
A Generic Polynomial Time Approach to
Separation by First-Order Logic Without Quantifier
Alternation
Thomas Place !Ï

LaBRI, Bordeaux University, France

Marc Zeitoun ! Ï

LaBRI, Bordeaux University, France

Abstract
We look at classes of languages associated to fragments of first-order logic BΣ1, in which quantifier
alternations are disallowed. Each such fragment is fully determined by choosing the set of predicates
on positions that may be used. Equipping first-order logic with the linear ordering and possibly
the successor relation as predicates yields two natural fragments, which were investigated by Simon
and Knast, who proved that these two variants have decidable membership: “does an input regular
language belong to the class ?”. We extend their results in two orthogonal directions.

First, instead of membership, we explore the more general separation problem: decide if two
regular languages can be separated by a language from the class under study.
Second, we use more general inputs: classes G of group languages (i.e., recognized by a DFA in
which each letter induces a permutation of the states) and extensions thereof, written G+.

We rely on a characterization of BΣ1 by the operator BPol: given an input class C, it outputs a
class BPol(C) that corresponds to a variant of BΣ1 equipped with special predicates associated to C.
The classes BPol(G) and BPol(G+) capture many natural variants of BΣ1 which use predicates such
as the linear ordering, the successor, the modular predicates or the alphabetic modular predicates.

We show that separation is decidable for BPol(G) and BPol(G+) when this is the case for G.
This was already known for BPol(G) and for two particular classes of the form BPol(G+). Yet,
the algorithms were indirect and relied on involved frameworks, yielding poor upper complexity
bounds. In contrast, our approach is direct. We work only with elementary concepts (mainly, finite
automata). Our main contribution consists in polynomial time Turing reductions from both BPol(G)-
and BPol(G+)-separation to G-separation. This yields polynomial time algorithms for several key
variants of BΣ1, including those equipped with the linear ordering and possibly the successor and/or
the modular predicates.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Regular languages

Keywords and phrases Automata, Separation, Covering, Concatenation hierarchies, Group languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.43

Related Version Full Version: https://arxiv.org/abs/2210.00946 [25]

Funding Supported by the DeLTA project (ANR-16-CE40-0007).

1 Introduction

An important question in automata theory is to precisely understand the prominent classes
of regular languages of finite words. We are interested in the classes associated to a piece
of syntax (such as regular expressions or logic), whose purpose is to specify the languages
of such classes. In the paper, we formalize the goal of “understanding a given class C” by
looking at a decision problem: C-separation. It takes two regular languages L1, L2 as input
and asks whether there exists K ∈ C such that L1 ⊆ K and K ∩ L2 = ∅. The key idea is
that obtaining an algorithm for C-separation requires a solid understanding of C.

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 43; pp. 43:1–43:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tplace@labri.fr
http://www.labri.fr/perso/tplace
mailto:mz@labri.fr
http://www.labri.fr/perso/zeitoun
https://orcid.org/0000-0003-1791-0628
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.43
https://arxiv.org/abs/2210.00946
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

We investigate a family of classes associated to a fragment of first-order logic written BΣ1.
The sentences of BΣ1 are Boolean combinations of existential formulas, i.e., whose prenex
normal form has the shape ∃x1∃x2 · · · ∃xkφ, with φ quantifier-free. Several classes are
associated to BΣ1, each determined by the predicates on positions that we allow. In the
literature, standard examples of predicates include the linear order “<” [27], the successor
relation “+1” [9] or modular predicates “MOD” [5]. Thus, a generic approach is desirable.

We tackle languages associated to BΣ1 through the operator C 7→ BPol(C) defined on
classes of languages. It is the composition of the polynomial closure C 7→ Pol(C) and the
Boolean closure C 7→ Bool(C) operators: BPol(C) = Bool(Pol(C)). Recall that the polynomial
closure of a class C consists of all finite unions of languages of the form L0a1L1 · · · anLn,
where n ≥ 0, each ai is a letter and each Li belongs to C. Indeed, many classes associated
to BΣ1 are of the form BPol(C) [34, 20]. In this paper, we look at specific input classes C.

The group languages are those recognized by a finite group, or equivalently by a permuta-
tion automaton [33] (i.e., which is complete, deterministic and co-deterministic). We consider
input classes that are either a class G consisting of group languages, or a well-suited extension
thereof, G+ (roughly, G+ is the least Boolean algebra containing G and the singleton {ε}).
It is known [20] that if G is a class of group languages, then BPol(G) = BΣ1(<,PG) and
BPol(G+) = BΣ1(<, +1,PG). Here, PG is a set of predicates associated to G: each language L

in G gives rise to a predicate PL(x), which selects all positions x in a word w such that the
prefix of w up to position x (excluded) belongs to L. This captures most of the natural
examples. In particular, we get signatures including the aforementioned predicates, such as
{<}, {<, +1}, {<, MOD} and {<, +1, MOD} (we provide some more examples in the paper).

State of the art. Historically, BPol(G) and BPol(G+) were first investigated for particular
input classes. A prominent example is the class of piecewise testable languages [27], i.e., the
class BPol(ST) = BΣ1(<) where ST = {∅, A∗}. It was shown that BPol(ST)-separation is
decidable in [1] using technical algebraic arguments. Simpler polynomial time algorithms were
discovered later [17, 6]. There also exists an involved specialized separation algorithm [36] for
BPol(MOD) = BΣ1(<, MOD), where MOD is the class of modulo languages. Decidability
can be lifted to BPol(ST+) = BΣ1(<, +1) (the languages of dot-depth one [9]) and to
BPol(MOD+) = BΣ1(<, +1, MOD) via transfer results [22, 16]. Unfortunately, this approach
yields an exponential complexity blow-up. Recently, a generic approach was developed for
BPol(G). It is proved in [21] that if G is a class of group languages with mild hypotheses,
BPol(G)-separation is decidable when G-separation is decidable. Yet, this generic approach
is indirect and considers a more general problem: covering. Because of this, the algorithms
and their proofs are complex and rely on an intricate framework [19], yielding poor upper
complexity bounds. This contrasts with the simple polynomial time procedures presented
in [17, 6] for BPol(ST). No generic result of this kind is known for the classes BPol(G+).

Contributions. We give generic polynomial time Turing reductions from BPol(G)- and
BPol(G+)-separation to G-separation, where G is a class of group languages with mild prop-
erties. We present them as greatest fixpoint procedures which use an oracle for G-separation
at each step and run in polynomial time (for input languages represented by nondeterministic
finite automata). While the proofs are involved, they are self-contained and based exclusively
on elementary concepts from automata theory. No particular knowledge on group theory is
required to follow them: we only use the very definition of a group.

For BPol(G), this new approach is a significant improvement on the results of [21]. While
we do reuse some ideas of [21], we complement them with new ones and the presentation is
independent. We get a simpler algorithm, which requires only basic notions from automata

T. Place and M. Zeitoun 43:3

theory. In particular, one direction of the proof describes a generic construction for building
separators in BPol(G) (when they exist). This serves our main objective: understanding
classes of languages. In addition, we obtain much better complexity upper bounds on
BPol(G)-separation. Finally, our techniques can handle BPol(G+) as well. This was not the
case in [21]: the generic reduction from BPol(G+)-separation to G-separation is a new result.

These results apply to several key classes. Separation is decidable in polynomial time
for ST = {∅, A∗}, for the class MOD of modulo languages and for the class GR of all group
languages [26]. Hence, the problem is also decidable in polynomial time for BPol(ST) (i.e.,
BΣ1(<)), BPol(ST+) (i.e., BΣ1(<, +1)), BPol(MOD) (i.e., BΣ1(<, MOD)), BPol(MOD+)
(i.e., BΣ1(<, +1, MOD)), BPol(GR) and BPol(GR+) (the logical characterization of the last
two classes is not standard, yet they are quite prominent as well [11, 8]). This reproves a known
result for BPol(ST) (in fact, we essentially reprove the algorithm of [6]). The polynomial time
upper bounds are new for all other classes. Another application is the class AMT of alphabet
modulo testable languages (which are recognized by commutative groups): BPol(AMT) and
BPol(AMT+) correspond to BΣ1(<, AMOD) and BΣ1(<, +1, AMOD) where “AMOD” is
the set of alphabetic modular predicates. We obtain the decidability of separation for these
classes (this is a new result for BPol(AMT+)). However, we do not get a polynomial time
upper bound: this is because AMT-separation is co-NP-complete (see [26]).

Important remark. Eilenberg’s theorem [7] connects some classes of regular languages (the
“varieties of languages”) with varieties of finite monoids. It raised the hope to solve decision
problems on languages (such as membership) by translating them in terms of monoids and
solving the resulting purely algebraic questions – without referring to languages anymore. In
particular, Margolis and Pin [11, 13] characterized the algebraic counterpart of BPol(G) in
Eilenberg’s correspondence (when G is a variety) as the “semidirect product” J ∗ G, where J
is the variety of monoids corresponding to BΣ1(<) and G is the one corresponding to G. The
new purely algebraic question is then: “decide membership of a monoid in J ∗ G”. Tilson [35]
developed an involved framework to reformulate membership in semidirect products in terms
of categories, which was successfully exploited to handle (J ∗ G)-membership [8, 28].

Our results are completely independent from this algebraic approach. To clarify, we do
use combinatorics on monoids. Yet, our motivations and techniques are disconnected from the
theory of varieties of monoids, which is a distinct field. We avoid it by choice: while the above
approach highlights an interesting connection between two fields, it is not necessarily desirable
when looking back at our primary goal, understanding classes of languages. Indeed, a detour
via varieties of monoids would obfuscate the intuition at the language level. Fortunately,
this paper shows that this detour can be bypassed, while getting stronger results. First,
our results are more general: they apply to separation, and not only membership. It is not
clear at all that this can be obtained in the context of monoid varieties, as we rely strongly
on the definition of BPol: we work with languages of the form L0a1L1 · · · anLn, for Li ∈ G.
Second, we can handle BPol(G+), thus capturing the successor relation on the logical side.
As far as we know, the only class of this kind captured by the above framework is BPol(ST+)
(these are the well-known dot-depth one languages [30]). Third, using the algebraic approach
via Eilenberg’s theorem requires varieties of languages as input classes. This, for example,
excludes the class BPol(MOD). This does not mean that this class cannot be handled by
algebraic techniques: this was actually done by Straubing [31, 15], who rebuilt the whole
theory to be able to handle such classes. In contrast, our result applies uniformly to classes
of group languages, including MOD.

FSTTCS 2022

43:4 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

Organization of the paper. We present the objects that we investigate and terminology in
Section 2. We introduce separation and the techniques that we use to handle it in Section 3.
Finally, we present our results for BPol(G)- and BPol(G+)-separation in Section 4. Due to
space limitations, some proofs are only available in the full version of the paper [25].

2 Preliminaries

2.1 Words, regular languages and classes
We fix a finite alphabet A for the paper. As usual, A∗ denotes the set of all finite words
over A, including the empty word ε. We let A+ = A∗ \ {ε}. For u, v ∈ A∗, we let uv be
the word obtained by concatenating u and v. A language is a subset of A∗. We denote
the singleton language {u} by u. We lift concatenation to languages: for K, L ⊆ A∗, we
let KL = {uv | u ∈ K and v ∈ L}. We shall consider marked products: given languages
L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln is a product of the form L0a1L1 · · · anLn

where a1, . . . , an ∈ A (note that “L0” is a marked product: this is the case n = 0).

Regular languages. In the paper, we consider regular languages. A nondeterministic finite
automaton (NFA) is a pair A = (Q, δ) where Q is a finite set of states, and δ ⊆ Q×A×Q is a
set of transitions. We now define the languages recognized by A. Given q, r ∈ Q and w ∈ A∗,
we say that there exists a run labeled by w from q to r (in A) if there exist q0, . . . , qn ∈ Q

and a1, . . . , an ∈ A such that w = a1 · · · an, q0 = q, qn = r and (qi−1, ai, qi) ∈ δ for every
1 ≤ i ≤ n. Given two sets I, F ⊆ Q, we write LA(I, F) ⊆ A∗ for the language of all words
w ∈ A∗ such that there exist q ∈ I, r ∈ F , and a run labeled by w from q to r in A. We
say that a language L ⊆ A∗ is recognized by A if and only if there exist I, F ⊆ Q such that
L = LA(I, F). The regular languages are those which can be recognized by an NFA.

We also use NFAs with ε-transitions. In such an NFA A = (Q, δ), a transition may also
be labeled by the empty word “ε” (that is, δ ⊆ Q × (A ∪ {ε}) × Q). We use the standard
semantics: an ε-transition can be taken without consuming an input letter. Note that unless
otherwise specified, the NFAs that we consider are assumed to be without ε-transitions.

Classes. A class of languages is a set of languages. A lattice of languages is a class containing
∅ and A∗ and closed under both union and intersection. Moreover, a Boolean algebra is a
lattice closed under complement. Finally, a class C is quotient-closed when for all L ∈ C and
all v ∈ A∗, the languages v−1L = {w ∈ A∗ | vw ∈ L} and Lv−1 = {w ∈ A∗ | wv ∈ L} both
belong to C as well. A positive prevariety (resp. a prevariety) is a quotient-closed lattice
(resp. a quotient-closed Boolean algebra) containing regular languages only.

Group languages. A monoid is a set M equipped with a multiplication s, t 7→ st, which
is associative and has a neutral element denoted by “1M ”. Observe that A∗ endowed with
concatenation is a monoid (ε is the neutral element). It is well-known that a language L is
regular if and only if it is recognized by a morphism α : A∗ → M into a finite monoid M , i.e.,
there exists F ⊆ M such that L = α−1(F). We now restrict this definition: a monoid G is a
group if every element g ∈ G has an inverse g−1 ∈ G, i.e., such that gg−1 = g−1g = 1G. A
group language is a language recognized by a morphism into a finite group.

We consider classes G that are group prevarieties (i.e., containing group languages only).
We let GR be the class of all group languages. Another important example is the class
AMT of alphabet modulo testable languages. For every w ∈ A∗ and every a ∈ A, we write
#a(w) ∈ N for the number of occurrences of “a” in w. The class AMT consists in all finite

T. Place and M. Zeitoun 43:5

Boolean combinations of languages {w ∈ A∗ | #a(w) ≡ k mod m} where a ∈ A and k, m ∈ N
are such that k < m. One may verify that these are exactly the languages recognized by
commutative groups. Finally, we consider the class MOD, which consists in all finite Boolean
combinations of languages {w ∈ A∗ | |w| ≡ k mod m} with k, m ∈ N such that k < m.
Finally, we write ST for the trivial class ST = {∅, A∗}. One may verify that GR, AMT,
MOD and ST are all group prevarieties.

One may verify that {ε} and A+ are not group languages. This motivates the next
definition: the well-suited extension of a class C, denoted by C+, consists of all languages of
the form L ∩ A+ or L ∪ {ε} where L ∈ C. The next lemma follows from the definition.

▶ Lemma 1. Let C be a prevariety. Then, C+ is a prevariety containing {ε} and A+.

2.2 Polynomial and Boolean closure
We investigate two operators that one may apply to a class C. The Boolean closure of C,
written Bool(C), is the least Boolean algebra containing C. The polynomial closure of C,
denoted by Pol(C), consists of all finite unions of marked products L0a1L1 · · · anLn where
L0, . . . , Ln ∈ C and a1, . . . , an ∈ A. Finally, we write BPol(C) for Bool(Pol(C)). If C is a
prevariety, then Pol(C) is a positive prevariety and BPol(C) is a prevariety. Proving that
Pol(C) is closed under intersection is not immediate. It was shown by Arfi [2] (see also [14, 20]).

▶ Theorem 2. If C is a prevariety, Pol(C) is a positive prevariety and BPol(C) is a prevariety.

The two operators Pol and Bool induce standard classifications called concatenation
hierarchies: for a prevariety C, the concatenation hierarchy of basis C is built from C by
alternatively applying the operators Pol and Bool. We are interested in BPol(C), which is
level one in the concatenation hierarchy of basis C. We look at bases that are either a group
prevariety G or its well-suited extension G+. Most of the prominent concatenation hierarchies
in the literature use such bases. This is in part motivated by the logical characterization of
concatenation hierarchies, due to Thomas [34]. We briefly recall it for the level one.

Consider a word w = a1 · · · a|w| ∈ A∗. We view w as a linearly ordered set of |w| + 2
positions {0, 1, . . . , |w|, |w|+1} such that each position 1 ≤ i ≤ |w| carries the label ai ∈ A (on
the other hand, 0 and |w|+1 are artificial unlabeled leftmost and rightmost positions). We use
first-order logic to describe properties of words: a sentence can quantify over the positions of
a word and use a predetermined set of predicates to test properties of these positions. We also
allow two constants “min” and “max” interpreted as the artificial unlabeled positions 0 and
|w|+1 in a given word w. A first-order sentence φ defines the language of all words satisfying
the property stated by φ. We use several kinds of predicates. For each a ∈ A, we associate a
unary predicate (also denoted by a), which selects the positions labeled by “a”. We also use
two binary predicates: the (strict) linear order “<” and the successor relation “+1”. Finally,
we associate a set of predicates PG to each group prevariety G. Every L ∈ G yields a unary
predicate PL in PG , which is interpreted as follows. Let w = a1 · · · a|w| ∈ A∗. The unary
predicate PL selects all positions i ∈ {0, . . . , |w| + 1} such that i ̸= 0 and a1 · · · ai−1 ∈ L.

▶ Example 3. The sentence “∃x∃y (x < y)∧a(x)∧b(y)” defines the language A∗aA∗bA∗. The
sentence “∃x∃y a(x) ∧ c(y) ∧ (y + 1 = max)” defines A∗aA∗c. Finally, if L = (AA)∗ ∈ MOD
(the words of even length), the sentence “∃x a(x) ∧ PL(x)” defines the language (AA)∗aA∗.

The fragment of first-order logic containing exactly the Boolean combinations of existential
first-order sentences is denoted by “BΣ1”. Let G be a group prevariety. We write BΣ1(<,PG)
for the class of all languages defined by a sentence of BΣ1 using only the label predicates,

FSTTCS 2022

43:6 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

the linear order “<” and those in PG . Moreover, we write BΣ1(<, +1,PG) for the class of all
languages defined by a sentence of BΣ1, which additionally allows the successor predicate
“+1”. The following proposition follows from the results of [20, 24].

▶ Proposition 4. Let G be a group prevariety. We have BPol(G) = BΣ1(<,PG) and
BPol(G+) = BΣ1(<, +1,PG).

Key examples. The basis ST = {∅, A∗} yields the Straubing-Thérien hierarchy [29, 32]
(hence the notation of this basis). Its level one is the class of piecewise testable languages [27].
Its well-suited extension ST+ induces the dot-depth hierarchy [3]. In particular, BPol(ST) and
BPol(ST+) correspond to BΣ1(<) and BΣ1(<, +1), as all predicates in PST are trivial. The
hierarchies of bases MOD and MOD+ are also prominent (see for example [5, 10, 36]). The
classes BPol(MOD) and BPol(MOD+) correspond to BΣ1(<, MOD) and BΣ1(<, +1, MOD)
where “MOD” is the set of modular predicates (for all r, q ∈ N such that r < q, it contains a
unary predicate Mr,q selecting the positions i such that i ≡ r mod q). Similarly, BPol(AMT)
and BPol(AMT+) correspond to BΣ1(<, AMOD) and BΣ1(<, +1, AMOD) where “AMOD”
is the set of alphabetic modular predicates (for all a ∈ A and r, q ∈ N such that r < q, it
contains a unary predicate Ma

r,q selecting the positions i such the that number of positions
j < i with label a is congruent to r modulo q). Finally, the group hierarchy, whose basis is
GR is also prominent [11, 8], though its logical characterization is not standard.

Properties. We present a key ingredient [23, Lemma 3.6]. It describes a concatenation
principle for the classes BPol(C) based on the notion of “cover”. Given a language L, a cover
of L is a finite set K of languages satisfying L ⊆

⋃
K∈K K. If D is a class, a D-cover of L is

a cover K of L such that K ⊆ D.

▶ Proposition 5. Let C be a prevariety, n ∈ N, L0, . . . , Ln ∈ Pol(C) and a1, . . . , an ∈ A. If
Hi is a BPol(C)-cover of Li for all i ≤ n, then there is a BPol(C)-cover K of L0a1L1 · · · anLn

such that for all K ∈ K, there exists Hi ∈ Hi for each i ≤ n satisfying K ⊆ H0a1H1 · · · anHn.

For applying Proposition 5, we need a language L0a1L1 · · · anLn with L0, . . . , Ln ∈ Pol(C).
The next tailored statements build such languages when C = G or G+ for a group prevariety G.
While simple, these results are central: this is the unique place where we use the fact that G
contains only group languages. Let L ⊆ A∗. With every word w = a1 · · · an ∈ A∗, we
associate the language ↑Lw = La1L · · · anL ⊆ A∗ (we let ↑Lε = L). We first present the
statement for the case C = G, which can also be found in [4, Prop. 3.11].

▶ Proposition 6. Let H ⊆ A∗ be a language and L ⊆ A∗ be a group language containing ε.
There exists a cover K of H such that every K ∈ K is of the form K = ↑Lw for some w ∈ H.

The next statement, useful for the case C = G+, is a corollary of Proposition 6. Let
A = (Q, δ) be an NFA. Moreover, let w, z ∈ A∗. We say that z is a left A-loop for w if for
every q, r ∈ Q such that w ∈ LA(q, r), there exists s ∈ Q such that z ∈ LA(q, s) ∩ LA(s, s)
and zw ∈ LA(s, r) (in particular, zz∗zw ⊆ LA(q, r)). Symmetrically, we say that z is a
right A-loop for w if for every q, r ∈ Q such that w ∈ LA(q, r), there exists s ∈ Q such that
wz ∈ LA(q, s) and z ∈ LA(s, s) ∩ LA(s, r) (in particular, wzz∗z ⊆ LA(q, r)).

Now, given an arbitrary word w ∈ A∗, an A-guarded decomposition of w is a tuple
(w1, . . . , wn+1) for some n ∈ N where w1 ∈ A∗ and wi ∈ A+ for 2 ≤ i ≤ n + 1, and such that
w = w1 · · · wn+1 and, if n ≥ 1, then for every i satisfying 1 ≤ i ≤ n, there exists a nonempty
word zi ∈ A+ which is a right A-loop for wi and a left A-loop for wi+1.

T. Place and M. Zeitoun 43:7

▶ Proposition 7. Let H ⊆ A∗ be a language, A be an NFA and L ⊆ A∗ be a group language
containing ε. There exists a cover K of H such that for each K ∈ K, there exist a word
w ∈ H and an A-guarded decomposition (w1, . . . , wn+1) of w for some n ∈ N such that
K = w1L · · · wnLwn+1 (if n = 0, then K = {w1}).

3 Separation framework

In order to investigate a given class C, we rely on a generic decision problem that one may
associate to it: C-separation. We first define it and then present a variant, “tuple separation”,
that we shall require as a proof ingredient.

3.1 The separation problem
Consider two languages L0, L1 ⊆ A∗. We say that a third language K ⊆ A∗ separates L0
from L1 when L0 ⊆ K and K ∩ L1 = ∅. Then, given an arbitrary class C, we say that L0 is
C-separable from L1 when there exists K ∈ C that separates L0 from L1. For every class C,
the C-separation problem takes two regular languages L0 and L1 as input (in the paper, they
are represented by NFAs) and asks whether L0 is C-separable from L1. We complete the
definition with a useful result, which holds when C is a positive prevariety.

▶ Lemma 8. Let C be a positive prevariety and L0, L1, H0, H1 ⊆ A∗. If L0 is not C-separable
from L1 and H0 is not C-separable from H1 then L0H0 is not C-separable from L1H1.

In the paper, we look at C-separation when C = BPol(G) or BPol(G+) for a group
prevariety G. We prove that in these two cases, there are polynomial time (Turing) reductions
to G-separation. We now introduce terminology that we shall use to present the algorithms.

Framework. Consider a class C and an NFA A = (Q, δ). We associate a set IC[A] ⊆ Q4:
the inseparable C-quadruples associated to A. We define,

IC [A] =
{

(q, r, s, t) ∈ Q4 | LA(q, r) is not C-separable from LA(s, t)
}

.

The next easy result connects C-separation to this set, for input languages given by NFAs.

▶ Proposition 9. Let C be a lattice. Consider an NFA A = (Q, δ) and four sets of states
I1, F1, I2, F2 ⊆ Q. The two following conditions are equivalent:
1. LA(I1, F1) is C-separable from LA(I2, F2).
2. (I1 × F1 × I2 × F2) ∩ IC [A] = ∅.

Clearly, given as input two regular languages recognized by NFAs, one may compute in
polynomial time a single NFA recognizing both languages. Hence, Proposition 9 yields a
polynomial time reduction from C-separation to the problem of computing IC[A] from an
input NFA. Naturally, this does not necessarily mean that there exists a polynomial time
algorithm for C-separation: depending on C, computing IC [A] may or may not be costly.

We introduce a key definition for manipulating IC [A], for an NFA A = (Q, δ). Let S ⊆ Q4

and K be a finite set of languages. We say that K is separating for S when for every (q, r, s, t) ∈
Q4 and every K ∈ K, if K intersects both LA(q, r) and LA(s, t), then (q, r, s, t) ∈ S. Then,
IC [A] is the smallest set of 4-tuples admitting a C-cover of A∗ which is separating for it.

▶ Lemma 10. Let C be a Boolean algebra and A = (Q, δ) be an NFA. Then the following holds:
There exists a C-cover K of A∗ which is separating for IC [A].
Let S ⊆ Q4. If there exists a C-cover K of A∗ which is separating for S, then IC [A] ⊆ S.

FSTTCS 2022

43:8 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

Controlled separation. We present additional terminology tailored to the classes built from
a group prevariety. Consider two classes C and D (in practice, D will be a group prevariety G
and C will be either BPol(G) or BPol(G+)). Let L0, L1 ⊆ A∗. We say that L0 is C-separable
from L1 under D-control if there exists H ∈ D such that ε ∈ H and L0 ∩ H is C-separable
from L1 ∩ H. Given an NFA A = (Q, δ), we associate a set IC [D, A] ⊆ Q4:

IC [D, A] =
{

(q, r, s, t) ∈ Q4 | LA(q, r) is not C-separable from LA(s, t) under D-control
}

.

Clearly, we have IC[D, A] ⊆ IC[A]. Let us connect this new definition to the notion of
separating cover presented above. In this case as well, this will be useful in proof arguments.

▶ Lemma 11. Let C and D be Boolean algebras such that D ⊆ C and let A = (Q, δ) be an
NFA. The following properties hold:

There exists L ∈ D with ε ∈ L, and a C-cover K of L which is separating for IC [D, A].
Let S ⊆ Q4. If there exist L ∈ D with ε ∈ L, and a C-cover K of L which is separating
for S, then IC [D, A] ⊆ S.
This notion is only useful if {ε} ̸∈ D. If {ε} ∈ D, then L0 is C-separable from L1 under

D-control if and only if either ε ̸∈ L0 or ε ̸∈ L1. This is why the notion is designed for group
prevarieties: if G is such a class, then {ε} ̸∈ G. In this case, if C ∈ {G, G+}, then the set
IBPol(C)[G, A] carries more information than IBPol(C)[A]. This is useful for the computation:
rather than computing IBPol(C)[A] directly, our procedures first compute IBPol(C)[G, A]. The
proof is based on Propositions 5 and 6 (the latter requires G to consist of group languages).

▶ Proposition 12. Let G be a group prevariety, let C be a prevariety such that G ⊆ C and let
A = (Q, δ) be an NFA. Then, IBPol(C)[A] is the least set S ⊆ Q4 that contains IBPol(C)[G, A]
and satisfies the two following conditions:
1. For all q, r, s, t ∈ Q and a ∈ A, if (q, a, r), (s, a, t) ∈ δ, then (q, r, s, t) ∈ S.
2. For all (q1, r1, s1, t1), (q2, r2, s2, t2) ∈ S, if r1 = q2 and t1 = s2, then (q1, r2, s1, t2) ∈ S.

Proof. Let S ⊆ Q4 be the least set containing IBPol(C)[G, A] and satisfying both conditions.
We prove that S = IBPol(C)[A]. For S ⊆ IBPol(C)[A], since IBPol(C)[G, A] ⊆ IBPol(C)[A] by
definition, it suffices to prove that IBPol(C)[A] satisfies both conditions in the proposition.
First, consider a ∈ A and q, r, s, t ∈ Q such that (q, a, r), (s, a, t) ∈ δ. We have a ∈ LA(q, r)
and a ∈ LA(s, t). Hence, they are not BPol(C)-separable and (q, r, s, t) ∈ IBPol(C)[A].
Now, let (q1, r1, s1, t1), (q2, r2, s2, t2) ∈ IBPol(C)[A] such that r1 = q2 and t1 = s2. For
i ∈ {1, 2}, we know that LA(qi, ri) is not BPol(C)-separable from LA(si, ti). Since BPol(C)
is a prevariety by Theorem 2, it follows from Lemma 8 that LA(q1, r1)LA(q2, r2) is not
BPol(C) separable from LA(s1, t1)LA(s2, t2). Since r1 = q2 and t1 = s2, it is immediate that
LA(q1, r1)LA(q2, r2) ⊆ LA(q1, r2) and LA(s1, t1)LA(s2, t2) ⊆ LA(s1, t2). Hence, LA(q1, r2)
is not BPol(C)-separable from LA(s1, t2) and we get (q1, r2, s1, t2) ∈ IBPol(C)[A] as desired.

We turn to the inclusion IBPol(C)[A] ⊆ S. By Lemma 11, there exists L ∈ G such that
ε ∈ L and a BPol(C)-cover V of L which is separating for IBPol(C)[G, A]. By hypothesis, L

is a group language and ε ∈ L. Hence, Proposition 6 yields a cover P of A∗ such that every
P ∈ P is of the form P = ↑LwP for some word wP ∈ A∗. Let P ∈ P and a1, . . . , an ∈ A be
the letters such that wP = a1 · · · an. We have P = La1L · · · anL by definition (if wP = ε,
then P = L). By definition, L ∈ G ⊆ Pol(C). Hence, since V is a BPol(C)-cover of L,
Proposition 5 yields a BPol(C)-cover KP of P such that for every K ∈ KP , there are
V0, . . . , Vn ∈ V such that K ⊆ V0a1V1 · · · anVn. We let K =

⋃
P ∈P KP . Since P is a cover of

A∗ and KP is a BPol(C)-cover of P for each P ∈ P, K is a BPol(C)-cover of A∗. We show
that K is separating for S which implies that IBPol(C)[A] ⊆ S by Lemma 10.

T. Place and M. Zeitoun 43:9

Let (q, r, s, t) ∈ Q4 and K ∈ K such that we have x ∈ K ∩ LA(q, r) and y ∈ K ∩ LA(s, t).
We show that (q, r, s, t) ∈ S. We have K ∈ KP for some P ∈ P. Let a1, . . . , an ∈ A such
that wP = a1 · · · an. By definition, there are V0, . . . , Vn ∈ V such that K ⊆ V0a1V1 · · · anVn.
Since x, y ∈ K, we get xi, yi ∈ Vi for 0 ≤ i ≤ n such that x = x0a1x1 · · · anxn and
y = y0a1y1 · · · anyn. Since x ∈ LA(q, r), we get qi, ri ∈ Q for 0 ≤ i ≤ n such that q0 = q,
rn = r, xi ∈ LA(qi, ri) for 0 ≤ i ≤ n and (ri−1, ai, qi) ∈ δ for 1 ≤ i ≤ n. Finally, since
y ∈ LA(s, t), we get si, ti ∈ Q for 0 ≤ i ≤ n such that s0 = s, tn = t, yi ∈ LA(si, ti)
for 0 ≤ i ≤ n and (ti−1, ai, si) ∈ δ for 1 ≤ i ≤ n. Since S satisfies Condition 1 in the
proposition, we get (ri−1, qi, ti−1, si) ∈ S for 1 ≤ i ≤ n. Since Vi ∈ V which is separating for
IBPol(C)[G, A] and xi, yi ∈ Vi, we also get (qi, ri, qi, ti) ∈ IBPol(C)[G, A] for 0 ≤ i ≤ n. Thus,
Condition 2 in the proposition yields (q0, r0, sn, tn) ∈ S, i.e. (q, r, s, t) ∈ S as desired. ◀

Proposition 12 provides a least fixpoint algorithm for computing the set IBPol(C)[A] from
IBPol(C)[G, A]. Combined with Proposition 9, this yields a polynomial time reduction from
BPol(C)-separation to computing IBPol(C)[G, A] from an NFA. We shall prove that when
C ∈ {G, G+}, there are polynomial time reductions of the latter problem to G-separation.

3.2 Tuple separation
This generalized variant of separation is taken from [18]. We shall use it as a proof ingredient:
for every lattice C, it is connected to the classical separation problem for Bool(C). For every
n ≥ 1, we call “n-tuple” a tuple of n languages (L1, . . . , Ln). In the sequel, given another
language K, we shall write (L1, . . . , Ln) ∩ K for the n-tuple (L1 ∩ K, . . . , Ln ∩ K). Let C be
a lattice, we use induction on n to define the C-separable n-tuples:

If n = 1, a 1-tuple (L1) is C-separable when L1 = ∅.
If n ≥ 2, an n-tuple (L1, . . . , Ln) is C-separable when there exists K ∈ C such that
L1 ⊆ K and (L2, . . . , Ln) ∩ K is C-separable. We call K a separator of (L1, . . . , Ln).

One may verify that classical separation is the special case n = 2. We generalize D-controlled
separation to this setting. For a class D, we say that an n-tuple (L1, . . . , Ln) is C-separable
under D-control if there exists H ∈ D such that ε ∈ H and (L1, . . . , Ln) ∩ H is C-separable.

We complete the definition with two simple properties of tuple separation. The second
one is based on closure under quotients and generalizes Lemma 8.

▶ Lemma 13. Let C be a lattice and let (L1, . . . , Ln), (H1, . . . , Hn) be two n-tuples. If
L1 ∩ · · · ∩ Ln ̸= ∅, then (L1, . . . , Ln) is not C-separable. Moreover, if Li ⊆ Hi for every i ≤ n

and (L1, . . . , Ln) is not C-separable, then (H1, . . . , Hn) is not C-separable either.

▶ Lemma 14. Let C be a positive prevariety, n ≥ 1 and let (L1, . . . , Ln), (H1, . . . , Hn) be
two n-tuples, which are not C-separable. Then, (L1H1, . . . , LnHn) is not C-separable either.

A theorem of [18] connects tuple C-separation for a lattice C to Bool(C)-separation: L0
is Bool(C)-separable from L1 if and only if (L0, L1)p is C-separable for some p ≥ 1. Here,
(L0, L1)p denotes the 2p-tuple obtained by concatenating p copies of (L0, L1). For example,
(L0, L1)3 = (L0, L1, L0, L1, L0, L1). We use a corollary applying to D-controlled separation.

▶ Corollary 15. Let C and D be two lattices such that D ⊆ C and let L0, L1 ⊆ A∗. The
following properties are equivalent:
1. L0 is Bool(C)-separable from L1 under D-control.
2. There exists p ≥ 1 such that (L0, L1)p is C-separable under D-control.

FSTTCS 2022

43:10 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

We only use the contrapositive of 1) ⇒ 2) in Corollary 15. We complete the presentation
with two important lemmas about tuple separation for Pol(D) and Pol(D+). We use them
to prove that tuples are not separable. Note that in practice, D will be a group prevariety G.
Yet, the results are true regardless of this hypothesis.

▶ Lemma 16. Let D be a prevariety and (L1, . . . , Ln) an n-tuple which is not Pol(D)-
separable under D-control. Then, ({ε}, L1, . . . , Ln) is not Pol(D)-separable.

Proof. We prove the contrapositive. Assume that ({ε}, L1, . . . , Ln) is Pol(D)-separable: we
get K ∈ Pol(D) such that ε ∈ K and (L1, . . . , Ln) ∩ K is Pol(D)-separable. By definition,
K is a finite union of marked product of languages in D. Hence, since ε ∈ K, there exists a
marked product involving a single language H ∈ D such that ε ∈ H in the union defining K.
In particular, H ⊆ K and Lemma 13 implies that (L1, . . . , Ln)∩H is Pol(D)-separable. Since
H ∈ D and ε ∈ H, it follows that (L1, . . . , Ln) is Pol(D)-separable under D-control. ◀

▶ Lemma 17. Let D be a prevariety and w ∈ A+. If (L1, . . . , Ln) is not Pol(D+)-separable
under D-control, then (w+, w+L1w+, . . . , w+Lnw+) is not Pol(D+)-separable.

Proof. We prove the contrapositive. Assuming that (w+, w+L1w+, . . . , w+Lnw+) is Pol(D+)-
separable, we show that (L1, . . . , Ln) is Pol(D+)-separable under D-control. There exists
K ∈ Pol(D+) such that w+ ⊆ K, and (w+L1w+, . . . , w+Lnw+)∩K is Pol(D+)-separable. By
definition, K is a finite union of marked products K0a1K1 · · · amKm with a1, . . . , am ∈ A and
K0, . . . , Km ∈ D+. Let k ∈ N such that m ≤ k for every product K0a1K1 · · · amKm in this
union. Since w+ ⊆ K, we have w2(k+1) ∈ K. This yields a marked product K0a1K1 · · · amKm

such that w2(k+1) ∈ K0a1K1 · · · amKm ⊆ K, m ≤ k and K0, . . . , Km ∈ D+. Therefore, we
get ui ∈ Ki for each i ≤ m such that w2(k+1) = u0a1u1 · · · amum. Moreover, since m ≤ k,
there exists i ≤ m such that ww is an infix of ui. Thus, we get x, y ∈ A∗ and ℓ1, ℓ2 ∈ N such
that ui = xwwy, u0a1u1 · · · aix = wℓ1 , yai+1ui+1 · · · amum = wℓ2 and ℓ1 + 2 + ℓ2 = 2(k + 1)

By definition Ki ∈ D+ which yields H ∈ D such that either Ki = H ∪{ε} or Ki = H ∩A+.
Hence, since ui ∈ Ki and ui ∈ A+ (recall that w ∈ A+), we have xwwy = ui ∈ H. Let
H ′ = (xw)−1H(wy)−1. By closure under quotients, we have H ′ ∈ D and it is clear that ε ∈ H ′

since xwwy ∈ H. Hence, it remains to prove that (L1, . . . , Ln) ∩ H ′ is Pol(D+)-separable.
This will imply as desired that (L1, . . . , Ln) is Pol(D+)-separable under D-control.

We know that (w+L1w+, . . . , w+Lnw+) ∩ K is Pol(D+)-separable. One may verify from
the definitions that wℓ1+1(Lj ∩ H ′)wℓ2+1 ⊆ w+Ljw+ ∩ K for all j ≤ n. Thus, Lemma 13
implies that wℓ1+1(L1 ∩ H ′)wℓ2+1, . . . , wℓ1+1(Ln ∩ H ′)wℓ2+1) is Pol(D+)-separable. Finally,
since (wℓ1+1, . . . , wℓ1+1) and (wℓ2+1, . . . , wℓ2+1) are not Pol(D+)-separable, it follows from
Lemma 14 that ((L1 ∩ H ′), . . . , (Ln ∩ H ′)) is Pol(D+)-separable as desired. ◀

4 Separation Algorithms for BPol(G) and BPol(G+)

For a group prevariety G, we now consider BPol(G)- and BPol(G+)-separation. We rely on the
notions of Section 3: given an arbitrary NFA A = (Q, δ), we present a generic characterization
of the inseparable BPol(G)- and BPol(G+)-quadruples under G control associated to A, i.e.,
of the subsets IBPol(G)[G, A] and IBPol(G+)[G, A] of Q4. Thanks to Proposition 12, this
also yields characterizations of IBPol(G)[A] and of IBPol(G+)[A], which in turn, in view of
Proposition 9, yield reductions from both BPol(G)- and BPol(G+)-separation to G-separation.
These polynomial time reductions are therefore effective when G-separation is decidable.

T. Place and M. Zeitoun 43:11

4.1 Statements
Let G be a group prevariety and let A = (Q, δ) be an NFA. We present characterizations of
IBPol(G)[G, A] and IBPol(G+)[G, A]. They follow the same pattern, but each of them depends
on a specific function from 2Q4 to 2Q4 , which we first describe.

Characterization of IBPol(G)[G, A]. We use a function τA,G : 2Q4 → 2Q4 . For S ⊆ Q4, we
define the set τA,G(S) ⊆ Q4. The definition is based on an auxiliary NFA BS = (Q3, γS)
with ε-transitions, which depends on S. Its states are triples in Q3. The set γS ⊆ Q3 × (A ∪
{ε})×Q3 includes two kinds of transitions. First, given a ∈ A and s1, s2, s3, t1, t2, t3 ∈ Q, we
let

(
(s1, s2, s3), a, (t1, t2, t3)

)
∈ γS if and only if (s1, a, t1) ∈ δ, (s2, a, t2) ∈ δ and (s3, a, t3) ∈ δ.

Second, for every state q1 ∈ Q and every (q2, r2, q3, r3) ∈ S, we add the following ε-transition:
((q1, q2, q3), ε, (q1, r2, r3)) ∈ γS . We represent this construction process graphically in Figure 1.

s1 t1 s2 t2 s3 t3
a a a

Transitions in A

(s1, s2, s3) (t1, t2, t3)a

Produced transition in BS

q1 ∈ Q and (q2, r2, q3, r3) ∈ Ss1 t1 s2 t2 s3 t3
a a a

Single state and quadruple in S

q1 ∈ Q and (q2, r2, q3, r3) ∈ S (q1, q2, q3) (q1, r2, r3)ε

Produced ε-transition in BS

Figure 1 Construction of the transitions in the auxiliary automaton BS .

▶ Remark 18. The NFA BS and its counterpart B+
S (which we define below as a means to

handle BPol(G+)) are the only NFAs with ε-transitions considered in the paper. In particular,
the original input NFA A is assumed to be without ε-transitions.

We are ready to define τA,G(S) ⊆ Q4. For every (q, r, s, t) ∈ Q4, we let (q, r, s, t) ∈ τA,G(S)
if and only if the two following conditions hold:

{ε} is not G-separable from LBS
((s, q, s), (t, r, t)), and

{ε} is not G-separable from LBS
((q, s, q), (r, t, r)). (1)

A set S ⊆ Q4 is (BPol, ∗)-sound for G and A if it is a fixpoint for τA,G , i.e. τA,G(S) = S.
We have the following simple lemma which can be verified from the definition. It states
that τA,G : 2Q4 → 2Q4 is increasing (for inclusion). In particular, this implies that it has a
greatest fixpoint, i.e., there is a greatest (BPol, ∗)-sound set.

▶ Lemma 19. Let G be a group prevariety and let A = (Q, δ) be an NFA. For every
S, S′ ⊆ Q4, we have S ⊆ S′ ⇒ τA,G(S) ⊆ τA,G(S′).

We may now state the first key theorem of the paper. It applies to BPol(G)-separation.

▶ Theorem 20. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G)[G, A]
is the greatest (BPol, ∗)-sound subset of Q4 for G and A.

Characterization of IBPol(G+)[G, A]. The characterization of IBPol(G+)[G, A] is analog-
ous. Roughly, the only difference is that we modify the definition of the auxiliary auto-
maton BS . Let G be a group prevariety and A = (Q, δ) be an NFA. We define a new
function τ+

A,G : 2Q4 → 2Q4 . For S ⊆ Q4, we define τ+
A,G(S) ⊆ Q4 using another auxiliary

FSTTCS 2022

43:12 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

NFA B+
S = (Q3, γ+

S) with ε-transitions. Its states are triples in Q3 and γ+
S ⊆ Q3 × (A ∪

{ε}) × Q3 contains two kinds of transitions. First, for a ∈ A and s1, s2, s3, t1, t2, t3 ∈ Q,
we let

(
(s1, s2, s3), a, (t1, t2, t3)

)
∈ γ+

S if and only if (s1, a, t1) ∈ δ, (s2, a, t2) ∈ δ and
(s3, a, t3) ∈ δ. Second, for all q1 ∈ Q and all (q2, r2, q3, r3) ∈ S, if A+ ∩ LA(q1, q1) ∩
LA(q2, q2) ∩ LA(q3, q3) ∩ LA(r2, r2) ∩ LA(r3, r3) ̸= ∅, then we add the following ε-transition:
((q1, q2, q3), ε, (q1, r2, r3)) ∈ γ+

S . We represent this construction in Figure 2.

s1 t1 s2 t2 s3 t3
a a a

Transitions in A

(s1, s2, s3) (t1, t2, t3)a

Produced transition in B+
S

s1 t1 s2 t2 s3 t3
a a a

q1 ∈ Q, (q2, r2, q3, r3) ∈ S and z ∈ A+

such that q1

z

q2

z

r2

z

q3

z

r3

z

Single state and quadruple in S

(q1, q2, q3) (q1, r2, r3)ε

Produced ε-transition in B+
S

Figure 2 Construction of the transitions in the auxiliary automaton B+
S .

We are ready to define τ+
A,G(S) ⊆ Q4. For every (q, r, s, t) ∈ Q4, we let (q, r, s, t) ∈ τ+

A,G(S)
if and only if the two following conditions hold:

{ε} is not G-separable from LB+
S

((s, q, s), (t, r, t)), and
{ε} is not G-separable from LB+

S
((q, s, q), (r, t, r)). (2)

A set S ⊆ Q4 is (BPol, +)-sound for G and A if it is a fixpoint for τ+
A,G , i.e. τ+

A,G(S) = S.
The following monotonicity lemma implies that there is a greatest (BPol, +)-sound set.

▶ Lemma 21. Let G be a group prevariety and A = (Q, δ) an NFA. For every S, S′ ⊆ Q4,
we have S ⊆ S′ ⇒ τ+

A,G(S) ⊆ τ+
A,G(S′).

We may now state our second key theorem. It applies to BPol(G+)-separation.

▶ Theorem 22. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G+)[G, A]
is the greatest (BPol, +)-sound subset of Q4 for G and A.

Let us discuss the consequences of Theorems 20 and 22. Since BS and B+
S can be computed

from A and S, one can compute τA,G(S) and τ+
A,G(S) from S provided that G-separation

is decidable. Hence, if G-separation is decidable, Theorem 20 (resp. Theorem 22) yields
a greatest fixpoint procedure for computing IBPol(G)[G, A] (resp. IBPol(G+)[G, A]). Indeed,
consider the sequence of subsets defined by S0 = Q4, and Sn = τA,G(Sn−1) for n ≥ 1. By
definition, computing Sn from Sn−1 boils down to deciding G-separation. Since τA,G is
increasing by Lemma 19, we get a decreasing sequence Q4 = S0 ⊇ S1 ⊇ S2 · · · . Moreover,
since Q4 is finite, this sequence stabilizes at some point: there exists n ∈ N such that
Sn = Sj for all j ≥ n. One may verify that Sn is the greatest (BPol, ∗)-sound subset of Q4.
By Theorem 20, it follows that Sn = IBPol(G)[G, A]. Likewise, the sequence Tn defined by
T0 = Q4 and Tn = τ+

A,G(Tn−1) is computable when G-separation is decidable, and, since it is
decreasing, it stabilizes. By Theorem 22, its stabilization value is IBPol(G+)[G, A].

T. Place and M. Zeitoun 43:13

By Proposition 12, IBPol(G)[A] (resp. IBPol(G+)[A]) can be computed from IBPol(G)[G, A]
(resp. IBPol(G+)[G, A]) via a least fixpoint procedure. Altogether, by Proposition 9, we get
reductions from BPol(G)- and BPol(G+)-separation to G-separation. One may verify that
these are polynomial time reductions (we mean “reduction” in the Turing sense: BPol(G)- and
BPol(G+)-separation can be decided in polynomial time using an oracle for G-separation).

Now, it is known that separation can be decided in polynomial time for the classes ST,
MOD and GR (this is trivial for ST, see [26] for MOD and GR). Hence, we obtain from
Theorem 20 that separation is decidable in polynomial time for BPol(ST) (i.e., BΣ1(<)),
BPol(MOD) (i.e., BΣ1(<, MOD)) and BPol(GR). This was well-know for BPol(ST) (the
class of piecewise testable languages, see [6, 17]). For the other two, decidability was
known [36, 21] but not the polynomial time upper bound. Using Theorem 22, we also obtain
that separation is decidable in polynomial time for BPol(ST+) (i.e., the languages of dot-depth
one or equivalently BΣ1(<, +1)), BPol(MOD+) (i.e., BΣ1(<, +1, MOD)) and BPol(GR+).
Decidability was already known for BPol(ST+) and BPol(MOD+): the results can be
obtained indirectly by reduction to BPol(ST)-separation using transfer theorems [22, 16].
Yet, the polynomial time upper bounds are new as the transfer theorems have a built-in
exponential blow-up. Moreover, decidability of separation is a new result for BPol(GR+).

Finally, the statement applies to BPol(AMT) and BPol(AMT+) (i.e., BΣ1(<, AMOD)
and BΣ1(<, +1, AMOD)). This is a new result for BPol(AMT+). Yet, since AMT-separation
is co-NP-complete when the alphabet is part of the input [26] (the problem being in P for
a fixed alphabet), the complexity analysis is not entirely immediate. However, one may
verify that the procedures yield co-NP algorithms for both BPol(AMT)- and BPol(AMT+)-
separation. We summarize the upper bounds in Figure 3.

Input class G ST MOD AMT GR

BPol(G)- and BPol(G+)-separation P P co-NP P

Figure 3 Complexity of separation (for input languages represented by NFAs).

4.2 Proof of Theorem 20
We now concentrate on the proof of Theorem 20. The key ingredients in this argument are
Proposition 6 and Lemma 16. The proof of Theorem 22 is available in the appendix. It is
based on similar ideas. Roughly, we replace Proposition 6 and Lemma 16 (which are tailored
to classes BPol(G)) by their counterparts for BPol(G+): Proposition 7 and Lemma 17.
However, note that proving Theorem 22 is technically more involved as manipulating the
automaton B+

S in the definition of τ+
A,G requires more work.

We fix a group prevariety G and an NFA A = (Q, δ). Let S ⊆ Q4 be the greatest
(BPol, ∗)-sound subset for G and A. We prove that S = IBPol(G)[G, A].

First part: S ⊆ IBPol(G)[G, A]. We use tuple separation and Lemma 16. Let us start
with some terminology. For every n ≥ 1 and (q1, r1, q2, r2) ∈ Q4, we associate an n-tuple
of languages, written Tn(q1, r1, q2, r2). We use induction on n and tuple concatenation to
present the definition. If n = 1 then, T1(q1, r1, q2, r2) =

(
LA(q2, r2)

)
. If n > 1, then,

Tn(q1, r1, q2, r2) =
{

(LA(q2, r2)) · Tn−1(q1, r1, q2, r2) if n is odd
(LA(q1, r1)) · Tn−1(q1, r1, q2, r2) if n is even.

FSTTCS 2022

43:14 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

For example, we have T3(q1, r1, q2, r2) = (LA(q2, r2), LA(q1, r1), LA(q2, r2)).

▶ Proposition 23. For every n ≥ 1 and (q1, r1, q2, r2) ∈ S, the n-tuple Tn(q1, r1, q2, r2) is
not Pol(G)-separable under G-control.

By definition, Proposition 23 implies that for all p ≥ 1 and (q1, r1, q2, r2) ∈ S, the
2p-tuple (LA(q1, r1), LA(q2, r2))p is not Pol(G)-separable under G-control. By Corollary 15,
it follows that LA(q1, r1) is not BPol(G)-separable from LA(q2, r2) under G-control, i.e., that
(q1, r1, q2, r2) ∈ IBPol(G)[G, A]. We get S ⊆ IBPol(G)[G, A] as desired.

We prove Proposition 23 by induction on n. We fix n ≥ 1 for the proof. In order to exploit
the hypothesis that S is (BPol, ∗)-sound, we need a property of the NFA BS = (Q3, γS) used
to define τA,G . When n ≥ 2, this is where we use induction on n and Lemma 16.

▶ Lemma 24. Let (s1, s2, s3), (t1, t2, t3) ∈ Q3 and w ∈ LBS
((s1, s2, s3), (t1, t2, t3)). Then,

w ∈ LA(s1, t1) and, if n ≥ 2, the n-tuple ({w}) · Tn−1(s2, t2, s3, t3) is not Pol(G)-separable.

Proof. Since w ∈ LBS
((s1, s2, s3), (t1, t2, t3)), there exists a run labeled by w from (s1, s2, s3)

to (t1, t2, t3) in BS . We use a sub-induction on the number of transitions involved in that run.
First, assume that no transitions are used: we have w = ε and (s1, s2, s3) = (t1, t2, t3). Clearly,
ε ∈ LA(s1, s1) and, if n ≥ 2, the n-tuple ({ε}) · Tn−1(s2, s2, s3, s3) is not Pol(G)-separable by
Lemma 13 since ε ∈ LA(s2, s2) ∩ LA(s3, s3). We now assume that at least one transition is
used and consider the last one: we have (q1, q2, q3) ∈ Q3, w′ ∈ A∗ and x ∈ A ∪ {ε} such that
w = w′x, w′ ∈ LBS

((s1, s2, s3), (q1, q2, q3)) and ((q1, q2, q3), x, (t1, t2, t3)) ∈ γS . By induction,
we have w′ ∈ LA(s1, q1) and, if n ≥ 2, the n-tuple ({w′}) · Tn−1(s2, q2, s3, q3) is not Pol(G)-
separable. We prove that x ∈ LA(q1, t1) and, if n ≥ 2, the n-tuple ({x}) · Tn−1(q2, t2, q3, t3)
is not Pol(G)-separable. It will then be immediate that w = w′x ∈ LA(s1, t1) and, if n ≥ 2,
Lemma 14 implies that ({w}) · Tn−1(s2, t2, s3, t3) is not Pol(G)-separable.

We consider two cases depending on whether x ∈ A or x = ε. First, if x = a ∈ A, then
(qi, a, ti) ∈ δ for i = {1, 2, 3}. Clearly, this implies that a ∈ LA(q1, t1) and, if n ≥ 2, then
({a})·Tn−1(q2, t2, q3, t3) is not Pol(G)-separable by Lemma 13 since a ∈ LA(q2, t2)∩LA(q3, t3).
Assume now that x = ε: we are dealing with an ε-transition. By definition of γS , we have
q1 = t1 and (q2, t2, q3, t3) ∈ S. The former yields ε ∈ LA(q1, t1). Moreover, if n ≥ 2, since
(q2, t2, q3, t3) ∈ S, it follows from induction on n in Proposition 23 that the (n − 1)-tuple
Tn−1(q2, t2, q3, t3) is not Pol(G)-separable under G-control. Combined with Lemma 16, this
yields that ({ε}) · Tn−1(q2, t2, q3, t3) is not Pol(G)-separable, as desired. ◀

We may now complete the proof of Proposition 23. By symmetry, we only treat the
case when n is odd and leave the case when it is even to the reader. Let (q1, r1, q2, r2) ∈ S,
we have to prove that Tn(q1, r1, q2, r2) is not Pol(G)-separable under G-control. Hence, we
fix H ∈ G such that ε ∈ H and prove H ∩ Tn(q1, r1, q2, r2) is not Pol(G)-separable. Since
S is (BPol, ∗)-sound, we have τA,G(S) = S, which implies that (q1, r1, q2, r2) ∈ τA,G(S).
Hence, it follows from (1) that {ε} is not G-separable from LBS

((q2, q1, q2), (r2, r1, r2)). Since
H ∈ G and ε ∈ H, we get a word w ∈ H ∩ LBS

((q2, q1, q2), (r2, r1, r2)). By Lemma 24,
we have w ∈ H ∩ LA(q2, r2). This completes the proof when n = 1. Indeed, in that
case we have T1(q1, r1, q2, r2) = (LA(q2, r2)) and since H ∩ LA(q2, r2) ̸= ∅, it follows that
H ∩ T1(q1, r1, q2, r2) is not Pol(G)-separable, as desired. If n ≥ 2, then Lemma 24 also
implies that ({w}) · Tn−1(q1, r1, q2, r2) is not Pol(G)-separable. Since w ∈ H ∩ LA(q2, r2),
Lemma 13 yields that (H∩LA(q2, r2))·Tn−1(q1, r1, q2, r2) is not Pol(G)-separable. Thus, since
H ∈ G ⊆ Pol(G), one may verify that the n-tuple (H ∩ LA(q2, r2)) · (H ∩ Tn−1(q1, r1, q2, r2))
is not Pol(G)-separable. By definition, this exactly says that H ∩ Tn(q1, r1, q2, r2) is not
Pol(G)-separable, completing the proof.

T. Place and M. Zeitoun 43:15

Second part: IBPol(G)[G, A] ⊆ S. In the sequel, we say that an arbitrary set R ⊆ Q4 is
good if there exists L ∈ G such ε ∈ L and a BPol(G)-cover K of L which is separating for R.

▶ Proposition 25. Let R ⊆ Q4. If R is good, then τA,G(R) is good as well.

We use Proposition 25 to complete the proof. Let S0 = Q4 and Si = τA,G(Si−1) for i ≥ 1.
By Lemma 19, we have S0 ⊇ S1 ⊆ S2 ⊇ · · · and there is n ∈ N such that Sn is the greatest
(BPol, ∗)-sound subset for G and A, i.e., such that Sn = S. Since S0 is good ({A∗} is a
BPol(G)-cover of A∗ ∈ G which is separating for S0 = Q4), Proposition 25 implies that Si is
good for all i ∈ N. Thus, S = Sn is good. We get L ∈ G such that ε ∈ L and a BPol(G)-cover
K of L which is separating for S. Lemma 11 then yields IBPol(G)[G, A] ⊆ S as desired.
▶ Remark 26. The proof of Proposition 25 actually provides a construction for building L ∈ G
such that ε ∈ L and a BPol(G)-cover K of L which is separating for S (yet, this involves
building separators in G, see Lemma 27). As we have now established that S = IBPol(G)[G, A],
one may then follow the proof of Proposition 12 to build a BPol(G)-cover H of A∗ which is
separating for IBPol(G)[A]. Finally, H encodes separators for all pairs of languages recognized
by A which are BPol(G)-separable (roughly, this is the proof of Lemma 10). Altogether, we
get a way to build separators in BPol(G), when they exist.

We now prove Proposition 25. Let R ⊆ Q4 be good. We have to build L ∈ G with ε ∈ L

and a BPol(G)-cover K of L which is separating for τA,G(R) (which will prove that τA,G(R)
is good as well). We first build L (this part is independent from our hypothesis on R).

▶ Lemma 27. There exists L ∈ G such that ε ∈ L and for every (q, r, s, t) ∈ Q4, if
LBR

((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LBR
((s, q, s), (t, r, t)) ∩ L ̸= ∅, then (q, r, s, t) ∈ τA,G(R).

Proof. Let H be the finite set of all languages recognized by BR such that {ε} is G-separable
from H. For every H ∈ H, there exists LH ∈ G such that ε ∈ LH and LH ∩ H = ∅. We
define L =

⋂
H∈H LH ∈ G. It is clear that ε ∈ L. Moreover, given (q, r, s, t) ∈ Q4, if

LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LBR

((s, q, s), (t, r, t)) ∩ L ̸= ∅, it follows from the definition
of L that {ε} is not G-separable from both LBR

((q, s, q), (r, t, r)) and LBR
((s, q, s), (t, r, t)).

It follows from (1) in the definition of τA,G that (q, r, s, t) ∈ τA,G(R). ◀

We fix L ∈ G as described in Lemma 27 for the remainder of the proof. We now build
the BPol(G)-cover K of L using the hypothesis that R is good and Proposition 6.

▶ Lemma 28. For all (q, r) ∈ Q2, there is Hq,r ∈ BPol(G) such that LA(q, r) ∩ L ⊆ Hq,r

and for all pairs (s, t) ∈ Q2, if LA(s, t) ∩ Hq,r ̸= ∅ then LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅.

Proof. Since R is good, there are U ∈ G such that ε ∈ U and a BPol(G)-cover V of
U which is separating for R. We use them to build Hq,r. Since U is a group language
and ε ∈ U , Proposition 6 yields a cover P of LA(q, r) ∩ L such that every P ∈ P is of
the form P = ↑U wP where wP ∈ LA(q, r) ∩ L. For every P ∈ P, we build a BPol(G)-
cover KP of P . Let a1, . . . , an ∈ A be the letters such that wP = a1 · · · an. We have
P = Ua1U · · · anU . Since U ∈ G ⊆ Pol(G) and V is a BPol(G)-cover of U , Proposition 5
yields a BPol(G)-cover KP of P such that for every K ∈ KP , there exist V0, . . . , Vn ∈ V
satisfying K ⊆ V0a1V1 · · · anVn. We define Hq,r as the union of all languages K such that
K ∈ KP for some P ∈ P and LA(q, r) ∩ K ̸= ∅. Clearly, Hq,r ∈ BPol(G). Moreover,
since P is a cover of LA(q, r) ∩ L, and KP is a cover of P for each P ∈ P, it is clear that
LA(q, r) ∩ L ⊆ Hq,r. We now fix (s, t) ∈ Q2 such that LA(s, t) ∩ Hq,r ̸= ∅ and show that
LBR

((q, s, q), (r, t, r)) ∩ L ̸= ∅. By definition of Hq,r, we get P ∈ P and K ∈ KP such that
LA(q, r) ∩ K ̸= ∅ and LA(s, t) ∩ K ̸= ∅. By definition, P = ↑U wP with wP ∈ LA(q, r) ∩ L.
Hence, it suffices to prove that wP ∈ LBR

((q, s, q), (r, t, r)).

FSTTCS 2022

43:16 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

We fix x ∈ LA(s, t) ∩ K and y ∈ LA(q, r) ∩ K. Recall that wP = a1 · · · an (if n = 0,
then wP = ε). Since wP ∈ LA(q, r), we may consider the corresponding run in A: we get
p0, . . . , pn ∈ Q such that p0 = q, pn = r and (pi−1, ai, pi) ∈ δ for 1 ≤ i ≤ n. Moreover, since
K ∈ KP and wP = a1 · · · an, we have K ⊆ V0a1V1 · · · anVn for V0, . . . , Vn ∈ V (if n = 0,
then K ⊆ V0). Since x, y ∈ K, we get xi, yi ∈ Vi for 0 ≤ i ≤ n such that x = x0a1x1 · · · anxn

and y = y0a1y1 · · · anyn. Since x ∈ LA(s, t), we get s0, t0, . . . , sn, tn ∈ Q such that s0 = s,
tn = t, xi ∈ LA(si, ti) for 0 ≤ i ≤ n, and (ti−1, ai, si) ∈ δ for 1 ≤ i ≤ n. Symmetrically,
since y ∈ LA(q, r), we get q0, r0, . . . , qn, rn ∈ Q such that q0 = q, rn = r, yi ∈ LA(qi, ri)
for 0 ≤ i ≤ n, and (ri−1, ai, qi) ∈ δ for 1 ≤ i ≤ n. By definition of γR, it is immediate
that ((pi−1, ti−1, ri−1), ai, (pi, si, qi)) ∈ γR for 1 ≤ i ≤ n. Since Vi ∈ V and V is separating
for R, the fact that xi, yi ∈ Vi implies that (si, ti, qi, ri) ∈ R for 0 ≤ i ≤ n. Hence,
((pi, si, qi), ε, (pi, ti, ri)) ∈ γR by definition. Thus, we get a run labeled by wP from (p0, s0, q0)
to (pn, tn, rn) in BR, i.e., wP ∈ LBR

((q, s, q), (r, t, r)) as desired. ◀

We may now build K. Let H =
{

Hq,r | (q, r) ∈ Q2}
. Consider the following equivalence

∼ defined on L: given u, v ∈ L, we let u ∼ v if and only if u ∈ Hq,r ⇔ v ∈ Hq,r for
every (q, r) ∈ Q2. We let K as the partition of L into ∼-classes. Clearly, each K ∈ K is a
Boolean combination involving the languages in H (which belong to BPol(G)) and L ∈ G.
Hence, K is a BPol(G)-cover of L. We now prove that it is separating for τA,G(R). Let
q, r, s, t ∈ Q and K ∈ K such that there are u ∈ LA(q, r) ∩ K and v ∈ LA(s, t) ∩ K. We show
that (q, r, s, t) ∈ τA,G(R). By definition of K, we have u, v ∈ L and u ∼ v. In particular,
u ∈ LA(q, r) ∩ L which yields u ∈ Hq,r by definition in Lemma 28. Together with u ∼ v, this
yields v ∈ Hq,r. Hence, LA(s, t)∩Hq,r ̸= ∅ and Lemma 28 yields LBR

((q, s, q), (r, t, r))∩L ̸= ∅.
One may now use a symmetrical argument to obtain LBR

((s, q, s), (t, r, t)) ∩ L ̸= ∅. By
definition of L in Lemma 27, this yields (q, r, s, t) ∈ τA,G(R), completing the proof.

5 Conclusion

In this paper, we proved that for every group prevariety G, there exist generic polynomial
time Turing reductions from BPol(G)- and BPol(G+)-separation to G-separation, for input
languages represented by NFAs. While a generic reduction from BPol(G)-separation to
G-separation was already developed in [21], it relied on an involved machinery, which required
to dig into a more general problem than BPol(G)-separation, namely “BPol(G)-covering”. In
particular, the techniques from [21] do not provide any way to build separators in BPol(G)
(when they exist). They also yield poor upper complexity bounds. At last, the results of [21]
do not apply to BPol(G+). In this case, even the existence of a generic reduction is new. It
would be interesting to unify ideas of the present paper with the techniques of [21], to lift
them to the setting of BPol(G)- and BPol(G+)-covering. We leave this for further work.

Our results imply that separation is decidable in polynomial time for a number of
standard classes: the piecewise testable languages (i.e., BPol(ST) or equivalently BΣ1(<)),
the languages of dot-depth one (i.e., BPol(ST+) or equivalently BΣ1(<, +1)), the classes
BPol(MOD) and BPol(MOD+) (i.e., BΣ1(<, MOD) and BΣ1(<, +1, MOD)) and the classes
BPol(GR) and BPol(GR+). While this was well-known for the piecewise testable lan-
guages [17, 6], all other results are new – not only regarding the complexity, but even
regarding the decidability. Actually, it is shown in [12] that BPol(ST)-separation is P-
complete. It turns out that the reduction of [12], from the circuit value problem, adapts to
prove the P-completeness of separation for all of the above classes (we leave the details for
further work). Finally, our results also apply to the classes BPol(AMT) and BPol(AMT+)
(i.e., BΣ1(<, AMOD) and BΣ1(<, +1, AMOD)): we obtain that separation is in co-NP.
While this is currently unknown, we conjecture that this is a tight upper bound. Indeed, it is
known that AMT-separation is co-NP-complete [26].

T. Place and M. Zeitoun 43:17

References
1 Jorge Almeida and Marc Zeitoun. The pseudovariety J is hyperdecidable. RAIRO Theoretical

Informatics and Applications, 31(5):457–482, 1997.
2 Mustapha Arfi. Polynomial operations on rational languages. In Proceedings of the 4th Annual

Symposium on Theoretical Aspects of Computer Science, STACS’87, pages 198–206, Berlin,
Heidelberg, 1987. Springer-Verlag.

3 Janusz A. Brzozowski and Rina S. Cohen. Dot-depth of star-free events. Journal of Computer
and System Sciences, 5(1):1–16, 1971.

4 Antonio Cano, Giovanna Guaiana, and Jean-Eric Pin. Regular languages and partial commut-
ations. Journal of Information and Computation, 230:76–96, 2013.

5 Laura Chaubard, Jean Éric Pin, and Howard Straubing. First order formulas with modular
predicates. In Proceedings of the 21th IEEE Symposium on Logic in Computer Science
(LICS’06), pages 211–220, 2006.

6 Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular
languages by subsequences and suffixes. In Proceedings of the 40th International Colloquium
on Automata, Languages, and Programming, ICALP’13, pages 150–161, Berlin, Heidelberg,
2013. Springer-Verlag.

7 Samuel Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, Inc.,
Orlando, FL, USA, 1976.

8 Karsten Henckell, Stuart Margolis, Jean-Eric Pin, and John Rhodes. Ash’s type II theorem,
profinite topology and Malcev products. International Journal of Algebra and Computation,
1:411–436, 1991.

9 Robert Knast. A semigroup characterization of dot-depth one languages. RAIRO - Theoretical
Informatics and Applications, 17(4):321–330, 1983.

10 Alexis Maciel, Pierre Péladeau, and Denis Thérien. Programs over semigroups of dot-depth
one. Theoretical Computer Science, 245(1):135–148, 2000.

11 Stuart Margolis and Jean-Eric Pin. Product of Group Languages. In FCT’85, volume 199 of
Lect. Notes Comp. Sci., pages 285–299. Springer-Verlag, 1985.

12 Tomás Masopust. Separability by piecewise testable languages is ptime-complete. Theor.
Comput. Sci., 711:109–114, 2018.

13 Jean-Eric Pin. Algebraic tools for the concatenation product. Theoretical Computer Science,
292:317–342, 2003.

14 Jean-Eric Pin. An explicit formula for the intersection of two polynomials of regular languages.
In DLT 2013, volume 7907 of Lect. Notes Comp. Sci., pages 31–45. Springer, 2013.

15 Jean-Eric Pin and Howard Straubing. Some results on C-varieties. RAIRO - Theoretical
Informatics and Applications, 39(1):239–262, 2005.

16 Thomas Place, Varun Ramanathan, and Pascal Weil. Covering and separation for logical
fragments with modular predicates. Logical Methods in Computer Science, 15(2), 2019.

17 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages. In Proceedings of the 38th International
Symposium on Mathematical Foundations of Computer Science, MFCS’13, pages 729–740,
Berlin, Heidelberg, 2013. Springer-Verlag.

18 Thomas Place and Marc Zeitoun. Separation for dot-depth two. In Proceedings of the 32th
Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS’17), pages 202–213.
IEEE Computer Society, 2017.

19 Thomas Place and Marc Zeitoun. The covering problem. Logical Methods in Computer Science,
14(3), 2018.

20 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of
Computing Systems (ToCS), 63(4):849–901, 2019. Selected papers from CSR’17.

21 Thomas Place and Marc Zeitoun. Separation and covering for group based concatenation
hierarchies. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS’19, pages 1–13, 2019.

FSTTCS 2022

43:18 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

22 Thomas Place and Marc Zeitoun. Adding successor: A transfer theorem for separation and
covering. ACM Transactions on Computational Logic, 21(2):9:1–9:45, 2020.

23 Thomas Place and Marc Zeitoun. Separation for dot-depth two. Logical Methods in Computer
Science, Volume 17, Issue 3, 2021.

24 Thomas Place and Marc Zeitoun. Characterizing level one in group-based concatenation hier-
archies. In Computer Science – Theory and Applications, Cham, 2022. Springer International
Publishing.

25 Thomas Place and Marc Zeitoun. A generic polynomial time approach to separation by
first-order logic without quantifier alternation, 2022. doi:10.48550/arXiv.2210.00946.

26 Thomas Place and Marc Zeitoun. Group separation strikes back. To appear, a preliminary
version is vailable at https://www.labri.fr/perso/tplace/Files/groups.pdf, 2022.

27 Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata
Theory and Formal Languages, pages 214–222, Berlin, Heidelberg, 1975. Springer-Verlag.

28 Benjamin Steinberg. Inevitable graphs and profinite topologies: Some solutions to algorithmic
problems in monoid and automata theory, stemming from group theory. International Journal
of Algebra and Computation, 11(1):25–72, 2001.

29 Howard Straubing. A generalization of the schützenberger product of finite monoids. Theoretical
Computer Science, 13(2):137–150, 1981.

30 Howard Straubing. Finite semigroup varieties of the form V ∗ D. Journal of Pure and Applied
Algebra, 36:53–94, 1985.

31 Howard Straubing. On logical descriptions of regular languages. In Proceedings of the 5th
Latin American Symposium on Theoretical Informatics, LATIN’02, pages 528–538, Berlin,
Heidelberg, 2002. Springer-Verlag.

32 Denis Thérien. Classification of finite monoids: The language approach. Theoretical Computer
Science, 14(2):195–208, 1981.

33 Gabriel Thierrin. Permutation automata. Theory of Computing Systems, 2(1):83–90, 1968.
34 Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computer and

System Sciences, 25(3):360–376, 1982.
35 Bret Tilson. Categories as algebra: essential ingredient in the theory of monoids. Journal of

Pure and Applied Algebra, 48(1):83–198, 1987.
36 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond

subwords. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS’18, pages 929–938, 2018.

A Appendix

In this appendix, we present the proof of Theorem 22. Let us first recall the statement.

▶ Theorem 22. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G+)[G, A]
is the greatest (BPol, +)-sound subset of Q4 for G and A.

The proof argument is based on the same outline as the one presented for Theorem 20 in
the main paper. We fix a group prevariety G and an NFA A = (Q, δ). Let S ⊆ Q4 be the
greatest (BPol, +)-sound subset for G and A. We prove that S = IBPol(G+)[G, A].

First part: S ⊆ IBPol(G+)[G, A]. We use tuple separation and Lemma 17. Let us start with
terminology. For every n ≥ 1 and (q1, r1, q2, r2) ∈ Q4, we associate an n-tuple Tn(q1, r1, q2, r2).
We use induction on n and tuple concatenation to present the definition. If n = 1 then,
T1(q1, r1, q2, r2) = (LA(q2, r2)). If n > 1, then,

Tn(q1, r1, q2, r2) =
{

(LA(q2, r2)) · Tn−1(q1, r1, q2, r2) if n is odd
(LA(q1, r1)) · Tn−1(q1, r1, q2, r2) if n is even.

We use induction on n to prove the following proposition.

https://doi.org/10.48550/arXiv.2210.00946
https://www.labri.fr/perso/tplace/Files/groups.pdf

T. Place and M. Zeitoun 43:19

▶ Proposition 29. For every n ≥ 1 and (q1, r1, q2, r2) ∈ S, the n-tuple Tn(q1, r1, q2, r2) is
not Pol(G+)-separable under G-control.

By definition, Proposition 29 implies that for every p ≥ 1 and every (q1, r1, q2, r2) ∈ S, the
2p-tuple (LA(q1, r1), LA(q2, r2))p is not Pol(G+)-separable under G-control. By Corollary 15,
it follows that LA(q1, r1) is not BPol(G+)-separable from LA(q2, r2) under G-control, i.e.
that (q1, r1, q2, r2) ∈ IBPol(G+)[G, A]. We get S ⊆ IBPol(G+)[G, A] as desired.

We prove Proposition 29 using induction on n. We fix n ≥ 1 for the proof. In order to
exploit the fact that S is (BPol, +)-sound, we need a property of the NFA B+

S = (Q3, γS)
used to define τ+

A,G . When n ≥ 2, this is where we use induction on n and Lemma 17.

▶ Lemma 30. Consider (s1, s2, s3), (t1, t2, t3) ∈ Q3 and a group language H ⊆ A∗. Assume
that H ∩ LB+

S
((s1, s2, s3), (t1, t2, t3)) ̸= ∅. Then, H ∩ LA(s1, t1) ̸= ∅ and, if n ≥ 2, then the

n-tuple (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable.

Proof. By hypothesis, there exists w ∈ H ∩ LB+
S

((s1, s2, s3), (t1, t2, t3)). Hence, the NFA B+
S

contains some run labeled by w from (s1, s2, s3) to (t1, t2, t3). We use a sub-induction on the
number of transitions involved in that run. When no transitions are used: we have w = ε

and (s1, s2, s3) = (t1, t2, t3). It follows that w = ε ∈ H ∩ LA(s1, t1). Moreover, if n ≥ 2, the
n-tuple (H ∩ LA(s1, t1)) · Tn−1(s2, s2, s3, s3) is not Pol(G+)-separable by Lemma 13 since
ε ∈ LA(s2, s2) ∩ LA(s3, s3). We now assume that at least one transition is used. We get a
triple (q1, q2, q3) ∈ Q3, a word w′ ∈ A∗ and x ∈ A ∪ {ε} such that we have w = w′x, w′ ∈
LB+

S
((s1, s2, s3), (q1, q2, q3)) and ((q1, q2, q3), x, (t1, t2, t3)) ∈ γ+

S . Since H is a group language,
it is recognized by a morphism α : A∗ → G into a finite group G. Let H ′ = α−1(α(w′)).
Clearly, H ′ is a group language and w′ ∈ H ′ ∩ LB+

S
((s1, s2, s3), (q1, q2, q3)). Thus, induction

yields that H ′ ∩LA(s1, q1) ̸= ∅ and, if n ≥ 2, the n-tuple (H ′ ∩LA(s1, q1)) ·Tn−1(s2, q2, s3, q3)
is not Pol(G+)-separable. We now consider two cases depending on x ∈ A ∪ {ε}.

Assume first that x = a ∈ A: we have ((q1, q2, q3), a, (t1, t2, t3)) ∈ γ+
S . By definition, it

follows that (qi, a, ti) ∈ δ for i = {1, 2, 3}. Observe that (H ′ ∩ LA(s1, q1))a ⊆ H ∩ LA(s1, t1).
Indeed, if u ∈ (H ′ ∩ LA(s1, q1))a, then u = u′a where u′ ∈ H ′ and u′ ∈ LA(s1, q1). Since
H ′ = α−1(α(w′)), the hypothesis that u′ ∈ H ′ yields α(u) = α(u′a) = α(w′a) = α(w) which
implies that u ∈ H since w ∈ H and H is recognized by α. Moreover, since u′ ∈ LA(s1, q1)
and (q1, a, t1) ∈ δ, we get u = u′a ∈ LA(s1, t1). Altogether, this yields u ∈ H ∩ LA(s1, t1) as
desired. Since we already know that H ′ ∩LA(s1, q1) ̸= ∅, we get H ∩LA(s1, t1) ̸= ∅. Moreover,
if n ≥ 2, since (q2, a, t2), (q3, a, t3) ∈ δ, Lemma 13 yields that ({a}) · Tn−1(q2, t2, q3, t3) is not
Pol(G+)-separable. Hence, since we already know that (H ′ ∩ LA(s1, q1)) · Tn−1(s2, q2, s3, q3)
is not Pol(G+)-separable and (H ′ ∩ LA(s1, q1))a ⊆ H ∩ LA(s1, t1), it follows from Lemma 14
that (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable.

Finally, assume that x = ε: we have ((q1, q2, q3), ε, (t1, t2, t3)) ∈ γ+
S . By definition, it

follows that q1 = t1, (q2, t2, q3, t3) ∈ S and there exists a nonempty word y ∈ A+ which
belongs to LA(q1, q1), LA(q2, q2), LA(q3, q3), LA(t2, t2) and LA(t3, t3). Since x = ε, we have
w = w′. Hence, since w ∈ H and H is recognized by α, we obtain that H ′ = α(α−1(w′)) ⊆ H.
Since H ′ ∩ LA(s1, q1) ̸= ∅ and q1 = t1, we get H ∩ LA(s1, t1) ̸= ∅. We now assume that
n ≥ 2. Since G is a finite group, there exists k ≥ 1 such that α(yk) = 1G. We write z = yk.
By hypothesis on y, we also have z ∈ LA(q1, q1). It follows that z+ ⊆ α−1(1G) ∩ LA(q1, q1).
Additionally, since z belongs to LA(q2, q2), LA(q3, q3), LA(t2, t2) and LA(t3, t3), we know
that z+LA(q2, t2)z+ ⊆ LA(q2, t2) and z+LA(q3, t3)z+ ⊆ LA(q3, t3). Since (q2, t2, q3, t3) ∈ S,
it follows from induction on n in Proposition 29 that the (n−1)-tuple Tn−1(q2, t2, q3, t3) is not
Pol(G+)-separable under G-control. Altogether, we obtain from Lemma 17 that the n-tuple
(α−1(1G) ∩ LA(q1, q1)) · Tn−1(q2, t2, q3, t3) is not Pol(G+)-separable. Finally, since q1 = t1

FSTTCS 2022

43:20 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

and H ′ ⊆ H, one may verify that (H ′ ∩LA(s1, q1))(α−1(1G)∩LA(q1, q1)) ⊆ (H ∩LA(s1, t1)).
Since we already know that (H ′ ∩ LA(s1, q1)) · Tn−1(s2, q2, s3, q3) is not Pol(G+)-separable,
Lemma 14 yields that (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable. ◀

We may now complete the proof of Proposition 29. By symmetry, we only treat the
case when n is odd and leave the even case to the reader. Let (q1, r1, q2, r2) ∈ S, we have
to prove that Tn(q1, r1, q2, r2) is not Pol(G+)-separable under G-control. Hence, we fix
H ∈ G such that ε ∈ H and prove H ∩ Tn(q1, r1, q2, r2) is not Pol(G+)-separable. Since
S is (BPol, +)-sound, we have τ+

A,G(S) = S which implies that (q1, r1, q2, r2) ∈ τ+
A,G(S).

Hence, it follows from (2) that {ε} is not G-separable from LB+
S

((q2, q1, q2), (r2, r1, r2)).
Since H ∈ G and ε ∈ H, it follows that H ∩ LB+

S
((q2, q1, q2), (r2, r1, r2)) ̸= ∅. If n = 1,

Lemma 30 yields H ∩ LA(q2, r2) ̸= ∅. Since T1(q1, r1, q2, r2) = (LA(q2, r2)), we get that
H∩T1(q1, r1, q2, r2) is not Pol(G+)-separable as desired. If n ≥ 2, then Lemma 30 implies that
(H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable. Thus, since H ∈ G ⊆ Pol(G+),
one may verify that the n-tuple (H ∩ LA(q2, r2)) · (H ∩ Tn−1(q1, r1, q2, r2)) is not Pol(G+)-
separable. By definition, this exactly says that H ∩ Tn(q1, r1, q2, r2) is not Pol(G+)-separable,
completing the proof.

Second part: IBPol(G+)[G, A] ⊆ S. Consider an arbitrary set R ⊆ Q4. We say that R is
multiplication-closed to indicate that for every (q, r, s, t) ∈ R and (q′, r′, s′, t′) ∈ R, if r = q′

and t = s′, then (q, r′, s, t′) ∈ R. Moreover, we say that an arbitrary set R ⊆ Q4 is good if it
is multiplication-closed and there are L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which
is separating for R.

▶ Proposition 31. Let R ⊆ Q4. If R is good, then τ+
A,G(R) is good as well.

We use Proposition 31 to complete the proof. Let S0 = Q4 and Si = τ+
A,G(Si−1) for

i ≥ 1. By Lemma 21, we have S0 ⊇ S1 ⊆ S2 ⊇ · · · and the is n ∈ N such that Sn is the
greatest (BPol, +)-sound subset for G and A, i.e. such that Sn = S. Since S0 is good (it is
clearly multiplication-closed and {A∗} is a BPol(G+)-cover of A∗ ∈ G which is separating for
S0 = Q4), Proposition 31 implies that Si is good for all i ∈ N. Hence, S = Sn is good. We
get L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which is separating for S. By Lemma 11,
this yields IBPol(G+)[G, A] ⊆ S as desired.

We turn to Proposition 25. Let R ⊆ Q4 be a good set. We have to prove that τ+
A,G(R)

is multiplication-closed and build L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which is
separating for τ+

A,G(R). This proves that τ+
A,G(R) is good as desired. Let us first prove that

τ+
A,G(R) is multiplication-closed (we use the hypothesis that R is good).

▶ Lemma 32. The set τ+
A,G(R) ⊆ Q4 is multiplication-closed.

Proof. Let (q, r, s, t) ∈ τ+
A,G(R) and (q′, r′, s′, t′) ∈ τ+

A,G(R) such that r = q′ and t = s′. We
need to prove that (q, r′, s, t′) ∈ τ+

A,G(R). By (2) in the definition, this boils down to proving
that {ε} is not G-separable from LB+

R
((s, q, s), (t′, r′, t′)) and LB+

R
((q, s, q), (r′, t′, r′)). By sym-

metry, we only prove the former. By hypothesis on (q, r, s, t) and (q′, r′, s′, t′), we get from (2)
that {ε} is not G-separable from both LB+

R
((s, q, s), (t, r, t)) and LB+

R
((s′, q′, s′), (t′, r′, t′)).

Since G is a prevariety it then follows from Lemma 14 that {ε} is not G-separable from the con-
catenation LB+

R
((s, q, s), (t, r, t))LB+

R
((s′, q′, s′), (t′, r′, t′)). Finally, since (t, r, t) = (s′, q′, s′),

we know that LB+
R

((s, q, s), (t, r, t))LB+
R

((s′, q′, s′), (t′, r′, t′)) ⊆ LB+
R

((s, q, s), (t′, r′, t′)). We
conclude that {ε} is not G-separable from both LB+

R
((s, q, s), (t′, r′, t′)) as desired. ◀

T. Place and M. Zeitoun 43:21

We now build L ∈ G such that ε ∈ L (this part is independent from our hypothesis on R).

▶ Lemma 33. There exists L ∈ G such that ε ∈ L and for every (q, r, s, t) ∈ Q4, if
LB+

R
((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LB+

R
((s, q, s), (t, r, t)) ∩ L ̸= ∅, then (q, r, s, t) ∈ τ+

A,G(R).

Proof. Let H be the finite set of all languages recognized by B+
R such that {ε} is G-separable

from H. For every H ∈ H, there exists LH ∈ G such that ε ∈ LH and LH ∩ H = ∅. We
define L =

⋂
H∈H LH ∈ G. It is clear that ε ∈ L. Moreover, given (q, r, s, t) ∈ Q4, if

LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LB+
R

((s, q, s), (t, r, t)) ∩ L ̸= ∅, it follows from the definition
of L that {ε} is not G-separable from both LB+

R
((q, s, q), (r, t, r)) and LB+

R
((s, q, s), (t, r, t)).

It then follows from (2) in the definition of τ+
A,G that (q, r, s, t) ∈ τ+

A,G(R). ◀

We fix L ∈ G as described in Lemma 33 for the remainder of the proof. We now build
the BPol(G+)-cover K of L using the hypothesis that R is good and Proposition 7.

▶ Lemma 34. For all (q, r) ∈ Q2, there is Hq,r ∈ BPol(G+) such that LA(q, r) ∩ L ⊆ Hq,r

and for all pairs (s, t) ∈ Q2, if LA(s, t) ∩ Hq,r ̸= ∅ then LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅.

Proof. Since R is good, there are U ∈ G such that ε ∈ U and a BPol(G+)-cover V of
U which is separating for R. We use them to build Hq,r. Since U ∈ G and ε ∈ U

Proposition 7 yields a cover P of LA(q, r) ∩ L such that for each P ∈ P, there exists a word
wP ∈ LA(q, r) ∩ L and an A-guarded decomposition (w1, . . . , wn+1) of wP for some n ∈ N
such that P = w1U · · · wnUwn+1 (if n = 0, then P = {w1}). Now, for every P ∈ P, we build
a BPol(G+)-cover KP of P from the cover V of U . Let (w1, . . . , wn+1) be the A-guarded
decomposition of wP such that P = w1U · · · wnUwn+1 (in particular, this means that P

is of the form U0a1U1 · · · amUm where a1 · · · am = w1 · · · wn and Ui = U or Ui = {ε} for
each i ≤ m). By definition, V is a BPol(G+)-cover of U ∈ G ⊆ Pol(G+). Moreover, we
have {ε} ∈ G+ ⊆ Pol(G+) by definition of G+ and {{ε}} is a BPol(G+)-cover of {ε}. Hence,
Proposition 5 yields a BPol(G+)-cover KP of P = w1U · · · wnUwn+1 such that for every
K ∈ KP , there exist V1, . . . , Vn ∈ V such that K ⊆ w1V1 · · · wnVnwn+1. We define Hq,r

as the union of all languages K such that K ∈ KP for some P ∈ P and LA(q, r) ∩ K ≠ ∅.
Clearly, Hq,r ∈ BPol(G+). Moreover, since P is a cover of LA(q, r) ∩ L, and KP is a cover
of P for each P ∈ P, it is clear that LA(q, r) ∩ L ⊆ Hq,r. We now fix (s, t) ∈ Q2 such
that LA(s, t) ∩ Hq,r ̸= ∅ and show that LB+

R
((q, s, q), (r, t, r)) ∩ L ≠ ∅. By definition of

Hq,r, we get P ∈ P and K ∈ KP such that LA(q, r) ∩ K ̸= ∅ and LA(s, t) ∩ K ̸= ∅. By
definition, P = w1U · · · wnUwn+1 where (w1, . . . , wn+1) is an A-guarded decomposition of
wP ∈ LA(q, r) ∩ L. We use wP to build a new word w′ ∈ LB+

R
((q, s, q), (r, t, r)) ∩ L.

We fix x ∈ LA(s, t)∩K and y ∈ LA(q, r)∩K. Since wP = w1 · · · wn+1 and wP ∈ LA(q, r),
we may decompose the corresponding run in A: we get p0, . . . , pn+1 ∈ Q such that p0 = q,
pn+1 = r and wi ∈ LA(pi−1, pi) for 1 ≤ i ≤ n + 1. Moreover, since K ∈ KP , we have
K ⊆ w1V1 · · · wnVnwn+1 for V1, . . . , Vn ∈ V (if n = 0, then K ⊆ {w1}). Since x, y ∈ K, we
get xi, yi ∈ Vi for 1 ≤ i ≤ n such that x = w1x1 · · · wnxnwn+1 and y = w1y1 · · · wnynwn+1.
Since x ∈ LA(s, t), we get s1, t1, . . . , sn+1, tn+1 ∈ Q where s1 = s, tn+1 = t, wi ∈ LA(si, ti)
for 1 ≤ i ≤ n + 1 and xi ∈ LA(ti, si+1) for 1 ≤ i ≤ n. Symmetrically, since y ∈ LA(q, r),
we get q1, r1, . . . , qn+1, rn+1 ∈ Q with q1 = q, rn+1 = r, wi ∈ LA(qi, ri) for 1 ≤ i ≤ n + 1,
and yi ∈ LA(ri, qi+1) for 1 ≤ i ≤ n. First, note that when n = 0, we have wP = w1 and the
above implies that wP ∈ LA(q, r) and wP ∈ LA(s, t). Thus, wP ∈ LB+

R
((q, s, q), (r, t, r)) by

definition of the labeled transition in B+
R . This concludes the proof since we also know that

wP ∈ L. We now assume that n ≥ 1.

FSTTCS 2022

43:22 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

By hypothesis, (w1, . . . , wn+1) is an A-guarded decomposition. Hence, for 1 ≤ i ≤ n, we
get zi ∈ A+ which is a right A-loop for wi and a left A-loop for wi+1. Let α : A∗ → G be a
morphism into a finite group G recognizing both L and U (recall that L and U are group
languages). Since g is a finite group, there exists k ≥ 1 such that for each 1 ≤ i ≤ n, we have
α(zk

i) = 1G. We let ui = zk
i for 1 ≤ i ≤ n. One may verify that ui remains a right A-loop for

wi and a left A-loop for wi+1. Moreover, since α(ui) = 1G, we know that ui ∈ U (recall that
ε ∈ U and U is recognized by α). We let w′

1 = w1u1, w′
n+1 = unwn+1 and w′

i = ui−1wiui for
2 ≤ i ≤ n. Finally, we let w′ = w′

1 · · · w′
nw′

n+1 and show that w′ ∈ L ∩ LB+
R

((q, s, q), (r, t, r))
which completes the proof. First, since α(ui) = 1G for 1 ≤ i ≤ n, it is immediate that
α(w′) = α(w1 · · · wnwn+1) = α(wP). Since wP ∈ L which is recognized by α, we get w′ ∈ L.

We now concentrate on proving that w′ ∈ LB+
R

((q, s, q), (r, t, r)). For 1 ≤ i ≤ n + 1, we
know that wi belongs to LA(pi−1, pi), LA(si, ti) and LA(qi, ri). Hence, one may verify from
the definition of left/right A-loops that there are p′

0, . . . , p′
n+1 ∈ Q, s′

1, t′
1, . . . , s′

n+1, t′
n+1 ∈ Q

and q′
1, r′

1, . . . , q′
n+1, r′

n+1 ∈ Q such that,
p′

0 = p0 = q, p′
n+1 = pn+1 = r, w′

i ∈ LA(p′
i−1, p′

i) for 1 ≤ i ≤ n + 1 and ui ∈ LA(p′
i, p′

i)
for 1 ≤ i ≤ n.
s′

0 = s0 = s, t′
n+1 = tn+1 = t, w′

i ∈ LA(s′
i, t′

i) for 1 ≤ i ≤ n + 1 and we have
ui ∈ LA(t′

i, t′
i) ∩ LA(t′

i, ti) ∩ LA(si+1, s′
i+1) ∩ LA(s′

i+1, s′
i+1) for 1 ≤ i ≤ n.

q′
0 = q0 = q, r′

n+1 = rn+1 = r, w′
i ∈ LA(q′

i, r′
i) for 1 ≤ i ≤ n + 1 and we have

ui ∈ LA(r′
i, r′

i) ∩ LA(r′
i, ri) ∩ LA(qi+1, q′

i+1) ∩ LA(q′
i+1, q′

i+1) for 1 ≤ i ≤ n.
By definition of the labeled transitions in the NFA B+

R , it is straightforward to verify that we
have w′

i ∈ LB+
R

((p′
i−1, s′

i, q′
i), (p′

i, t′
i, r′

i)) for 1 ≤ i ≤ n + 1. We now prove the following fact.

▶ Fact 35. For 1 ≤ i ≤ n, we have ((p′
i, t′

i, r′
i), ε, (p′

i, s′
i+1, q′

i+1)) ∈ γ+
R .

Proof. We fix i for the proof. Since we know that ui ∈ A+ belongs to LA(p′
i, p′

i), LA(t′
i, t′

i),
LA(r′

i, r′
i), LA(s′

i+1, s′
i+1) and LA(q′

i+1, q′
i+1), it suffices to prove that (t′

i, s′
i+1, r′

i, q′
i+1) ∈ R.

This will imply that ((p′
i, t′

i, r′
i), ε, (p′

i, s′
i+1, q′

i+1)) ∈ γ+
R by definition of γ+

R . Recall that
xi ∈ LA(ti, si+1), yi ∈ LA(ri, qi+1) and xi, yi ∈ Vi. Since Vi ∈ V which is separating for R,
it follows that (ti, si+1, ri, qi+1) ∈ R. Moreover, ui ∈ U which yields V ∈ V such that ui ∈ V

since V is a cover of U . Hence, since ui ∈ LA(t′
i, ti) and ui ∈ LA(r′

i, ri). The hypothesis that
V is separating for R also yields (t′

i, ti, r′
i, ri) ∈ R. Symmetrically, one may use the hypotheses

that ui ∈ LA(si+1, s′
i+1) and ui ∈ LA(qi+1, q′

i+1) to verify that (si+1, s′
i+1, qi+1, q′

i+1) ∈ R.
Altogether, since R is multiplication-closed, we get (t′

i, s′
i+1, r′

i, q′
i+1) ∈ R as desired. ◀

In view of Fact 35, we obtain w′ = w′
1 · · · w′

nw′
n+1 ∈ LB+

R
((p′

0, s′
1, q′

1), (p′
n+1, t′

n+1, r′
n+1)).

This exactly says that w′ ∈ LB+
R

((q, s, q), (r, t, r)) which completes the proof. ◀

We may now build K. Let H = {Hq,r | (q, r) ∈ Q2}. Consider the following equivalence
∼ defined on L: given u, v ∈ L, we let u ∼ v if and only if u ∈ Hq,r ⇔ v ∈ Hq,r for every
(q, r) ∈ Q2. We let K as the partition of L into ∼-classes. Clearly, each K ∈ K is a Boolean
combination involving the languages in H (which belong to BPol(G+)) and L ∈ G. Hence,
K is a BPol(G+)-cover of L. It remains to prove that it is separating for τ+

A,G(R). Let
q, r, s, t ∈ Q and K ∈ K such that there are u ∈ LA(q, r) ∩ K and v ∈ LA(s, t) ∩ K. By
definition of K, we have u, v ∈ L and u ∼ v. In particular, we have u ∈ LA(q, r) ∩ L which
yields u ∈ Hq,r by definition in Lemma 34. Together with u ∼ v, this yields v ∈ Hq,r. Hence,
LA(s, t) ∩ Hq,r ≠ ∅ and Lemma 34 yields LB+

R
((q, s, q), (r, t, r)) ∩ L ̸= ∅. One may now

use a symmetrical argument to obtain LB+
R

((s, q, s), (t, r, t)) ∩ L ̸= ∅. By definition of L in
Lemma 33, this yields (q, r, s, t) ∈ τA,G(R), completing the proof.

	1 Introduction
	2 Preliminaries
	2.1 Words, regular languages and classes
	2.2 Polynomial and Boolean closure

	3 Separation framework
	3.1 The separation problem
	3.2 Tuple separation

	4 Separation Algorithms for BPol(G) and BPol(G+)
	4.1 Statements
	4.2 Proof of Theorem 20

	5 Conclusion
	A Appendix

