PACE Solver Description: GraPA-JAVA*

Moritz Bergenthal = Jona Dirks &
Universitdt Bremen, Germany Universitdt Bremen, Germany
Thorben Freese = Jakob Gahde =
Universitdt Bremen, Germany Universitit Bremen, Germany
Enna Gerhard & Mario Grobler &
Universitat Bremen, Germany Universitat Bremen, Germany

Sebastian Siebertz =

Universitdt Bremen, Germany

—— Abstract

We present an exact solver for the Directed Feedback Vertex Set Problem (DFVS), submitted for
the exact track of the Parameterized Algorithms and Computational Experiments challenge (PACE)

in 2022. The solver heavily relies on data reduction (known from the literature and new reduction
rules). The instances are then further processed by integer linear programming approaches. We
implemented the algorithm in the scope of a student project at the University of Bremen.

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms

Keywords and phrases complexity theory, parameterized complexity, linear programming, java,
directed feedback vertex set, PACE 2022

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.30

Supplementary Material

Software (Source Code Release): https://doi.org/10.5281/zenodo.6647003

Software (Public Git Repository): https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-
library, archived at swh:1:dir:£d00e212eda2d4eab270dadc83923224551db839

Software (Public Git Repository): https://gitlab.informatik.uni-bremen.de/grapa/java/max
cliqueenumeration, archived at swh:1:dir:a4cde68f2e0de0e5b873eb5a02dc975c4a37fbbl
Software (Public Git Repository): https://gitlab.informatik.uni-bremen.de/grapa/java/pace-
2022-dfvs-solver, archived at swh:1:dir:a80285858dd46e917d4f0c89fd13948177c6a048

Preliminaries

We use standard notation for directed graphs as in [2], with u,v € V(G) being two vertices,
and (u,v) € E(G) being an edge from vertex u to vertex v. We use the term directed edge
for any edge (u,v) € E(G) if (v,u) ¢ E(G) and undirected edge (or 2-cycle) otherwise.

1 Solver overview

On a high level, our algorithm works as follows. It uses three steps to find a minimum DFVS
for an input graph G:

1. Parse the input and apply the most basic data reduction rules.

2. Apply advanced data reduction rules iteratively (details are presented in Section 2).

3. Solve the remaining instance, possibly iteratively (details are presented in Section 3).

* This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© Moritz Bergenthal, Jona Dirks, Thorben Freese, Jakob Gahde, Enna Gerhard, Mario Grobler, and
5v Sebastian Siebertz;
licensed under Creative Commons License CC-BY 4.0
17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 30; pp. 30:1-30:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:mbergent@uni-bremen.de
https://orcid.org/0000-0002-0785-4725
mailto:dirks2@uni-bremen.de
mailto:thfr@uni-bremen.de
mailto:jgahde@uni-bremen.de
mailto:gerhard@uni-bremen.de
https://orcid.org/0000-0002-7767-6637
mailto:grobler@uni-bremen.de
https://orcid.org/0000-0001-8103-6440
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://doi.org/10.5281/zenodo.6647003
https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-library
https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-library
https://archive.softwareheritage.org/swh:1:dir:fd00e212eda2d4eab270dadc83923224551db839;origin=https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-library;visit=swh:1:snp:53ee37d75c40f378a432dac1763f073d2db39b8a;anchor=swh:1:rev:5722a7fd1d3a4e6a066734dc734f9011eaf6c730
https://gitlab.informatik.uni-bremen.de/grapa/java/maxcliqueenumeration
https://gitlab.informatik.uni-bremen.de/grapa/java/maxcliqueenumeration
https://archive.softwareheritage.org/swh:1:dir:a4cde68f2e0de0e5b873eb5a02dc975c4a37fbb1;origin=https://gitlab.informatik.uni-bremen.de/grapa/java/maxcliqueenumeration;visit=swh:1:snp:6df0ef1b3df0a566c5e8d537d76d2542756fe499;anchor=swh:1:rev:e9c1f42707b17b780cb6bfc510d5f6691b074457
https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver
https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver
https://archive.softwareheritage.org/swh:1:dir:a80285858dd46e917d4f0c89fd13948177c6a048;origin=https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver;visit=swh:1:snp:6cf7e3c398e66cc79db013f69f24e2564518f9e9;anchor=swh:1:rev:f91d1a133a6357cdc93b421f3519822de4847f91
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2

Table 1 Data reduction rules.

PACE Solver Description: GraPA-JAVA

Name Note Source

1. Delete Loops Implicitly applied Folklore, rule 1 of [6]

2. Remove connected ton — 1 Special case of rule 5

3. In-/out-degree 0 Included in CRR Rule 3 of [6], rule 5 of [1]

4. In-/out-degree 1 Included in CRR Rule 4 of [6], rule 6 of [1]

5. Dominating 2-cycle Superset of both prede- Adapted from rule 6 of [4]

cessors and successors

6. Strongly connected compon- Previous rules inbetween One step of [5] at a time
ents

7. Delete unnecessary edges Partially included in CRR Special case of rule 10

8. Contract isolated paths of Possible when not creating Adapted from rule 7 of [4]
length 3 (lines) new induced cycles

9. Contract degree three Possible when not creating Adapted from special case of

new induced cycles rule 8 of [4]
10 Delete non-induced edges New
" We only need to consider induced edges. For every edge, we start a BFS and do
not visit a vertex if a cycle is closed. For this, we track disallowed predecessors
that get reduced if an alternative path exists. It is not exhaustive, as there
might be cases where two alternative paths would be closed.
11 Pick dominating vertices on New

2-cycles
If a vertex dominates all predecessors/successors of the other vertex on an

undirected edge with undirected edges, we can include it in the solution.
Adapted from rule 3 of [4]

Special case of connected to
all in foot

12. Crown reduction

Three hitting set Only applies in Section 3.3 New

13. If all cycles running through a vertex are at most 3-cycles, we can replace them
with a hitting set gadget. If all vertices of the internal clique are selected, we
are allowed to push one outwards, hitting the cycle

14, Any hitting set Only applies in Section 3.3 New

Applied to a cycle that is isolated except for at most one edge, in that case
create a gadget as in rule 13

2 Data reduction rules

We apply the data reduction rules presented in Table 1. The rules are applied iteratively.
Each rule is applied exhaustively. After a successful rule application, we return to the first
rule.

We apply commonly known rules for DFVS (Rules 1, 3, 4, 6). The most local rules are
applied recursively in a rule that we call Combined Recursive Reduction (CRR). As DFVS is
a generalization of the Vertex Cover problem, we were able to adapt several rules designed
for Vertex Cover (Rules 2, 5, 8, 9, 12). Additionally, we have found several rules generalazing
known rules from the literature, as well as several completely new rules not known from the
literature. Many of these rules rely on the observation that we only need to hit induced
cycles when solving a DFVS instance, as all other cycles will be hit in that case as well. The
correctness of all new rules will be presented in a companion paper.

M. Bergenthal et al.

3 Exact solving

After applying the data reduction rules, depending on the relative number of undirected
edges, we employ different solving strategies. If less than half of the edges are undirected
edges, we immediately resort to the iterative addition of cycles as a constraint for a hitting
set ILP formulation, explained in Section 3.1.

In mixed or largely undirected graphs, we resort to an ILP formulation that models the
problem as finding a topological order (Section 3.2) with additional hints to improve the
internal lower bounds of the solver. ILPs are solved with SCIP. If the ILP solver does not
terminate within twelve minutes, the attempt will be terminated. Instead, we compute an
exact solution to the Vertex Cover problem. If this is not a solution to DFVS, we do not
return a solution. Details are presented in Section 3.3.

3.1 Iterative cycle hitting set ILP

Over time, we generate a set IC of induced cycles. We initialize K with all induced cycles of
length 2, 3 and 4, and add longer disjoint cycles that are packed greedily until no further
disjoint cycles remain. We then solve the ILP (Algorithm 1) and interpret the chosen variables
as vertices to remove from the graph. If no cycle remains, we have obtained the optimal
solution, otherwise, we greedily compute a new cycle packing on the remainder of the graph
and add all these cycles to K.

Algorithm 1 Hitting set ILP formulation.

foreach v; € V(G) add variable z(v;) = x; € X with constraint z; € [0, 1]
foreach cycle K € K add constraint), z(v;) > 1

minimize) .y ;
i

3.2 Topological order ILP

A graph is acyclic if and only if its vertices can be ordered as vy, ..., v, such that every edge

(v4,v;) satisfies ¢ < j. We use this observation for the following ILP formulation (Algorithm 2).

For the undirected subcomponents of the graph, we compute a set of maximum cliques C
using [3]. This external solver does not always find all 2-cliques, so we compute all 2-cycles
and remove them if they are somewhere included in a clique. We create a partial order on
all vertices adjacent to directed edges, denoted as £. The constraints can be interpreted as
o(s) < o(t) Va(s) Vx(t): edges must be part of a DAG over the order or either vertex chosen
for the solution. We furthermore compute a hint of short cycles K as in Section 3.1. The
vertices chosen can directly be interpreted as a result for DFVS.

3.3 Underlying Vertex Cover

We take the undirected part of the graph and compute a minimum vertex cover using [7]. If
no cycles are remaining, we return the solution. Otherwise, we apply the hitting set gadget
reduction rules (Rules 13 and 14) and solve the resulting instance again. At this point, we
could turn towards iterative solving as in Section 3.1 but did not implement this as the above
approach was already sufficient on all of the test instances.

30:3

IPEC 2022

30:4

PACE Solver Description: GraPA-JAVA

Algorithm 2 Linear ordered ILP formulation.

foreach v; € V(G) add
variable z(v;) = x; € X with constraint x; € [0, 1]
variable o(v;) = y; € Y with constraint y; € [0, n]
foreach cligue C € C add constraint »_, - x(v;) > |C] -1
foreach edge (s,t) € £ add constraint o(t) —o(s) +x(t) - (n+ 1)+ z(s)- (n+1) > 1
foreach cycle K € K add constraint)z z(vi) > 1

minimize) _y;
i

—— References

1

Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S.
Ramanujan. Towards a Polynomial Kernel for Directed Feedback Vertex Set. In Kim G.
Larsen, Hans L. Bodlaender, and Jean-Francois Raskin, editors, 42nd International Symposium
on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 36:1-36:15, Dagstuhl, Germany, 2017.
Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.MFCS.2017.36.
Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2016.
doi:10.1007/978-3-319-21275-3.

David Eppstein, Maarten Loffler, and Darren Strash. Listing all maximal cliques in large sparse
real-world graphs. ACM J. Ezp. Algorithmics, 18, November 2013. doi:10.1145/2543629.
Michael R. Fellows, Lars Jaffke, Aliz Izabella Kiraly, Frances A. Rosamond, and Mathias
Weller. What is known about vertex cover kernelization? In Adventures Between Lower
Bounds and Higher Altitudes, pages 330-356, 2018. doi:10.1007/978-3-319-98355-4_19.
Lisa K. Fleischer, Bruce Hendrickson, and Ali Pinar. On identifying strongly connected
components in parallel. In José Rolim, editor, Parallel and Distributed Processing, pages 505—
511, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. doi:10.1007/3-540-45591-4_68.
Rudolf Fleischer, Xi Wu, and Liwei Yuan. Experimental study of fpt algorithms for the
directed feedback vertex set problem. In Amos Fiat and Peter Sanders, editors, Algorithms
— ESA 2009, pages 611-622, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-04128-0_55.

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered:
The winning solver from the pace 2019 implementation challenge, vertex cover track. ArXiv,
abs/1908.06795, 2019. arXiv:1908.06795.

https://doi.org/10.4230/LIPIcs.MFCS.2017.36
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2543629
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1007/978-3-642-04128-0_55
https://doi.org/10.1007/978-3-642-04128-0_55
http://arxiv.org/abs/1908.06795

	1 Solver overview
	2 Data reduction rules
	3 Exact solving
	3.1 Iterative cycle hitting set ILP
	3.2 Topological order ILP
	3.3 Underlying Vertex Cover

