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Immunephenotypes that are associatedwith
subsequent COVID-19 severity inferred from
post-recovery samples

Thomas Liechti 1 , Yaser Iftikhar1, Massimo Mangino 2,3, Margaret Beddall1,
Charles W. Goss4, Jane A. O’Halloran 5, Philip A. Mudd 6,7 &
Mario Roederer 1

Severe COVID-19 causes profound immune perturbations, but pre-infection
immune signatures contributing to severe COVID-19 remain unknown.
Genome-wide association studies (GWAS) identified strong associations
between severe disease and several chemokine receptors and molecules from
the type I interferon pathway. Here, we define immune signatures associated
with severe COVID-19 using high-dimensional flow cytometry. Wemeasure the
cells of the peripheral immune system from individuals who recovered from
mild,moderate, severe or critical COVID-19 and focusedonly on those immune
signatures returning to steady-state. Individuals that suffered from severe
COVID-19 show reduced frequencies of T cell, mucosal-associated invariant
T cell (MAIT) and dendritic cell (DC) subsets and altered chemokine receptor
expression on several subsets, such as reduced levels of CCR1 and CCR2 on
monocyte subsets. Furthermore, we find reduced frequencies of type I
interferon-producing plasmacytoid DCs and altered IFNAR2 expression on
several myeloid cells in individuals recovered from severe COVID-19. Thus,
these data identify potential immune mechanisms contributing to severe
COVID-19.

The recent COVID-19 pandemic caused an unprecedented global
health crisis. Demographic and socioeconomical factors affect disease
severity andmortality1. Underlying health conditions such obesity and
diabetes or gender with higher risk for males have been associated
with disease severity1. In addition, genetic predisposition contributes
to the development of severe COVID-192,3. GWAS identified several
genes encoding for pro-inflammatory chemokine receptors and
molecules from the type I interferon pathway, such as OAS1, DPP9,
TYK2 and IFNAR2, that associate with the development of severe
COVID-192,3. Thus, tissue distribution of immune cells and the

responsiveness of innate immunity to infection may be key factors to
prevent severe outcome in COVID-19. While GWAS enable the identi-
fication of associations between genetic variants and disease severity,
such studies fall short of providing insights into the mechanisms by
which these genetic traits manifest disease susceptibility. Nearly all of
the SNPs identified in GWAS are regulatory and not coding in nature;
the altered regulation could be expressed on subsets of immune cells
rather than organism-wide. Thus, immunological studies such as
immunophenotyping at the single cell level are necessary to gain
mechanistic understanding of howgenetics affect immune responses4.
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Chemokine receptors are crucial in regulating leukocyte traffick-
ing and thereby orchestrating immune responses5,6. Thus, chemokine
receptors are critical in all aspects of immune responses including
adaptive immunity in lymphoid organs6, early influx of innate immune
cells7 and migration of cells in inflamed tissues8. Their expression is
tightly regulated and depends on the immune milieu5. Imbalance or
perturbations in the homeostasis of chemokine and chemokine
receptor expression are associated with inflammatory and auto-
immune diseases8. The pro-inflammatory chemokine receptors CCR1,
CCR2, CXCR3 andCX3CR1 are expressedonmyeloid cells9,10, T cells11,12,
and NK cells13–16. These chemokine receptors orchestrate immune
responses in the lungs including allergies17, M. tuberculosis18, and
Influenza16. In contrast, CCR419,20, CCR521,22, and CXCR623 are mainly
expressed on conventional and innate T cells and regulate cell influx to
the lung and mucosal tissues21–23. CCR4 is critical for homing of
immune cells to skin19,20, while CCR9 regulates cell migration to
mucosal tissues20,24. Thus, chemokine receptors can induce non-
redundant, tissue-specific cell migration. Severe COVID-19 has been
associated with perturbations in chemokine levels as well as expres-
sion of chemokine receptors highlighting their importance in
immunopathology25,26.

The innate immune system ensures rapid and effective immune
responses against viruses and is impaired in severe COVID-1927–29.
IFNAR2 is critical for type I interferon mediated immunity; homo-
zygous mutations, which abrogate IFNAR2 expression, are associated
with fatal outcome in viral infections30. The activity of type 1 interferon
remains controversial in SARS-CoV231. Severe COVID-19 is associated
with low serum levels of type I interferon32. In contrast, robust type I
interferon response occurs in lung tissues from severe but not mild
COVID-19 cases33. Furthermore, neutralizing autoantibodies against
type I interferon34 or loss-of-function mutations in type I interferon
pathway35 occur more frequently within severe COVID-19 cases. Thus,
while excessive type I interferon response may exacerbate inflamma-
tion and severity of COVID-19, it is likely that the lack thereof is also
detrimental.

Based on the GWAS data2,3 we hypothesized that immune sig-
natures at steady-state (i.e., prior to infection and following recovery)
impact the outcome of COVID-19 severity. This may manifest as a
variety of phenotypes: altered level of expression or altered regulation
of certain subsets of immune cells. Here we test this hypothesis using
high-dimensional, comprehensive immunophenotyping in peripheral
blood mononuclear cells (PBMC) of individuals that recovered or
substantially improved from mild, moderate, severe and critical
COVID-19 (Supplementary Fig. 1 and Supplementary Table 1). Particu-
larly, we focus on the expression of chemokine receptors and IFNAR2
identified by GWAS2,3. We identify several immune signatures at
steady-state which differ between individuals recovered from non-
severe and severe COVID-19. This included altered expression of var-
ious chemokine receptors on NK and MAIT cells as well as altered
abundance of innate immune subsets. In addition, our data show
reduced levels of plasmacytoid DCs (pDC), which produce high levels
of type I interferon36 and increased expression of IFNAR2 on several
myeloid cell subsets at steady-state in individuals recovered from
severe COVID-19, pointing towards impaired type I interferon
responsiveness. Thus, these data define predictable immune sig-
natures associated with severe COVID-19 outcome and improve our
understanding of pathogenesis of COVID-19.

Results
Expression profile of chemokine receptors, IFNAR2 and func-
tional receptors
Weassessed the immuneprofile in PBMC from 173 unexposed healthy
individuals (referred to as healthy controls) using 28-color flow
cytometry (Fig. 1a and Supplementary Tables 2, 3). We measured
immune cell subsets with two backbone panels focusing on either

B cells andmyeloid cells or innate-like and conventional T cells as well
as NK cells (referred to as BDC and TNK panels, respectively; Sup-
plementary Table 2). We used each backbone panel with two sets of
chemokine receptors (CR1 and CR2). Thus, we measured 4 sets of
distinctmarkers for each sample (Supplementary Tables 2, 3). Manual
definition of immune subsets and functional marker expression pro-
file on these subsets are shown in supplementary material (Supple-
mentary Figs. 2–7).

Immune subsets showed heterogenous expression of various
chemokine receptors, the Ecto-NTPDase CD39, co-stimulatory recep-
tors CD40 and CD86, Interferon-alpha receptor 2 (IFNAR2) and co-
inhibitory molecule TIGIT (Fig. 1a). We focused our subsequent ana-
lysis on immune traits for which the lineage showed discernible
expression. For instance, XCR1 and CCR3 were only expressed on
cDC1s and Basophils, respectively, while B cells did not express CCR1,
CCR2, CCR3, CCR4, CCR8, CXCR6, and CX3CR1. The remaining 1758
out of 3787 immune traits consisted of frequency of immune cell
subsets (N = 349), cells expressing functional markers (N = 620) or the
mean fluorescence intensity (MFI; N = 789) of functional markers.

Prolonged immune perturbations after recovery fromCOVID-19
We aimed to identify immune signatures at steady-state which
contribute to severe COVID-19. However, cohorts with baseline
PBMC samples from patients who had not yet been infected with
COVID-19 are not available. In this cross-sectional study, we ana-
lyzed PBMC collected after recovery from mild, moderate, severe
and critical COVID-19 (Supplementary Fig. 1 and Supplementary
Table 1) and focused on traits related to the highly significant results
from GWAS analysis.

COVID-19 induced immune perturbations can persist after viral
clearance and recovery37,38. We hypothesized that immune cells may
show three potential trajectories following infection. First, a cell trait
may not be affected by COVID-19 infection and remain at baseline
throughout infection (but still contribute to susceptibility to severe
disease). Secondly, a traitmaybe affected anddeviate fromunexposed
healthy individuals only during active COVID-19 and recover over time
after pathogen clearance. Lastly, a trait may change rapidly after viral
transmission and remain perturbed after viral clearance without
improvement. The latter is likely infrequent, if at all, due to the renewal
capacity of the human immune system39–44. The second scenariowould
result in temporal changesof immune traitswhichwouldbedetectable
in samples collected early vs late after symptom onset. To identify
traits that might contribute to COVID-19 severity, we took the con-
servative approach of eliminating traits that showed any evidence of
perturbation over time, for which we cannot assert the baseline, pre-
COVID-19 value. A caveat to this approach is that a trait which changed
frombaseline before our earliestmeasurements, and then remained at
that level following our latestmeasurements, would be included in our
analyses. However, we considered that scenario highly unlikely in this
dynamic acute infection, particular since viral clearance often occurs
early irrespective of disease severity37 and given the immune system’s
capacity to recover rapidly from perturbations39–44.

We first identified persistent immune perturbations which may
contribute to long-lasting COVID19-related symptoms known as long
COVID37,38.We focused on themoderate and severe COVID-19 group as
these groups showed the largest time range between symptom onset
and sample collection (Supplementary Fig. 1a; Moderate, 24–129 days;
Severe, 16–184 days). As shown, our analysis enables the identification
of temporal changes of immune traits over a period of ~120–180 days
post infection. We applied two strategies to identify persistently
affected immune traits. These included (i) linear regression of immune
traits and time between symptom onset and sample collection, and (ii)
comparison of samples collected before and after 60days of symptom
onset using a Wilcoxon test. The two strategies showed similar results
(Fig. 1b). We assessed the top hits from both analyses (p <0.001 in at
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least one analysis, N = 24) to further delineate persistent immune
perturbations in COVID-19 (Fig. 2a).

The most prominent persisting perturbations occurred within
switched (containing memory B cells and plasmablasts) and memory
CD20+IgD−CD38−/+CD27−/+ B cells (Fig. 2a). Switched and naive B cells
did not change in moderate COVID-19 over time but significantly
decreased and increased, respectively, in severe cases (Spearman’s
rank correlation; Naive: R2 = 0.36, P = 0.002; Switched: R2 = 0.44,
P = 4 × 10−4) to levels observed in unexposed healthy individuals
(Fig. 2b). Both naïve and switched B cells did not differ between study
groups (Fig. 2b). Similar dynamics occurred for CD38+HLA-DR− and
CD38−HLA-DR− CD4 naïve T cells which showed an increase and

decrease, respectively, over time in the severe COVID-19 group
(Spearman’s rank correlation; CD38+HLA-DR− CD4 naive: R2 = 0.42,
P = 5.8 × 10−4; CD38−HLA-DR− CD4 naive: R2 = 0.42, P < 6.5 × 10−4) with
later timepoints reaching levels observed in unexposed healthy indi-
viduals (Fig. 2c). In addition, decreased CD38+HLA-DR− and increased
CD38−HLA-DR− CD4 naive T cells occurred in individuals recovered
from severe and critical COVID-19 (Bonferroni-adjusted P-value range
0.02–1.46 × 10−4) (Fig. 2c). CD38 on naive T cells is downregulated in
HIV-1 but their functional properties remain unclear45,46.

Cross-presenting cDC1s induce potent CD8 T cell responses47.
Timepoints early after onset of symptoms had reduced levels of cDC1s
in severe COVID-19 cases, but these increased later to levels observed
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Fig. 1 | Expression of functional markers and temporal dynamics of immune
traits in COVID-19. a Expression of chemokine receptors, CD40, CD86, IFNAR2,
CD39 and TIGIT (rows) on immune cell populations (columns) is depicted. Median
of mean fluorescence intensities (MFI) derived from 173 unexposed healthy indi-
viduals is visualized bymin-maxnormalized color gradient. Dot size corresponds to
median percentage of cells expressing these markers. Missing dots indicate that
marker was not measured. b Immune traits (N = 1758) at baseline or affected by
long-term perturbations were distinguished in individuals recovered from mod-
erate (left) and severe (right) COVID-19 cases. A combination of (I) linear regression

analysis between immune traits and days between symptom onset and sample
collection and (II) comparison of samples collected before and after 60 days of
symptom onset using a two-sided Wilcoxon test was used as described in Online
methods. Plot shows unadjusted −log10 P-values from both analyses. Dot size
increases with significance fromWilcoxon test. Trait types are colored (Frequency
of immune subset in blue, Frequencyof expressing functionalmarker inorange and
MFI values in green). Red line highlights threshold for unadjusted significance
(P =0.05). Source data are provided as a Source Data file.
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in unexposed healthy individuals, suggesting perturbations of cDC1s
during active COVID-19 (Spearman’s rank correlation; R2 = 0.29,
P =0.0069) (Fig. 2d). We also observed changes in the expression
levels of receptors over time (Fig. 2a, e, f). Basophils regulate TH2
immune responses48 and express CCR3 which induces cell migration
and release of histamine and leukotriene49. Basophils expressed
reduced levels of CCR3 early after symptom onset while levels were

closer to unexposed healthy individuals at later timepoints within the
severe COVID-19 group (Spearman’s rank correlation; R2 = 0.46,
P = 2.8 × 10−4) (Fig. 2e). CCR3 expressionwas reduced inbasophils from
severe and critical COVID-19 cases (Bonferroni-adjusted P-value range
0.01–2.11 × 10−7). Furthermore, CD95 expression decreased over time
in early NK (Spearman’s rank correlation; R2 = 0.26, P =0.011) and NK2
cells (Spearman’s rank correlation; R2 = 0.37, P = 0.002) in severe
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COVID-19 (Fig. 2f). CD95 expression was significantly elevated in both
subsets from critical COVID-19 compared to all other groups (Bon-
ferroni-adjusted P-value range 0.00965– 1.43 × 10−7). Fas (CD95)
induces cell death and is important for immune homeostasis50 and is
expressed on memory and effector T cells45. In conclusion several
immune traits in severe COVID-19 required prolonged time—up to
100 days after symptom onset—to reach baseline levels which can be
several months which agrees with previous studies37,38.

Predictive potential of lymphocyte immune traits
Next, we hypothesized that stable immune traits (N = 1365) between
symptomonset and sample collection remained at or returned early to
pre-infection baseline. We defined stable immune traits as traits which
did not show any significant temporal changes in either the moderate
or severe COVID-19 group and either the linear regression analysis or
the comparison of early and late group (Fig. 1b). As described above,
our analysis is conservative in identifying immune traits which change
over time. We aimed to identify differences in stable traits between
individuals recovered frommild (N = 19) andmoderate (N = 24)COVID-
19 (combined and referred to as non-severe group, N = 43) and severe
(N = 25) and critical (N = 30) COVID-19 cases (combined and referred to
as severe group, N = 55). Such differences may give clues about pre-
infection immune signatures which favor the development of severe
COVID-19. We identified distinctive immune features between
these two groups using logistic regression (N = 150, FDR-adjusted
P-value cut-off <0.01) as described in the Online methods (Supple-
mentary Fig. 8). All significant results from this analysis are listed in
Supplementary Fig. 8b. Despite substantial improvement, some
patients from the severe (N = 6) and critical (N = 21) COVID-19 group
were still hospitalized at sample collection (Supplementary Fig. 1d, e).
These samples may bias the analysis due to persistent immune per-
turbations or pathologies; we therefore repeated the analysis and only
included individuals which were discharged prior to or at the day of
sample collection (Supplementary Fig. 9a, b). All significant results
from this analysis are listed in Supplementary Fig. 9b. We obtained
similar results with this smaller sample set (Non-severe,N = 43; Severe,
N = 28, FDR-adjusted P-value cut-off <0.012), compared to all indivi-
duals, with highly correlated P-values between both analyses (Spear-
man’s rank correlation,R =0.9, P < 2 × 10−16) (Supplementary Fig. 9c). In
fact, 65 significant hits (FDR-adjusted PALL < 0.01, FDR-adjusted PNon-
hospitalized < 0.012)were sharedbetween these two analyses using either
all patients or only non-hospitalized patients at the time of sample
collection (Supplementary Fig. 9d). Non-hospitalized refers to indivi-
duals who did not require hospitalization or were discharged from the
hospital prior to or at day of sample collection. Information about
hospitalization can be found in Supplementary Fig. 1e and Supple-
mentary Table 1.

Only 6 further immune traits were discovered with the non-
hospitalized sample set (FDR-adjusted P < 0.012). However, 85 sig-
nificant immune traits (FDR-adjusted P <0.0017) were only discovered

when all patients were analyzed. This may be due to the lower statis-
tical power with the smaller sample set as suggested by the strong
correlation of P-values (Supplementary Fig. 9c).

We primarily focused our analysis on traits which significantly
differed between non-severe and severe COVID-19 cases in both sam-
ple sets (all vs. non-hospitalized,N = 65, FDR-adjusted PALL < 0.01, FDR-
adjusted PNon-hospitalized < 0.012) (Supplementary Figs. 8b, 9b). NK cells
are critical for antiviral defense51 and impaired in severe COVID-1952.
We discovered several chemokine receptor signatures on NK cells
(N = 8) associatedwith the development of severe COVID-19, including
upregulated CX3CR1 expression on early NK cells (Fig. 3a) and
increased levels of CCR4, CCR9 and CXCR3 on terminal NK cells
(Fig. 3b). However, the expression of these molecules by other cell
types were not associated with severity, underscoring the need to
perform multiparameter analysis at the single cell level.

We also identified several potentially predictive traits (N = 75)
within conventional T cells. Naïve and transitional memory (TM)
CD8+ T cells from individuals suffered from severe and critical
COVID-19 expressed higher levels of CCR4 (Bonferroni-adjusted
P-value range 0.03–7 × 10−5). This pattern did not occur on naive and
TM CD4+ T cells (Fig. 3c). The co-inhibitory receptor TIGIT limits
T cell activation and viral immunopathology53. Stem cell-like memory
(TSCM), central memory (CM) and terminal effector* (TE*) CD8+

T cells exhibited reduced TIGIT expression in individuals
recovered from severe and critical COVID-19 (Bonferroni-adjusted
P-value range 0.01–7.21 × 10−6) (Fig. 3d). In contrast, naïve CD8+

T cells and MAIT cells expressed similar levels between study groups
or elevated levels of TIGIT in individuals suffered from severe and
critical COVID-19, respectively (Bonferroni-adjusted P-value range
0.04–0.004).

MAIT cells recognize unique microbial riboflavin-like antigens54,
respond rapidly through the expression of cytokines and cytotoxic
granzyme B55 and have various functions including pathogen clearance,
tissue repair but also immunopathology and inflammation54.
The frequency of MAIT cells was decreased in severe and critical
COVID-19 (Supplementary Fig. 9e) (Bonferroni-adjusted P-value range
3.99 × 10−4–2.96 × 10−6). Furthermore, more individuals recovered from
severe and critical COVID-19 showed reduced frequencies of central
memory (CM) CD4+ and CD8+ T cells (defined as CD45RA−CCR7+CD27+)
(Bonferroni-adjusted P-value range 0.02–7.61 × 10−6) (Supplementary
Fig. 9f). In addition, individuals recovered from critical COVID-19 had
elevated levels of activated (defined as CD38+HLA-DR+) CD8+ effector
and terminal memory T cells (Bonferroni-adjusted P-value range
5.46 × 10−4–1.04 × 10−6) (Fig. 3e).

We did not identify many B cell traits predictive for COVID-19
severity. However, patients with severe COVID-19 had lower baseline
frequencies of marginal zone (MZ) B cells, which produce natural
IgM mostly targeting bacterial glycans and are considered an early
wave of immune defense (Fig. 3f) (Bonferroni-adjusted P-value
range 0.00192–1.84 × 10−4)56.

Fig. 2 | Long-term perturbations of immune traits in COVID-19. a Top immune
traits affected by long-term perturbations are depicted. Traits are derived from
analysis in Fig. 1b and selected for P-value < 0.001 in one of both analysis (linear
regression and/or Wilcoxon test). Bars pointing to the left and right are derived
from linear regression and Wilcoxon test, respectively, and are colored based on
trait type (Frequency of immune subset in blue, Frequencyof expressing functional
marker in orange and MFI values in green). Colored bar on the left depicts severity
group fromwhich the significant trait is derived.R2 and slope from linear regression
are shown as colored bars on the right. Values in the right bar are slope values from
linear regression. Red and black dashed lines show P-value cut-off of 0.001 and
0.05, respectively. b Frequencies of switched (top row) and naïve (bottom row) B
cells of total B cells are shown. Plot on the left shows frequencies as boxplots for
unexposed healthy donors (gray) and individuals recovered from mild (purple),
moderate (burgundy), severe (orange) or critical COVID-19 (yellow). The two plots

on the right show the frequency of cells as a function of time between symptom
onset and sample collection for individuals recovered from moderate and severe
COVID-19. Far right plot shows the distribution of the traits in 173 unexposed
healthy individuals. Similar to Fig. 2b, dynamics of c CD38+HLA-DR− (left) and
CD38−HLA-DR− of CD4 naive T cells (right), d frequencies of cDC1s of total DCs,
e CCR3MFI of basophils and f CD95 MFI of early NK and NK2 cells are shown. Age-
corrected residuals from linear regression were used for statistical analysis. For
comparison between groups, one-way ANOVA was used on residuals to test for
overall significant difference prior to two-sided Wilcoxon test with Bonferroni
correction. Boxplots depict median and interquartile range (IQR) and length of
whiskers is 1.5 times IQR. Second and third plot show dot plots with linear
regression (red line) and 95% confidence interval for individuals recovered from
moderate and severe COVID-19, respectively. Source data are provided as a Source
Data file.
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Predictive potential of myeloid immune traits
Innate immune signatures determine the trajectories of disease
severity early during active COVID-1957. We assessed several innate
immune subsets such as monocytes and dendritic cells (DCs) in
the periphery9,58 as well as several critical markers for stimulation of
adaptive immune responses including CD40 and CD8659,60. Individuals
recovered from severe and critical COVID-19 had reduced frequencies

of plasmacytoid DCs (pDCs) and CD14+ DC3s (Bonferroni-adjusted
P-value range 0.00226–3.71 × 10−7) (Fig. 4a). CD14− and CD14+ DC3s are
inflammatory cells and more efficient in activating and polarizing
T helper responses compared to conventional cDC2s9.

The chemokine receptor profile on dendritic cells did not differ
substantially between individuals recovered from non-severe and
severe COVID-19. We observed increased expression of CX3CR1 on
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pDCs and cross-presenting cDC1s associated with disease severity
(Bonferroni-adjusted P-value range 0.00301–1.83 × 10−5) (Fig. 4b).
Frequency of monocyte subsets did not differ between groups. How-
ever, classical and intermediatemonocytes from individuals recovered
from severe COVID-19 had reduced expression of pro-inflammatory
chemokine receptors CCR1 and CCR2 (Bonferroni-adjusted P-value
range 0.03–2.07 × 10−9) (Fig. 4c). In contrast, non-classical pro-inflam-
matory monocytes showed no differences of CCR1 and CCR2 expres-
sion between COVID-19 severity groups (Fig. 4c).

Genome-wide association studies identified IFNAR2 as a risk fac-
tor for severe COVID-192,3. Furthermore, type I interferon response is
critical for effective immune responses against COVID-1928,29,31,32. We
measured expression of IFNAR2 on monocytes, dendritic cells and B
cells. IFNAR2 expression was lowest on naïve B cells and highest on
pDCs and cDC1s within the 173 unexposed healthy individuals (Fig. 1a).
Noteworthy, IFNAR2 expression could be detected on most subsets
including cDC2s, DC3s, and monocyte subsets (Fig. 1a). Next, we
assessed how the expression of IFNAR2 on these immune cell subsets
differed between the unexposed healthy controls and the different
COVID-19 severity groups (Fig. 4d, e). Monocytes and dendritic cells,
except cDC1s and pDCs, showed elevated expression of IFNAR2 in
individuals recovered from severe and critical COVID-19 compared to
unexposed healthy controls and mild and moderate COVID-19 group
(Bonferroni-adjusted P-value range 0.04–4.95 × 10−5) (Fig. 4d, e).

In non-myeloid cells, IFNAR2 expressionwas elevated in basophils
but no substantial change in expression of IFNAR2 occurred in other
non-myeloid cells with disease severity (Fig. 4d, e). IFNAR2was slightly
reduced in several CD38low memory B cell populations severe and
critical COVID-19 (Fig. 4d). However, these CD38low memory B cell
subsets were not significantly different between non-severe and severe
COVID-19 group (Supplementary Fig. 8b).

Unsupervised cluster analysis
Next, we used unsupervised clustering to extend our analysis and
identify potential immune signatures not revealed by our manual
gating analysis. We split cells from both chemokine receptor panels
into main lineages based on manual gating and defined 388 clusters
using FlowSOM as described in the Online methods (Supplementary
Figs. 10–12 and Supplementary Tables 4, 5). Subsequently, we exclu-
ded persistently perturbed immune clusters (N = 97) as described for
manually defined traits in Fig. 1b (Supplementary Fig. 13). Next, we
identified distinct immune traits between non-severe and severe
COVID-19 after recovery using logistic regression (Fig. 5a, b). Results
with all samples and with only the non-hospitalized individuals
strongly correlated (Spearman’s rank correlation, R =0.9, P < 2.2e−16)
confirming that hospitalization was not amajor driver (Supplementary
Fig. 13b, c).

We focused on 42 significant clusters (pFDR < 0.01) across all
lineages (Fig. 5a, b). From each chemokine receptor panel (CR1 and
CR2) 5 and 6 significant clusters (pFDR < 0.01) resembled innate-like
T cells, respectively. Four clusters (clusters 34, 35, 37, and 38) fromCR1
and one (cluster 3) fromCR2 panel wereMAIT cells as defined by T cell
receptor (TCR) Vα7.2 and CD161 (Fig. 5c). These clusters were reduced
in severe COVID-19 (Bonferroni-adjusted P-value range 0.04–
3.71 × 10−7) (Fig. 5d) matching the overall decreased frequency of
MAIT cells (Supplementary Fig. 9e). Vδ2Vγ9T cell clusters 20 and 25
from CR2 panel were expanded in severe and critical COVID-19 (Bon-
ferroni-adjusted P-value range 0.00564–6.39 × 10−8) and characterized
by CCR9, CXCR3 and TIGIT expression (Fig. 5d and Supplementary
Fig. 14). In contrast Vδ2 Vγ9 T cell cluster 24 expressed higher levels of
CCR4 and CCR8 but lacked CXCR3 and TIGIT (Fig. 5d and Supple-
mentary Fig. 14). Vγ9Vδ2 T cells recognize unique microbial phospho-
antigens and respond rapidly through secretion of cytokines or cyto-
toxic molecules and thusmay exacerbate inflammation61. Noteworthy,
we observed a shift from CCR7+CD27+ naïve-like Vδ2Vγ9 T cells (CR2
cluster 30) towards effector-like cells (CR2 clusters 20, 24, and 25)
which lack CCR7 and CD27 in individuals recovered from severe and
critical COVID-19 (Fig. 5d)62.

Within myeloid cells, CD123+CD5− pDCs (CR1: 24, CR2: 28) and
CD123+CD5+ pre-DCs (CR1: 28, CR2: 29) were significantly reduced
(Bonferroni-adjusted P-value range 0.04–4.11 × 10−6) in individuals
recovered from severe and critical COVID-19 (Fig. 6a, b). The latter are
precursors and differentiate into conventional cDC1 and cDC29. Both
cell subsets were characterized by expression of CD38, CCR5 and high
levels of CXCR3 (Fig. 6b and Supplementary Fig. 15). CCR1, CCR2 and
IFNAR2 were expressed at higher levels on pDCs while co-stimulatory
CD86was lower andCD40 expressionwas lacking on both (Fig. 6b and
Supplementary Fig. 15). CD14− DC3s (CR1: 22; CR2: 21) and CD14+ DC3s
(CR1: 11) differ between individuals recovered from non-severe and
severe COVID-19 (Fig. 6a, b) in agreement with our manual analysis
(Fig. 4a and Supplementary Fig. 8).

We further examinedmyeloid cells frommild and severe COVID-
19 cases using tSNE. Clusters shown in Fig. 6a exhibited reduced
density on the tSNE map in severe cases (Fig. 6c and Supplementary
Fig. 10a–c). We analyzed the relationship between the subsets iden-
tified in panels CR1 and CR2 which showed high overlap
suggesting the identification of similar populations with both
panels (Fig. 6d).

Overall, unsupervised analysis indicates similar immune subsets
which differ between individuals recovered from non-severe and
severe COVID-19 compared to themanually defined subsets. However,
the unsupervised analysis enabled more detailed insights into the
unique combinatorial expressionpatterns of chemokine receptors and
other functional molecules on these subsets.

Fig. 3 | Potential immune features at baseline predicting COVID-19 severity.
a Flow cytometry data (left) depicts CX3CR1 expression on early NK cells from an
individual recovered frommild (top) and severe (bottom)COVID-19.Quantification
of mean fluorescence intensity (MFI) of CX3CR1 on early NK cells is shown as
boxplot for all studygroups.bFlowcytometrydotplots on top row (left andmiddle
plot) depicts expression of CCR4 and CCR9 for a mild and severe COVID-19 case.
Histogram overlay shows CXCR3 expression for the same cell subset and donors.
MFI values for the same receptors are shown as boxplots for all groups (bottom
row). c Flow cytometry plot depicts expression of CCR4 on CD4+ naive (top row),
CD4+ transitional memory (TM, second row), CD8+ naïve (third row) and CD8+ TM
(bottom row)T cells froman individual recovered frommild (left column)or severe
(right column) COVID-19. Quantification of these subsets in all study groups are
shown as boxplots (right).d Flow cytometry plot depicts TIGIT expression onCD8+

naive (top row), CD8+ stem-cell like memory (TSCM, second row), CD8+ central
memory (CM, third row), CD8+ terminal effector* (TE*, fourth row) T cells and
MAIT cells (bottom row) from an individual recovered frommild (left column) and

severe (right column) COVID-19. Quantification of these subsets in all study groups
are shown as boxplots (right). e Flow cytometry data (left) depicts CD38 and HLA-
DR expression on CD8 effector (EM; top) and terminal (TM; bottom) memory
T cells from an individual recovered from mild (left) and critical (right) COVID-19.
The gate defines CD38+HLA-DR+ activated T cells. Quantification of these subsets in
all study groups are shown as boxplots (right). f Flow cytometry example data (left)
for gating ofmarginal zone (MZ)B cells from total B cells in an individual recovered
frommildand severeCOVID-19 is shown. Boxplot (right) shows frequenciesofMZB
cells of total B cells in all study groups. Residuals from linear regression between
immune trait and age were used to calculate statistics on age-corrected data.
ANOVA with subsequent two-sided Wilcoxon test and Bonferroni correction on
residuals was performed for statistics highlighted in boxplots. Boxplots depict
median and interquartile range (IQR) and length of whiskers is 1.5 times IQR. Study
groups encompass healthy unexposed controls (HD) and individuals recovered
frommild (Mi), moderate (Mo), severe (Se) and critical (Cr) COVID-19. Source data
are provided as a Source Data file.
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Discussion
We lack mechanistic insights into how pre-infection immune sig-
natures contribute to the development of life-threatening
COVID-19. GWAS identified several genes associated with
COVID-19 severity2,3. The most predictive genes encode for pro-
inflammatory chemokines such as CCR2, CCR3, CXCR6 and XCR1
and molecules from the type I interferon pathway including

IFNAR22,3. However, these GWAS associations do not indicate
potential mechanisms (e.g., altered expression of CCRs on subsets
of leukocytes). Thus, immunological studies such as immunophe-
notyping are needed to better understand the mechanisms by
which these immune traits impact disease severity. In addition,
most studies focused on finding distinctive immune signatures
during active severe COVID-1932,33,52,57,63,64. Here, we hypothesized
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that pre-infection immune signatures determine the trajectories of
COVID-19 severity.

Samples collected prior to infection are most suitable to study
pre-infection immune signatures. However, pre-infection samples are
difficult to obtain for acute emerging diseases such as COVID-19. Thus,
we measured the immune composition using high-dimensional flow
cytometry in peripheral blood of individuals recovered from mild,
moderate, severe and critical COVID-19 to identify immune signatures
associatedwith COVID-19 severity. The human immune system rapidly
reverts to baseline after pathogen clearance with a composition
comparable to pre-infection65,66. Therefore, probing the immune sys-
tem after disease recovery serves as an alternative to identify baseline
immune signatures which determine disease severity.

Our approach has the caveat that rapidly and permanently per-
turbed immune signatureswill be identified as baseline.However, rapid
immune recovery has been described for several acute viral infections
including Ebola67, Zika68, Dengue69,70, Measles71, Hantavirus72, and
Respiratory Syncytial Virus73 as well as live virus vaccines for Smallpox
and Yellow Fever74. In these cases, most immune perturbations recov-
ered within weeks after pathogen clearance. Therefore, it is unlikely
that immune perturbations occur permanently without any sign of
improvement over time. Such traits would, in any case, represent a
small fraction of the traits we observed.

Similarly, most SARS-CoV2-induced immune perturbations nor-
malized within 60–80 days after symptom onset37,38,75. Furthermore,
immune perturbations in nasal tissues from severe COVID-19 patients
improved already within 15–61 days of hospitalization and normalized
after discharge (median of 77 days after symptomonset). Bergamaschi
et al. demonstrated that viral titers drop to undetected levels irre-
spective of disease severity between 13–24 days after symptom onset
which overlapped with improvement of immune perturbations37.
Nevertheless, some immune perturbations lasted for months and
included naïve B cells, activated CD38+HLA-DR+ T cells and the
expression of CXCR337,38,75. Noteworthy, not all the long-term immune
perturbations described by Bergamaschi et al. could be replicated in
studies with a more detailed focus on individual immune cell subsets
including pDCs76 andMAIT cells77. In agreement with these studies, we
also did not observe any temporal changes of pDC and MAIT cell
abundance in individuals recovered frommoderate and severe COVID-
19. It remains to be determined why there are discrepancies between
studies regarding long-term immune perturbations, but reasons could
include timing of sample collection and sample cohorts. Overall, based
on these studies and our results (Fig. 1b), we argue that samples taken
after recovery from COVID-19 mostly reflect the immune system at
steady-state and are comparable to pre-infection.

Our study identifies several distinct chemokine receptor sig-
natures between individuals recovered from non-severe (mild/mod-
erate) and severe (severe/critical) COVID-19. Chemokine receptors are

important for protective immune responses against viral infections
such asWest Nile Virus and Influenza21,78 and their expression is altered
in severeCOVID-1957,63. In our study, individuals recovered from severe
COVID-19 had increased expression of lung-homing chemokine
receptors CCR4, CXCR3 and CX3CR1 on NK cell subsets (Fig. 3a, b).
These receptors result in exacerbated lung inflammation and impaired
immune responses against viruses13,17,79. In addition, NK cells can
facilitate inflammation during viral infections80. Thus, increased base-
line expression of lung-homing chemokine receptors on NK cells may
facilitate NK cell migration and exacerbate lung inflammation in
COVID-19. We also identified elevated CCR4 levels on transitional
memory CD4+ and CD8+ T cells in these individuals (Fig. 3c) high-
lighting that enhanced homing of T cells to the lung might exacerbate
COVID-19.

In contrast, individuals recovered from mild and moderate
COVID-19 expressed higher levels of TIGIT (Fig. 3d). TIGIT expression
prevents immune pathologies of viral infections in mice and reduces
lung damage in influenza infection53. Thus, increased levels of TIGIT
might have a protective function against severe lung damage and
consequently the development of life-threatening COVID-19.

Furthermore, we observed reduced expression of CCR1 and CCR2
on monocyte subsets from individuals recovered from severe COVID-
19 (Fig. 4c). CCR2 can have a protective activity in the early phase of
mouse-adapted SARS-CoV2 infection81. Similarly, CCR1 and CCR2
knock-out mice exhibited exacerbated immune pathologies in SARS-
CoV82. These studies and our results suggest a protective function of
CCR1 and CCR2 in early immune responses against coronaviruses.
Both CCR1 and CCR2 interact with pro-inflammatory chemokines
whichare upregulated in the lungs of severeCOVID-19patients63. Thus,
altered expression of CCR1 and CCR2 at steady state might influence
the severity of COVID-19.

Type I interferon is crucial for antiviral immune responses and
orchestrates the induction of chemokines and pro-inflammatory
cytokines28,31. We observed reduced levels of pDCs, the main source
of type I interferon during viral infections36. Thus, reduced frequencies
of pDCs at baseline may contribute to the impaired or delayed type I
interferon response in severe COVID-1932,33. Similar delayed type I
interferon responses occur in SARS and MERS and are associated with
worse disease outcome83–85. Therefore, dysregulated and delayed type
I interferon response can be detrimental for the host in coronavirus
infections.

On the contrary, we observed increased expression of IFNAR2 on
basophils and myeloid cells but not on B cells and pDCs in individuals
recovered from severe COVID-19 (Fig. 5d). This is in contradiction with
inferences from a recent study which combined GWAS and bulk
transcriptomics and identified reduced expression of IFNAR2 in lung
and whole blood as a risk factor for severe COVID-192. In contrast to
bulk transcriptomics, we show at the single-cell level that IFNAR2 is

Fig. 4 | Innate immune signatures predict COVID-19 severity. a Example flow
cytometry data for frequencies of pDCs from dendritic cells and inflammatory
CD14+ DC3s of total DC3s is shown from an individual recovered from mild (top)
and critical (bottom) COVID-19. Corresponding enumeration for all donors based
on study group and as percentage of total myeloid cells are shown as boxplots
(right). Precise delineation of pDCs is shown in Supplementary Fig. 1c. b Mean
fluorescence intensity (MFI) ofCX3CR1oncDC1s (left) andpDCs (right) is shown for
all study groups as boxplot (top row). Example flow cytometry data for
CX3CR1 signal (red peak) on cDC1s (first column) and pDCs (second column) is
shown as histogram for an individual recovered from mild (top row) and severe
(bottom row) COVID-19. B cells (gray) and Monocytes (blue) are overlaid as refer-
ence populations known to lack and express CX3CR1, respectively. Numbers in
histogram plots highlight MFI. c Flow cytometry data (left) depicts CCR1 and CCR2
expression on classical (top), intermediate (middle) and non-classical (bottom)
monocytes from a patient recovered from mild (left column) and critical (right
column) COVID-19. Boxplots (right) show MFI values of CCR1 (first column) and

CCR2 (second column) on the same monocyte populations for all study groups.
d Expression of IFNAR2 from an individual recovered from mild (red) and severe
(blue) COVID-19 is shown as overlaid histogram (left) for classical monocytes (top),
CD14+ DC3s (second row), pDCs (third row) and naive B cells (bottom). Plot on the
right depicts fold change of median IFNAR2 expression of each disease severity
group compared to median IFNAR2 expression of unexposed healthy individuals
on all defined myeloid (top) and non-myeloid (bottom) subsets. e Boxplots show
IFNAR2 MFI for all study groups for classical monocytes, CD14 +DC3s, pDCs and
naïve B cells. Residuals from linear regression between immune trait and age were
used to calculate statistics on age-corrected data. ANOVA with subsequent two-
sided Wilcoxon test and Bonferroni correction on residuals was performed for
statistics highlighted in boxplots. Boxplots depict median and interquartile range
(IQR) and length of whiskers is 1.5 times IQR. Study groups encompass healthy
unexposed controls (HD) and individuals recovered from mild (Mi), moderate
(Mo), severe (Se) and critical (Cr) COVID-19. Source data are provided as a Source
Data file.
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only affected on certain blood immune cell populations in individuals
recovered from severe COVID-19. Notably, we measured IFNAR2 only
onB cells, basophils andmyeloid cells and can therefore notdetermine
whether its expression is downregulated in other blood cell types. The
dichotomy between reduced pDC frequencies and elevated IFNAR2
expression onmyeloid cells is puzzling. However, interaction between
type I interferon and its receptor results in endocytosis86 and it is
therefore possible that constitutively expressed type I interferon
might regulate IFNAR2 expression at steady-state87. Nevertheless, the
increased levels of IFNAR2 might potentiate the responsiveness of
myeloid cells to type I interferon and thus drive exacerbated
inflammation.

Most immuneperturbations causedbyCOVID-19disappearwithin
60 days post-infection, but some immune perturbations persist for
weeks after viral clearance37,38. In our study, the majority of immune
traits were at baseline in recovered patients (Fig. 1b). Nonetheless,
we identified several immune traits which did not fully return to
baseline even weeks after symptom onset (Figs. 1b, 2). Most of these
long-term perturbations occurred in severe COVID-19, likely due to
increased immune activation57, and affected mainly B and T cells
(Fig. 2). The half-life of peripheral lymphocytes is longer compared to
myeloid cells. Models suggest that peripheral dendritic cells and
monocytes are replenished every few days40–42 while turnover of
memory and naïve T cells can be in the order of several weeks43 and
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years44, respectively. Thus, the prolonged immune cell half-life might
interfere with the replacement of impaired lymphocytes after COVID-
19 infection. Furthermore, naïve T cells aremaintained by homeostatic
proliferation while thymic output declines in aging44, which might
contribute to sustained immune perturbations.

Post-acute Sequelae of COVID-19 (PASC) occurs in a fraction of
individuals resulting in persisting symptoms, but its occurrence did
not correlate with disease severity88. Several factors early during acute
infection are associated with the risk of developing PASC such as
Epstein-Barr virus (EBV) viremia, auto-antibodies, and bystander acti-
vation of Cytomegalovirus (CMV)-specific T cells88. In contrast, the
immune composition in the blood remained largely unaffected88.
Noteworthy, immune signatures associated with PASC occurred in
lungs but not in blood89. In our study, we can not delineate immune
trajectories associated with PASC since such information was not
collected in our cohorts. However, based on these studies the impact
of PASC on the immune composition seems to be minor in recovered
individuals.

In summary, we identified several single cell-based immune sig-
natures associated with the development of severe COVID-19 out-
come. We specifically identified components of innate immunity, NK
cells and innate-like T cells which are important for the earliest events
in orchestrating efficient immune responses and in the clearance of
other pathogens potentially worsening the disease outcome. Our data
support current clinical efforts to modulate immune cell trafficking
using chemokine receptor inhibitors or administration of interferon to
treat severe COVID-19 patients63,90–92.

Methods
Samples
PBMC samples from 173 unexposed healthy individuals enrolled as
part of the VRC clinical trial program served as control group. Con-
valescent samples from individuals recovered frommild andmoderate
COVID-19 were collected at the NIH (Mild, N = 14; Moderate, N = 10)
and Evergreen in Washington State (Mild, N = 5; Moderate, N = 14). In
addition, PBMCs from individuals recovered from severe (N = 25) and
critical (N = 30) COVID-19 were obtained from Washington University.
Distinction between severe and critical cases was based on required
ventilation. All individuals from themild andmoderate group resolved
symptoms by the time of sample collection while all individuals from
the severe and critical groups showed at least substantial improve-
ment of symptoms. Information about time between symptom onset
and sample collection was unavailable for two samples from the mild
COVID-19 group. Detailed demographics are shown in Supplementary
Fig. 1 and Supplementary Table 1. Informed consentwas obtained from
individuals in compliance with IRB procedures from the National

Institutes of Health (Bethesda, USA) and Washington University (Mis-
souri, USA). Peripheral bloodmononuclear cells (PBMC) were purified
using density gradient centrifugation and cryopreserved in 10% DMSO
in liquid nitrogen. In this cross-sectional study, one sample per indi-
vidual was measured. All samples were collected prior to the avail-
ability of vaccines against SARS-CoV2. Furthermore, samples from the
healthy control group were collected prior to the emergence of SARS-
CoV2 and thus represent unexposed healthy individuals.

Flow cytometry
Detailed information of buffers and cell culture media is listed in
Supplementary Table 6 and staining reagents are listed in Supple-
mentary Table 3. Staining reagents included Viability UV Blue (Manu-
facturer: ThermoFisher Scientific,Cat#: L34962, titer per 50μl staining
volume: 0.0641μl), anti-TCR Vd1 FITC (clone: TS8.2, Manufacturer:
Thermo Fisher Scientific, Cat#: TCR2730, titer per 50μl staining
volume: 2.5μl), anti-CD127 BB630 (clone: HIL-7R-M21, Manufacturer:
BD Biosciences, Cat#: 624294, titer per 50 μl staining volume: 1.25μl),
anti-PD-1 BB660 (clone: EH12.1, Manufacturer: BD Biosciences, Cat#:
624295, titer per 50μl staining volume: 0.31μl), anti-CD16 BB700
(clone: 3G8, Manufacturer: BD Biosciences (OptiBuild), Cat#: 746199,
titer per 50 μl staining volume: 0.04μl), anti-CXCR5 BB790 (clone:
RF8B2, Manufacturer: BD Biosciences, Cat#: 624296, titer per 50μl
staining volume: 0.04μl), anti-TCR Vg9 PE (clone: B3, Manufacturer:
BD Biosciences, Cat#: 555733, titer per 50μl staining volume: 1.25μl),
anti-TCR Vd2 PE-CF594 (clone: B6, Manufacturer: BD Biosciences,
Cat#: 624352, titer per 50 μl staining volume: 0.01μl), anti-CD161 PE-
Cy5 (clone: DX12,Manufacturer: BD Biosciences, Cat#: 551138, titer per
50μl staining volume: 2.5μl), anti-HLA-DR PE-Cy5.5 (clone: TU36,
Manufacturer: ThermoFisher Scientific, Cat#:MHLDR18, titer per 50μl
staining volume: 0.31μl), anti-CD1d:PBS57 tetramer APC (clone: -,
Manufacturer: NIH tetramer core, Cat#: 41386, titer per 50μl staining
volume: 0.15μl), anti-CD45RA Ax700 (clone: HI100, Manufacturer: BD
Biosciences, Cat#: 560673, titer per 50ul staining volume: 0.63μl),
anti-CCR7 BUV496 (clone: 2-L1-A, Manufacturer: BD Biosciences, Cat#:
749827, titer per 50μl staining volume: 5μl), anti-CD56BUV563 (clone:
NCAM16.2,Manufacturer: BDBiosciences, Cat#: 565704, titer per 50μl
staining volume: 0.31μl), anti-CD39 BUV661 (clone: TU66, Manu-
facturer: BD Biosciences, Cat#: 749967, titer per 50μl staining volume:
0.63μl), anti-CD95 BUV737 (clone: DX27, Manufacturer: BD Bios-
ciences, Cat#: 624286, titer per 50μl staining volume: 1.25μl), anti-
CD4BUV805 (clone: SK3,Manufacturer: BDBiosciences, Cat#: 564910,
titer per 50ul staining volume: 0.63μl), anti-CD3 BV510 (clone: UCHT1,
Manufacturer: BD Biosciences, Cat#: 563109, titer per 50μl staining
volume: 0.15μl), anti-CD8a BV570 (clone: RPA-T8, Manufacturer: Bio-
legend, Cat#: 301038, titer per 50μl staining volume: 0.267μl), anti-

Fig. 5 | Unsupervised analysis of immune system in individuals recovered from
non-severe and severe COVID-19. a FDR-adjusted −log10 P-values of FlowSOM
clusters (N = 55) which differ significantly (P <0.05) between individuals recovered
from non-severe (mild/moderate) and severe (severe/critical) COVID-19 are shown.
Bars are colored based on lineage (B cells, purple; CD4 T cells, orange; CD8 T cells,
red; innate-like T cells, green; myeloid cells, blue; NK cells, pink). Bar on the left
indicates whether traits originate from chemokine receptor panel 1 (CR1, gray) or 2
(CR2, black). b Volcano plots show FDR-adjusted −log10 P-values and log2 fold
change derived from comparison of FlowSOM clusters between individuals
recovered from non-severe and severe COVID-19 cases. Main lineages are depicted
in separated plots and contain FlowSOM clusters from both panels CR1 (circle) and
CR2 (triangle). Data point size corresponds to −log10 P-values and color indicates
log2 fold change. P-values fromFig. 5a andbderive from logistic regression analysis
with correction for age and experiment batch. P-values were corrected formultiple
testing using Benjamini-Hochberg false discovery rate. c Heatmap depicts nor-
malized median fluorescence intensity (MFI) values for lineage, differentiation and
functional markers from top significant innate-like T cell clusters (Fig. 5a, P <0.01).
Values derived from CR1 (top) and CR2 (bottom) panels are separated. Heatmaps

on the right highlight expression of markers specific for CR1 and CR2 panels
including chemokine receptors, co-stimulatory markers and IFNAR2. Values are
normalized based on trimmed 1–99% percentile values. Complete heatmaps for all
innate-like T cell clusters are shown in Supplementary Fig. 12a, b. d Frequencies for
same clusters described in Fig. 5c are shown as boxplots based on study group.
Values are log10(+1) transformed and plotted on linear scale. Logistic regression
with correction for age and experiment batch was used to identify significant
clustersbetweennon-severe and severeCOVID-19.Only FlowSOMclusters (N = 291)
which did not show temporal changes withinmoderate and severe COVID-19 cases
are shown as described in the Online methods section and results (Supplementary
Fig. 13a). Residuals from linear regression between immune trait and agewere used
to calculate statistics on age-corrected data. ANOVAwith subsequentWilcoxon test
and Bonferroni correction on residuals was performed for statistics highlighted in
boxplots. Boxplots depict median and interquartile range (IQR) and length of
whiskers is 1.5 times IQR. Study groups encompass healthy unexposed controls
(HD) and individuals recovered from mild (Mi), moderate (Mo), severe (Se) and
critical (Cr) COVID-19. Source data are provided as a Source Data file.
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CD38 BV605 (clone: HIT2, Manufacturer: BD Biosciences, Cat#:
740401, titer per 50ul staining volume: 1.25μl), anti-TCR Va7.2 BV711
(clone: 3C10, Manufacturer: Biolegend, Cat#: 351732, titer per 50μl
staining volume: 1.25μl), anti-CD27 BV786 (clone: L128, Manufacturer:
BD Biosciences, Cat#: 624292, titer per 50μl staining volume: 0.31μl),
anti-CADM1 FITC (clone: 30, Manufacturer: MBL International Cor-
poration, Cat#: CM004-4, titer per 50μl staining volume: 0.15μl), anti-
CD141 BB630 (clone: 1A4, Manufacturer: BD Biosciences, Cat#:
624294, titer per 50μl staining volume: 0.01μl), anti-CD123 BB660
(clone: 7G3,Manufacturer: BDBiosciences, Cat#: 624295, titer per 50ul

staining volume: 0.04μl), anti-FcEr1a BB700 (clone: AER-37, Manu-
facturer: BD Biosciences, Cat#: 747780, titer per 50μl staining volume:
0.63μl), anti-IgD BB790 (clone: IA6-2, Manufacturer: BD Biosciences,
Cat#: 624296, titer per 50μl staining volume: 0.31μl), anti-IFNAR2 PE
(clone: REA124, Manufacturer: Miltenyi, Cat#: 130-099-555, titer per
50μl staining volume: 1.25μl), anti-CD88 PE-Dazzle594 (clone: S5/1,
Manufacturer: Biolegend, Cat#: 344318, titer per 50μl staining volume:
0.31μl), anti-CD3 PE-Cy5 (clone: UCHT1,Manufacturer: BD Biosciences,
Cat#: 555334, titer per 50μl staining volume: 0.31μl), anti-CD5 PE-Cy5.5
(clone: CD5-5D7, Manufacturer: Thermo Fisher, Cat#: MHCD0518, titer
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per 50μl staining volume: 0.31μl), anti-CD11c APC (clone: B-ly6, Man-
ufacturer: BDBiosciences,Cat#: 559877, titer per 50μl staining volume:
5μl), anti-CD27 APC-R700 (clone: M-T271, Manufacturer: BD Bios-
ciences, Cat#: 624348, titer per 50μl staining volume: 0.63μl), anti-
CD40 BUV496 (clone: 5C3, Manufacturer: BD Biosciences, Cat#:
741159, titer per 50μl staining volume: 1.25μl), anti-CD56 BUV563
(clone: NCAM16.2, Manufacturer: BD Biosciences, Cat#: 565704, titer
per 50μl staining volume: 0.31μl), anti-CD21 BUV661 (clone: B-ly4,
Manufacturer: BD Biosciences, Cat#: 741605, titer per 50μl staining
volume: 0.31μl), anti-CD163 BUV737 (clone: GHI/61, Manufacturer: BD
Biosciences, Cat#: 741863, titer per 50μl staining volume: 5μl), anti-
CD20 BUV805 (clone: 2H7, Manufacturer: BD Biosciences, Cat#:
612905, titer per 50μl staining volume: 2.5μl), anti-CD14 BV510 (clone:
MPhiP9, Manufacturer: BD Biosciences, Cat#: 624289, titer per 50μl
staining volume: 0.1μl), anti-CD16 BV570 (clone: 3G8, Manufacturer:
Biolegend, Cat#: 302036, titer per 50μl staining volume: 1.25μl), anti-
CD38 BV605 (clone: HIT2, Manufacturer: BD Biosciences, Cat#:
740401, titer per 50μl staining volume: 1.25μl), anti-CD86 BV711
(clone: 2331, Manufacturer: BD Biosciences, Cat#: 563158, titer per
50μl staining volume: 0.63μl), anti-HLA-DR BV786 (clone: G46-6,
Manufacturer: BD Biosciences, Cat#: 564041, titer per 50μl staining
volume: 0.15μl), anti-CCR2 BV421 (clone: 48607, Manufacturer: BD
Biosciences, Cat#: 564067, titer per 50μl staining volume: 5μl), anti-
CCR3 BUV395 (clone: 5E8, Manufacturer: BD Biosciences, Cat#:
743063, titer per 50μl staining volume: 2.5μl), anti-CCR5 BV650
(clone: 2D7/CCR5, Manufacturer: BD Biosciences, Cat#: 740600, titer
per 50μl staining volume: 2.5μl), anti-CX3CR1 BV750 (clone: 2A9-1,
Manufacturer: BD Biosciences, Cat#: 747376, titer per 50μl staining
volume: 5μl), anti-CCR1 PE-Cy7 (clone: 5F10B29, Manufacturer: Biole-
gend, Cat#: 362914, titer per 50μl staining volume: 5μl), anti-XCR1
APC-Fire750 (clone: S15046E, Manufacturer: Biolegend, Cat#: 372608,
titer per 50ul staining volume: 5μl), anti-CCR9 BV421 (clone: L053E8,
Manufacturer: Biolegend, Cat#: 358914, titer per 50μl staining volume:
5μl), anti-CCR8 BUV395 (clone: 433H, Manufacturer: BD Biosciences,
Cat#: 747573, titer per 50μl staining volume: 1.25μl), anti-CCR4 BV650
(clone: 1G1,Manufacturer: BDBiosciences, Cat#: 744140, titer per 50μl
staining volume: 5μl), anti-CXCR6 BV750 (clone: 13B 1E5, Manu-
facturer: BD Biosciences, Cat#: 747052, titer per 50ul staining volume:
5μl), anti-CXCR3 PE-Cy7 (clone: G025H7, Manufacturer: Biolegend,
Cat#: 353720, titer per 50μl staining volume: 1.25μl), anti-CD19 APC-
H7 (clone: SC25C1, Manufacturer: BD Biosciences, Cat#: 560177, titer
per 50μl staining volume: 0.31μl) and anti-TIGIT APC-Cy7 (clone:
A15153G, Manufacturer: Biolegend, Cat#: 372734, titer per 50μl stain-
ing volume: 0.63μl).

Staining reagent cocktails were prepared in staining buffer (RPMI
without phenol red and 4% HINCS) containing Brilliant Buffer Plus (1:5
diluted) and TrueStain Monocyte Blocker (5μl/100μl). Antibody
cocktails were tested on irrelevant PBMC sample to validate com-
pleteness prior to sample processing. After successful validation of
staining reagent cocktails, PBMCswere thawed inRPMI containing 10%
fetal bovine serum, 100 IU/ml Penicillin, 100μg/ml Streptomycin and
292μg/ml L-Glutamine (referred to as R10) containing 50U/ml

Benzonase using a tube adaptor to facilitate and standardize the
thawing process as described93. Cells were washed once with 5ml R10
and transferred to a V-bottom, 96-well plate (Corning). After two
washes with 200μl PBS, cells were stained in 100μl fixable Live/Dead
Blue viability dye containing human BD Fc receptor block (5μl/100μl)
for 20minutes at room temperature protected from light. Afterwards,
cells were distributed into two 96-V bottom plates and stained with
50μl of either B cell/myeloid cell (BDC) or T cell/NK cell (TNK) back-
bone staining mix for 30min at room temperature. Samples were
subsequently distributed into two wells and stained with either che-
mokine receptor panel 1 (CR1) or 2 (CR2) for 30min at room tem-
perature. Subsequently, we washed cells three times with 250μl
stainingbuffer followedbyfixationwith0.5%paraformaldehyde inPBS
overnight at 4 C. Cells were acquired the next day with a FACSymph-
ony (BD Biosciences) cytometer using FACS DIVA software (version
9.1). Detailed instrument configuration is described elsewhere94. Initial
centrifugation for thawing was performed at 700 × g for 5min and all
subsequent centrifugation steps were done at 860 × g for 3min.

Samples were processed in two batches and samples from the
different cohorts/study groupswereequally distributed across the two
experiments to mitigate potential issues with batch effects. PBMCs
from the same blood draw and batch from an unexposed healthy
individualwasmeasured inboth experiments to assess reproducibility.

Data analysis
Irregular events and outliers in the raw data were determined and
excluded using R-implemented (R version 4.0.0) FlowAI (version
1.18.5)95. Subsequently, correction for spectral overlap (compensation)
was performed in FlowJo 10.1.7 (BD Biosciences) using single-stained
beads. A new set of fcs files only containing viable, high-quality (based
on FlowAI) cells was generated for subsequent analysis of immune cell
traits with FlowJo 10.1.7. For the BDC-CR1 panel, gates from twodonors
required adjustments due to slight signal shifts caused by irregularities
in data acquisition which were not detected by FlowAI. Otherwise,
identical gateswere used across all samples and batches.Markerswere
divided in two groups based on their purpose to either define immune
cell subsets or functional markers/characteristics (Supplementary
Table 2). Three different parameters were extracted for subsequent
analysis, namely frequency of immune cell populations, frequency of
cells expressing functional markers and mean fluorescence signal.
Biologically relevant expression was assessed and immune traits with
insufficient frequencies or irrelevant expression patterns were manu-
ally excluded which resulted in 1758 out of 3787 manually defined
immune traits.

For tSNE and FlowSOM analysis, CD4+ T cells and CD8+ T cells
(both gated from CD3+CD4+Vγ9−Vδ1−Vδ2−CD1d:PBS57− conventional
T cells), B cells (HLA-DR+CD20+), myeloid cells (HLA-DR+CD20−),
innate-like T cells (NKT cells, MAIT cells and cells positive for TCR-γ or
-δ reagents) and NK cells/innate lymphoid cells (CD3−HLA-DR−) were
separately concatenated from the two chemokine receptor panels CR1
and CR2. The same individuals were included as described for the
manual gating analysis, with the exception that we excluded the two

Fig. 6 | Myeloid cell populations from FlowSOManalysis as potential predictor
for disease outcome. a Frequencies (log10 + 1) of myeloid cell clusters among top
hits (P <0.01) described in Fig. 5a are shown for CR1 (top row) and CR2 panel
(bottom row). Values are log10(+1) transformed and plotted on linear scale. Resi-
duals from linear regression between immune trait and age were used to calculate
statistics on age-corrected data. ANOVA with subsequent two-sided Wilcoxon test
and Bonferroni correction on residuals was performed for statistics highlighted in
boxplots. Boxplots depict median and interquartile range (IQR) and length of
whiskers is 1.5 times IQR. Study groups encompass healthy unexposed controls
(HD) and individuals recovered from mild (Mi), moderate (Mo), severe (Se) and
critical (Cr) COVID-19. b Heatmaps showing normalized median fluorescence
intensity (MFI) values for clusters described in Fig. 6a are shown. Heatmaps on the

left show markers used to delineate immune cell subsets. On the right, heatmaps
depict CR panel-specific markers. Values are normalized based on trimmed 1–99%
percentile values. c tSNE plots with myeloid cells from individuals recovered from
mild (left column) or severe (right column) COVID-19 are shown. Data from panels
CR1 and CR2 are shown in the top and bottom row, respectively. Each plot contains
50,000 subsampled myeloid cells (gating shown in Supplementary Fig. 2d). Dots
are colored based on FlowSOM cluster annotation and full data is shown in Sup-
plementary Fig. 10a–c. Clusters described in Fig. 6a and b are annotated and
highlighted. d Spearman analysis of normalized MFI values between clusters
described in Fig. 6a is shown in order to estimate the phenotypic overlap between
CR1 and CR2 panel. Heatmap depicts Spearman correlation coefficient.
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samples from the BDC-CR1 panel data which had slight signal shifts as
described above. Subsequently, dye aggregates were removed by
manual gating to avoid artefacts. The cleaned events were exported as
new fcs files and used for R-implemented tSNE (Rtsne, version 0.15)
and FlowSOM (version 1.20.0). For FlowSOM, 40 clusters were defined
for CD4+ andCD8+ T cells and 30 clusters for all other immune subsets.
For clustering, markers used to initially define and extract these
immune subsets were excluded from the clustering analysis (Supple-
mentary Table 4). We excluded these markers to avoid parsing of
background signal or uniform expression into artificial
subpopulations96. Clusters with unusual expression pattern occurred
likely because of residual immune cell contaminations and were
removed from downstream analysis (Supplementary Table 5). Raw
data output from FlowSOM and tSNE analysis are visualized in Sup-
plementary Figs. 10–12. Subsequent analysis was performed with
remaining 388 FlowSOM clusters (B cells,N = 60;myeloid cells,N = 60;
innate-like T cells, N = 78; conventional CD4 T cells, N = 76; conven-
tional CD8 T cells, N = 76; and NK cells, N = 38). For tSNE, 50,000 cells
(27,583 cells for innate-like T cells and 25,000 for NK cells) from each
severity group were concatenated prior to tSNE analysis (perplexity =
30, theta = 0.5, 5000 iterations) in order to maintain priority for tSNE
computation equal among patient groups. Fewer cells were used for
TSNE in the case of innate-like T cells due to limited numbers of cells in
the critical COVID-19 group (total 27,583 cells from all patients). We
expected lower diversity of NK cell subsets and therefore used 25,000
cells per study group for tSNE.

Statistical analysis
Exclusion of individuals. Samples with considerable number of
missingmanually defined immune trait valueswere excluded using the
missCompare (version 1.0.3) package in R. A cut-off of 10%was applied
(i.e., samples with more than 10% missing values were excluded). Two
individuals were excluded based onmissingness of values for immune
traits. None of the immune traits were excluded based onmissingness
(Cut-off of 80% missing values). For FlowSOM analysis, same samples
were used according to the missingness analysis on manually defined
traits. Of note, the FlowSOM model was trained on all samples irre-
spective ofmissingness to ensuremaximumnumber of cells per study
group to train the FlowSOM model.

Assessment of long-term immune perturbations. We distinguished
immune traits which were affected by long-term immune perturba-
tions or at steady-state within moderate and severe COVID-19 group.
We focused on these two study groups because they span across the
longest period between symptom onset and sample collection
enabling the most precise analysis of long-term immune trajectories
after symptom onset (Supplementary Fig. 1a). Of note, age correlated
with hospitalization length in severe but not critical cases and was
significantly shorter in severe COVID-19 cases (Supplementary Fig. 1b,
c). We used linear regression between rank-normalized immune traits
derived from both unsupervised clustering and manual analysis and
length of time in days between symptom onset and sample collection.
In addition, we compared immune traits in samples with less or more
than 60 days between symptom onset and sample collection using
Wilcoxon signed-rank test. Long-term perturbated traits were defined
asmanually defined immune traitswith unadjusted P < 0.001 in at least
one of the analyses (N = 24).

Identification of immune traits predictive for COVID-19 severity.
Immune traits and FlowSOM clusters with unadjusted P >0.05 in both
analyses described above (linear regression andWilcoxon signed-rank
test) were defined as stable immune traits at steady-state (1365
manually defined immune traits and 291 FlowSOM clusters) and were
used to predict immune signatures associated with the development
of severe COVID-19. We rank-normalized the data and used logistic

regression between mild/moderate (group non-severe) and severe/
critical (group severe) cases and corrected for age and experiment
(batch). P-values were adjusted using Benjamini-Hochberg false dis-
covery rate97 and adjusted P-values <0.05 were considered statistically
significant.

We ran the logistic regression analysis with all individuals (N = 98)
or only individuals who were not hospitalized or discharged at day of
sample collection (N = 71) since hospitalizations at sample collection
might point towards persisting symptoms and immune perturbations
and affect our analysis (Supplementary Fig. 9c, d). For overall assess-
ment of significant difference of immune traits and FlowSOM clusters
between study groups we used one-way ANOVA on age-corrected
residuals derived from linear regression on rank-normalized data.
Subsequently, if one-way ANOVA results were significant, we used two-
sided Wilcoxon test with Bonferroni correction for comparison of
study groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Flow Cytometry data generated in this study have been deposited
in the FlowRepository database under accession code FCM-Z5PC. The
raw data files contain pre-gated viable cells. Source data are provided
with this paper.
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