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Abstract
In a two-player zero-sum graph game, the players move a token throughout the graph to produce
an infinite play, which determines the winner of the game. Bidding games are graph games in
which in each turn, an auction (bidding) determines which player moves the token: the players
have budgets, and in each turn, both players simultaneously submit bids that do not exceed their
available budgets, the higher bidder moves the token, and pays the bid to the lower bidder. We
distinguish between continuous- and discrete-bidding games. In the latter, the granularity of the
players’ bids is restricted, e.g., bids must be given in cents. Continuous-bidding games are well
understood, however, from a practical standpoint, discrete-bidding games are more appealing.

In this paper we focus on discrete-bidding games. We study the problem of finding threshold
budgets; namely, a necessary and sufficient initial budget for winning the game. Previously, the
properties of threshold budgets were only studied for reachability games. For parity discrete-bidding
games, thresholds were known to exist, but their structure was not understood. We describe two
algorithms for finding threshold budgets in parity discrete-bidding games. The first algorithm is a
fixed-point algorithm, and it reveals the structure of the threshold budgets in these games. Second,
we show that the problem of finding threshold budgets is in NP and coNP for parity discrete-bidding
games. Previously, only exponential-time algorithms where known for reachability and parity
objectives. A corollary of this proof is a construction of strategies that use polynomial-size memory.
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1 Introduction

Two-player zero-sum graph games are a central class of games. A graph game proceeds as
follows. A token is placed on a vertex and the players move it throughout the graph to
produce an infinite play, which determines the winner of the game. The central algorithmic
problem in graph games is to identify the winner and to construct winning strategies. One
key application of graph games is reactive synthesis [21], in which the goal is to synthesize a
reactive system that satisfies a given specification no matter how the environment behaves.

Two orthogonal classifications of graphs games are according to the mode of moving the
token and according to the players’ objectives. For the latter, we focus on two canonical
qualitative objectives. In reachability games, there is a set of target vertices and Player 1
wins if a target vertex is reached. In parity games, each vertex is labeled with a parity
index and an infinite path is winning for Player 1 iff the highest parity index that is visited
infinitely often is odd. The simplest and most studied mode of moving is turn-based: the
players alternate turns in moving the token.
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30:2 Computing Threshold Budgets in Discrete-Bidding Games

We study bidding graph games [17, 16], which use the following mode of moving: both
players have budgets, and in each turn, an auction (bidding) determines which player moves
the token. Concretely, we focus on Richman bidding (named after David Richman): in each
turn, both players simultaneously submit bids that do not exceed their available budget, the
higher bidder moves the token, and pays his bid to the lower bidder. Note that the sum
of budgets stays constant throughout the game. We distinguish between continuous- and
discrete-bidding, where in the latter, the granularity of the players’ bids is restricted. The
central questions in bidding games revolve around the threshold budgets, which is a necessary
and sufficient initial budget for winning the game.

Continuous-bidding games. Bidding games were largely studied under continuous bidding.
We briefly survey the relevant literature. Bidding games were introduced in [17, 16]. The
objective that was considered is a variant of reachability, which we call double reachability:
each player has a target and a player wins if his target is reached (unlike reachability games
in which Player 2’s goal is to prevent Player 1 from reaching his target). It was shown that
in continuous-bidding games, a target is necessarily reached, thus double-reachability games
essentially coincide with reachability games under continuous-bidding.

Threshold budgets were shown to exist; namely, each vertex v has a value Th(v) such
that if Player 1’s budget is strictly greater than Th(v), he wins the game from v, and if his
budget is strictly less than Th(v), Player 2 wins the game. Moreover, it was shown that the
threshold function Th is a unique function that satisfies the following property, which we call
the average property. Suppose that the sum of budgets is 1, and ti is Player i’s target, for
i ∈ {1, 2}. Then, Th assigns a value in [0, 1] to each vertex such that at the “end points”,
we have Th(t1) = 0 and Th(t2) = 1, and the threshold at every other vertex is the average
of two of its neighbors. Uniqueness implies that the problem of finding threshold budgets1

is in NP and coNP. Moreover, an intriguing equivalence was observed between reachability
continuous-bidding games and a class of stochastic game [13] called random-turn games [20].
Intricate equivalences between mean-payoff continuous-bidding games and random-turn
games have been shown in [6, 7, 8, 9] (see also [5]).

Parity continuous-bidding games were studied in [6]. The following key property was
identified. Consider a strongly-connected parity continuous-bidding game G. If the maximal
parity index in G is odd, then Player 1 wins with any positive initial budget, i.e., the
thresholds in G are all 0. Dually, if the maximal parity index in G is even, then the thresholds
are all 1. This property gives rise to a simple reduction from parity bidding games to double-
reachability bidding games: roughly, a player’s goal is to reach a bottom strongly-connected
component in which he can win with any positive initial budget.

Discrete-bidding games. Discrete-bidding games are similar to continuous-bidding games
only that we fix the sum of the budgets to be k ∈ N and bids are restricted to be integers.
Ties in biddings need to be handled explicitly. We focus on the tie-breaking mechanism that
was defined in [14]: one of the players has the advantage and when a tie occurs, the player
with the advantage chooses between (1) use the advantage to win the bidding and pass it to
the other player, or (2) keep the advantage and let the other player win. Other tie-breaking
mechanisms and the properties that they lead to were considered in [1].

1 Stated as a decision problem: given a game and a vertex v, decide whether Th(v) ≥ 0.5.
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The motivation to study discrete-bidding games is practical: in most applications, the
assumption that bids can have arbitrary granularity is unrealistic. We point out that the
results in continuous-bidding games, particularly those on infinite-duration games, do in fact
develop strategies that bid arbitrarily small bids. It is highly questionable whether such
strategies would be useful in practice.

Bidding games model ongoing and stateful auctions. Such auctions arise in various
domains. An immediate example is auctions for online advertisements [19]. As another
example, in blockchain technology, miners accept transaction fees, which can be thought of as
bids, and prioritize transactions based on them. Verification against attacks is a well-studied
problem [12, 4]. Bidding games have been applied as a mechanism for fair allocation of
resources [18]. In addition, researchers have studied training of agents that accept “advice”
from a “teacher”, where the advice is equipped with a “bid” that represents its importance [3].
Finally, recreation bidding games have been studied, e.g., bidding chess [11]. In all of these
applications, the granularity of the bids is restricted.

Previous results. Threshold budgets and their properties were previously only studied for
reachability discrete-bidding games [14]. In these games, discrete versions of the properties
of continuous-bidding games were observed; namely, discrete versions of threshold budgets
exist, they satisfy a discrete version of the average property, and, similar to continuous
bidding, winning strategies are constructed in which a player’s bid is derived from the
threshold budgets. A value-iteration algorithm was developed to compute the thresholds
with a worst-case exponential running time, when k is given in binary.

Parity discrete-bidding games were shown to be determined in [1], but the structure of the
threshold budgets was not understood. In particular, threshold budgets were not known to
have the average property. The previously known algorithm to solve parity discrete-bidding
games is naive. Construct an arena based on the exponentially-sized “configuration graph”
that corresponds to a bidding game. Determinacy implies that it suffices to solve a turn-
based game rather than a concurrent game on this arena. The essence of bidding games is
completely lost in this construction; namely, the structure given by the threshold budgets is
not used and the bids made by winning strategies have no connection with the thresholds. To
make things worse, unlike reachability games, the properties of threshold budgets in parity
discrete- and continuous-bidding games are known to differ significantly; namely, there are
strongly-connected games in which the maximal parity index is odd and Player 1 loses with
any initial budget, and no reduction is known to reachability discrete-bidding games.

Our results. We develop two complementary algorithms for computing threshold budgets
in parity discrete-bidding games. Our first algorithm is a fixed-point algorithm. It is based
on repeated calls to an algorithm to solve reachability discrete-bidding games in combination
with a recursion over the parity indices, similar in spirit to Zielonka [22] and Kupferman
and Vardi’s [15] algorithms to solve turn-based parity games. An important corollary from
the algorithm is that threshold budgets in parity discrete-bidding games satisfy the average
property. The worst-case running time of the algorithm is exponential.

Second, we show that the problem of finding threshold budgets in parity discrete-bidding
gamesis in NP and coNP. The bound follows to reachability discrete-bidding games for which
only an exponential-time algorithm was known. We briefly describe the idea of our proof.
We first show that, interestingly, unlike continuous-bidding games, functions that satisfy the
discrete average property are not unique, but by definition the threshold budgets are. Thus,
one cannot simply guess a function and verify that it satisfies the average property. We
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overcome this challenge as follows. Given a guess of function T , we first verify that it satisfies
the average property. Then, we construct a partial bidding strategy fT for Player 1 based on
T , and construct a turn-based parity game in which a Player 1 strategy corresponds to a
bidding strategy f ′ that agrees with fT and a Player 2 strategy corresponds to a response
to f ′. We show that Player 1 wins the turn-based game iff T coincides with the threshold
budgets. As a corollary, we show the existence of winning strategies that use memory that is
polynomial in the size of the arena. Previously, only strategies that use exponential-sized
memory were known.

2 Preliminaries

2.1 Concurrent games

We define the formal semantics of bidding games via two-player concurrent games [2].
Intuitively, a concurrent game proceeds as follows. A token is placed on a vertex of a graph.
In each turn, both players concurrently select actions, and their joint actions determine
the next position of the token. The outcome of a game is an infinite path. A game is
accompanied by an objective, which specifies which plays are winning for Player 1. We focus
on reachability and parity objectives, which we define later in this section.

Formally, a concurrent game is played on an arena ⟨A, V, λ, δ⟩, where A is a finite non-
empty set of actions, V is a finite non-empty set of vertices, the function λ : V × {1, 2} →
2A \ {∅} specifies the allowed actions for Player i in vertex v, and the transition function
is δ : V × A × A → V . Suppose that the token is placed on a vertex v and, for i ∈ {1, 2},
Player i chooses action ai ∈ λ(v). Then, the token moves to δ(v, a1, a2). For u, v ∈ V , we call
u a neighbor of v if there is a pair of actions ⟨a1, a2⟩ ∈ λ(v, 1)× λ(v, 2) with u = δ(v, a1, a2).
We denote the neighbors of v by N(v) ⊆ V .

A (finite) history is a sequence ⟨v0, a1
0, a2

0⟩, . . . , ⟨vn−1, a1
n−1, a2

n−1⟩, vn ∈ (V ×A×A)∗ · V
such that, for each 0 ≤ i < n, we have vi+1 = δ(vi, a1

i , a2
i ). A strategy is a function from

histories to actions, thus it is of the form σ : (V ×A×A)∗ · V → A. We restrict attention to
legal strategies; namely, strategies that for each history π ∈ (V ×A×A)∗ · V that ends in
v ∈ V , choose an action in λ(v, i), for i ∈ {1, 2}. A memoryless strategy is a strategy that,
for every vertex v, assigns the same action to every history that ends in v.

Two strategies σ1 and σ2 for the two players and an initial vertex v0, give rise to a unique
play, denoted play(v0, σ1, σ2), which is a sequence in (V ×A×A)ω and is defined inductively
as follows. The first element of play(v0, σ1, σ2) is v0. Suppose that the prefix of length j ≥ 1
of play(v0, σ1, σ2) is defined to be πj · vj , where πj ∈ (V × A × A)∗. Then, at turn j, for
i ∈ {1, 2}, Player i takes action aj

i = σi(πj · vj), the next vertex is vj+1 = δ(vj , aj
1, aj

2),
and we define πj+1 = πj · ⟨vj , aj

1, aj
2⟩ · vj+1. The path that corresponds to play(v0, σ1, σ2) is

v0, v1, . . ..
Turn-based games are a special case of concurrent games in which the vertices are

partitioned between the two players. When the token is placed on a vertex v, the player who
controls v decides how to move the token. Formally, a vertex v is controlled by Player 1 if for
every action a1 ∈ A, there is a vertex v′ such that no matter Player 2 takes which action
a2 ∈ A, we have v′ = δ(v, a1, a2). The definition is dual for Player 2. Note that a concurrent
game that is not turn based might still contain some vertices that are controlled by one of
the players.
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2.2 Bidding games
A discrete-bidding game is played on an arena G = ⟨V, E, k⟩, where V is a set of vertices,
E ⊆ V × V is a set of directed edges, and k ∈ N is the sum of the players’ budgets. For a
vertex v ∈ V , we use N(v) to denote its neighbors, namely N(v) = {u : E(v, u)}. The size of
the arena is O(|V |+ |E|+ log(k)).

Intuitively, in each turn, both players simultaneously choose a bid that does not exceed
their available budgets. The higher bidder moves the token and pays the other player. Note
that the sum of budgets stays constant throughout the game. Tie-breaking needs to be
handled explicitly in discrete-bidding games as it can affect the properties of the game [1].
In this paper, we focus on the tie-breaking mechanism that was defined in [14]: exactly one
of the players holds the advantage at every turn, and when a tie occurs, the player with the
advantage chooses between (1) win the bidding and pass the advantage to the other player,
or (2) let the other player win the bidding and keep the advantage.

Following [14], we denote the advantage with ∗. Let N denote the non-negative integers
and N∗ denote the set {0, 0∗, 1, 1∗, 2, 2∗, . . .}. Throughout the paper, we use k to denote the
sum of budgets, and use [k] to denote the set {0, 0∗, . . . , k, k∗}. Intuitively, when saying that
Player 1 has a budget of m∗ ∈ [k], we mean that Player 1 can choose a bid in {0, . . . , m}
and that he has the advantage. Implicitly, we mean that Player 2’s budget is k −m and she
does not have the advantage.

We define an order < on N∗ by 0 < 0∗ < 1 < 1∗ < . . .. Let m ∈ N∗. We denote by |m|
the integer part of m, i.e., |m∗| = m. We define operators ⊕ and ⊖ over N∗: x∗⊕y = (x+y)∗,
x ⊕ y = x + y for x, y ∈ N. Intuitively, we use ⊕ to keep track of the budget of a player
when they loses a biding to the other player, and as a result their budget gets increased by
the other player’s bid: therefore, in general x∗ ⊕ y∗ is not well-defined. The definition of
⊖ is almost dual, we use the notation to keep track of the budget of a player when they
wins a bidding: x ⊖ y = x − y, x∗ ⊖ y = (x − y)∗, and in particular x∗ ⊖ y∗ = x − y. For
B ∈ N∗, of exceptional use is B ⊕ 0∗ and B ⊖ 0∗, which respectively denote the successor
and predecessor of B in N∗ according to <.

Consider an arena G = ⟨V, E, k⟩ of a bidding game. We describe a concurrent game C
that corresponds to it. The vertices in C consist of configuration vertices C = V × [k] and
intermediate vertices {ic,b : c ∈ C, b ≤ k∗}. A vertex c = ⟨v, B⟩ ∈ (V × [k]) represents the
configuration of the bidding game in which the token is placed on vertex v ∈ V , Player 1’s
budget is B, and Player 2’s budget is k∗ ⊖ B. Consider a configuration vertex c = ⟨v, B⟩.
The available actions for a player in c represent the legal bids and the vertex to move to
upon winning. Thus, the available actions for Player 1 are {0, . . . , |B|} × N(v) and the
available actions for Player 2 are {0, . . . , k− |B|} ×N(v). Each intermediate vertex is owned
by a single player, so we only specify their outgoing transitions below. We describe the
transition function. Suppose that the token is placed on a configuration vertex c = ⟨v, B⟩
and Player i chooses action ⟨bi, ui⟩, for i ∈ {1, 2}. If b1 > b2, Player 1 wins the bidding and
the game proceeds to ⟨u1, B1 ⊖ b1⟩. The definition for b2 > b1 is dual. We address the case
of a bidding tie, namely the case that b1 = b2 = b. Assume that Player 1 has the advantage,
i.e., c = ⟨v, B∗

1⟩, and the other case is dual. The game proceeds to an intermediate vertex
ic,b that is controlled by Player 1 and has two outgoing edges. The first edge models Player 1
using the advantage to win the bidding, and directs to the configuration ⟨u1, B1 − b1⟩. The
second edge models Player 1 allowing Player 2 to win the bidding and keeping the advantage,
and it directs to ⟨u2, (B1 + b2)∗⟩. We often say that the player who holds the advantage bids
b∗, and we mean that he bids b and uses the advantage if a tie occurs. Note that the size of
the arena is O(|V | × k), which is exponential in the size of the bidding game.

FSTTCS 2022



30:6 Computing Threshold Budgets in Discrete-Bidding Games

Consider two strategies f and g in C and an initial configuration c = ⟨v, B⟩ We often
abuse notation and refer to τ = play(v, f, g) as the infinite path in G that is obtained by
removing intermediate vertices from π. We use inf(τ) to denote the set of vertices that τ

visits infinitely often.

2.3 Objectives
An objectives in a bidding game specifies the infinite paths that are winning for Player 1.
We consider the following two canonical objectives:

Reachability A game is equipped with a target set T ⊆ V . Player 1, the reachability
player, wins an infinite play iff it visits T .
Parity Each vertex is labeled by a parity index, given by a function p : V → {1, . . . , d},
for d ∈ N. A play τ is winning for Player 1 iff maxv∈inf(τ) p(v) is odd.

In addition, we introduce the following extension of the two objectives above.

▶ Definition 1 (Frugal objectives). Consider an arena ⟨V, E, k⟩. A frugal objective is a set
S ⊆ V of sink states and a function fr : S → [k] which assigns a frugal-target budget to each
sink. Player 1’s frugal objective is satisfied if the game reaches some s ∈ S with Player 1’s
budget at least fr(s). We consider both frugal-reachability and frugal-parity games. Player 1
wins a frugal-reachability game if the frugal objective is satisfied. Note that a reachability
game is a special case of a frugal-reachability game in which fr = 0. A frugal-parity game is
⟨V, E, k, p, S, fr⟩, where p : (V \ S)→ {0, . . . , d}. Player 1 wins a play π if (1) π does not
reach S and satisfies the parity objective, or (2) π reaches S and satisfies the frugal objective.

A winning strategy from a configuration c = ⟨v, B⟩ for Player 1 is a strategy f such that
no matter which strategy g Player 2 chooses, play(c, f, g) is winning for Player 1. We say
that Player 1 wins from c if he has a winning strategy. The definition is dual for Player 2.

3 Threshold Budgets and the Average Property

A key quantity in bidding games is the threshold budget at a vertex, which intuitively
represents the necessary and sufficient initial budget at that vertex for Player 1 to guarantee
winning the game. It is formally defined as follows.

▶ Definition 2 (Threshold budgets). Consider a bidding game G in which the sum of budgets
is k ∈ N. The threshold budget at a vertex v in G, denoted ThG(v), is such that if Player 1’s
budget at v is at least ThG(v) ∈ [k], then Player 1 wins the game from v, and if his budget
is at most ThG(v)⊖ 0∗, then Player 2 wins the game. We refer to the function ThG as the
threshold budgets.

3.1 Reachability continuous-bidding games
The properties of threshold budgets in discrete-bidding games have only been studied for
reachability games [14]. The properties of the threshold budgets and the techniques to prove
them are similar to those used in reachability continuous-bidding games [17, 16]. We thus
first survey the latter.

▶ Definition 3 (Continuous threshold budgets). Normalize the sum of budgets to 1. The
continuous threshold budget at a vertex v is a budget Th(v) ∈ [0, 1] such that if Player 1’s
budget exceeds Th(v), he wins the game from v, and if Player 2’s budget exceeds 1− Th(v),
she wins the game from v.
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We call the objective that was considered in [17, 16] double-reachability. Such a game is
⟨V, E, t1, t2⟩, where for i ∈ {1, 2}, the vertex ti is the target of Player i. The game ends once
one of the targets is reached, and the player whose target is reached is the winner. Every
other vertex has a path to both targets. Even though a priori, it is not implicit that one of
the player always wins in a double reachability games (because the game might not reach
either of the target vertices), here it is explicitly shown that this is not the case [17, 16].

▶ Definition 4 (Continuous average property). Consider a double-reachability continuous-
bidding game G = ⟨V, E, t1, t2⟩ and a function T : V → [0, 1]. We say that T has the
continuous average property if T (t1) = 0 and T (t2) = 1, and for every other v ∈ V \
{t1, t2}, we have T (v) = 0.5 ·

(
T (v−) + T (v+)

)
, where v+ := arg maxu∈N(v) Th(u) and

v− := arg minu∈N(v) Th(v).

We show the main properties of double-reachability continuous-bidding games. The ideas
used in the proof are adapted to the discrete setting in later sections.

▶ Theorem 5 ([17, 16]). Consider a double-reachability continuous-bidding game ⟨V, E, t1, t2⟩.
Continuous threshold budgets exist, and the threshold budgets Th : V → [0, 1] is the unique
function that has the continuous average property.

Proof Sketch. Let Th be a function that satisfies the continuous average property. We prove
that Th(v), for every vertex v, is the continuous threshold budget at v. Uniqueness follows
immediately. We omit the proof of existence of Th.

Suppose that Player 1’s budget at v is Th(v) + ε, for ε > 0. We describe a Player 1
winning strategy. Player 1 maintains the following invariant:

Invariant. When the token is on u ∈ V , Player 1’s budget is strictly greater than Th(u).
The invariant implies that Player 1 does not lose; indeed, it implies that if t2 is reached,

Player 1’s budget is strictly greater than 1, which violates the assumption that the sum of
budgets is 1.

The invariant holds initially, and we show how to maintain it. Suppose that the token
is placed on v ∈ V and Player 1’s budget is B = Th(v) + ε. Recall that v+, v− ∈ N(v)
are respectively the neighbors of v with the maximal and minimal threshold budgets. Let
b = 0.5 ·

(
Th(v+)− Th(v−)

)
. The key observation is that B + b = Th(v+) + ε and B − b =

Th(v−) + ε. We claim that by bidding b, Player 1 guarantees that the invariant is maintained.
Indeed, if he wins the bidding, he moves the token to v−, and if he loses the bidding, the
worst that Player 2 can do is move the token to v+.

We omit the details of how Player 1 guarantees winning, i.e., forcing the token to t1.
Finally, we show that Player 2 wins when Player 1’s budget is Th(v)− ε. We intuitively

“flip” the game and associate Player 1 with Player 2. Let G′ be the same as G only that
Player 1’s goal is to reach t2 and Player 2’s goal is to reach t1. For every u ∈ V , define Th′ as
Th′(u) = 1− Th(u). A key observation is that Th′ satisfies the average property in G′. Now,
in order to win from v in G when Player 1’s budget is Th(v)− ε, Player 2 follows a winning
Player 1 strategy in G′ with an initial budget of 1− Th(v) + ε. ◀

3.2 Constructing strategies based on the discrete average property

We first adapt the definition of the average property (Def. 4) to the discrete setting.

FSTTCS 2022
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▶ Definition 6 (Average property). Consider a discrete-bidding game G = ⟨V, E, k, S, fr⟩
with frugal objective. We say that a function T : V → [k] ∪ {k + 1} has the average property
if for every s ∈ S, we have T (s) = fr(s), and for every v ∈ V \ S,

T (v) = ⌊ |T (v+)|+ |T (v−)|
2 ⌋+ ε,

where ε =


0 if |T (v+)|+ |T (v−)| is even and T (v−) ∈ N
1 if |T (v+)|+ |T (v−)| is odd and T (v−) ∈ N∗ \N
∗ otherwise

where v+ := arg maxu∈N(v) Th(u) and v− := arg minu∈N(v) Th(v)

Note that, the range of T includes k + 1, which captures the threshold budget of a player
at a vertex from where the other player wins the game with budget 0. Consider a function
T : V → [k] ∪ {k + 1} that satisfies the average property. We develop a partial strategy fT ,
which is a function from histories to [k] × 2V . An output ⟨b, A⟩ of fT means that the bid
is b and upon winning, Player 1 must choose an allowed vertex in A to move the token to.
A strategy f ′ that agrees with fT bids in the same manner and upon winning a bidding, it
chooses a vertex in A.

We define fT so that when Player 1 plays according to a strategy that agrees with fT ,
an invariant is maintained on Player 1’s budget, similar to the invariant in the continuous
setting (see the proof of Thm. 5). Suppose that a history ends in a vertex v with Player 1’s
budget B ≥ T (v). Intuitively, as in Thm. 5, when Player 1 wins the bidding in v, he
proceeds to some neighbor v− that attains the minimal value according to T , and when
Player 2 wins the bidding, the worst she can do is move to a vertex v+ that attains the
maximal value according to T . Formally, fT restricts the choice of neighbor of v to a set
of allowed vertices, denoted A(v), and depend only v. Let v+ = arg maxu∈N(v) T (u) and
v− = arg minu∈N(v) T (u). We define A(v) = {u ∈ N(v) : T (u) = T (v−)} when T (v−) ∈ N,
and A(v) = {u ∈ N(v) : T (u) ≤ T (v−)⊕ 0∗} when T (v−) ∈ N∗ \N.

Next, for each v ∈ V , we define a bid that fT proposes. Suppose that Player 1’s budget
is B ∈ [k], for B ≥ T (v). We define fT so that it proposes one of two possible bids bT

v or
bT

v ⊕ 0∗, depending on whether Player 1 holds the advantage. Intuitively, Player 1 “attempts”
to bid bT

v at v. This is not possible if bT
v ∈ N∗ \N and B ∈ N, i.e., Player 1 wants to use the

advantage but does not have it. In such a case, Player 1 bids bT
v ⊕ 0∗ ∈ N. Formally, we

define

bT
v =


|T (v+)|−|T (v−)|

2 When |T (v+)|+ |T (v−)| is even and T (v−) ∈ N
⌊ |T (v+)|−|T (v−)|

2 ⌋ When |T (v+)|+ |T (v−)| is odd and T (v−) ∈ N∗ \N
|T (v+)|−|T (v−)|

2 ⊖ 0∗ When |T (v+)|+ |T (v−)| is even and T (v−) ∈ N∗ \N
⌊ |T (v+)|−|T (v−)|

2 ⌋ ⊕ 0∗ When |T (v+)|+ |T (v−)| is odd and T (v−) ∈ N
(1)

Assuming that the game reaches v with a budget of B ≥ T (v), we define fT to bid bT (v, B)
where bT (v, B) = bT

v when both bT
v and B belong to either N of N∗ \N, and bT

v ⊕0∗ otherwise.
We formalize the guarantees of fT in the lemma below, whose proof can be found in the full
version[10].

▶ Lemma 7. For every v ∈ V and B ≥ T (v), we have B ⊖ bT (v, B) ≥ T (v−) and B ⊕
bT (v, B)⊕ 0∗ ≥ T (v+).
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v0 v1 v2 t

4 3* 3
2

5 4* 3*

Figure 1 A discrete-bidding reachability game with two functions that satisfy the average property.

A corollary of Lem. 7 is that any strategy that agrees with fT maintains an invariant on
Player 1’s budget and is thus a legal strategy, i.e., it never prescribes bids that exceed the
available budget.

▶ Corollary 8. Suppose that Player 1 plays according to a strategy that agrees with fT starting
from configuration ⟨u, B⟩ having B ≥ T (u), we have:

When the game reaches v ∈ V , Player 1’s budget is at least T (v).
The bid b prescribed by fT does not exceed the available budget, i.e., b ≤ B.

3.3 Properties of functions with the average property
We show that, somewhat surprisingly, unlike in continuous-bidding, functions that satisfy
the discrete average property are not unique. That is, there are functions that satisfy the
average property but do not coincide with the threshold budgets.

▶ Theorem 9. The reachability discrete-bidding game G1 that is depicted in Fig. 1 with
target t for Player 1 has more than one function that satisfies the average property.

Proof. Assume a total budget of k = 5. We represent a function T : V → [k] as a vector
⟨T (v0), T (v1), T (v2), T (t)⟩. It is not hard to verify that both ⟨4, 3∗, 3, 2⟩ and ⟨5, 4∗, 3∗, 2⟩
satisfy the average property. (The latter represents the threshold budgets). ◀

The following lemma, whose proof can be found in the full version [10], is key in developing
a winning Player 2 strategy. We intuitively show that the “complement” of T satisfies the
average property. The idea is similar to the continuous case (see the last point in the proof
of Thm. 5).

▶ Lemma 10. Let G = ⟨V, E, k, S, fr⟩ be a discrete-bidding game with a frugal objective.
Let T : V → [k] ∪ {k + 1} be a function that satisfies the average property. We define
T ′ : V → [k] ∪ {k + 1} as follows. For v ∈ V , let T ′(v) = k∗ ⊖

(
T (v)⊖ 0∗)

when T (v) > 0,
and T ′(v) = k + 1 otherwise.

Then, T ′ satisfies the average property.

3.4 Frugal-reachability discrete-bidding games
We close this section by extending the results of [14] from reachability to frugal-reachability
discrete-bidding games.

▶ Lemma 11. Consider a frugal-reachability discrete-bidding game G = ⟨V, E, k, S, fr⟩. If
T : V → [k] ∪ {k + 1} is a function that satisfies the average property, then T (v) ≤ ThG(v)
for every v ∈ V .

Proof. We show that if for some vertex v, Player 1 has a budget less than T (v), then Player 2
has a winning strategy, which proves that the threshold budgets for Player 1 cannot be less
than T (v), when T is a average property satisfying function.

FSTTCS 2022
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Given such T that satisfies the average property, we construct T ′ as in Lem. 10. Let
⟨v, B1⟩ be a configuration, where v ∈ V , Player 1’s budget is B1, and implicitly, Player 2’s
budget is B2 = k∗ ⊖ B1. Note that B1 < T (v) iff B2 ≥ T ′(v). Moreover, for every s ∈ S,
we have T ′(s) = k∗ ⊖ (fr(s)⊖ 0∗). We “flip” the game; namely, we associate Player 2 with
Player 1, and construct a partial strategy fT ′ for Player 2 as in Sec. 3.2. We construct a
Player 2 strategy f ′ that agrees with fT ′ : for each v ∈ V , we arbitrarily choose a neighbor
u from the allowed vertices. By Corollary 8, no matter how Player 1 responds, whenever
the game reaches ⟨u, B1⟩, we have B2 ≥ T ′(u). The invariant implies that f ′ is a winning
strategy. Indeed, if the game does not reach a sink, Player 2 wins, and if it does, Player 1’s
frugal objective is not satisfied. ◀

▶ Lemma 12. Consider a frugal-reachability discrete-bidding game G = ⟨V, E, k, S, fr⟩.
There is a function T that satisfies the average property with T (v) ≥ ThG(v), for every v ∈ V .

Proof. The proof is similar to the one in [14]. We illustrate the main ideas. For n ∈ N, we
consider the truncated game G[n], which is the same as G only that Player 1 wins iff he wins
in at most n steps. We find a sufficient budget for Player 1 to win in the vertices in G[n]
in a backwards-inductive manner. For the base case, for every vertex u ∈ V , since Player 1
cannot win from u in 0 steps, we have T0(u) = k + 1. For s ∈ S, we have T0(s) = fr(s).
Clearly, T0 = ThG[0]. For the inductive step, suppose that Tn−1 is computed. For each vertex
v, we define Tn(v) = ⌊ |Tn−1(v+)|+|Tn−1(v−,k)|

2 ⌋+ ε as in Def. 6. Following a similar argument
to Thm. 5, it can be shown that if Player 1’s budget is Tn(v), he can bid b so that if he wins
the bidding, his budget is at least Tn−1(v−) and if he loses the bidding, his budget is at least
Tn−1(v+). By induction we get ThG[n](v) = Tn(v), for every v ∈ V . For every vertex v, let
T (v) = limn→∞ Tn(v). It is not hard to show that T satisfies the average property and that
T (v) ≥ ThG(v), for every v ∈ V . ◀

Let T be a function that results from the fixed-point computation from the proof of
Lem. 12. Since it satisfied the average property, we apply Lem. 11 to show that Player 2
wins from v when Player 1’s budget is T (v)⊖ 0∗. We thus conclude the following.

▶ Theorem 13. Consider a frugal-reachability discrete-bidding game G = ⟨V, E, k, S, fr⟩.
Threshold budgets exist and satisfy the average property. Namely, there exists a function
T : V → [k] ∪ {k + 1} such that for every vertex v ∈ V

if Player 1’s budget is B ≥ T (v), then Player 1 wins the game, and
if Player 1’s budget is B < T (v), then Player 2 wins the game

Moreover, there is an exponential-time algorithm for finding such a T .

4 A Fixed-Point Algorithm for Finding Threshold Budgets

In this section, we develop a fixed-point algorithm for finding threshold budgets in frugal-
parity discrete-bidding games. As a corollary, we show, for the first time, that threshold
budgets in parity discrete-bidding games satisfy the average property.

For the remainder of this section, fix a frugal-parity game G = ⟨V, E, k, p, S, fr⟩. Denote
the maximal parity index by d ∈ N and let Fd = {v : p(v) = d}. For a bidding game G,
instead of ThG , we sometimes use FrRe-ThG and FrPa-ThG to highlight that G is respectively
a frugal-reachability and frugal-parity game.
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A description of the algorithm

The algorithm recurses over the parity indices. The base case is when only one parity index
is used. Then, G is a frugal-reachability game and we use the algorithm in Thm. 13.

For the induction step, suppose that d > 1. We describe the key idea. For ease of
presentation, we assume that the maximal parity index d is even and we describe the
algorithm from Player 1’s perspective. The definition for an odd d is dual from Player 2’s
perspective. Since d is even, in order for Player 1 to win, it is necessary (but not sufficient)
to visit Fd only finitely often.

We iteratively define and solve a sequence of frugal-parity games G0,G1, . . .. For i ≥ 0,
the arena of Gi is obtained from G by setting Fd to be sinks. The games differ in the frugal
target in the “new” sinks Fd. We set the frugal target budgets in Gi so that, for every vertex
v that is not a sink, ThGi

(v) is a necessary and sufficient initial budget for winning in G by
visiting Fd at most i times. Since Gi has only d− 1 parity indices, we solve it recursively.

The definition of the frugal target budgets in G0 is immediate: since no visits to Fd are
allowed, simply set the frugal target budget to be k + 1 in these vertices. Since the sum of
budgets is k, a play that ends in Fd in G0 is necessarily losing for Player 1, thus in order to
win, he must satisfy the parity or frugal objective without visiting Fd.

In order to define the frugal target budgets in G1, we first construct a frugal-reachability
game from G, which we denote R0. The sinks in R0 are V \ Fd. The frugal target budget at
u ∈ (V \ Fd) is defined to be fr(u) = ThG0(u). Thus, when the game starts at v ∈ Fd with a
Player 1 budget of ThR0(v), Player 1 can guarantee that the game eventually reaches V \ Fd

with a budget that suffices for winning in G without visiting Fd again.
We define the frugal target budgets in G1. For each v ∈ Fd we define fr(v) = ThR0(v).

Then, when G starts from u ∈ (V \ Fd) with a Player 1 budget of ThG1(u), Player 1 plays as
follows. He first follows a winning strategy in G1 to ensure either (1) the parity condition
is satisfied, (2) an “old” sink s ∈ S is reached with budget at least fr(s), or (3) the game
reaches v ∈ Fd with a budget of at least ThR0(v). Cases (1)-(2) are winning in G. In Case (3),
Player 1 plays as described above to guarantee winning in G without visiting Fd again. The
construction of R1,R2, . . . and G2,G3, . . . follows the same idea.

Formally, for i ≥ 0, we define Gi = ⟨V \ Fd, E′, p′, S ∪ Fd, fri⟩, where E′ is obtained from
E by removing outgoing edges from vertices in Fd, i.e., E′(v, u) iff E(v, u) and v /∈ Fd, the
parity function p′ coincides with p but is not defined over Fd, and fri is defined below. Note
that p′ assigns at most d− 1 parity indices. The function fri coincides with fr on the “old”
sinks; namely, fri(s) = fr(s), for every s ∈ S.

For the “new” sinks Fd, for i ≥ 0, the definition fri is inductive. Let v ∈ Fd. We
define fr0(v) = k + 1, meaning that Player 1 is not allowed to visit Fd at all in G0. For
i ≥ 1, assume that fri has been defined and we define fri+1 as follows. Since Gi has less
parity indices than G, we can recursively run the algorithm to obtain FrPa-ThGi

(u), for each
u ∈ V \ Fd. As we prove formally below, a budget of FrPa-ThGi(v) suffices for Player 1 to
win G while visiting Fd only i times. For i ≥ 0, we construct a frugal-reachability game
Ri = ⟨V, E′′, V \ Fd, FrPa-ThGi⟩, where E′′ is obtained from E by removing outgoing edges
from every vertex in (V \ Fd). That is, in Ri, the only vertices that are not sinks are the
vertices in Fd, and in order to win in a sink u ∈ (V \ Fd), Player 1’s budget should be at
least FrPa-ThGi

(u). We can now define the the frugal target fri+1 of Gi+1: for each v ∈ Fd,
define fri+1(v) = FrRe-ThRi

(v).
The algorithm is described Alg. 1 for an even d and from Player 1’s perspective.
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Algorithm 1 Frugal-Parity-Threshold(G).

if G uses one parity index then
Return Frugal-Reachability-Threshold(G)

fr0(v) = k + 1, for v ∈ Fd

for i = 0, 1, . . . do
FrPa-ThGi ← Frugal-Parity-Threshold(Gi)
FrRe-ThRi

← Frugal-Reachability-Threshold(Ri)
For each v ∈ Fd, define fri+1(v) = FrRe-ThRi(v)
if fri(v) = fri+1(v), for all v ∈ Fd then

Define FrPa-ThG(v) = fri(v) for v ∈ Fd

Define FrPa-ThG(u) = FrRe-ThGi
(u) for u ∈ V \ Fd.

Return FrPa-ThG

Correctness

The intuition for the proof of the following lemma is described above, and we formally prove
this below. The formal proof can be found in the full version [10].

▶ Lemma 14. Let d be the maximal parity index in G. Define j = 1 when d is even and
j = 2 when d is odd. For i ≥ 0, let FrPa-ThGi be the threshold budget of Player j in the
game Gi. Then, for v ∈ V \Fd, a budget of FrPa-ThGi

(v) suffices for Player j to win G while
visiting Fd at most i times.

It follows from the following lemma, whose proof can be found in the full version [10],
that Alg. 1 reaches a fixed point and terminates.

▶ Lemma 15. For every v ∈ Fd and i ≥ 0, we have fri(v) ≥ fri+1(v).

Next, we show that the budgets returned by Alg. 1 are necessary for Player 1 to win.

▶ Lemma 16. Consider an output T of Algorithm 1 and let u ∈ V \ Fd. If Player 1’s budget
is T (u)⊖ 0∗, then Player 2 wins G from v.

Proof. The proof is by induction on the number of parity indices in G. When there is
one parity index, G is a frugal-reachability game and the proof follows from Thm. 13. For
the induction step, let i ≥ 0 be the index at which the algorithm reaches a fixed point.
That is, for every u ∈ V \ Fd, we have T (u) = FrPa-ThGi

(u). Since Gi is a game with less
parity indices than G, by the induction hypothesis, a budget of FrPa-ThGi(u) is necessary
for Player 1 to win from u in Gi. That is, if Player 1’s budget is less than FrPa-ThGi

(u),
then Player 2 has a strategy that guarantees that an infinite play satisfies Player 2’s parity
objective, and a finite play that ends in v ∈ S ∪ Fd violates Player 1’s frugal objective fri(v).

We construct a winning Player 2 strategy in G. Player 2 initially follows a winning
strategy in Gi. Assume that Player 1 plays according to some strategy and let π be the
resulting play. If π is infinite or ends in S, then π is a play in G and is thus winning for
Player 2 in both games. Suppose that π ends in v ∈ Fd. Player 2’s strategy guarantees that
Player 1’s budget at v is at most fri(v)⊖ 0∗ = FrRe-ThRi

(v)⊖ 0∗. Suppose that Player 2
follows a winning strategy from v in Ri, Player 1 follows some strategy, and let π′ be the
resulting play. Since Player 2’s strategy is winning, there are two cases. First, π′ remains in
Fd, thus π′ is a play in G that is winning for Player 2 since d is even. Second, π′ ends in a
vertex u′ ∈ V \Fd is reached with Player 1’s budget at most FrPa-ThGi−1(u′)⊖ 0∗. Note that
since the algorithm terminates at a fixed point, we have FrPa-ThGi−1(u′) = FrPa-ThGi

(u′).
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Player 2 switches to a winning strategy in Gi and repeats. Note that an infinite play in which
Player 2 alternates infinitely often between a winning strategy in Gi and a winning strategy
in Ri necessarily visits Fd infinitely often and is thus winning for Player 2 in G. ◀

We conclude with the following theorem. Proving that threshold budgets satisfy the
average property is done by induction on the parity indices.

▶ Theorem 17. Given a frugal-parity discrete-bidding game G, Alg. 1 terminates and returns
ThG. Moreover, ThG satisfies the average property.

5 Finding threshold budgets is in NP and coNP

We consider the following decision problem.

▶ Definition 18 (Finding threshold budgets). Given a bidding game G = ⟨V, E, k⟩, a vertex
v ∈ V , and ℓ ∈ [k], decide whether ThG(v) ≥ ℓ.

Consider a frugal-parity discrete-bidding game G with vertices V and consider a function
T : V → [k] ∪ {k + 1}. We describe a polynomial-time algorithm to check whether T = ThG .
Given such an algorithm, it is not hard to show that the problem of finding threshold budgets
is in NP and coNP. Indeed, given G, a vertex v, and ℓ ∈ [k], guess T and verify, using the
algorithm, that T = ThG . Then, check whether T (v) ≥ ℓ, and answer accordingly.

Our algorithm is based on a reduction to turn-based games. We first verify that T satisfies
the average property, and if it does not, we reject, following Thm. 17. Next, we construct the
partial strategy fT based on T as in Sec. 3.2. Recall that given a history that ends in v, the
function fT prescribes a bid and a set A(v) ⊆ V of allowed vertices for Player 1 to choose
from upon winning the bidding. A strategy f ′ agrees with fT if it bids in the same manner
and always chooses only allowed vertices. In order to verify whether T is a correct guess,
i.e., T = ThG , we construct a parity turn-based game GT,G in which a Player 1 strategy
corresponds to a strategy f ′ that agrees with f in G and a Player 2 strategy corresponds
to a response to f ′ in G. We show that the procedure is sound and complete; namely, if
Player 1 wins in GT,G , he wins in G (hence T ≥ ThG), and if T ≥ ThG , then Player 1 wins in
GT,G . Finally, in order to verify that T ≤ ThG , we apply the same procedure from Player 2’s
perspective.

5.1 From bidding games to turn-based games
Consider a function T that satisfies the average property, and let fT be the partial strategy
as constructed in Sec. 3.2. We construct a parity turn-based game GT,G such that if Player 1
wins in every vertex in GT,G , then T ≥ ThG .

Intuitively, GT,G simulates G. In each turn, Player 1’s bid is determined according to fT .
Suppose that Player 1 bids b. Player 2’s actions in GT,G represent responses to b. Namely,
Player 2 can choose between winning the bidding by bidding b⊕ 0∗ and in addition choosing
the successor vertex in G, or losing the bidding by bidding 0 and letting Player 1 decide how
the game proceeds.

A key challenge is keeping the size of GT,G polynomial in the size of G. Consider a
history that ends in a configuration ⟨v, B⟩, for B ≥ T (v). Recall that fT can prescribe one
of two possible bids: the bid that fT prescribes at ⟨v, B⟩ coincides either with the bid that it
prescribes in ⟨v, T (v)⟩ or ⟨v, T (v) ⊕ 0∗⟩, depending on which of the two agrees with B on
which player has the advantage. We obtain a polynomial-sized arena by representing every
configuration ⟨v, B⟩, for B > T (v)⊕ 0∗, with a vertex ⟨v,⊤⟩.
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See an example of the construction in the App. A.
Formally, we define GT,G = ⟨V1, V2, E, γ⟩, where for i ∈ {1, 2}, the vertices Vi are

controlled by Player i, E ⊆ (V1 ∪ V2) × (V1 ∪ V2) is a collection of edges, and γ : V1 ∪
V2 → {1, 2, , . . . d} assigns parity indices to the vertices. The vertices of GT,G are V2 =
{⟨v, T (v)⟩, ⟨v, T (v)⊕ 0∗⟩, ⟨v,⊤⟩ : v ∈ (V ∪ S)} and V1 = {w1 : w = ⟨v, B⟩ ∈ V2, B ̸= ⊤}. We
define the edges in GT,G . The sinks in GT,G are of the form ⟨s, B⟩, for s ∈ S, or ⟨v,⊤⟩, for
v ∈ V . Sinks have self loops. We describe the other edges. Let w = ⟨v, B⟩ ∈ V2, where B ̸= ⊤
and v /∈ S. Intuitively, reaching w in GT,G means that G is in configuration ⟨v, B1⟩, where
B1 ≥ B and they agree on which player has the advantage. Thus, fT bids bT (v, B). Outgoing
edges from w model Player 2’s two options. First, Player 2 can choose to win the bidding
by bidding bT (v, B)⊕ 0∗ (any higher bid is wasteful on her part) and moving the token to
u ∈ N(v). The next configuration is intuitively ⟨u, B′⟩, where B′ = B ⊕ bT (v, B) ⊕ 0∗. If
T (u) ≤ B′ ≤ T (u) ⊕ 0∗, then ⟨u, B′⟩ ∈ V2 and we define E(⟨v, B⟩, ⟨u, B′⟩). Otherwise, we
truncate Player 1 budget by defining E(⟨v, B⟩, ⟨u,⊤⟩). We disallow transitions in which
Player 2’s bid exceeds her available budget, i.e., when bT (v, B) ⊕ 0∗ > k∗ ⊖ B. Second,
Player 2 can choose to move to w1 modeling Player 2 allowing Player 1 to win the bidding,
e.g., by bidding 0. In this case, Player 1’s budget is updated to B′ = B ⊖ bT (v, B) and
he moves the token to some vertex in A(u). Thus, the neighbors of w1 are ⟨u, B′⟩, for
u ∈ A(v). By the proof of Corollary 8, B′ ∈ {T (u), T (u)⊕ 0∗}, thus ⟨u, B′⟩ ∈ V2. Note that
all paths in GT,G are infinite. Finally, we define the parity indices. A non-sink vertex in
GT,G “inherits” its parity index from the vertex in G; namely, for w = ⟨v, B⟩ ∈ V2, we define
γ(w) = γ(w1) = p(v). We define γ so that Player 1 wins in sinks, thus we set the parity
index of a sink to be odd.

5.2 Correctness
In this section, we prove soundness and completeness of the approach. We start with
soundness.

▶ Lemma 19. If Player 1 wins from every vertex in GT,G, then T ≥ ThG.

Proof. We describe the main ideas of the proof and the details can be found in the full
version [10]. Assume that Player 1 wins from every vertex in GT,G and fix some memoryless
winning strategy f ′. We describe a winning strategy f∗ of Player 1 in G, which he can play
when he has a budget of at least T (v) at vertex v for all vertices v of G. This proves that
T ≥ ThG .

Suppose that G starts from c0 = ⟨v, T (v)⟩. We initiate GT,G from v0 = ⟨v, T (v)⟩. Suppose
that Player 2 plays according to a strategy g∗ in G. Player 1 simulates a Player 2 strategy g

in GT,G so that when G reaches a configuration c = ⟨u, B1⟩, the vertex in GT,G is w = ⟨u, B⟩,
where B ∈ {T (u), T (u)⊕ 0∗} agrees with B1 on the advantage. We describe how we simulate
g∗ with g, and how f∗ simulates f ′. Suppose that G is in configuration c = ⟨u, B1⟩ and GT,G
is in w = ⟨u, B⟩. We define f∗ to agree with fT and bid bT (u, B). If g∗ loses the bidding,
then we define g to proceed to w1 and we define f∗ to match the move of f ′ from w1. If g∗

wins the bidding in G, we define g to win the bidding and move the token as g∗ does. In the
full version [10], we show that the correspondence between the games is maintained.

Let π be the play in GT,G that results from f ′ and g and π∗ the play in G that results
from f∗ and g∗. Since f ′ is winning, π satisfies Player 1’s objective. We distinguish between
three cases. In the first case, π does not reach a sink in GT,G . Then, the play π∗ matches
π up to repetitions. Indeed, by removing occurrences of Player 1 vertices in GT,G from π

and projecting both plays on V , we obtain the same path. Recall that a Player 1 vertex



G. Avni and S. Sadhukhan 30:15

w1 has the same parity index of its predecessor w ∈ V2. It follows that since π satisfies
Player 1’s parity objective, so does π∗. In the second case, π reaches a sink ⟨s, T (s)⟩, where
s ∈ S. Then π∗ reaches a configuration ⟨s, B⟩. Since T satisfies the average property, we
have B ≥ fr(s), and Player 1 wins G. In the final case, π reaches a sink ⟨v,⊤⟩. Let ⟨u, B1⟩
be the corresponding configuration in G. Note that B1 is strictly greater than T (u) ⊕ 0∗.
Let B′ < B1 that agrees with B1 on the advantage and ⟨u, B′⟩ ∈ V2. Player 1 intuitively
adds B1 −B′ to his “spare change” account and plays as if his budget is B′ by restarting
GT,G from ⟨u, B′⟩. Since the sum of budgets is fixed and restarting f∗ in this manner strictly
increases his spare change, it follows that this last case can only occur finitely often. Thus,
eventually either of the first two cases must occur implying that f∗ is winning in G. ◀

▶ Corollary 20. In the proof of Lem. 19, we construct a winning Player 1 strategy f∗.
Note that f∗ only keeps track of a vertex in GT,G. Thus, its memory size equals the size of
GT,G, which is linear in the size of G. This is significantly smaller than previously known
constructions in parity and reachability bidding games, where the strategy size is polynomial
in k, and is thus exponential when k is given in binary.

The following lemma shows completeness; namely, that a correct guess of T implies that
Player 1 wins from every vertex in GT,G .

▶ Lemma 21. If T = ThG, then Player 1 wins from every vertex in GT,G.

Proof. We describe the idea of the proof and the details can be found in the full version
[10]. Assume towards contradiction that T ≡ FrPa-Th and there is ⟨v, B⟩ ∈ V2 that is losing
for Player 1. Since T (v) ≤ B, Player 1 has a winning strategy f∗ in G starting from ⟨v, B⟩.
Let g be a memoryless winning strategy for Player 2 in GT,G starting from ⟨v, B⟩. Based on
g, we construct a Player 2 strategy g∗ in G and show that it is winning against f∗, which
contradicts our assumption that f∗ is a Player 1’s winning strategy. Note that since f∗ is
fixed, when g∗ selects a bid, it is in response to the bid chosen by f∗. Let us consider an
arbitrary Player 1 strategy f in GT,G , which by our earlier assumption is losing for Player 1
from vertex ⟨v, B⟩ of V2 (because all Player 1 strategies are losing from there). Intuitively, we
construct g∗ such that it follows g as long as f∗ follows f . By doing so, Player 2 maintains
a similar correspondence between the play in G and GT,G as in the above: when G is in
configuration ⟨v, B1⟩, then GT,G is in vertex ⟨v, B1⟩. Since the two plays traverse the same
vertices in V and g is winning, if f∗ always agrees with f , the resulting play will be winning
for Player 2. Thus, f∗ must not agree with f at some point. Either he bids differently from
bT (v, B), or, upon winning he chooses a vertex u which is not in the allowed set of vertices.
First assume that he bids b at ⟨u, B⟩. If b > b(u, B), then g∗ bids 0, intuitively causing
Player 1 to pay too much for a bidding win. If b < bT (u, B), g∗ bids bT (u, B) intuitively
buying a win cheaply. In both cases, we show that G reaches a configuration c′ = ⟨u′, B′⟩
for B′ < T (u). Since we assume T ≡ ThG , Player 2 has a winning strategy from c′, which
she uses to win G. Second, we show that when he chooses some vertex u′ /∈ A(v) following
a winning bid of bT (v, B), the game reaches a configuration ⟨u′, B′⟩, such that B′ < T (u′),
and again Player 2 uses a winning strategy to win G. ◀

Finally, we verify that T ≤ ThG . We define a function T ′ : V → [k]∪{k+1} as follows. For
v ∈ V , when T (v) > 0 we define T (v) = k∗⊖(T (v)⊖0∗), and T ′(v) = k+1 otherwise. Lem. 10
shows that T ′ satisfies the average property. We proceed as in the previous construction
only from Player 2’s perspective. We construct a partial strategy fT ′ for Player 2 from T ′

just as fT is constructed from T , and construct a turn-based parity game GT ′,G . Let Th2
G
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denote Player 2’s threshold function in G. That is, at a vertex v ∈ V , Player 2 wins when her
budget is at least Th2

G(v) and she loses when her budget is at most Th2
G(v)⊖ 0∗. Existence of

Th2
G follows from Thm. 17. Applying Lemmas 19 and 21 to Player 2, we obtain the following.

▶ Lemma 22. If Player 2 wins from every vertex in GT ′,G, then T ′ ≥ Th2
G. If T ′ ≡ Th2

G,
then Player 2 wins from every vertex of GT ′,G.

Given a frugal-parity discrete-bidding game G = ⟨V, E, k, p, S, fr⟩, a vertex v ∈ V , and
ℓ ∈ [k], we guess T : V → [k] ∪ {k + 1} and verify that it satisfies the average property. Note
that the size of T is polynomial in G since it consists of |V | numbers each of size O(log k).
We construct GT,G and GT ′,G , guess memoryless winning strategies for Player 1 and Player 2,
respectively. We check whether T (v) ≥ ℓ, and answer accordingly. Correctness follows from
Lemmas 19, 21, and 22. We thus obtain our main result.

▶ Theorem 23. The problem of finding threshold budgets in frugal-parity discrete-bidding
games is in NP and coNP.

6 Discussion

We study, for the first time, the problem of computing threshold budgets in discrete-bidding
games in which the budgets are given in binary. Previous algorithms for reachability and
parity discrete-bidding games have exponential running time in this setting. We developed
two algorithms for finding threshold budgets. The algorithms are complementary, and mirror
the situation in the continuous setting; there too, there are two proof techniques to show
results for threshold budgets, a fixed-point technique and an NP algorithm that relies on
knowledge of the structure of threshold budgets. Prior to this work, a fixed-point algorithm
was only known for reachability discrete-bidding games [14]. While our fixed-point algorithm
for parity discrete-bidding games has exponential worst case running time, it sheds light on
the structure of threshold budgets in these games. A structure that was crucial for our NP
and coNP membership proof. This latter proof adds to the previously observed good news on
discrete-bidding games: parity discrete-bidding games are not only a sub-class of concurrent
games that is determined [1], we show that it is a sub-class of concurrent games that are
represented in an exponentially-succinct manner and can still be solved in NP and coNP.

We leave open the exact complexity of finding threshold budgets. For the lower bound,
it was shown in [1] that turn-based parity games reduce to parity discrete-bidding games
with constant sum of budgets. Since solving turn-based parity games is a long-standing
open problem, we expect that it will be challenging to find a polynomial-time algorithm for
solving parity discrete-bidding games. Still, improved upper bounds might be possible to
obtain. For example, a quasi-polynomial time algorithm for parity discrete-bidding games or
a polynomial-time algorithm for reachability or Büchi discrete-bidding games.
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A Example of the construction of GT,G

▶ Example 1. We apply the construction to the frugal-reachability discrete-bidding game
G1 depicted in Fig. 1. We use the two functions T1, T2 : V → V → [k] ∪ {k + 1} that are
specified in the figure, both of which satisfy the average property and correspond to the
vectors T1 = ⟨4, 3∗, 3, 2⟩ and T2 = ⟨5, 4∗, 3∗, 2⟩.

The turn-based game GT1,G1 is depicted in Fig. 2a and GT2,G1 in Fig. 2b. In these two
games, the allowed actions given by fT1 and fT2 from each vertex are singletons. Thus,
Player 1 has no choice of successor vertex when winning a bidding, and so we omit Player 1
vertices from the figure. That is, all vertices are controlled by Player 2. Since the games
are reachability games, we omit the parity indices from the vertices. Player 1’s goal in
both games is to reach a sink. We label each edge with the bids of the two players that it
represents. Each vertex c has two outgoing edges labeled by ⟨b1, 0⟩ and ⟨b1, b1 ⊕ 0∗⟩, where
b1 is the bid that fT1 or fT2 prescribes at c. There are exceptions like ⟨v1, 5⟩ in GT2,G1 where
b1 = 1 and Player 2 cannot bid b1⊕ 0∗ = 1∗ since it exceeds her available budget when k = 5.
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⟨v0, 4⟩

⟨v1, 4⟩ ⟨v0, 4∗⟩

⟨v2, 3⟩

⟨v0,⊤⟩

⟨t, 2⟩

(0,
0)

(1
, 0

)

(1, 1 ∗)

(0, 0 ∗)

(1,
1∗ )

(0∗, 0)

(0
∗ , 1)

(1, 0)

(a) Corresponding to T1.

⟨v0, 5⟩

⟨v1, 5⟩ ⟨v0, 5∗⟩

⟨v2, 4⟩
⟨v1, 4∗⟩

⟨v2, 3∗⟩
⟨t, 2⟩

(0,
0)

(0, 0 ∗)

(1
, 0

)

(0∗, 0)

(2, 0)

(0∗ , 0)

(0
∗ , 1) (1 ∗

, 2)

(1∗ , 0)

(b) Corresponding to T2.

Figure 2 Turn-based games corresponding to G1 and two different guesses.

Note that in GT1,G1 has a cycle. Thus, Player 1 does not win from every vertex and T1
does not coincide with the threshold budgets. On the other hand, GT2,G1 is a DAG. Thus, no
matter how Player 2 plays, Player 1 wins from all vertices, which means that T2 = ThG1 . ◀
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