are specified when the class instance is initialized, and the 

binary or categorical cross entropies can then be computed with class method calls. 

import tf.keras.backend as K 
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class weighted_cross_entropy: 
 def __init__(self, weights): 
  self.weights = weights 
  self.eps = K.epsilon() 
 
 def binary(y_true, y_pred): 
  term0 = y_true * K.log(y_pred) * self.weights[0] 
  term1 = (1 – y_true) * K.log(1 – y_pred) * self.weights[1] 
  bce = -1 * (term0 + term1) 
  loss = K.mean(bce, axis=-1) 
  return loss 
 
 def categorical(y_true, y_pred): 
  y_pred /= K.sum(y_pred, axis=-1, keepdims=True) 
  y_pred = K.clip(y_pred, self.eps, 1 – self.eps) 
  loss = -1 * K.sum(self.weights * y_true * K.log(y_pred)) 
  return loss 
 

A.5.3 Generalized Dice Loss 

The generalized dice loss function builds upon the previous example of a Numpy 

compatible dice loss function. Generalized dice loss weights each channel (corresponding to a 

segmentation class) inversely proportional to the rate of occurrence in the ground truth. Including 

inverse weighting accounts for class imbalance which would occur when all classes are weighted 

equally in the standard dice loss function. 

import numpy as np 
 
def generalized_dice_coef(output, labels): 
    # Computes the generalized dice coefficient of two numpy arrays 
    eps = np.finfo(float).eps 
    sum_dims = tuple(range(labels.ndim)) 
    w = 1 / (np.sum(labels, axis=sum_dims[:-1])**2 + eps) 
    numerator = np.sum(w * np.sum(output * labels, axis=sum_dims)) 
    denominator = np.sum(w * np.sum(output + labels, axis=sum_dims)) 
    return (2 * numerator + eps) / (denominator + eps) 

 
def generalized_dice_loss(output, labels): 
    # Computes the generalized dice loss of two numpy arrays 
    return 1 - generalized_dice_coef(output, labels) 
 

A.5.4 No Background Dice Loss 

No background dice loss is a simple modifier to the standard dice loss function for highly 

imbalanced segmentation tasks where the background is orders of magnitude greater than the 
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semantic segmentation classes. Prior to computation of the dice loss, the background channel is 

excluded from the output (prediction) and label (ground truth) classes. This function is compatible 

with the Numpy array library. 

# Requires the standard dice loss implementation as well 
import numpy as np 
 
def no_bkgd_dice_loss(output, labels): 
    # Computes the dice loss of two numpy arrays 
    return 1 - dice_coef(output[…, 1:], label[…, 1:]) 
 

A.5.5 Tversky Loss 

Tversky loss is a derivative of the dice loss function. Dice loss is inherently designed to 

equally penalized both false positive and false negative segmentation voxels, but this bias is not 

always ideal for segmentation tasks. Therefore, having the ability to alter the weighting between 

false positive and false negative predictions may be desired and can be obtained with the Tversky 

loss function. The example provided is compatible with the Numpy array library. 

class losses: 
    def __init__(self, alpha=0.5, beta=0.5, loss=True): 
        self.alpha = alpha 
        self.beta = beta 
 
    def tversky(self, output, labels): 
        # Calculates the tversky coefficient or loss 
        eps = np.finfo(float).eps 
        true_pos = np.sum(output * labels) 
        false_pos = self.alpha * np.sum(labels * (1 - output)) 
        false_neg = self.beta * np.sum(output * (1 - labels)) 
 
        tversky = (true_pos + eps) / (true_pos + false_pos + false_neg + eps) 
        return tversky 
 
    def tversky_loss(self, output, labels): 
        return 1 – self.tversky(output, labels) 
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APPENDIX B  

B.1 Limitations in Segmentation Accuracy Resulting from Changes in Field of View 

In small structure segmentation tasks, cropping the image volumes is vital to the success 

of a model. Other models designed for segmentation 68,89–91 have utilized image down-sampling 

prior to prediction, followed by up-sampling to the original image dimensions. To boost their 

performance, some models follow up-sampling with a conditional random field (CRF) for post 

processing segmentation improvements 89–91. Since cranial CT images lack high levels of 

contextual information and, at small fields of view are noise dominated, utilizing CRFs is 

ineffective since the process relies on voxel statistics and feature edges to group predicted volumes 

176,177. Further, up-sampling predictions of low volume structures, such as the hippocampus, causes 

a loss in spatial resolution and significantly limits the achievable accuracy of both the Hausdorff 

distance and Dice similarity coefficient.  

To fully evaluate the impact of changes in field of view on the theoretical limit of 

segmentations, a toy model was designed to simply down-sample and up-sample the ground truth 

segmentations (Appendix Figure B.1). These modified segmentations were then compared to the 

original ground truth to determine the absolute change in Hausdorff Distance (mm) and Dice 

correlation coefficient (%), as given in Appendix Table B.1. This toy problem showed that a 1:2 

change in the field of view would result in an uncertainty of 7.2% Dice score and 0.721 mm 

Hausdorff score. With the RTOG-0933 criteria set with a hard boundary of 7mm, an uncertainty 

of 10% was determined to be too substantial in evaluating model accuracy. Therefore, cropping 

instead of resampling was used during the model perpetration. 

While cropping reduces contextual information in the boney anatomy, the RTOG 0933 

protocol for contouring the hippocampus defines the inferior, superior, and lateral boarders from 
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the lateral ventricles. Due to the high importance of the lateral ventricles in defining the 

hippocampus, and their ability to be visualized on a CT image, we chose the crop volume to include 

the lateral ventricles but reduce cranial anatomy irrelevant to defining the hippocampus. Through 

cropping, we were able to reduce the model’s memory footprint and computational complexity, 

thereby decreasing the time required to conduct a nested cross-fold validation.  

 

Appendix Figure B.1: Effect of down-sampling on the theoretical performance limit. A contour (magenta) is down-

sampled and up-sampled using max-pooling and up-sampling layers implemented in TensorFlow. An MR image is 

included for visual comparison for a 1:4 sampled contour. The resultant contours differ from the original due to 

information loss in the max-pooling and pixilation from up-sampling. 

 
Appendix Table B.1: Down-sampled and up-sampled 1:x images with 100th-percentile Hausdorff Distance and Dice 

limits reported as mean and standard deviation. These values were computed across the entire 390-patient cohort. 

DOWN SAMPLE RATE 
HAUSDORFF  

DISTANCE (MM) 
DICE LIMIT (%) 

1:1 0.000 ± 0.00 100. ± 0.00 

1:2 0.721 ± 0.00 92.8 ± 1.30 

1:4 2.134 ± 0.08 80.4 ± 2.72 

1:8 4.664 ± 0.33 61.6 ± 4.30 

 

B.2 Model Sub-type Saturation  

When training a deep learning network, it is difficult to know the requisite dataset size to 

properly saturate the models used in the experiment. To retrospectively determine if the chosen 

models saturated adequately, we generated randomly selected subsets of the data (N=50, 100, 200, 
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312). From these cohorts, we tracked the relative performance on each of the main two model 

types (ResNet, UNet) to determine if we achieved adequate saturation. These results are provided 

in Appendix Figure B.2 and show that saturation for both model subtypes was achieved at 

approximately 200 patients for the ResNet and potentially achieved between 200 and 300 for the 

3D UNet. The uncertainty in 3D UNet training performance for the different cohorts is likely 

attributable to the inefficient method of pooling and transposed convolutions to provide increasing 

field of view and representation of higher-order features in the 3D UNet. Due to the inefficiencies 

of this encoder-decoder style model architecture, the 3D UNet is comprised of 30x more 

parameters than the comparable ResNet architecture. This increased model parameter and layer 

count, require a larger dataset to fully back-propagate the gradient throughout the model to yield 

stable and consistent performance. 

 

Appendix Figure B.2: Mean passing rate of left, right hippocampus, plotted as a function of training size. Ten 

models were trained on randomly selected data with the error bars reported at standard deviation of the mean.  
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APPENDIX C  

C.1 Synthetic Pulmonary Perfusion Additional Analysis 

 

Appendix Figure C.1: An overlay of the registered SPECT CT and AIP-CT using a rigid registration (top) and 

deformable registration (middle). The curl of the deformable vector field (bottom) depicts inconsistent and non-

physical deformations within the lung parenchyma. 

 

Appendix Figure C.2: Comparison of a distribution of Spearman correlations computed on a single coronal slice 

relative to the ground truth (study 5_1). The given images are sourced from different trained models during the 

cross-fold validation. 

 

 

 

b 
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Appendix Figure C.3: Forest plot of the validation set, pre-treatment Spearman correlation coefficients. Encoding of 

the study is by patient with ‘_1’ representing a pre-treatment imaging study. 

 
Appendix Figure C.4: Forest plot of the validation set, post-treatment Spearman correlation coefficients. Encoding 

of the study is by patient with ‘_2’ representing a post-treatment imaging study. 
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Appendix Figure C.5: Box and whisker plots of mean Spearman (3.A) and Pearson (3.B) correlation coefficients 

before and after radiation therapy. Boxes represents the interquartile range (IQR) with the horizontal line 

representing the median value. The whiskers correspond to 1.5 x IQR above and below the median and the X’s 

represent outliers. Wilcoxon rank-sum test was used to compare median values, P < 0.05 was considered 

statistically significant. 

Appendix Table C.1: Contour comparison metrics for each pre-RT validation set imaging study (N=24), reported as 

median and IQR. 

METRIC F50 CONTOURS 

DICE 0.780 (0.762 – 0.812) 

ASD (MM) 6.23 (5.13 – 8.70) 

HD95% (MM) 20.9 (15.8 – 26.4) 

RAVD (%) 0.28 (-0.21 – 0.75) 

PRECISION 0.779 (0.760 – 0.811) 

RECALL 0.781 (0.767 – 0.813)  

F-SCORE 0.780 (0.762 – 0.812) 
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APPENDIX D  

D.1 TCIA Dataset Planning Contour Names 

Given in Appendix Table D.1 is a list of the top 100 most common structure names and 

their total number of occurrences. Note, the contour listed as “Plan1[tgt#]#gy” is a naming 

convention used for each target denoted by a letter (a,  b, …), and the dose to the target specified 

as #gy (for Gray). For cases with multiple lesions, relative anatomical directions were common in 

the contour names. To preserve clinical data, abbreviations were used for: left (L), right (R), medial 

(med), midline (mid), lateral (lat), anterior (ant), posterior (post), inferior (inf) and superior (sup). 

Cranial nerves were renamed from their common names (e.g., trigeminal nerve) to their cranial 

nerve numbering (e.g., CN_V), with treatment contours for the trigeminal nerve are denoted with 

“TX”. Empty contours are designated in their ROI name with ‘(Empty)’ appended to the end. 

Appendix Table D.1: A table of the 100 most common Gamma Knife treatment planning structures. 

STRUCTURE # STRUCTURE # STRUCTURE # STRUCTURE # 

Plan1[tgt#]#gy 1421 Cerebellum_Lat_R 64 Lobe_Parietal_Post_R 33 Cerebellum 19 

Skull 928 Cerebellum_Inf_L 61 Lobe_Frontal_Ant_L 33 Lobe_Occipital_Mid_L 19 

Brainstem 466 Lobe_Frontal_Ant_R 57 Vermis 31 Periventricular_Post_R 19 

Brain 453 Lobe_Frontal_Sup_L 54 Periventricular_Post_L 30 Lobe_Occipital_Med_R 18 

Lobe_Frontal_R 271 Lobe_Parietal_Post_L 50 Lobe_Temporal_Lat_L 29 Tentorium_L 18 

Lobe_Frontal_L 252 Vermis_L 46 Basal_Ganglia_L 28 Cerebellum_Sup_R 18 

Cerebellum_L 243 Lobe_Frontal_Inf_L 46 Lobe_Frontal_Lat_R 28 Lobe_Occipital_Ant_L 18 

Cerebellum_R 218 GTV 44 Cerebellum_Mid_R 28 Pervivent_L 17 

Lobe_Occipital_L 204 Lobe_Frontal_Inf_R 42 Cerebellum_Midline 28 Frontoparietal_R 17 

Lobe_Occipital_R 189 Cerebellum_Lat_L 42 Cerebellum_Med_L 27 Thalamus_L 17 

Lobe_Temporal_L 175 Vermis_R 41 Lobe_Frontal_Lat_L 26 Pons_R 16 

Lobe_Parietal_R 169 Resection_Cavity 41 CN_VII 25 Lobe_Temporal_Inf_L 16 

CV_V_TX 163 Acoustic Neuroma 40 Basal_Ganglia_R 25 Lobe_Temporal_Lat_R 16 

Lobe_Parietal_L 160 Cerebellum_Ant_L 40 Cerebellum_Mid_L 25 CV_V_TX_L 15 

CN_V 157 Lobe_Frontal_Mid_R 39 Lobe_Temporal_Ant_L 25 Periventricular_Ant_R 15 

Lobe_Temporal_R 153 Periventicular_R 39 Lobe_Temporal_Med_R 24 Lobe_Parietal_Mid_L 15 

Cochlea 134 Brainstem_Pons 38 Lobe_Temporal_Ant_R 23 Lobe_Occipital_Inf_L 15 

Labyrinth 119 Cerebellum_Post_R 38 Lobe_Frontal_Med_R 22 Insula_L 14 

CN_V_R 98 Cerebellum_Ant_R 38 Lobe_Temporal_Post_R 22 Lobe_Parietal_Med_R 12 

Acoustic_Neuroma_L 96 Lobe_Frontal_Sup_R 37 Lobe_Frontal_Med_L 21 Lobe_Occipital_Ant_R 12 

CN_V_L 86 Lobe_Occipital_Post_R 37 Lobe_Frontal_Mid_L 21 Pons 12 

Lobe_Frontal_Post_R 77 CV_V_TX_R 36 Cerebellum_Sup_L 20 Lobe_Frontal_Ant_Lat_L 12 

Lobe_Frontal_Post_L 71 Lobe_Parietal_Sup_R 35 Cerebellum_Med_R 20 Vermis_Mid 12 

Acoustic_Neuroma_R 67 Lobe_Occipital_Post_L 34 Frontoparietal_L 20 Lobe_Frontal_Ant_Mid_L 12 

Cerebellum_Post_L 67 Lobe_Parietal_Sup_L 34 Thalamus_R 20 Tempooccipital_L 12 
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ABSTRACT 

SEGMENTATION OF INTRACRANIAL STRUCTURES FROM NONCONTRAST CT 

IMAGES WITH DEEP LEARNING 

by 

EVAN PORTER 

May 2022 

Advisor: Thomas Guerrero, M.D., Ph.D. 

Major: Medical Physics 

Degree: Doctor of Philosophy 

Presented in this work is an investigation of the application of artificially intelligent 

algorithms, namely deep learning, to generate segmentations for the application in functional 

avoidance radiotherapy treatment planning. Specific applications of deep learning for functional 

avoidance include generating hippocampus segmentations from computed tomography (CT) 

images and generating synthetic pulmonary perfusion images from four-dimensional CT (4DCT). 

A single institution dataset of 390 patients treated with Gamma Knife stereotactic 

radiosurgery was created. From these patients, the hippocampus was manually segmented on the 

high-resolution MR image and used for the development of the data processing methodology and 

model testing. It was determined that an attention-gated 3D residual network performed the best, 

with 80.2% of contours meeting the clinical trial acceptability criteria. 

After having determined the highest performing model architecture, the model was tested 

on data from the RTOG-0933 Phase II multi-institutional clinical trial for hippocampal avoidance 

whole brain radiotherapy. From the RTOG-0933 data, an institutional observer (IO) generated 

contours to compare the deep learning style and the style of the physicians participating in the 

phase II trial. The deep learning model performance was compared with contour comparison and 
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radiotherapy treatment planning. Results showed that the deep learning contours generated plans 

comparable to the IO style, but differed significantly from the phase II contours, indicating further 

investigation is required before this technology can be apply clinically. 

Additionally, motivated by the observed deviation in contouring styles of the trial’s 

participating treating physicians, the utility of applying deep learning as a first-pass quality 

assurance measure was investigated. To simulate a central review, the IO contours were compared 

to the treating physician contours in attempt to identify unacceptable deviations. The deep learning 

model was found to have an AUC of 0.80 for left, 0.79 for right hippocampus, thus indicating the 

potential applications of deep learning as a first-pass quality assurance tool. 

The methods developed during the hippocampal segmentation task were then translated to 

the generation of synthetic pulmonary perfusion imaging for use in functional lung avoidance 

radiotherapy. A clinical data set of 58 pre- and post-radiotherapy SPECT perfusion studies (32 

patients) with contemporaneous 4DCT studies were collected. From the data set, 50 studies were 

used to train a 3D-residual network, with a five-fold validation used to select the highest 

performing model instances (N=5). The highest performing instances were tested on a 5 patient (8 

study) hold-out test set. From these predictions, 50th percentile contours of well-perfused lung were 

generated and compared to contours from the clinical SPECT perfusion images. On the test set the 

Spearman correlation coefficient was strong (0.70, IQR: 0.61-0.76) and the functional avoidance 

contours agreed well Dice of 0.803 (IQR: 0.750-0.810), average surface distance of 5.92 mm (IQR: 

5.68-7.55) mm. This study indicates the potential applications of deep learning for the generation 

of synthetic pulmonary perfusion images but requires an expanded dataset for additional model 

testing. 
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