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Abstract
In this paper, we establish a strong link between the ambiguity for finite words of a Büchi automaton
and the ambiguity for infinite words of the same automaton. This link is based on measure theory.
More precisely, we show that such an automaton is unambiguous, in the sense that no finite word
labels two runs with the same starting state and the same ending state if and only if for each
state, the set of infinite sequences labelling two runs starting from that state has measure zero.
The measure used to define these negligible sets, that is sets of measure zero, can be any measure
computed by a weighted automaton which is compatible with the Büchi automaton. This latter
condition is very natural: the measure must only put weight on sets wAN where w is the label of
some run in the Büchi automaton.
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1 Introduction

The relationship between deterministic and non-deterministic machines has been extensively
studied since the very beginning of computer science. Despite these efforts, many questions
remain wide open. This is of course true in complexity theory for questions like P versus NP
but also in automata theory [15, 12]. It is for instance not known whether the simulation of
non-deterministic either one-way or two-way automata by deterministic two-way automata
requires an exponential blow-up of the number of states [20].

Unambiguous machines are usually defined as non-deterministic machines in which each
input has at most one accepting run. They are intermediate machines in between the two
extreme cases of deterministic and non-deterministic machines. The notion of ambiguity
considered in the paper is slightly stronger and more structural as it does not depend on
initial and final states. In the case of automata accepting finite words, non-deterministic
automata can be exponentially more succinct than unambiguous automata which can be, in
turn, exponentially more succinct than deterministic automata [22]. However, the inclusion
problem for unambiguous automata is tractable is polynomial time [23] like for deterministic
automata while the same problem for non-deterministic automata is PSPACE-complete [1,
Section 10.6].

The polynomial time algorithm for the inclusion of unambiguous automata accepting
finite words in [23] is based on a clever counting argument which cannot easily be adapted
to infinite words. It is still unknown whether the inclusion problem for unambiguous Büchi
automata can be solved in polynomial time. The problem was solved in [17] for sub-classes
of Büchi automata with weak acceptance conditions and in [6] for prophetic Büchi automata
introduced in [10] (see also [19, Sec. II.10]) which are strongly unambiguous. These latter
results are obtained through reductions of the problem for infinite words to the problem for
finite words. The main result of this paper can be seen as a first step towards a solution for
all Büchi automata as it connects ambiguity for infinite words to ambiguity for finite words
and thus provides a better understanding of ambiguity for infinite words.

© Olivier Carton;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.irif.fr/~carton
https://orcid.org/0000-0002-2728-6534
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.34
https://arxiv.org/abs/2011.10534
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


34:2 Ambiguity Through the Lens of Measure Theory

The aim of this paper is to exhibit a strong link between the ambiguity of some automaton
for finite words and the ambiguity of the same automaton for infinite words. The paper is
focused on strongly connected Büchi automata. Two examples given in the conclusion show
that the problem is more involved for non strongly connected automata. It turns out that
unambiguity for infinite words implies the unambiguity for finite words but the converse
does not hold in general. This converse can however be recovered if unambiguity for infinite
words is considered up to a negligible set of inputs. Negligible should here be understood
as a set of zero measure. The measure used to characterize ambiguity must fulfill some
compatibility conditions with the automaton. Some examples show these conditions cannot
be avoided. Note that measures were already used to characterize maximal variable-length
codes [3, Thm. 5.10] which are, in essence, a combinatorial definition of non-ambiguity.

The first step of the proof is to show that the measure of the set of accepted sequences
does not increase if all states of the automaton are made final. This result is interesting by
itself but it also reduces the proof of our result to automata with all states final. Since initial
states are also not relevant, the problem is again reduced to automata with all states initial
and final, which accept the so called shift spaces from symbolic dynamics [18]. This special
case is handled using techniques from this domain like synchronizing words and Fisher covers.

This work was motivated by questions about automata with outputs also known as
transducers. These transducers realize functions mapping infinite sequences to infinite
sequences and the questions are focused on the long term behaviour. A natural question is
the preservation of normality where normality is the property that all blocks of the same
length occur with the same limiting frequency [9]. Normality was introduced by Borel to
formalize the most basic form of randomness for real numbers [5]. It turns out that normality
can be characterized by non-compressibility by transducers realizing one-to-one functions [2].
Since each infinite run ends in a strongly connected component, it is sufficient to study
ambiguity of strongly connected automata. It is a classical result that each function realized
by a transducer can be realized by a transducer whose input automaton is unambiguous [11].
The result proved in this paper shows that if all states of a strongly connected unambiguous
transducer are made final the transducer remains unambiguous up to a set of measure zero.
It allows us to use, for instance, the ergodic theorem for Markov chains where the function
must be defined up to a set of measure zero.

The paper is organized as follows. Section 2 is devoted to basic definitions needed for the
main result which is stated in Section 3. The first step of the proof is to reduce the problem
to the special case of Büchi automata with all states final. This is done in Section 4. The
proof of this special case is carried out in Section 5.

2 Definitions

2.1 Words, sequences and measures
Let A be a finite set of symbols that we refer to as the alphabet. We write AN for the set
of all sequences on the alphabet A and A∗ for the set of all (finite) words. The length of a
finite word w is denoted by |w|. The positions of sequences and words are numbered starting
from 1. The empty word is denoted by ε. The cardinality of a finite set E is denoted by #E.
A factor of a sequence a1a2a3 · · · is a finite word of the form akak+1 · · · aℓ−1 for integers
1 ⩽ k ⩽ ℓ where k = ℓ yields the empty word ε. We let fact(X) denote the set of factors of a
set X of sequences.

We recall here a few notions of topology. The set AN of sequences can be endowed with a
topology by the distance d which is defined as follows. The distance d(x, y) of two sequences
x = a1a2a3 · · · and y = b1b2b3 · · · is zero if x = y and is 2− min{i:ai ̸=bi} otherwise. The set X
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is open if it is equal to a possibly infinite union of cylinders, that is, sets of the form wAN for
w ∈ A∗. It is closed if its complement in AN is open. Each set X is contained in a smallest
closed set X called its closure. The complement of X is the union of all sets wAN which are
disjoint from X.

By measure, we mean, in this paper, a probability measure on AN, that is, a σ-additive
set function µ which assigns to each Borelian set X ⊆ AN a real number µ(X) (called its
measure) in the interval [0, 1] and which satisfies µ(AN) = 1. The σ-additivity property
means that if X0, X1, X2, . . . is a collection of pairwise disjoint sets, then

µ(
⋃

n⩾0
Xn) =

∑
n⩾0

µ(Xn).

Most sets considered in this paper are rational, and therefore, they are Borelian, (in the
level ∆0

3 of the Borel hierarchy) and their measure does always exist. By the Carathéodory
Extension Theorem, each measure µ is fully determined by the measures of the cylinders sets,
that is, sets of the form wAN for some finite word w. In the rest of the paper, we identify a
measure µ on AN and the function which maps each finite word w to the measure µ(wAN) of
the cylinder set wAN.

A probability measure on A∗ is a function µ : A∗ → [0, 1] such that µ(ε) = 1 and that the
equality∑

a∈A

µ(wa) = µ(w)

holds for each word w ∈ A∗. The simplest example of a probability measure is a Bernoulli
measure. It is a monoid morphism from A∗ to [0, 1] (endowed with multiplication) such that∑

a∈A µ(a) = 1. Among the Bernoulli measures is the uniform measure which maps each
word w ∈ A∗ to (#A)−|w|. In particular, each symbol a is mapped to µ(a) = 1/#A.

By the Carathéodory Extension Theorem, a measure µ on A∗ can be uniquely extended
to a probability measure µ̂ on AN such that µ̂(wAN) = µ(w) holds for each word w ∈ A∗. As
already said, we use the same symbol for µ and µ̂. A probability measure µ is said to be
(shift) invariant if the equality∑

a∈A

µ(aw) = µ(w)

holds for each word w ∈ A∗. The support supp(µ) of a measure µ is the set supp(µ) = {w ∈
A∗ : µ(w) > 0} of finite words.

The column vector such that each of its entries is 1 is denoted by 1. A P -vector λ is
called stochastic (respectively, substochastic) if its entries are non-negative and sum up to 1
(respectively, to at most 1). that is, 0 ⩽ λp ⩽ 1 for each p ∈ P and λ1 = 1 (respectively,
λ1 ⩽ 1). A matrix M is called stochastic (respectively, substochastic) if each of its rows is
stochastic (respectively, substochastic), that is M1 = 1 (respectively, M1 ⩽ 1). It is called
strictly substochastic if it is substochastic but not stochastic. This means that the entries of
at least one of its rows sum up to a value which is strictly smaller than 1.

In the paper, we mainly consider rational measures also known as hidden Markov measures
and under other names in the literature [7]. These measures are those for which the values µ(w)
for w ∈ A∗ are given by a weighted automaton [21, Chap .4] or equivalently by a (matrix)
representation. A measure µ is rational if there is an integer m, a row (1 × m)-vector π, a
morphism ν from A∗ into m × m-matrices over real numbers and a column (m × 1)-vector ρ

such that the following equality holds for each word a1 · · · ak [4].

µ(a1 · · · ak) = πν(a1 · · · ak)ρ = πν(a1) · · · ν(ak)ρ

FSTTCS 2022



34:4 Ambiguity Through the Lens of Measure Theory

The triple ⟨π, ν, ρ⟩ is called a representation of the rational measure µ and the integer m the
dimension. By the main result in [14], it can always be assumed that both the vector π and
the matrix

∑
a∈A ν(a) are stochastic and that the vector ρ is the vector 1. The triple ⟨π, ν,1⟩

is then called a stochastic representation of µ. Note that if the representation ⟨π, ν, ρ⟩ is
stochastic, the function µ defined by µ(w) = πν(w)ρ is a measure because it satisfies the
required properties. The measure µ is invariant if π

∑
a∈A ν(a) = π. Note that rational

measures with dimension 1 are the Bernoulli measures.
We give below an example of a rational measure. Consider the stochastic representation

⟨π, ν, ρ⟩ of dimension 2 where π is the row vector (1, 0), ρ is the column vector 1 and the
morphism ν from {0, 1}∗ into 2 × 2-matrices is defined by

ν(0) = 1
3

(
1 1
0 3

)
and ν(1) = 1

3

(
1 0
0 0

)
.

An equivalent weighted automaton is pictured in Figure 4. The measure defined by this
representation is given for each word w of length n ending with a block of 0 ⩽ k ⩽ n zeros
by µ(w) = (1 + (1 + 3 + · · · + 3k−1))/3n = (3k + 1)/23n. We will see that this measure does
not meet our expectations because it is not irreducible: the weighted automaton pictured in
Figure 4 is not strongly connected.

2.2 Automata and ambiguity
We refer the reader to [19] for a complete introduction to automata accepting (infinite)
sequences of symbols. A (Büchi) automaton A is a tuple ⟨Q, A, ∆, I, F ⟩ where Q is the finite
state set, A the alphabet, ∆ ⊆ Q × A × Q the transition relation, I ⊆ Q the set of initial
states and F is the set of final states. A transition is a tuple ⟨p, a, q⟩ in Q × A × Q and it is
written p a−→ q. A finite run in A is a finite sequence of consecutive transitions,

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−−→ qn

Its label is the word a1a2 · · · an. An infinite run in A is a sequence of consecutive transitions,

q0
a1−→ q1

a2−→ q2
a3−→ q3 · · ·

A run is initial if its first state q0 is initial, that is, belongs to I. A run is called final if it
visits infinitely often a final state. An infinite run is accepting if it is both initial and final.
A sequence is accepted if it is the label of an accepting run. The set of accepted sequences
is said to be accepted by the automaton. As usual, an automaton is deterministic if it has
only one initial state, that is #I = 1 and if p a−→ q and p a−→ q′ are two of its transitions
with the same starting state and the same label, then q = q′. The automaton pictured in
Figure 1 accepts the set 0∗1N of sequences having some 0s and then only 1s. The leftmost
automaton pictured in Figure 2 is deterministic while the middle one is not. Both accept the
set of sequences having infinitely many 1s. An automaton is trim if each state occurs in an
accepting run.

For each state q, its future (respectively bi-future) is the set F(q) (respectively, F2(q)) of
sequences labelling a final run (respectively, at least two final runs) starting from q. Let F(q)
(respectively, F2(q)) be the set of sequences labelling at least one (respectively, two) infinite
run starting from q which might be final or not. Note that if the automaton is trim, F(q) is
indeed the topological closure of F(q) but that F2(q) might not be the topological closure
of F2(q) as shown by the automaton pictured in Figure 1. The past P(q) of a state q is the
set of finite words labelling a run ending in q. For an automaton A, we let fact(A) denote
the set of finite words labelling some run in A. Therefore fact(A) =

⋃
q∈Q P(q) where Q is

the state set of A.
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0
1

2

0
1

1

1

1

Figure 1 F2(0) = 0∗1N and F2(0) = 0∗1N ∪ {0N}.

An automaton is unambiguous (for finite words) if for each states p, q ∈ Q and each
word w, there is at most one run p w−→ q from p to q labelled by w. Each automaton which is
either deterministic or reverse-deterministic is unambiguous.

1 20
1
0

1 1 20
0
1

1

1

2

3

4

0

10

0

10,1
1

Figure 2 Three unambiguous automata.

The three automata pictured in Figure 2 are unambiguous. The leftmost one is deter-
ministic and F(1) = F(2) = (0∗1)N, F(1) = F(2) = {0, 1}N and F2(1) = F2(2) = ∅. The
middle one is reverse deterministic (that is, becomes deterministic if transitions are reversed),
F(1) = 0(0∗1)N, F(2) = 1(0∗1)N, F(1) = 0{0, 1}N, F(2) = 1{0, 1}N and F2(1) = F2(2) = ∅.
The rightmost one is neither deterministic nor reverse deterministic but it is unambiguous.
Note however that F2(1) is not empty: F2(1) ⊃ 0∗(01)N. An ambiguous automaton is pictured
in Figure 3 below.

With each stochastic representation ⟨π, ν,1⟩ of a rational measure is associated an
automaton whose state set is P = {1, . . . , m} where m is the common dimension of all
matrices ν(a). For each states p, q ∈ P , there is a transition p a−→ q whenever ν(a)p,q > 0.
The initial states are those states q in P such that πq > 0. Due to this automaton, F(p) is
well-defined for a state p ∈ P . The representation is called irreducible if this automaton is
strongly connected. A rational measure is called irreducible if it has at least one irreducible
representation.

A strongly connected component C of graph (respectively automaton) is called terminal
if it cannot be left, that is, if p −→ q is a edge with p ∈ C, then q ∈ C.

3 Main result

Ambiguity of automata has been defined using finite words: an automaton is ambiguous
if some finite word w is the label of two different runs from a state p to a state q. If the
automaton is trim, this implies that some sequence of the form wy is the label of two different
runs from p. The converse of this implication does not hold in general. The third automaton
pictured in Figure 2 is unambiguous although the sequence (01)N = 0101 · · · is the label of
the following two accepting runs starting from state 1.

1 0−→ 1 1−→ 2 0−→ 1 1−→ 2 0−→ 1 1−→ · · ·

1 0−→ 3 1−→ 4 0−→ 3 1−→ 4 0−→ 3 1−→ · · ·

FSTTCS 2022



34:6 Ambiguity Through the Lens of Measure Theory

However, the set F2(1) is contained in (0 + 1)∗(01)N and it is thus countable and of measure 0
for the uniform measure. Note that if each transition p 1−→ q is replaced by the two transitions
p 1−→ q and p 2−→ q, the set F2(1) is not anymore countable but it is still of measure 0 as a
subset of {0, 1, 2}N.

The following theorem provides a characterization of ambiguity using measure theory.
More precisely, it states that a strongly connected automaton is unambiguous whenever the
measure of sequences labelling two runs is negligible, that is, of measure zero.

▶ Theorem 1. Let A be a strongly connected Büchi automaton and let µ be an irreducible
rational measure such that supp(µ) = fact(A). The following conditions are equivalent.

i) The automaton A is unambiguous.
ii) For each state q of A, µ(F2(q)) = 0.
iii) There is a state q of A such that µ(F2(q)) = 0.

The equality supp(µ) = fact(A) is called the full-support condition in [7] because the
inclusion supp(µ) ⊆ fact(A) is implicit in [7]. The irreducibility of the measure ensures that
it does not put too much weight on too small sets (See example after Proposition 2). The
measure used to quantify this ambiguity must also be compatible with the automaton. More
precisely, its support must be equal to the set of finite words labelling at least one run in the
automaton. If this condition is not fulfilled, the result may not hold as it is shown by the
following two examples below.

We first explain, given a strongly connected automaton A, how to construct an irreducible
measure µ such that equality supp(µ) = fact(A) holds. Informally, the constructions consists
in assigning positive weights to states and transitions of A such that the following two
conditions are satisfied. The weights of the states must sum up to 1 (this is a distribution)
and for each state q, the weights of the transitions outgoing from q must sum up to 1.
Assigning weights to states is the same as defining a stochastic Q-vector π with positive
entries. Assigning weights to transitions is the same as defining a Q × Q-matrix ν(a) for each
symbol a ∈ A such that the matrix

∑
a∈A ν(a) is stochastic and such that for each states

p, q and each symbol a, the (p, q) entry of ν(a) is positive if and only if p a−→ q is a transition
of A. The measure given by the representation ⟨π, ν,1⟩ is then a rational and irreducible
measure such that supp(µ) = fact(A). It is irreducible because the automaton A is strongly
connected and each transition gets a positive weight. It satisfies supp(µ) = fact(A) because
weights of states and transition are all positive. Note that not all compatible measures can
be obtained that way.

Consider again the third automaton pictured in Figure 2. Let µ be the probability measure
putting weight 1/2 on each of the sequences (01)N and (10)N and zero everywhere else. More
formally, it is defined µ((01)N) = µ((10)N) = 1/2 and µ({0, 1}N \ {(01)N, (10)N}) = 0. The
measure µ(F2(1)) = 1/2 is non-zero although the automaton is unambiguous because the
support (01)∗ + (10)∗ of this measure µ is strictly contained in the set of words labelling a
run in this automaton. This latter set is actually the set {0, 1}∗ of all finite words over {0, 1}.

1 20
1
0

0

Figure 3 An ambiguous automaton accepting (0 + 10)N.
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Consider the automaton pictured in Figure 3. It accepts the set X of sequences with no
consecutive 1s. It is ambiguous because the word 00 is the label of the two runs 2 0−→ 1 0−→ 1
and 2 0−→ 2 0−→ 1. The uniform measure µ(X) is zero. Therefore, both numbers µ(F2(1))
and µ(F2(2)) are zero although the automaton is ambiguous. This comes from the fact that
the support {0, 1}∗ of the uniform measure strictly contains the set fact(X). This latter set
is the set (0 + 10)∗(1 + ε) of finite words with no consecutive 1s.

4 Reduction to closed sets

The purpose of this section is to show that the measure µ(X) of a rational set of sequences
is closely related to the measure µ(X) of its closure as long as the measure µ is compatible
with X. The main result of this section is the following proposition which is used in the
proof of Theorem 1. The rest of the section is devoted to the proof of the proposition.

▶ Proposition 2. Let A be a strongly connected Büchi automaton, q be a state of A and w

be a word in P(q). Let µ be an irreducible rational measure such that supp(µ) = fact(A).
Then µ(wF(q)) = µ(wF(q)).

The following example shows that the irreducibility assumption of the measure is indeed
necessary. Consider the measure given by the weighted automaton pictured in Figure 4.

1 2
0: 1

3

1: 1
3

0: 1
3 0:1

Figure 4 A weighted automaton defining a non-irreducible measure.

It realizes the measure already considered at the end of Section 2.1. This measure µ is
equivalently defined by µ(w) = (1, 0)ν(w)1 for each finite word w where the morphism ν

from {0, 1}∗ into 2 × 2-matrices is given by

ν(0) = 1
3

(
1 1
0 3

)
and ν(1) = 1

3

(
1 0
0 0

)
.

The weight of a word w1 ending with a 1 is 3−|w|−1. Therefore, the sum of these weights
when w ranges over all words of length k over the alphabet {0, 1} is given by

∑
|w|=k

µ(w1) = 2k

3k+1 and
∑

|w|⩾n

µ(w1) =
∑
k⩾n

2k

3k+1 = 2n

3n

Let X = (0∗1)N be the set of sequences having infinitely many occurrences of the symbol 1.
This set is equal to F(1) in the leftmost automaton pictured in Figure 2. Since X is
contained in the union

⋃
|w|⩾n w1{0, 1}N for each integer n ⩾ 0, the measure of X satisfies

µ(X) ⩽ 2n/3n for each integer n ⩾ 0. This proves that the measure of X is 0 although the
measure of its closure X = {0, 1}N is 1.

If A is an automaton and P ⊆ Q is a subset of its state set Q, we let P · w denote the
subset P ′ ⊆ Q defined by P ′ = {q : ∃p ∈ P p w−→ q}. If P is a singleton set {q}, we write
q · w for {q} · w. By a slight abuse of notation, we also write q · w = p for {q} · w = {p}. If A
is deterministic, q · w is either the empty set or a singleton set.

The following easy lemma states that, in each strongly connected automaton, there exists
a run using all transitions.

FSTTCS 2022



34:8 Ambiguity Through the Lens of Measure Theory

▶ Lemma 3. Let A be a strongly connected deterministic automaton. There exists a finite
word w such that:

i) there exists a state q such that q · w is non-empty,
ii) for each state q of A, if q · w is non-empty, each transition of A occurs in the run

q w−→ q · w.

Let ⟨π, ν,1⟩ be the representation of a rational measure µ. Its support supp(ν) is defined
by supp(ν) = {w : ν(w) ̸= 0}. It obviously satisfies supp(µ) ⊆ supp(ν). This inclusion can
be strict as shown by the following example but it becomes an equality as soon as supp(µ) is
factorial, that is closed under taking factor.

Let µ be the measure defined by µ(0w) = 0 and µ(1w) = 2−|w| for each word w in
{0, 1}∗. It is rational because it is defined by µ(w) = (0, 1)ν(w) ( 1

1 ) where the morphism ν

from {0, 1}∗ into 2 × 2-matrices is given by ν(0) = 1
2 ( 1 1

0 0 ) and ν(1) = 1
2 ( 0 0

1 1 ). The
support of this measure µ is supp(µ) = 1{0, 1}∗ but the support of the morphism ν is
supp(ν) = {w ∈ {0, 1}∗ : ν(w) ̸= 0} is {0, 1}∗. The support of a rational measure and the
support of one of its representations might not coincide in general but they do coincide as
soon as supp(µ) is factorial as stated by the following lemma.

▶ Lemma 4. Let µ be an irreducible rational measure and let ⟨π, ν,1⟩ be an irreducible
representation of µ. Then supp(µ) is factorial if and only if the equality supp(µ) = supp(ν)
holds.

In the rest of the paper, the support of each measure is a factorial set and both supports
coincide.

The following lemma states the of sequences having finitely many occurrence of some finite
word has zero measure. The result is well-known when the measure is a Markov measure
and the word is just a symbol [8, Thm 3.3]. The irreducibility and rationality of the measure
are both crucial.

▶ Lemma 5. Let µ be an irreducible rational measure such that supp(µ) is factorial and let
w be a word in supp(µ). Then

µ({x : |x|w < ∞}) = 0.

where |x|w is the number of occurrences of w in x.

We let ∗−→ denote the accessibility relation in an automaton. We write p ∗−→ q if there is a
run from p to q. If P and P ′ are two subsets of states of an automaton, we write P ∗−→ P ′

whenever there is a run from a state in P to a state in P ′. This relation is not transitive in
general but it is when each considered subset is contained in a strongly connected component.
The following lemma gives a property of Muller automata accepting the same set as a strongly
connected Büchi automaton.

▶ Lemma 6. Let X ⊆ AN be a non-empty set of sequences accepted by a strongly connected
Büchi automaton and let w ∈ A∗ be a finite word. Let A be a Muller automaton accepting the
set wX and let T be its table of accepting subsets of states. Let F be an element of T such
that F ′ ∈ T and F ∗−→ F ′ imply F ′ ∗−→ F . Then the strongly connected component containing
F also belongs to the table T .

A subset P of states of a Muller automaton A is called essential if there is an infinite
run in A such that P is the set of states that occur infinitely often along this run.
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Proof of Proposition 2. The proof of the proposition is reduced to proving that µ(wF(q) \
wF(q)) = 0. We consider a Muller automaton accepting wF(q) with a table T . Note that
a Muller automaton accepting wF(q) is obtained by replacing the table T by the table T
which contains each essential set of states which can access an essential set of states in T .
The difference set wF(q) \ wF(q) is thus accepted by the same Muller automaton with the
table T \ T . By Lemma 6, each maximal essential state is in the table T . By combining
Lemmas 3 and 5, it is clear that µ(wF(q) \ wF(q)) = 0. ◀

5 Proof for closed sets

Thanks to Proposition 2, it is sufficient to study closed sets. As the initial states of the
automaton are not relevant for the statement of Theorem 1, we consider automata where all
states are initial and final, that is, I = F = Q. It turns out that these automata accept shift
spaces that we now introduce.

The shift map is the function σ which maps each sequence (xi)i⩾1 to the sequence
(xi+1)i⩾1 obtained by removing its first element. A shift space is a subset X of AN which is
closed for the usual product topology and such that σ(X) = X. A classical example of a
shift space is the golden mean shift: it is the set {0, 10}N of sequences with no consecutive
1s. We refer the reader to [18] for a complete introduction to shift spaces.

If a shift space is accepted by some trim Büchi automaton, it is also accepted by the same
automaton in which each state is made initial and final. A shift space is called sofic if it is
accepted by some automaton. A sofic shift is called irreducible if it is accepted by a strongly
connected Büchi automaton. It is well-known [18] that each shift space is characterized by
the set of factors of its sequences. Let us recall that fact(X) denotes the set of factors of a
shift space X.

There is a unique, up to isomorphism, deterministic automaton accepting an irreducible
sofic shift with the minimal number of states [18, Thm 3.3.18]. This minimal automaton is
also referred to as either its Shannon cover or its Fischer cover. It can be obtained from
any automaton accepting the shift space via determinizing and state-minimizing algorithms,
e.g., [18, pp. 92], [16, pp. 68]. The minimal automaton of the golden mean shift is the
leftmost automaton pictured in Figure 5. A synchronizing word of a strongly connected
automaton is a word w such that there is a unique state q such that w ∈ P(q). The word 1
is a synchronizing word of both automata pictured in Figure 5. The minimal automaton of a
sofic shift has always at least one synchronizing word [18, Prop. 3.3.16].

1 20
1
0

1 20
0
1

Figure 5 Two automata accepting the golden mean shift.

The next lemma states in particular (for w = ε) that the future of each state of the
minimal automaton of a sofic shift has a positive measure. The

▶ Lemma 7. Let r be a state of the minimal automaton of an irreducible sofic shift space X

and let w be a synchronizing word such that w ∈ P(r). Let µ be a rational measure such that
supp(µ) = fact(X). Then µ(wF(r)) = µ(wAN) > 0.

The following lemma establishes a link between any automaton accepting a sofic system
and its minimal automaton. It allows us to transfer the result of the previous lemma to
non-minimal automata.
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▶ Lemma 8. Let A be a strongly connected automaton accepting an irreducible sofic shift
space X. Let w be a word and q be a state of A such that w ∈ P(q). There exists a state r

of the minimal automaton of X and a synchronizing word v of this minimal automaton such
that wv ∈ P(r) and F(q) ∩ vAN = vF(r).

Combining Lemmas 7 and 8 yields the following result.

▶ Lemma 9. Let A be an strongly connected automaton accepting an irreducible sofic shift X.
Let q be a state of A and let w be a word such that w ∈ P(q). Let µ be an irreducible rational
measure such that supp(µ) = fact(X). Then µ(wF(q)) > 0.

Proof. By Lemma 8, there exists a state r of the minimal automaton of X and a synchronizing
word v such that wv ∈ P(r) and F(q)∩vAN = vF(r). This implies that wF(q)∩wvAN = wvF(r).
By Lemma 7, the measure µ(wvF(r)) is positive and thus µ(wF(q)) > 0. ◀

It is a very classical result that not all regular sets of sequences are accepted by deter-
ministic Büchi automata. This is the reason why Muller automata with a more involved
acceptance condition were introduced. Landweber’s theorem states that a regular set of
sequences is accepted by a deterministic Büchi automaton if and only it is a Gδ-set (that is
Π2

0) [19, Thm I.9.9]. This implies in particular that regular and closed sets1 are accepted by
deterministic Büchi automata. Regular and closed sets are actually accepted by deterministic
Büchi automata in which each state is final [19, Prop III.3.7].

Lemma 9 states that the future of a state in automaton with all states final has a positive
measure. The following provides a converse. It states that a closed set F with positive
measure contains the future of a state of the minimal automaton, prefixed by some word w.
The prefix w is really needed because the closed set F can be arbitrarily small.

▶ Lemma 10. Let X be a sofic shift space and let µ be an irreducible rational measure such
that supp(µ) = fact(X). Let F be a regular and closed set contained in X. If µ(F ) > 0,
there exists a word w and a state r of the minimal automaton of X such that w ∈ P(r) and
wF(r) ⊆ F .

Before proceeding to the proof of the lemma, we show that even in the case of the full
shift, that is X = AN, both hypothesis of being regular and closed are necessary. Since the
minimal automaton of the full shift has a single state r satisfying F(r) = AN, the lemma can
be, in that case, rephrased as follows. If µ(F ) > 0 where µ is the uniform measure, then
there exists a word w such that wAN ⊆ F .

Being regular is of course not sufficient because the set (0∗1)N of sequences having
infinitely many occurrences of 1 is regular and has measure 1 but does not contain any set of
the form wAN. Being closed is also not sufficient as it is shown by the following example.
Let X be the set of sequences such that none of their non-empty prefixes of even length is a
palindrome. The complement of X is equal to the following union⋃

n⩾1
Zn where Zn =

⋃
|w|=n

ww̃AN

and where w̃ stands for the reverse of w. Suppose for instance that the alphabet is A =
{0, 1}. The measure of Zn is equal 2−n because there are 2n words of length n and
the measure of each cylinder ww̃AN is 2−2n. Furthermore, the set Z1 ∪ Z2 is equal to

1 Not to be confused with regular closed sets which are equal to the closure of their interior [13, Chap. 4].
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00AN ∪ 11AN ∪ 0110AN ∪ 1001AN whose measure is 5/8. This shows that the measure of the
complement of X is bounded by 5/8 +

∑
n⩾3 2−n = 7/8 (Note that this is really an upper

bound as the sets Zn are not pairwise disjoint). Therefore X has a positive measure but it
does not contain any cylinder. Indeed, in each cylinder wAN, the cylinder ww̃AN is out of X.

The following result is trivially true when the measure µ is shift invariant because
µ(F ) =

∑
|w|=m µ(wF ) but it does not hold in general.

▶ Lemma 11. Let X be a sofic shift space and let µ be an irreducible rational measure such
that supp(µ) = fact(X). Let F be a regular and closed set contained in X. If µ(F ) = 0, then
µ(wF ) = 0 for each finite word w.

Proof. We prove that µ(wF ) > 0 implies µ(F ) > 0. Suppose that µ(wF ) > 0. Since wF is
also regular and closed, there exists, by Lemma 10, a word u and a state r of the minimal
automaton of X such that u ∈ P(r) and uF(r) ⊆ wF . This latter inclusion implies that
either u is a prefix of w or w is a prefix of u. In the first case, that is w = uv for some
word v, the inclusion is equivalent to F(r) ⊆ vF . Let s be state such that r v−→ s. Then vF(s)
is contained in F(r) and thus F(s) ⊆ F . By Lemma 9, µ(F(s)) > 0 and thus µ(F ) > 0. In
the second case, that is u = wv, for some v, the inclusion is equivalent to vF(r) ⊆ F . Again
by Lemma 9, µ(vF(r)) > 0 and thus µ(F ) > 0. ◀

The following lemma is an extension to pairs of futures of states of the result of Lemma 7
for one state.

▶ Lemma 12. Let A be strongly connected automaton accepting a shift space X. Let µ be an
irreducible rational measure such that supp(µ) = fact(X). Let q and q′ two states of A such
that µ(F(q) ∩ F(q′)) > 0. Then there exists a word w such that F(q) ∩ wAN = F(q′) ∩ wAN.

Proof. We claim that there exists a word w and a state r of the minimal automaton of X

such that w ∈ P(r) and

F(q) ∩ wAN = F(q′) ∩ wAN = wF(r).

Let F be the closed set F(q) ∩ F(q′). By Lemma 10 applied to F , there exists a word u

and a state s of the minimal automaton of X such that u ∈ P(s) and

uF(s) ⊆ F(q)
uF(s) ⊆ F(q′)

Let v be a synchronizing word of the minimal automaton of X such that s · v is not empty.
Let w be the word uv and let r be the state s · v. Since u ∈ P(s) and r = s · v, w ∈ P(r).
We claim that F(q) ∩ wAN = wF(r). Suppose first that x belongs to F(q) ∩ wAN. The
sequence x is then equal to wx′ for some sequence x′ and it is the label of a run in the
minimal automaton of X. Since w = uv and v is synchronizing, the sequence x′ must belong
to F(r). Suppose conversely that x belongs to wF(r). It is then equal to uvx′ for some x′ in
F(r). Since r = s · v, vx′ ∈ F(s). It follows from the inclusion uF(s) ⊆ F(q) that x belongs
to F(q). This completes the proof of the equality F(q) ∩ wAN = wF(r). By symmetry, the
equality F(q′) ∩ wAN = wF(r) also holds and the proof is completed. ◀

This last lemma establishes a link between unambiguity of an automaton and measures
of futures of its states. More precisely, it states that the future of two states that can be
reached from the same state and reading the same word have an intersection of zero measure.
Its proof is more combinatorial than previous ones.
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▶ Lemma 13. Let A be an unambiguous strongly connected automaton accepting a shift
space X. Let µ be an irreducible rational measure such that supp(µ) = fact(X). If there are
two runs p u−→ q and p u−→ q′, with q ̸= q′, then µ(F(q) ∩ F(q′)) = 0.

Proof. Suppose by contradiction that µ(F(q) ∩ F(q′)) > 0. There exists, by Lemma 12, a
word v such that F(q)∩vAN = F(q′)∩vAN. Let q ·v (respectively q′ ·v) be the set {q1, . . . , qr}
(respectively {q′

1, . . . , q′
r′}). Since F(q) ∩ vAN = F(q′) ∩ vAN, the equality F(q1) ∪ · · · ∪ F(qr) =

F(q′
1) ∪ · · · ∪ F(q′

r′) holds. Since the automaton is strongly connected, there is a run q1
w−→ p

from q1 to p. Combining this run with the run p u−→ q v−→ q1 yields the cyclic run q1
wuv−−−→ q1.

Since F(q1) ∪ · · · ∪ F(qr) = F(q′
1) ∪ · · · ∪ F(q′

r′), the sequence (wuv)N = wuvwuv · · · belongs
to a set F(q′

i) for some 1 ⩽ i ⩽ r′. By symmetry, it can be assumed that (wuv)N ∈ F(q′
1).

There exists then a run starting from q′
1 with label (wuv)N. This run can be decomposed

q′
1

wuv−−−→ p1
wuv−−−→ p2

wuv−−−→ p3 · · · .

Since there are finitely many states, there are two integers k, ℓ ⩾ 1 such that pk = pk+ℓ.
There are then the following two runs from p to pk = pk+ℓ with the same label (uvw)k+ℓuv.

p
u−→ q

v−→ q1
(wuv)k−1

−−−−−−→ q1
w−→ p

uv−→ q′
1

(wuv)ℓ

−−−−→ pk

p
u−→ q′ v−→ q′

1
(wuv)k+ℓ

−−−−−−→ pk+ℓ

This is a contradiction with the fact that A is unambiguous. ◀

Proof of Theorem 1. We first prove that (i) implies (ii). suppose that the automaton A is
unambiguous. We show that µ(F2(p)) = 0 for each state p. We start by a decomposition of
the set F2(p). Let x = a1a2a3 · · · be a sequence in F2(p) and let ρ and ρ′ be the two different
runs labelled by x. Suppose that

ρ = q0
a1−→ q1

a2−→ q2
a3−→ q3 · · ·

ρ′ = q′
0

a1−→ q′
1

a2−→ q′
2

a3−→ q′
3 · · ·

where q0 = q′
0 = p. Let n be the least integer such that qn ̸= q′

n. Let a be the symbol an,
w be the prefix a1 · · · an−1 and x′ be the tail an+1an+2an+3 · · · . The sequence x is equal to
wax′ and there is a finite run q0

w−→ qn−1, two transitions qn−1
a−→ qn and qn−1

a−→ q′
n, and

the tail x′ belongs to the intersection F(qn) ∩ F(q′
n). We have actually proved the following

equality expressing F2(p) in term of a union of intersections of sets F(q).

F2(p) =
⋃

p
w−→p′

p′ a−→q

p′ a−→q′

wa(F(q) ∩ F(q′))

Since the union is countable, it suffices to prove that if there are two transitions p a−→ q and
p a−→ q′ with q ̸= q′, then µ(F(q) ∩ F(q′)) = 0. Lemma 13 and Lemma 11 allow us to conclude.

The fact that (ii) implies (iii) is clear because the set F2(q) is contained in F2(q) for each
state q of A.

We now prove that (iii) implies (i). Let q be state of A and suppose that there are two
different runs from state p to state r with the same label w. Let v the label of a run from q

to p. This shows that vwF(r) ⊆ F2(q). Since vw ∈ P(r), the measure µ(vwF(r)) satisfies
µ(vwF(r)) = µ(vwF(r)) by Proposition 2. The measure µ(vwF(r)) satisfies µ(vwF(r)) > 0
by Lemma 10 and thus µ(F2(q)) > 0. This completes the proof of this implication. ◀
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Conclusion

As a conclusion, we would like the emphasize the difficulty of extending the result to non
strongly connected automata. Consider the two automata pictured in Figure 6. The leftmost
one in unambiguous where as the rightmost one is obviously ambiguous for finite words.
However, F2(0) = F2(0) = 0∗1N and F2(q) = ∅ hold for q ̸= 0 in both automata. The only
way to distinguish one automaton from the other one is to have two different measures. In
order to have µ1(F2(0)) = 0 for the leftmost automaton, the measure µ1 should put all the
weight on 0N: µ1(0N) = 1. In order to have µ2(F2(0)) > 0 for the rightmost automaton, the
measure µ2 should put some weight on a sequence 0n1N for some integer n ⩾ 0. It is not
clear why the measures should be different because the set 0∗1∗ of finite words labelling some
run is the same in both automata.

0
1

2

0
1

1

1

1
0

1

2
3

0
1

1

1

1
1

Figure 6 Two non strongly connected automata.
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