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Abstract
A polynomial P ∈ F[x1, . . . , xn] is said to be symmetric if it is invariant under any permutation of its
input variables. The study of symmetric polynomials is a classical topic in mathematics, specifically
in algebraic combinatorics and representation theory. More recently, they have been studied in
several works in computer science, especially in algebraic complexity theory.

In this paper, we prove the computational hardness of one of the most basic kinds of symmetric
polynomials: the monomial symmetric polynomials, which are obtained by summing all distinct
permutations of a single monomial. This family of symmetric functions is a natural basis for the
space of symmetric polynomials (over any field), and generalizes many well-studied families such as
the elementary symmetric polynomials and the power-sum symmetric polynomials.

We show that certain families of monomial symmetric polynomials are VNP-complete with
respect to oracle reductions. This stands in stark contrast to the case of elementary and power
symmetric polynomials, both of which have constant-depth circuits of polynomial size.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Computing
methodologies → Representation of polynomials

Keywords and phrases algebraic complexity, symmetric polynomial, permanent, Sidon set

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.16

Funding Basic Algorithms Research Copenhagen is supported by Villum Foundation grant 16582.
Srikanth Srinivasan: Supported by start-up grant from Aarhus University.

1 Introduction

This paper considers the algebraic complexity of symmetric polynomials: a multivariate
polynomial f ∈ F[x1, . . . , xn] is said to be symmetric if it is invariant under any permutation
of its variables x1, . . . , xn. Standard examples of such polynomials include the elementary
symmetric polynomials and the power-sum symmetric polynomials. The study of symmetric
polynomials is a classical topic in mathematics, especially in algebraic combinatorics and
representation theory (see, e.g. [18, 14]). In particular, standard bases of homogeneous
symmetric polynomials of fixed degree d and the matrices of linear transformations that
translate between these bases are studied. For many natural bases, the entries of these
matrices encode interesting combinatorial and representation-theoretic quantities.

An important example of such a basis of n-variate symmetric polynomials is the family of
monomial symmetric polynomials, which are considered in this paper. In the following, we say
that a partition λ of an integer d ∈ N is a non-increasingly ordered tuple of positive numbers
λ = (λ1, λ2, . . . , λr) summing to d, i.e. λ1 ≥ λ2 ≥ . . . ≥ λr and

∑r
i λi = d. We write λ ⊢ d
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16:2 On the VNP-Hardness of Some Monomial Symmetric Polynomials

to indicate this fact. The monomial symmetric polynomial mλ is the polynomial obtained by
summing all distinct monomials yλ1

1 · · · yλr
r that can be obtained by picking y1, . . . , yr out of

x1, . . . , xn without repetitions. These generalize both the elementary symmetric polynomials
(obtained by taking r = d and all λi = 1) and the power symmetric polynomials (obtained by
taking r = 1 and λ1 = d). It is also easily seen that any symmetric polynomial is a unique
linear combination of monomial symmetric polynomials.

In this paper, we study monomial symmetric polynomials from the perspective of algebraic
complexity. The complexity of general symmetric polynomials has already been investigated
in various works, as summarized below.

Many results in algebraic complexity concern the computational complexity of the
elementary symmetric polynomials. Non-trivial upper bounds for computing these
polynomials have been shown in various models [13, 16, 8], starting with the work of
Nisan and Wigderson [13]. In particular, the upper bound by Shpilka and Wigderson [16]
played a crucial role in recent work that proved the first superpolynomial lower bounds for
constant-depth algebraic circuits [10]. Lower bounds for computing elementary symmetric
polynomials have also been shown [13, 16, 15, 8, 6].
The algebraic complexity of various symmetric polynomials in the monotone setting has
been investigated [5, 7]. Here, the underlying field is the reals and we do not allow any
negative constants in the underlying computation. In particular, the result of Grigoriev
and Koshevoy [7] implies an exponential lower bound on monotone algebraic circuits
computing certain monotone symmetric polynomials. However, this does not imply lower
bounds for general (non-monotone) algebraic circuits, which are the focus of this paper.
The fundamental theorem of symmetric polynomials states that any symmetric polynomial
p(x1, . . . , xn) can be written uniquely as a polynomial felem in the elementary symmetric
polynomials. A recent result of Bläser and Jindal [2] shows that, over fields of characteristic
0, the polynomials p and felem have roughly the same algebraic circuit complexity. This
implies the hardness of p when felem is a known hard polynomial such as the permanent,
but it might be non-trivial to understand the complexity of felem in general. A variant
of [2] was proved in [4], which holds for more general models of algebraic computation,
but it requires technical conditions on felem.
Monomial symmetric polynomials appear naturally in the context of learning theory, e.g.,
when estimating properties of distributions. Here, the learning algorithm has access to
samples from a discrete distribution and is required to estimate a symmetric property of
the distribution, e.g., the entropy or support size. Acharya, Das, Orlitsky and Suresh [1]
analyzed algorithms based on a particular estimator and showed their optimality in
a variety of settings. This estimator seeks to optimize a given monomial symmetric
polynomial over the space of probability distributions. The problem we study in this
paper, that is, evaluating a monomial symmetric polynomial at a given input, intuitively
appears to be an easier computational problem.

Many of the above works try to understand the algebraic complexity of various families of
monomial symmetric polynomials. However, to the best of our knowledge, it was not known
if there are families of monomial symmetric polynomials that are hard for general algebraic
circuits. We prove that, indeed, polynomial-sized circuits for certain monomial symmetric
polynomials mλ would imply that VNP collapses to VP. More formally, we show that these
monomial symmetric polynomials are VNP-hard under c-reductions; these reductions will be
introduced in Section 2. (Containment in VNP is easily seen, so VNP-completeness follows.)
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▶ Theorem 1 (Main theorem). Fix an algebraically closed field of characteristic 0 or q ≥ 3.
There are two polynomial functions r, s : N → N and an explicit1 sequence of partitions
λ1, λ2, . . . such that λn ⊢ r(n) for n ∈ N and the following holds: If the polynomials
mλn(x1, . . . , xs(n)) admit algebraic circuits of polynomial size, then so does the permanent.

The permanent of order n is a polynomial in xi,j for 1 ≤ i, j ≤ n and can be seen as a
sum over all perfect matchings in a complete bipartite graph with n + n vertices and an
edge of weight xi,j between the i-th left and the j-th right vertex. Each perfect matching is
weighted by the product of the weights of all involved edges. The hypergraph permanent is
defined analogously for k-uniform hypergraphs.

Over characteristic 0, the reduction by Bläser and Jindal [2], augmented by an observation
due to Chaugule et al. [4], implies that to prove the theorem, it suffices to establish the
hardness of the polynomial combination fpow that expresses mλ in terms of the power-sum
symmetric polynomials. Towards this, we show that a particular sum-product fmatch over
perfect matchings can be extracted from fpow. However, the weights of perfect matchings M

in fmatch do not necessarily correspond to those in the permanent: A priori, it may not be
possible to recover the edges present in M from the weight of M in fmatch. This property
can however be ensured by choosing the parts in λ from a Sidon set, a notion from additive
combinatorics. In a Sidon set, any pair of distinct numbers is uniquely identified by its sum.
We can apply this to uniquely recover the edges present in a matching from their weight in
fmatch.

Over characteristic q ≥ 3, the proof is similar, but more involved: First, we need to cast
fpow as a polynomial combination felem in the elementary symmetric polynomials in order to
invoke a known reduction by Chaugule et al. [4] that applies to fields of characteristic q. In
this form, it will however be less obvious how to extract a sum-product over perfect matchings.
Focussing on the homogeneous component of minimum degree in felem and carefully choosing
λ will eventually allow us to extract a (q − 1)-uniform hypergraph permanent from felem.
Here, we also crucially exploit the characteristic of the field, along with basic properties of the
transformation that expresses power-sum symmetric polynomials in terms of the elementary
symmetric polynomials.

2 Preliminaries

We use boldface notation x, y for vectors. Throughout, λ will denote a partition, i.e. a
sequence of weakly decreasing positive integers λ1 ≥ λ2 ≥ · · ·λr ≥ 1. Here, r is called the
number of parts of λ.

Symmetric polynomials

In the following, let F be any field and let x = (x1, . . . , xn). We say that P (x) ∈ F[x] is
symmetric if it is invariant under all permutations of the underlying variables. Examples of
symmetric polynomials include the following:

The elementary symmetric polynomials en,d =
∑

S

∏
i∈S xi for d ≤ n, where S ranges

over all d-element subsets of [n]. If n is implicit from context, we set ed := en,d.
The power-sum symmetric polynomials pn,d =

∑n
i=1 xd

i . If n is implicit from context, we
denote this polynomial by pd.

1 The sequence of partitions is explicit in the sense that there is a polynomial-time algorithm that
computes λn on input 1n.

FSTTCS 2022
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More generally, given a partition λ with r ≤ n parts, the monomial symmetric polynomial
mλ is the sum of all monomials where the distinct exponents are exactly λ1, . . . , λr. In
particular, when λ1, . . . , λr are all distinct, we can define this polynomial by

mλ =
∑

i1,...,ir∈[n]
distinct

xλ1
i1
· · ·xλr

ir
.

As noted in the introduction, the elementary and power-sum symmetric polynomials are
special cases of monomial symmetric polynomials.
The following basic theorem regarding symmetric polynomials will be important.

▶ Theorem 2 (Fundamental theorem of symmetric polynomials (see, e.g., [11])). For any
symmetric polynomial f ∈ F[x1, . . . , xn], there is a unique polynomial felem(y1, . . . , yn) with
felem(e1, . . . , en) = f(x). If F has characteristic zero, then there is also a unique polyno-
mial fpow(y1, . . . , yn) that represents f analogously in terms of the power-sum symmetric
polynomials.

Further, both felem and fpow (the latter over characteristic 0) have degree at most deg(f)
and do not depend on yi for i > deg(f).

Algebraic circuits and Oracle reductions

We work throughout with the standard algebraic circuit model. We refer the reader to
standard resources [3, 17] for definitions and basic results regarding the model. We recall
also the notion of c-reductions between two polynomials f and g: We define Lg(f) to be the
smallest s such that the polynomial f is computed by an algebraic circuit C of size at most
s that is additionally allowed to use gates for the polynomial g. If Lg(f) is bounded by a
polynomial in the number of variables and degree of f and g, we also say that f admits a
c-reduction to g and write f ⪯c g.

A result of Bläser and Jindal [2] relates the algebraic complexity of a symmetric polynomial
f with its associated polynomial felem, when the underlying field is the field of complex
numbers. Chaugule et al. [4, Theorem 4.16] extended the result to fpow.
▶ Theorem 3 ([2, 4]). Any symmetric polynomial f ∈ C[x] admits the reductions felem ⪯c f

and fpow ⪯c f.

We also need the following variant of Theorem 3 due to [4]. While the results of [4] are
stated for characteristic zero, we show in Section 5 how to modify them to work for positive
characteristic in the setting we are interested in.

In the following, given a polynomial f ∈ F[x] and an integer d, we use Hd(f) to denote
the homogeneous degree-d component of f . We say that a polynomial f has min-degree t if
Ht(f) ̸= 0 and Hi(f) = 0 for all i < t, and we define the min-degree of the zero polynomial
to be +∞.
▶ Theorem 4 (Adaptation of [4], see Section 5). Let F be an algebraically-closed field of
characteristic q > 0. Let f ∈ F[x1, . . . , xn] be a non-zero symmetric polynomial such that the
min-degree of felem is t. Furthermore, assume that felem(y1, . . . , yn) does not depend on the
variables yn−1 and yn. Then Ht(felem) ⪯c f .
In the above statement we say that felem must not depend on the variables yn−1 and yn.
This is a mere technical condition required in our proof of this theorem. Finally, we also
need the following standard fact:
▶ Lemma 5 (Homogeneous component extraction. Folklore, see [17, 2]). Let F be any field.
For any f ∈ F[x] and integer d ≥ 0, we have Hd(f) ⪯c f .
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Permanents

The canonical VNP-complete polynomial family is given by the polynomials Pern for n ∈ N,
each defined on n2 variables xi,j for i, j ∈ [n], such that

Pern =
∑

σ∈Sn

x1,σ(1) . . . xn,σ(n),

where Sn is the set of all permutations of the set {1, 2, . . . , n}. When the variables xi,j

take Boolean values, the underlying input to Pern defines a bipartite graph and the above
polynomial computes the number of perfect matchings in this graph.

An analogous polynomial can be defined for not necessarily bipartite graphs. Assume
that n is an even integer and fix the set of

(
n
2
)

variables x{i,j} for all distinct i, j ∈ [n]. Then,
we define the perfect matching polynomial PerfMatchn over these variables by

PerfMatchn =
∑

perfect matchings
M of Kn

∏
{i,j}∈M

x{i,j}.

We can also define analogues of the above for hypergraphs. Let k ≥ 2 be an integer and let
K

(k)
n denote the complete k-uniform hypergraph on n vertices. For n divisible by k, we define

the hypergraph perfect matching polynomial hPerfMatch(k)
n over the

(
n
k

)
many variables xS

for S ∈
([n]

k

)
by

hPerfMatch(k)
n =

∑
perfect matchings

M of Kk
n

∏
S∈M

xS .

Note that PerfMatchn = hPerfMatch(2)
n .

We have the following simple reductions from permanents to their variants.

▶ Lemma 6. For even n ∈ N, we have Pern/2 ⪯c PerfMatchn. More generally, for any fixed
k ∈ N and any n divisible by k, we have Pern/k ⪯c hPerfMatch(k)

n .

Proof sketch. For even n, reduce Pern/2 to PerfMatchn as follows: For i, j ∈ [n/2], substitute
x{i,n/2+j} ← xi,j and xS ← 0 for all remaining variables xS . This results in Pern/2.

More generally, for n divisible by k, reduce Pern/k to hPerfMatch(k)
n as follows: For

i, j ∈ [n/k], let Si,j = {i} ∪ {tn/k + j | t = 1, . . . , k − 1} and substitute xSi,j
← xi,j . Then

substitute xS ← 0 for all remaining variables xS . This results in Pern/k. ◀

Finally, we recall a generalization of the permanent to rectangular matrices. Fix an r× n

matrix X where r ≤ n and the (i, j)-th entry of X is a variable xi,j . For a subset J ⊆ [n] of
size r, we define XJ to be the submatrix obtained by keeping only the columns indexed by
the indices in J . Now, we define the rectangular permanent rPerr,n by

rPerr,n =
∑

J∈([n]
r )

Perr(XJ).

The following polynomial identity will be crucial to our main results.

▶ Theorem 7 (Binet-Minc Identity [12]). Let F be any field. Fix an r× n matrix X as above.
For any non-empty I ⊆ [n], define the polynomial SI by SI =

∑n
j=1

∏
i∈I xi,j . Then, we have

rPerr,n =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · SI ,

where Pr denotes the set of all partitions of [r] into non-empty subsets.

FSTTCS 2022
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Sidon sets and variants

Our hardness proofs for the monomial symmetric functions mλ require certain conditions
on λ: In Section 3, any unordered pair of numbers in λ must be uniquely identified from
its sum, i.e., the parts in λ form a so-called Sidon set. Additionally, sums composed of the
parts in λ are stratified by the number of terms involved in the sum. Section 4 requires more
generally that sets of fixed size q ∈ N are identifiable, and that all parts must have remainder
1 modulo q. We capture these requirements in the following definition:

▶ Definition 8. Given a set of integers L = {λ1, . . . , λr} and a subset S ⊆ [r], define
λS :=

∑
i∈S λi. We say that L (or a partition λ whose multiset of parts equals L) is q-good

for an integer q ≥ 2 if the following conditions hold:
q-wise Sidon set: For any two distinct sets S, S′ ⊆ [r] of size q, we have λS ̸= λS′ .
Stratification: For sets S, T ⊆ [r] with |S| < q and |T | = q, we have λS < λT .
Units modulo q + 1: For each i ∈ [r], we have λi ≡ 1 (mod q + 1) .

Existing constructions of q-wise Sidon sets can be adapted to construct such sets:

▶ Lemma 9. For all r, q ∈ N, there exists a q-good set of r integers that are bounded by
rO(q). Such a set can be constructed deterministically in time rO(q).

Proof. Let s ∈ N be the smallest perfect square that is larger or equal to r. By Lemma 2.5
in [9], there is a q-wise Sidon set {λ1, . . . , λs} with elements bounded by sO(q) = rO(q) that
can be constructed in sO(q) = rO(q) time. Then the r-element subset {λ1, . . . , λr} trivially is
a q-wise Sidon set as well.

Now take µi = (q + 1)λi + 1 for all i ∈ [r]; this trivially ensures that µi ≡ 1 (mod q + 1)
for all i, as required in the third property from Definition 8. As the map x 7→ (q + 1)x + 1 is
injective, the set {µ1, . . . , µr} is a q-wise Sidon set.

Finally, to ensure the stratification property, let Σ be the smallest multiple of q + 1 that
is strictly larger than µ1 + . . . + µr, define µ′

i = Σ + µi for i ∈ [r], and set L := {µ′
1, . . . , µ′

r}.
As the map x 7→ Σ + x is injective, L is a q-wise Sidon set. As Σ is a multiple of q + 1, we
have µ′

i ≡ µi ≡ 1 (mod q + 1) for all i. We show that µ′
I < µ′

I′ for I, I ′ ⊆ [r] with |I| < |I ′|:
Note that µ′

i can be interpreted as a 2-digit number (1, µi) in base Σ. For I ⊆ [r], the
representation of µ′

I =
∑

i∈I µ′
i in base Σ is (|I|, µI); this is because Σ is large enough to

avoid an overflow of the least significant digit. The stratification property follows.
From the above construction, it follows that L is a q-good set, all numbers in L are

bounded by rO(q), and that L can be constructed deterministically in rO(q) time. ◀

3 Main result in characteristic zero

We present our main reduction from permanents to monomial symmetric functions mλ. The
reduction shown in this section applies to the field C. In the next section, we show how to
handle fields of characteristic strictly greater than 2; this introduces additional technical
difficulties that are not present in this section.

Fix a 2-good partition λ = (λ1, . . . , λr) with r parts, non-increasingly ordered, and
λ ⊢ d for d ∈ N. Recall our notation λI :=

∑
i∈I λi for I ⊆ [r]. We first express

mλ(x1, . . . , xn) for n ∈ N as a polynomial combination of the power-sum symmetric polyno-
mials pj := pn,j(x1, . . . , xn) for 1 ≤ j ≤ d. That is, we obtain a polynomial fpow(y1, . . . , yd)
in indeterminates y1, . . . , yd such that

mλ(x1, . . . , xn) = fpow(p1, . . . , pd).
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Known reductions will allow us to reduce directly (in characteristic 0) or with extra steps
(for characteristic > 2) from fpow to mλ. It therefore remains to establish hardness of fpow.
Towards this, we give a combinatorial interpretation of fpow as a sum over partitions of [r];
this sum will later be restricted to partitions that are actually perfect matchings of Kr.

▶ Fact 10. If λ = (λ1, . . . , λr) is a partition of some integer d ∈ N, and the parts of λ are
pairwise distinct, then we have mλ(x1, . . . , xn) = fpow(p1, . . . , pd) with

fpow(y1, . . . , yd) =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI
. (1)

Proof. If all parts of λ are pairwise distinct, then mλ can be expressed as the rectangular
permanent of a generalized Vandermonde matrix Vλ defined from λ:

mλ = rPerr,n

 xλ1
1 xλ1

2 . . . xλ1
n

...
...

. . .
...

xλr
1 xλr

2 . . . xλr
n


︸ ︷︷ ︸

=:Vλ

(2)

The Binet-Minc formula (Theorem 7) then readily yields (1): When invoked on Vλ, the
polynomial SI in the statement of Theorem 7 equals

SI =
n∑

j=1

∏
i∈I

Vλ(i, j) =
n∑

j=1

∏
i∈I

xλi
j =

n∑
j=1

xλI
j = pλI

.

This concludes the proof. ◀

Note that all parts of λ are indeed distinct, since λ is 2-good and thus cannot feature a part
of multiplicity strictly larger than 1; this follows from the Sidon set property.

Theorem 2 shows that fpow is uniquely determined over characteristic 0, and Theorem 3
yields a reduction from fpow to mλ, so we establish hardness of fpow: We define a new
polynomial fmatch by restricting the sum over partitions I ∈ Pr in (1) to perfect matchings,
i.e., to partitions of [r] in which all parts have cardinality 2. We write Mr for the set of
perfect matchings of [r] and define

fmatch(y1, . . . , yd) :=
∑

I∈Mr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI

= (−1)r/2
∑

I∈Mr

∏
I∈I

yλI
.

(3)

The last identity holds because every I ∈ Mr has exactly r/2 parts, each of cardinality 2.
We will show later that fmatch can be reduced to fpow. First, we establish the hardness of

fmatch by reducing the perfect matching polynomial to it. Here, we crucially use that λ is a
Sidon set in order to switch between the variables yλ{u,v} present in fmatch and the variables
x{u,v} present in PerfMatchr.

▷ Claim 11. There is a c-reduction from PerfMatchr to fmatch.

Proof. Since λ is a 2-good set, its parts form a 2-wise Sidon set, so the map {u, v} 7→ λ{u,v}
from 2-subsets of [r] into N is injective. This in turn implies that substituting yλ{u,v} ← x{u,v}
for all {u, v} ⊆ [r] into fmatch yields the polynomial

(−1)r/2
∑

I∈Mr

∏
I∈I

x{u,v} = (−1)r/2PerfMatchr.

Multiplication with (−1)r/2 then yields the desired c-reduction. ◁

FSTTCS 2022



16:8 On the VNP-Hardness of Some Monomial Symmetric Polynomials

Finally, we reduce fmatch to fpow. This reduction proceeds in two steps: We first show
that the homogeneous component of degree r/2 in fpow enumerates the perfect matchings
and some additional structures; these additional structures are then removed through the
stratification property of λ.

▷ Claim 12. There is a c-reduction from fmatch to fpow.

Proof. Consider the homogeneous component Hr/2(fpow) in fpow. Lemma 5 gives a c-
reduction from Hr/2(fpow) to fpow. By inspecting (1), we see that the monomials of
Hr/2(fpow) correspond to the partitions I ∈ Pr with exactly r/2 parts. Such a partition is a
perfect matching iff it contains no parts of size 1, as every part must then be of cardinality
at least 2, and thus, of cardinality exactly 2.

We thus aim to restrict the sum further to partitions with r/2 parts and no parts of
cardinality 1. To this end, substitute pλ{u} ← 0 for all u ∈ [d]: By the stratification property
of λ, this eliminates precisely those partitions from Hr/2(fpow) that contain a singleton part
{u}. Overall, this yields a c-reduction from fmatch over Hr/2(fpow) to fpow. ◁

We have now collected all parts of the reduction and summarize it below.

▶ Lemma 13. Let F = C. Let λ ⊢ d for d ∈ N be a 2-good partition with r parts. Then

Perr/2 ⪯c mλ(x1, . . . , xn)

provided that n ≥ d.

Proof. Let fpow(y1, . . . , yd) and fmatch(y1, . . . , yd) denote the polynomials defined from λ in
(1) and (3) above. We have the following chain of reductions:

Perr/2 ⪯c PerfMatchr by Lemma 6
⪯c fmatch(y1, . . . , yd) by Claim 12
⪯c fpow(y1, . . . , yd) by Claim 11
⪯c mλ(x1, . . . , xn) by Theorem 4.

The lemma follows. ◀

Combining Lemma 13 and Lemma 9, we obtain a proof of Theorem 1 in the case when
the underlying field is C.

Proof of Theorem 1 (characteristic 0). By Lemma 9, there is a sequence of 2-good parti-
tions λ1, λ2, λ3, . . . such that λn ⊢ dn has n parts and dn ≤ s(n) for a polynomial s : N→ N.
By Lemma 13, we have Pern/2 ⪯c mλn(x1, . . . , xs(n)). The theorem follows. ◀

4 Main result in positive characteristic

In this section, we adapt the proof from Section 3 to prove the main theorem for fields of
positive characteristic. Throughout this section, F denotes an infinite and algebraically closed
field of characteristic q > 2. Rather than reducing from the perfect matching polynomial for
graphs, we reduce from the perfect matching polynomial in (q − 1)-uniform hypergraphs. In
the following, let λ be a (q − 1)-good partition with r parts and λ ⊢ d for d ∈ N.
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The proof begins again by expressing mλ(x1, . . . , xn) = fpow(p1, . . . , pd) as a polynomial
combination of power-sum polynomials pi for 1 ≤ j ≤ d. Since λ is (q − 1)-good, it contains
only pairwise distinct parts, so we can use Fact 10 again and obtain

fpow(y1, . . . , yd) =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI
. (4)

At this point, we exploit the field characteristic: We have (|I| − 1)! ≡ 0 (mod q) if |I| > q,
implying that only partitions with parts of cardinality ≤ q appear in the above sum. Write
P≤q

r for the set of these partitions, and furthermore write Pq−1
r for the set of partitions

whose parts all have cardinality q − 1. Our goal is to restrict the sum in (4) to partitions
from Pq−1

r , that is, to perfect matchings in the complete (q− 1)-uniform r-vertex hypergraph.
This resembles the restriction to graph perfect matchings in Section 3.

To achieve this restriction and to invoke Theorem 4 later, we express the power-sum
polynomials pk for 1 ≤ k ≤ d as polynomials in the elementary symmetric polynomials. In
contrast to the converse direction (of expressing the elementary symmetric polynomials in
terms of the power-sum polynomials), such expressions exist even in positive characteristic:
For all k ∈ N, there is a unique polynomial fk(z1, . . . , zk) with pk = fk(e1, . . . , ek), even over
fields of characteristic q > 0. Combined with (4), we obtain mλ = felem(e1, . . . , ed) with

felem(z1, . . . , zd) =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI
(z1, . . . , zd). (5)

The polynomial felem is unique, since the elementary symmetric polynomials form a
basis for the symmetric polynomials over every field. Let t denote the min-degree of felem.
Theorem 4 shows that the homogeneous component of degree t in felem admits a c-reduction
to the polynomial mλ, so we will focus on this homogeneous component. First, we show that
the polynomial fk, which expresses the power-sum symmetric polynomial pk in terms of the
elementary symmetric polynomials, has min-degree at least 2 whenever k is divisible by q.
Note that fk has no constant term.

▷ Claim 14. The only linear monomial in fk is (−1)k+1k · yk. In particular, if q | k, then
the min-degree of fk over characteristic q is at least 2.

Proof. Given a partition µ ⊢ k and i ∈ N, write si(µ) for the multiplicity of i in µ. We
have [18, Chapter 7] that

fk(y1, . . . , yk) = (−1)kk
∑
µ⊢k

(s1(µ) + s2(µ) + · · ·+ sk(µ)− 1)!
s1(µ)! s2(µ)! · · · sk(µ)!

k∏
i=1

(−yi)si(µ). (6)

Note that every partition µ ⊢ k with at least two parts contributes a term of total degree at
least two. Only the partition µ = (k) can therefore contribute a linear monomial, and the
contributed monomial is (−1)kk · 0!/1! · (−yk) = (−1)k+1k · yk. ◁

Using this claim, we can analyze the min-degree of the contribution to felem from a
partition I ∈ P≤q

r . That is, we write felem =
∑

I bI with I ranging over P≤q
r and

bI := (−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI
.

It turns out that the min-degree of bI is minimized for partitions I ∈ Pq−1
r . This will allow

us to isolate these partitions via Theorem 4.
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▷ Claim 15. Let I ∈ P≤q
r .

If I ∈ Pq−1
r , then the min-degree of bI is equal to r/(q − 1).

Otherwise, the min-degree of bI is strictly larger than r/(q − 1).

Proof. Parts of size q in I contribute 2 to the min-degree of bI , while parts of size ≤ q − 1
contribute 1. Consider a Knapsack instance K with items S1, . . . , Sq, and item repetitions
allowed, where item Sj for 1 ≤ j ≤ q − 1 has weight 1 and profit j, while item Sq has weight
2 and profit q. The min-degree of bI for I ∈ P≤q

r can be viewed as the minimum weight of a
solution with profit r for K. Greedily choosing copies of the item Sq−1 with strictly (since
q > 2) largest profit-weight ratio yields an optimal fractional solution for K that consists of
r/(q− 1) copies of item Sq−1. This is an optimal integral solution to K, and by optimality of
the greedy algorithm, any solution including other items has strictly higher weight.

It follows that the min-degree of bI over all I ∈ P≤q
r is at least r/(q− 1), and this bound

is attained with (and only with) the partitions I ∈ Pq−1
r . ◁

It follows that the min-degree of felem is t := r/(q − 1). Since only partitions I ∈ Pq−1
r

have this min-degree t, the homogeneous component of degree t in felem depends only on
these partitions. We obtain

Ht(felem) = Ht

 ∑
I∈Pq−1

r

bI

 = Ht

 ∑
I∈Pq−1

r

(−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI

 . (7)

Since all partitions I ∈ Pq−1
r have t parts, each of size q − 1, we obtain furthermore that

Ht(felem) = (−1)r−t(q − 2)! ·Ht

 ∑
I∈Pq−1

r

∏
I∈I

fλI

 . (8)

The min-degree of fλI
for I ∈ I ∈ Pq−1

r is 1, and the unique linear monomial is (−1)λI +1λI ·
yλI

. Since λ is (q − 1)-good and |I| = q − 1, we have λI ≡ q − 1 (mod q). It follows that

H1(fλI
) ≡ (−1)q(q − 1) · yλI

. (mod q) (9)

For I ∈ Pq−1
r , the degree-t homogeneous component of

∏
I∈I fλI

is the product of these
linear monomials H1(fλI

). That is,

Ht

(∏
I∈I

fλI

)
≡
∏
I∈I

H1(fλI
) ≡ (−1)(q+1)t

∏
I∈I

yλI
. (mod q) (10)

It follows that

Ht(felem) ≡ (−1)r−t+(q+1)t(q − 2)!
∑

I∈Pq−1
r

∏
I∈I

yλI
. (mod q) (11)

Using the (q − 1)-wise Sidon set property of λ, we can substitute yλI
← xI for all sets

I ⊆ [r] of cardinality q − 1 into (11) as in Claim 11, so as to obtain:

▷ Claim 16. The polynomial hPerfMatchq−1
r admits a c-reduction to Ht(felem).

It remains to invoke Theorem 4. We collect the proof steps in the following lemma that
parallels Lemma 13 for characteristic 0.
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▶ Lemma 17. Let F be an algebraically closed field of characteristic q > 2. Let λ ⊢ d for
d ∈ N be a (q − 1)-good partition with r parts. Then

Perr/(q−1) ⪯c mλ(x1, . . . , xn),

provided that n ≥ d + 2.

Proof. Let felem(y1, . . . , yd) denote the polynomial defined from λ in (5). We have the
following chain of reductions:

Perr/(q−1) ⪯c hPerfMatch(q−1)
r by Lemma 6

⪯c Ht(felem(y1, . . . , yd)) by Claim 16
⪯c mλ(x1, . . . , xn) by Theorem 4.

To invoke Theorem 4, we use that n ≥ d + 2. This means that indeed felem(y1, . . . , yd)
depends on two variables less than mλ(x1, . . . , xn), as required. ◀

The proof of Theorem 1 for characteristic q now follows as in Section 3: Use Lemma 9 to
find (q − 1)-good partitions, then reduce from the family of permanents via Lemma 17.

5 Proof of Theorem 4

In this section, we outline how to modify the result of [4] to show Theorem 4 over an
algebraically closed field F of any characteristic (we will only require that the size of the field
F is large enough and contains primitive roots of unity of large enough order).

High-level Idea

The modification is based on a very simple idea. [4] prove a result for any algebraically
independent polynomials satisfying a (simple) technical condition. To apply this result, the
underlying field is required to have characteristic zero in order to apply the Jacobian criterion,
which states that the Jacobian of a collection of algebraically independent polynomials is full
rank over fields of characteristic zero. While this fact fails for fields of positive characteristic,
the proof still works if we are independently able to show that the polynomials under
consideration induce a Jacobian of full rank. We use this fact to prove their result in
the setting that the underlying polynomials are the elementary symmetric polynomials
e1, . . . , en−2.

The following is implicit in [4, Lemma 27]. The proof is only stated for homogeneous
polynomials g but easily works in the following more general setting as well.

▶ Lemma 18. Let k, n be positive integers with k ≤ n. Assume that Q1, . . . , Qk ∈
F[x1, . . . , xn] are polynomials of degree at most D such that for some a ∈ Fn, we have

Q1(a) = · · · = Qk(a) = 0, and
the k × n Jacobian matrix J (Q1, . . . , Qk) has rank k, when evaluated at the point a.

Further, assume that g ∈ F[y1, . . . , yk] is a degree-d polynomial of min-degree t and let
G = g(Q1, . . . , Qk). Then, LG(Ht(g)) ≤ poly(n, d, D).

We only sketch the proof, as it is quite similar to [4, Lemma 27].

Proof sketch. By shifting the input x by a, we assume without loss of generality that a is
the origin (note that this does not affect the Jacobian at all). Now, by a Taylor expansion
around the origin, we have for each i ∈ [k]

Qi(x) = ℓi(x) + Ri(x)

FSTTCS 2022
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where ℓi(x) is a homogeneous linear polynomial and Ri(x) is a polynomial of min-degree
at least 2. Further, the polynomials ℓ1, . . . , ℓk are linearly independent as the Jacobian is
full-rank at a (i.e. the origin). Thus, we have

G(x) = g(Q1(x), . . . , Qk(x))

=
d∑

j=t

Hj(g)(ℓ1(x) + R1(x), . . . , ℓk(x) + Rk(x))

= Ht(g)(ℓ1(x), . . . , ℓk(x)) + R(x)

where R(x) has min-degree strictly greater than t and degree at most deg(G). Note that
the second equality uses the fact that the min-degree of g is t. Since ℓ1, . . . , ℓk are linearly
independent, there exists a homogeneous linear transformation T of the variables x1, . . . , xn

such that ℓi(T (x)) = xi for each i ∈ [k]. Applying this linear transformation to the input
variables, we have

G′(x) := G(T (x)) = Ht(g)(ℓ1(T (x)), . . . , ℓk(T (x)))+R(T (x)) = Ht(g)(x1, . . . , xk)+R′(x)

where R′ has min-degree strictly greater than t and degree at most deg(G).
The above clearly implies that LG(G′) ≤ poly(n). Furthermore, by Lemma 5, we have

that LG′(Ht(g)) ≤ poly(n, deg(G)) ≤ poly(n, d, D) as the degree of G is at most d ·D.
Composing the two reductions, we have LG(Ht(g)) ≤ poly(n, d, D). ◀

We will apply Lemma 18 to the setting when Q1, . . . , Qk are e1, . . . , ek for some k < n−1.
To do this, we need to show that these polynomials satisfy the hypotheses required of
Q1, . . . , Qk in the statement of Lemma 18. We do this now, using ideas from Lemma 30 and
31 of [4].

▶ Lemma 19. Let k, n be positive integers with k < n− 1. Then the polynomials e1, . . . , ek

satisfy the conditions required of Q1, . . . , Qk in the hypothesis of Lemma 18.

Proof sketch. Define ℓ = k + 1 if q does not divide k + 1 and ℓ = k + 2 otherwise. Note that
k < ℓ ≤ n. As q does not divide ℓ, the algebraically-closed field F contains ℓ distinct ℓ-th
roots of unity 1, ω, . . . , ωℓ−1. Let a = (1, ω, . . . , ωℓ−1, 0, . . . , 0). It is a standard observation
(see e.g. [4, Lemma 31]) that e1(a) = · · · = eℓ−1(a) = 0. As ℓ > k, this implies the first
hypothesis from the statement of Lemma 18 above.

For the second hypothesis, we consider the Jacobian matrix J (e1, . . . , ek). To show that
this matrix is full-rank when evaluated at a, it suffices to argue that some k × k minor of
this matrix is non-zero when evaluated at a. We consider the minor Jk defined by the first k

columns of J (e1, . . . , ek) (containing the partial derivatives w.r.t. variables x1, . . . , xk).
The proof of Lemma 30 in [4] shows that Jk is divisible by the polynomial

∏
i<j≤k(xi −

xj). By comparing the degrees of these polynomials, we see immediately that J must be
c ·
∏

i<j≤k(xi − xj) for some scalar c ∈ F. As the first k co-ordinates of a are distinct, we
see that Jk(a) = c · α for some non-zero α ∈ F. So it suffices to show that c is non-zero.

To argue this, we only need to show that Jk is a non-zero polynomial. To see this,
consider the coefficient of xk−1

1 xk−2
2 · · ·xk−1 in the minor Jk. We claim that this coefficient

is non-zero. In particular, this implies that Jk is a non-zero polynomial.
It remains to prove the claim regarding the monomial mk := xk−1

1 xk−2
2 · · ·xk−1. We have

Jk =
∑

σ∈Sn

sgn(σ)
k∏

i=1
J (e1, . . . , ek)i,σ(i).
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To argue that mk has a non-zero coefficient in Jk, we can argue by induction on k. Note
that the (i, j)th entry of J (e1, . . . , ek) is the partial derivative of the polynomial ei w.r.t.
variable xj . It is thus the sum of all multilinear monomials of degree i− 1 not divisible by xj .
In particular, the only entry in the kth row that has a monomial involving only the variables
x1, . . . , xk−1 (the set of variables of mk) is the entry J (e1, . . . , ek)k,k, and furthermore, the
unique such monomial is x1 · · ·xk−1.

Expanding the determinant Jk by the Laplace expansion along the kth row, we see that
the coefficient of mk in Jk is also the coefficient of mk in

x1 · · ·xk−1 · J ′
k

where the latter term J ′
k represents the co-factor of J (e1, . . . , ek)k,k in Jk, which is exactly

the minor corresponding to the first k − 1 columns of J (e1, . . . , ek−1), which is Jk−1. By
induction, the coefficient of mk−1 = xk−2

1 · · ·xk−2 in J ′
k is non-zero, hence implying that the

coefficient of mk in Jk is non-zero as well. ◀

To prove Theorem 4, we apply Lemma 18 to the case when G = f(x1, . . . , xn) and
g = felem(y1, . . . , yn−2). Note that, by the hypothesis of Theorem 4, felem does not depend
on yn−1 and yn. By Lemma 19, the polynomials e1, . . . , en−2 satisfy the hypotheses of
Lemma 18. Applying the latter lemma and using the fact that e1, . . . , en−2 have degree at
most n, we immediately get Ht(felem) ⪯c f, implying Theorem 4.
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