
Parameterized Local Search for Vertex Cover:
When Only the Search Radius Is Crucial
Christian Komusiewicz !

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Nils Morawietz !

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Abstract
A k-swap W for a vertex cover S of a graph G is a vertex set of size at most k such that S′ =
(S \ W) ∪ (W \ S), the symmetric difference of S and W , is a vertex cover of G. If |S′| < |S|, then W

is improving. In LS-Vertex Cover, one is given a vertex cover S of a graph G and wants to
know if there is an improving k-swap for S in G. In applications of LS-Vertex Cover, k is a very
small parameter that can be set by a user to determine the trade-off between running time and
solution quality. Consequently, k can be considered to be a constant. Motivated by this and the
fact that LS-Vertex Cover is W[1]-hard with respect to k, we aim for algorithms with running
time ℓf(k) · nO(1) where ℓ is a structural graph parameter upper-bounded by n. We say that such a
running time grows mildly with respect to ℓ and strongly with respect to k. We obtain algorithms
with such a running time for ℓ being the h-index of G, the treewidth of G, or the modular-width
of G. In addition, we consider a novel parameter, the maximum degree over all quotient graphs in a
modular decomposition of G. Moreover, we adapt these algorithms to the more general problem
where each vertex is assigned a weight and where we want to find a d-improving k-swap, that is,
a k-swap which decreases the weight of the vertex cover by at least d.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Computing methodologies → Discrete space search

Keywords and phrases Local Search, Structural parameterization, Fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.20

Funding Nils Morawietz: Supported by the Deutsche Forschungsgemeinschaft (DFG), project
OPERAH, KO 3669/5-1.

1 Introduction

Local search is one of the most successful heuristic strategies to tackle hard optimization
problems [6, 16, 20]. Consequently, understanding when local search yields good results and
improving local search approaches is of utmost importance. In its easiest form, local search
follows a hill-climbing approach on the space of feasible solutions of the optimization problem
at hand. In this setting, one chooses some initial feasible solution and then iteratively replaces
the current solution by a better one in its local neighborhood until reaching a local optimum,
that is, a solution that has no better solution in its neighborhood. Intuitively, it is clear
that the larger the local search neighborhood, the better the final solution will be. At the
same time, searching a larger neighborhood takes longer. In particular, for hard optimization
problems, the running time will be superpolynomial when the neighborhood is too large.
As a consequence, there is a trade-off between running time and solution quality that is
governed by the size of the local search neighborhood.

Parameterized local search offers a framework that may guide the design process for
algorithms that attempt to search larger local neighborhoods. When applying parameterized
local search to an optimization problem, the first step is to define a measure of distance

© Christian Komusiewicz and Nils Morawietz;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
mailto:morawietz@informatik.uni-marburg.de
https://doi.org/10.4230/LIPIcs.IPEC.2022.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Parameterized Local Search for Vertex Cover

between solutions. The local search neighborhood of a solution is then the set of solutions
within distance at most k. Here, k is an operational parameter that can be set by the user
and that does not depend on the input data. The hope is now that the superpolynomial
part of the running time for searching the local neighborhood depends mostly on k. More
precisely, the ultimate goal of parameterized local search is to devise an algorithm that
determines in f(k) · nO(1) time whether there exists a better solution within distance at
most k of the current one. Often such a running time is not possible, since most local search
problems turn out to be W[1]-hard with respect to the parameter k [5, 10, 15, 14, 21, 24].

For example, when applying local search to Vertex Cover, the set of feasible solutions
of a graph G = (V, E) is naturally defined as the collection of vertex covers of G, that is,
vertex sets S ⊆ V that cover all edges of the graph. The most obvious choice for a local
search neighborhood is the k-swap neighborhood. Here, two vertex sets S and S′ are k-swap
neighbors if and only if (S \S′)∪ (S′ \S) has size at most k. The problem of deciding whether
a given vertex cover S of a graph G has a smaller vertex cover in its k-swap neighborhood,
called LS-Vertex Cover, is W[1]-hard with respect to k [10]. Thus, at first it may seem
unlikely that parameterized local search can be successfully applied to LS-Vertex Cover.
There are, however, some positive results for LS-Vertex Cover. In particular, LS-Vertex
Cover admits an FPT-algorithm for ∆(G) + k, where ∆(G) is the maximum degree of the
input graph [10]. That is, it can be solved in f(∆(G), k) ·nO(1) time. While this running time
bound is certainly interesting for bounded-degree graphs, it does not necessarily deliver on
the promise of parameterized local search that the superpolynomial part of the running time
depends mostly on k: for example f(∆(G), k) could be 2∆(G)·k. It is also known, however,
that LS-Vertex Cover can be solved in time O(2k · (∆(G) − 1)k/2 · k3 · n) [18]. In this
running time only k appears in the exponent, while ∆(G) appears only in the base of the
exponential function. Consequently, for small values of k the running time guarantee can
still be practically relevant, even when ∆ is not too small. In particular, the running time is
polynomial for every fixed k. The practical usefulness of the algorithm with this worst-case
running time bound was confirmed by experiments which showed that LS-Vertex Cover
can be solved efficiently for k up to 25 [18].

In this work, we aim to find further algorithms for LS-Vertex Cover that achieve such
running times which can be considered practical even though the superpolynomial running
time part depends not only on the operational parameter k. Before describing our results,
let us formalize the class of running time functions that we aim to achieve.

▶ Definition 1.1. Let f : N×N→ N be a function. We say that f grows mildly with respect
to ℓ and strongly with respect to k if f(ℓ, k) ∈ O(ℓ g(k)) for some computable function g

depending only on k.

We are interested in obtaining FPT-algorithms whose running time grows strongly only with
respect to k and mildly with respect to some other parameters. In our opinion, the usefulness
of this setting is not limited to local search problems. Instead, it may be useful whenever

two parameters k and ℓ are studied,
k is known to be very small on relevant input instances,
k is known to be much smaller than ℓ on these instances,
and the problem is W[1]-hard with respect to k.

Our Results. We provide FPT-algorithms for LS-Vertex Cover parameterized by k and
several structural parameters of G. Besides k, we consider the treewidth of the input graph G,
denoted by tw(G), the h-index of the input graph G, denoted by h(G), the modular-width

C. Komusiewicz and N. Morawietz 20:3

of G, denoted by mw(G), and a novel parameter, the maximum degree over all quotient
graphs in a minimum-width modular decomposition, denoted by ∆md(G). In all our FPT-
algorithms, the running time grows strongly with respect to k and only mildly with respect
to the particular structural parameter. Moreover, for all these algorithms, the running time
depends only linearly on the size of the input graph.

The most general of our algorithms actually solve Gap LS-Weighted Vertex Cover
where the input graph is vertex-weighted, the cost of a vertex cover is the sum of its vertex
weights, and we search for a swap that improves the current solution by at least d for some
input value d. Local search approaches for Weighted Vertex Cover have been studied
from a more practical perspective which motivates our study of weighted variants of LS-VC.
In addition, for weighted local search problems, there may be exponentially long chains of
local improvements before one finds a local optimum [17] even for swaps of constant size [19].
Here, using a gap-variant of local search could reduce the number of necessary steps by
increasing the improvement per step. We now discuss the results in detail.

The h-index of a graph G is the largest number h such that G has at least h vertices
with degree at least h [9]. For Gap LS-Weighted Vertex Cover, we obtain an algorithm
with running time O(k! · (h(G) − 1)k · n). This can be seen as an improvement over the
FPT-algorithm for ∆(G) and k [18] since h(G) is never larger than ∆(G). In fact, in
many real-world instances the input graphs are scale-free, and on scale-free graphs h(G) is
drastically smaller than ∆(G). Even in such graphs, in order to speak of an improvement, it
is imperative that the running time of the FPT-algorithm grows mildly with respect to h(G)
and strongly with respect to k: a running time of O(2h(G)·k · n) would be less desirable than
the previous one for ∆(G) and k since the exponent would not be confined to the operational
parameter k.

The FPT-algorithm for tw(G) and k has running time O((tw(G)3k +k2) ·n). It is based on
dynamic programming on the tree decomposition. For LS-Vertex Cover, we show that, for
each bag of the tree decomposition, it is sufficient to consider intersections of size at most ⌈ k

2 ⌉
with potential improving swaps. This reduces the running time for LS-Vertex Cover
to O((tw(G)3·⌈ k

2 ⌉ + k2) · n). Hence, compared to the algorithm for Gap LS-Weighted
Vertex Cover, we are able to consider swaps of double the size.

We then consider parameters that are related to modular decompositions. These parame-
ters measure a different structural aspect, the similarity of neighborhoods in the graph, than
treewidth or the degree-related parameterizations. In particular, they can be very small in
dense graphs. For Gap LS-Weighted Vertex Cover we develop an FPT-algorithm with
running time O(mw(G)k · k · (mw(G) + k) · n + m) based on dynamic programming on a
modular decomposition, where mw(G) is the modular-width of G, the size of the largest vertex
set of any quotient graph of the modular decomposition. We then show an improvement
of this algorithm in terms of the structural parameter. More precisely, we show that when
processing a node of the decomposition in the dynamic programming algorithm, one may
apply a branching algorithm to determine how the swap interacts with the current node.
Superficially, this branching algorithm resembles the one for ∆(G) and k but including the
information computed for other nodes of the decomposition requires to combine the branching
with Knapsack DP-algorithms. This gives an FPT-algorithm for the parameters ∆md(G)
and k. Recall that ∆md(G) is the maximum degree over all quotient graphs of a modular
decomposition of minimum width which is upper-bounded by mw(G). We believe that this
novel parameter can be useful in further algorithmic applications of modular decompositions.
We remark that the presented algorithm for ∆md(G) and k only solves the unweighted gap
version of LS-VC; an extension to Gap LS-Weighted Vertex Cover seems possible but
somewhat tedious.

IPEC 2022

20:4 Parameterized Local Search for Vertex Cover

In a second improvement, we show that instead of modular-width one can also obtain
FPT-algorithms when using the smaller splitwidth; the results for this parameter are deferred
to the full version of this article. Another candidate parameterization would be cliquewidth.
We do not consider cliquewidth here, since there is no polynomial-time polynomial-factor
approximation of cliquewidth and thus the desired type of FPT running times can only be
achieved when a clique decomposition is given as input.

We complement these algorithms by conditional lower bounds that are based on the
assumption that matrix-multiplication-based algorithms for the Clique-problem are running-
time-optimal [1]. We show that under this assumption, we may not expect a very large
improvement of the previous known and new algorithms.

The proofs of statements marked with a (*) are deferred to a full version. For further
details regarding parameterized algorithms, refer to the textbook of Cygan et al. [7].

2 Preliminaries

For integers i and j with i ≤ j, we define [i, j] := {k ∈ N | i ≤ k ≤ j}. For a set A, we
denote with

(
A
2
)

:= {{a, b} | a ∈ A, b ∈ A, a ̸= b} the collection of all size-two subsets of A.
For two sets A and B, we denote with A ⊕ B := (A \ B) ∪ (B \ A) the symmetric difference
of A and B.

Graph Notation. An (undirected) graph G = (V, E) consists of a set of vertices V and
a set of edges E ⊆

(
V
2
)
. For vertex sets S ⊆ V and T ⊆ V , we denote with EG(S, T) :=

{{s, t} ∈ E | s ∈ S, t ∈ T} the edges between S and T and we use EG(S) := EG(S, S) as a
shorthand. Moreover, we define G[S] := (S, EG(S, S)) as the subgraph of G induced by S.
For a vertex v ∈ V , we denote with NG(v) := {w ∈ V | {v, w} ∈ E} the open neighborhood
of v in G and with NG[v] := {v} ∪ NG(v) the closed neighborhood of v in G. Analogously,
for a vertex set S ⊆ V , we define NG[S] :=

⋃
v∈S NG[v] and NG(S) :=

⋃
v∈S NG(v) \ S. If G

is clear from the context, we may omit the subscript.

Modular Decompositions. A modular decomposition of a graph G = (V, E) is a pair (T , β)
consisting of a rooted tree T = (V, A, x∗) with root x∗ ∈ V and a function β that maps each
node x ∈ V to a graph β(x). If x is a leaf of T , then β(x) contains a single vertex of V and
for each vertex v ∈ V , there is exactly one leaf ℓ of T such that the graph β(ℓ) consists only
of v. If x is not a leaf node, then the vertex set of β(x) is exactly the set of child nodes of x

in T . Moreover, let Vx denote the set of vertices of V contained in leaf nodes of the subtree
rooted in x. Formally, Vx is recursively defined as V (β(ℓ)) for leaf nodes ℓ and defined
as

⋃
y∈V (β(x)) Vy for each non-leaf node x. Moreover, we define Gx = (Vx, Ex) := G[Vx].

A modular decomposition has the property that for each non-leaf node x and any pair of
distinct nodes y ∈ V (β(x)) and z ∈ V (β(x)), y and z are adjacent in β(x) if there is an edge
in G between each pair of vertices of Vy and Vz and y and z are not adjacent if there is
no edge in G between any pair of vertices of Vy and Vz. Hence, it is impossible that there
are vertex pairs (v1, w1) ∈ Vy × Vz and (v2, w2) ∈ Vy × Vz such that v1 is adjacent with w1
and v2 is not adjacent with w2.

We call β(x) the quotient graph of x. A quotient graph is prime if there is no set A ⊆
V (β(x)) with 2 ≤ |A| < |V (β(x))| such that all vertices of A have the same neighborhood
in V (β(x)) \ A. The width of a modular decomposition is the size of the largest vertex set of
any quotient graph and the modular-width of a graph G is the minimal width of any modular
decomposition of G denoted by mw(G).

The formal definition of treewidth and tree decompositions is deferred to the appendix.

C. Komusiewicz and N. Morawietz 20:5

Vertex Cover Local Search. A vertex set S ⊆ V is a vertex cover of G if at least one
endpoint of each edge in E is contained in S. Let S be a vertex cover of G. A k-swap,
for k ∈ N, is a vertex set W of size at most k and W is said to be valid for S in G if S ⊕ W

is also a vertex cover of G. For each valid swap W for S in G, both W ∩ S and W \ S are
independent sets and N(W) \ S = N(W ∩ S) \ S ⊆ W . A swap W is connected if G[W] is
connected. Let ω : V → N. For some X ⊆ V , we set ω(X) =

∑
x∈X ω(x). The improvement

of W is defined as αS
ω(W) := ω(W ∩ S) − ω(W \ S). Moreover, W is improving if αS

ω(W) > 0
and d-improving for some d ∈ N if αS

ω(W) ≥ d. If S or ω are clear from the context, we may
omit them. In this work, we study the following local search problems for Vertex Cover.

LS-Weighted Vertex Cover (LS-WVC)
Input: A graph G = (V, E), a weight function ω : V → N, a vertex cover S of G,
and k ∈ N.
Question: Is there a valid improving k-swap W ⊆ V for S in G?

Gap LS-Weighted Vertex Cover (GLS-WVC)
Input: A graph G = (V, E), a weight function ω : V → N, a vertex cover S

of G, k ∈ N, and d ∈ N.
Question: Is there a valid d-improving k-swap W ⊆ V for S in G?

Moreover, we define Gap LS-Vertex Cover (GLS-VC) as the special case of GLS-
WVC where ω(v) = 1 for each v ∈ V and d ∈ [1, k] and LS-Vertex Cover (LS-VC) as
the special case of GLS-VC, where d = 1. Let I = (G = (V, E), S, ω, k, d) be an instance
of GLS-WVC. We say that W ⊆ V is a solution for I, if W is a valid d-improving k-swap
for S in G.

3 Basic Observations and Lower Bounds

In this section, we first define swap-instances which are instances obtained from applying
some partial swap. Swap-instances will be useful for describing certain parts of our algorithms
such as branching rules. We then make some observations on certain useful properties of
improving swaps. Finally, we present our running time lower bounds for the considered
parameters.

Swap-Instances. In our algorithms, we may change instances by performing some partial
swaps, for example during branching. We call the instance obtained by such an operation
a swap-instance. Intuitively, the swap-instance swap(I, W) for an instance I of GLS-WVC
and a (partial) swap W is the GLS-WVC-instance obtained as follows: First, swap W .
Then, swap further vertices to make the swap W valid, that is, to maintain that S is a vertex
cover. To simplify the instance, the set W ′ ⊇ W of swapped vertices is then removed from
the instance. Finally, to maintain equivalence, the remaining budget k is decreased by the
number of swapped vertices and the required improvement d is decreased by the improvement
of W ′. Formally, this reads as follows.

▶ Definition 3.1. Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC and let W ⊆
V be a k-swap. Define W ′ := W ∪ (N(W) \ S). The instance

swap(I, W) := (G′, ω′, S′ := S \ W, k′, d′)

with G′ := G − (N(W ∩ S) ∪ W ′), k′ := k − |W ′|, d′ := d − α(W ′), and ω′(v) := ω(v) for
each v ∈ V (G′) is the swap-instance for I and W .

IPEC 2022

20:6 Parameterized Local Search for Vertex Cover

G G′

W ′

W

v5 v6 v7 v8

v1 v2 v3 v4

⇝

v4

v7 v8

Figure 1 An instance I := (G, S, k, d) (left) and the swap-instance swap(I, W) := (G′, S′, k′, d′)
(right) obtained from the swap W := {v1, v2}. The vertex cover vertices are black, the independent
set vertices are white. The green area contains the vertices of N(W ∩ S) ∪ W ′ which are in G but not
in G′. Since W ′ has size 4 and contains only one vertex of S, k′ := k − 4 and d′ := d + 2. Moreover,
the vertex v3 is not contained in G′ since v1 is adjacent to v3 and leaves the vertex cover, which
implies that v3 cannot leave the vertex cover afterwards.

An example of a swap-instance can be seen in Figure 1. Note that W ′ is a subset of each
valid swap W ∗ for S in G where W ⊆ W ∗.

▶ Lemma 3.2 (*). Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC and let
W ⊆ V such that W ∩ S is an independent set. There is a solution W ∗ for I with W ⊆ W ∗

if and only if swap(I, W) is a yes-instance of GLS-WVC.

If I is an instance of GLS-VC, then k′ + d′ = k + d − 2 · |W ∩ S|, since α(W ′) =
−|W | + 2 · |W ∩ S|. Let I be an instance of GLS-WVC and let W be the subset of some
valid swap. When we replace the instance I by swap(I, W) we may say that we swap W

in I.

Properties of Improving Swaps. Next, we show that it is sufficient to consider instances
of GLS-VC where k + d is even.

▶ Lemma 3.3 (*). Let I = (G, S, k, d) be an instance of GLS-VC where k + d is odd. If I

is a yes-instance of GLS-VC, then I ′ := (G, S, k − 1, d) is a yes-instance of GLS-VC.

Consider some improving swap W for S in G. Then, each connected component in G[W]
is a valid swap and since W is improving, at least one connected component in G[W] is an
improving swap for S in G. Hence, the following holds.

▶ Observation 3.4. Let I = (G, ω, S, k) be a yes-instance of LS-WVC. There is some valid
improving k-swap W for S in G such that W is connected.

Some of our algorithms branch over all possible intersections of a d-improving k-swap W

with a given vertex set X. The following lemma shows that for GLS-VC, we only have to
consider intersections of size at most k+d

2 of X with potential improving swaps.

▶ Lemma 3.5. Let I = (G = (V, E), S, k, d) be an instance of GLS-VC, let W be a
solution for I, and let SX := W ∩ X ∩ S and CX := W ∩ X \ N [SX] for some X ⊆ V .
If |SX ∪ CX | > k+d

2 , then there is a solution W ′ for I such that W ′ is a proper subset of W .

Proof. First, we show that W ∗ := SX ∪ (N(SX) \ S) is a solution for I. Note that each d-
improving k-swap contains at most k−d

2 vertices of V \ S. Since W is valid, it follows
that W ∗ ⊆ W and, thus, |CX | + |N(SX) \ S| ≤ k−d

2 . Moreover, since |SX ∪ CX | >
k+d

2 , |SX | > d + k−d
2 − |CX | ≥ d + |(N(SX) \ S)|. Hence, W ∗ is a solution for I.

C. Komusiewicz and N. Morawietz 20:7

If W ∗ is a proper subset of W , then the statement already holds. Hence, assume
that W = W ∗. As a consequence, CX = ∅ and SX has size more than k+d

2 . Let S′
X be an

arbitrary subset of SX of size k+d
2 and let ℓ denote the size of the difference SX \ S′

X . We
show that W ′ := S′

X ∪ (N(S′
X) \ S) is a solution for I. Since S′

X is a subset of both SX

and S, and W ∗ is a valid swap, W ′ is a valid swap as well. Moreover, since W ∗ has size at
most k and W ′ is a subset of W ∗, W ′ is a k-swap. Finally, since |SX | = k+d

2 + ℓ and W ∗

is a k-swap, W ∗ \ SX = N(SX) \ S has size at most k−d
2 − ℓ. Hence, W ′ is d-improving

since W ′ \ S′
X = N(S′

X) \ S is a subset of N(SX) \ S and thus has size at most k−d
2 − ℓ. ◀

To obtain linear FPT running times, we handle instances with small values of k separately.

▶ Lemma 3.6 (*). GLS-WVC can be solved in O(n + m) time if k ≤ 2 and GLS-VC can
be solved in O(n + m) time if k + d ≤ 4.

Lower Bounds. Let ω < 2.373 be the matrix multiplication constant [3]. Using a reduction
to matrix multiplication, one can solve the Clique problem, which asks whether an n-vertex
graph has a clique of size k, in O(nω·k/3) time [23]. It is a long-standing question whether
this running time can be improved to O(n(ω/3−ε)k) [1, 25]. Assuming that this is not the
case, we obtain the following lower bounds for our considered problem.

▶ Theorem 3.7. For every ε > 0 and every d ∈ [1, k], GLS-VC cannot be solved in
O(ℓ(ω/3−ε)· k+d

2) time where ℓ = max{n − k−d
2 , ∆(G), vc(G), |S|, mw(G)}, unless Clique can

be solved in O(n(ω/3−ε)k) time.

Proof. Let ε > 0 be a constant. We assume in the following that ε < ω/3, since the statement
follows directly for ε ≥ ω/3. Moreover, let I∗ = (G∗ = (V, E∗), k) be an instance of Clique
with k ≥ 2

(ω/3)−ε and, let n denote the size of V , and let d be an arbitrary value between 1
and k. We show that we can compute in O(n2) time an equivalent instance I ′ = (G′ =
(V ′, E′), S, k′, d) of GLS-VC such that ℓ := max{n′ − k′−d

2 , ∆(G′), vc(G′), |S|, mw(G′)} is
at most n. First, let G = (V, E) be the complement graph of G∗, that is, E :=

(
V
2
)

\ E∗.
Note that a set X ⊆ V is a clique in G∗ if and only if X is an independent set in G and
that one can compute G in O(n2) time. We can assume that the maximum degree of G

is at most |V | − k, since vertices in G of degree at least |V | − k + 1 are contained in no
independent set of size k. We obtain G′ by adding a set V ∗ of k − d new vertices to G such
that NG′(v) = V for all v ∈ V ∗. Finally, we set k′ := 2k − d and S := V , which completes
the construction of I ′. Note that this takes at most O(n2) time, since k ≤ n. Next, we show
that I∗ is a yes-instance of Clique if and only if I ′ is a yes-instance of GLS-VC.

(⇒) Let C ⊆ V be an independent set of size k in G, then S′ := (V \ C) ∪ V ∗ is a vertex
cover for G′ such that |S ⊕ S′| = k′ and |S′| ≤ |S| − d. Consequently, I ′ is a yes-instance
of GLS-VC.

(⇐) Let S′ ⊆ V ′ such that |S ⊕ S′| ≤ k′ and |S′| < |S| − d. Consequently, C := S \ S′ is
non-empty. We show that C is an independent set of size k in G. Since S′ is a vertex cover
for G′ and every vertex of V ∗ is adjacent to every vertex of V , it follows that V ∗ ⊆ S′. By
the fact that |S ⊕ S′| ≤ 2k − d, S′ \ S = V ∗, and V ∗ has size k − d, C has size at most k.
Moreover, since |S′| ≤ |S| − d, C has size at least k′ − |V ∗| = k. As a consequence, C

has size k. Moreover, since S′ is a vertex cover for G′, no two vertices of C are adjacent.
Consequently, C is an independent set of size k in G and, thus, I∗ is a yes-instance of Clique.

Next, we show that ℓ := max{n′ − k′−d
2 , ∆(G′), vc(G′), |S|, mw(G′)} is at most n. By

construction, n′ = n + k − d = n + k′−d
2 . Since the maximum degree of G is at most n − k,

the maximum degree of G′ is at most n. Moreover, since S is a vertex cover of size n

IPEC 2022

20:8 Parameterized Local Search for Vertex Cover

for G′, vc(G′) ≤ n. Next, we show that the modular-width of G′ is at most n. Let (T1, β1) be
a modular decomposition of G and let (T2, β2) be a modular decomposition of G′[V ′\V]. Since
there is an edge between any pair of vertices of V and V ′ \V , a modular decomposition (T , β)
of G′ can be obtained by combining (T1, β1) and (T2, β2) in the following way: We add a new
root x∗ where β(x∗) is a graph consisting of a single edge and the vertices of β(x∗) are the roots
of the two modular decompositions (T1, β1) and (T2, β2). Note that mw(G) ≤ n. Moreover,
since V ′ \ V is an independent set, we have mw(G′[V ′ \ V]) = 2. Hence, mw(G′) ≤ n.

Now, if we have an algorithm A solving GLS-VC in O(ℓ(ω/3−ε)· k+d
2) time for ε > 0,

then Clique can be solved in O(n(ω/3−ε)k) time as well: Since k ≥ 2
(ω/3)−ε , the running

time O(n(ω/3−ε)·k) dominates the time used to construct the instance I ′ of GLS-VC. Now the
running time bound for solving Clique using A follows directly from ℓ ≤ n and k′+d

2 = k. ◀

For the cases LS-VC and GLS-WVC, we obtain the following.

▶ Corollary 3.8 (*). For every ε > 0, LS-VC cannot be solved in O(ℓ(ω/3−ε)·⌈ k
2 ⌉) time

for ℓ := max{n − k + 1, ∆(G), vc(G), |S|, mw(G)} and GLS-WVC cannot be solved in
O(n(ω/3−ε)·k) time, unless Clique can be solved in O(n(ω/3−ε)k) time.

4 Parameterization by Treewidth

In this section, we present FPT-algorithms for k and the treewidth of G.
Intuitively, the algorithms are obtained by a dynamic programming algorithm on a given

tree decomposition of width r where each entry of the dynamic programming table considers
the intersection of the current bag of size r + 1 with an improving swap W of size at most k.

▶ Theorem 4.1. Let G = (V, E) be an undirected graph, let ω : V → N be a weight
function, let S ⊆ V be a vertex cover in G, and let k be a natural number. Given a nice tree
decomposition of width r for G with O(n) bags, one can compute in O((rk + k2) · n) time a
valid k-swap W for S in G such that α(W) is maximal under all valid k-swaps for S in G.

Proof. Due to Lemma 3.6, the statement holds for k ≤ 2. In the following, we show the
running time by describing a dynamic programming algorithm for k ≥ 3.

Let Nx(U) := N(U) ∩ β(x) denote the neighbors of U in the bag of x ∈ V. For a
node x ∈ V, we define with Vx the union of all bags β(y), where y is reachable from x

in T . Moreover, we set Gx := G[Vx] and Ex := EG(Vx). For each node x ∈ V in the
tree decomposition, the dynamic programming table Dx has entries of type Dx[Sx, Cx, k′]
with, Sx ⊆ S ∩ β(x), Cx ⊆ β(x) \ (N(Sx) ∪ S) and k′ ∈ [0, k], such that |Wx| ≤ k′

where Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S). Hence, |Sx ∪ Cx| ≤ k.
Each entry stores the maximal improvement αS(W) of a valid k′-swap W ⊆ Vx for S ∩ Vx

in Gx such that W ∩ S ∩ β(x) = Sx and W ∩ β(x) \ (N(Sx) ∪ S) = Cx. In other words, W

intersects with the vertices of S of the current bag exactly in Sx and W intersects with the
vertices of V \ S of the current bag (minus the vertices that are contained in each valid swap
containing Sx) exactly in Cx.

To ensure that we do not have to evaluate entries where |Sx ∪ Cx| > k, we define for
all x ∈ V, Sx ⊆ β(x) ∩ S, Cx ⊆ β(x) \ S, and k′ ∈ [0, k], fx(Sx, Cx, k′) := Dx[Sx, Cx, k′]
if |Sx ∪ Cx| ≤ k and fx(Sx, Cx, k′) := −∞, otherwise.

For each leaf node ℓ of T , we fill the table Dℓ by setting Dℓ[∅, ∅, k′] := 0 for each k′ ∈ [0, k].
For all non-leaf nodes x of T , we set Dx[Sx, Cx, k′] := −∞ if
Sx is not an independent set in G,
|Sx ∪ Cx ∪ (Nx(Sx) \ S)| > k′, or
N(Sx) ∩ Cx ̸= ∅.

C. Komusiewicz and N. Morawietz 20:9

Note that this is correct since in all three cases, there is no swap fulfilling the constraints of
the table definition. To compute the remaining entries Dx[Sx, Cx, k′], we distinguish between
the three types of non-leaf nodes. For each type, we give only an informal proof of the
correctness; the formal proof is omitted.

Forget Nodes. Let x be a forget node, let y be the unique child of x in T , and let v be the
unique vertex in β(y) \ β(x). The entries for x can be computed as follows:

Dx[Sx, Cx, k′] :=
{

max(fy(Sx, Cx, k′), fy(Sx ∪ {v}, Cx \ N(v), k′)) v ∈ S and
max(fy(Sx, Cx, k′), fy(Sx, Cx ∪ {v}, k′)) v /∈ S.

Informally, we chose the larger improvement of the best swap containing v and the best
swap not containing v. To consider the best swap containing v, we remove v from the
corresponding set (Sx or Cx). If v is a vertex of S, we also have to remove the vertices
of N(v) \ S from Cx, since these vertices are implicitly stored in the corresponding entry
of Dy and, by definition, N(Sy) ∩ Cy = ∅.

Introduce Nodes. Let x be an introduce node, let y be the unique child of x in T , and
let v be the unique vertex in β(x) \ β(y). The entries for x can be computed as follows:

Dx[Sx, Cx, k′] :=


fy(Sx \ {v}, Cx ∪ C∗, k′ − 1) + ω(v) v ∈ Wx ∩ S,

fy(Sx, Cx \ {v}, k′ − 1) − ω(v) v ∈ Wx \ S,

fy(Sx, Cx, k′) otherwise,

where Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S) and C∗ := (Nx(v) \ S) \ N(Sx \ {v}).
Informally, if v is a vertex of Wx, we have to consider the entry Dy where v is removed

from the corresponding set (Sx or Cx) and adding the improvement we obtain from having v

in the considered swap (increasing by ω(v) if v ∈ S and decreasing by ω(v) if v /∈ S). If v

is a vertex of S, the vertices of C∗ are not stored implicitly in Dy, so we have to consider
the entry of Dy where we also explicitly swap C∗. Otherwise, if v is not a vertex of Wx, we
consider the entry of Dy with the same subsets Sx and Cx and the same budget k′.

Join Nodes. Let x be a join node, let y and z be the unique children of x in T . The entries
for x can be computed as follows:

D[x, Sx, Cx, k′] := max
0≤k′′≤k′−|Wx|

Dy[Sx, Cx, k′′ + |Wx|] + Dz[Sx, Cx, k′ − k′′] − α(Wx)

where Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S).
Informally, we divide the budget k′ into two parts. One for the subset of vertices of W

contained in the subtree rooted in y and one for the subset of vertices of W contained in
the subtree rooted in z. Note that Wx is contained on both these vertex sets. Hence, we
consider all possible ways to divide k′ into two parts, such that both entries have at least
enough budget to swap all vertices of Wx. Since the improvement of Wx is added twice, we
have to remove α(Wx) from the obtained sum.

The maximal improvement of any valid k-swap for S in G can then be found in Dx∗ [∅, ∅, k].
Moreover, the corresponding swap can be found via traceback.

It remains to show the running time. Recall that (T = (V, A, x∗), β) is a nice tree
decomposition of width r for G with O(n) bags. The number of entries of the table Dx

is upper bounded by k + 1 times the number of subsets of β(x) of size at most k. Since

IPEC 2022

20:10 Parameterized Local Search for Vertex Cover

for each x ∈ V, β(x) ≤ r + 1, we have that all dynamic programming tables together
contain O(

(
r+1
≤k

)
· k · n) entries, where

(
r+1
≤k

)
denotes the number of different subsets of size at

most k of a set of size r + 1. By the following claim, we can compute each of them efficiently.

▷ Claim (*). After a preprocessing running in O((
(

r+1
≤k

)
· k2 +

(
r+1

≤k−1
)

· r · k + r2) · n) time,
one can compute each entry of each table Dx in O(k) time.

Note that there are O((
(

r+1
≤k

)
· k · n) entries in total. Hence, the whole algorithm runs

in O((
(

r+1
≤k

)
· k2 · n) time which is O(rk · n) time if r ≥ 2 (the proof of this fact is deferred

to Appendix B) and in O(2r · k2 · n) = O(k2 · n) time, otherwise. ◀

The dynamic programming algorithm deviates from the simple idea mentioned above in
the following detail: it considers only a) the intersection W S

x of W ∩ S with the vertices of
the current bag and b) the intersection of W with those vertices of V \ S in the current bag
that are not contained in N(W S

x). This is more technical but has the following benefit: The
intersection of W with N(Sx) \ S is stored implicitly which decreases the factor rk to r

k+d
2

for GLS-VC due to Lemma 3.5. In particular, for the case of d = 1, that is, for LS-VC, this
gives a substantial improvement of the exponential part of the running time from rk to r

k+1
2 .

▶ Theorem 4.2 (*). Let I = (G = (V, E), S, k, d) be an instance of GLS-VC. Given a nice
tree decomposition of width r for G with O(n) bags. One can solve I in O((r k+d

2 +k2)·n) time.

Since computing a tree decomposition of minimal width is NP-hard, we cannot directly
obtain a running time of O((tw(G)k + k2) · n) and O((tw(G) k+d

2 + k2) · n), respectively.
We can, however, compute a nice tree decomposition of width tw(G) in O(n + m) time
if tw(G) ≤ 1800 [4]. Moreover, for each r ≥ 0, one can compute a nice tree decomposition
of G of width 1800 · r2 or correctly output that tw(G) > r in O(r7 · n · log(n)) time [11].
Hence, we can compute in O(tw(G)8 · n · log(n)) time [11] a nice tree decomposition of G of
width at most 1800 · tw(G)2. If tw(G) ≥ 1800, then the width of the latter tree decomposition
is smaller than tw(G)3. Altogether, we obtain the following.

▶ Corollary 4.3. GLS-VC can be solved in O((tw(G)
3·(k+d)

2 + k2) · n · log(n)) time and GLS-
WVC can be solved in O((tw(G)3k + k2) · n · log(n)) time.

Note that even if a tree decomposition of width tw(G) is given, one cannot improve much on
the running time due to the lower bound of Theorem 3.7, since tw(G) ≤ vc(G).

5 Degree-Related Parameterizations

In this section, we present FPT-algorithms for the parameters maximum degree ∆(G) and k

and for the h-index of G and k. In contrast to previous work, these FPT-algorithms solve
the more general problems with weights and gap-improvements; the algorithms for ∆(G) will
be used as subroutines in the algorithm for the h-index of G.

We start by presenting an algorithm for instances with an h-index of at most 1 which
will be used to handle border cases for both parameterizations.

▶ Lemma 5.1 (*). GLS-WVC can be solved in O(k · log(k) + n) time if h(G) ≤ 1.

Hence, from now on, we assume that h(G) and ∆(G) are at least 2.

C. Komusiewicz and N. Morawietz 20:11

5.1 Parameterizing Unweighted Gap Local Search by Maximum Degree
The main result in this section for GLS-VC is the following.

▶ Theorem 5.2 (*). GLS-VC can be solved in O(k! · (∆ − 1) k+d
2 · n) time.

The first idea for an algorithm is to slightly adapt the known O(2k · (∆ − 1) k+1
2 · k2 · n)-time

algorithm for LS-VC [18] to GLS-VC. This algorithm, however, relies on the fact that
for LS-VC, it is sufficient to consider only connected swaps. For d-improving swaps, however,
this is not the case: an improvement of at least 2 may be only achievable by swapping
vertices that may have an arbitrarily large distance in the graph. Thus, the gap version of
the problem becomes considerably harder.

To avoid considering all possible vertex sets of size at most k, we present two branching
rules. The first one applies if there is a vertex v in S where N(v) ⊆ S and branches in all
possible ways to swap either v or two non-adjacent vertices of N(v). If this rule cannot be
applied, then each vertex in S has at least one neighbor in V \ S and, thus, there is no valid
improving swap of size one.

▶ Proposition 5.3 (*). Let I = (G = (V, E), S, k, d) be a yes-instance of GLS-VC and
let v be a vertex of S with N(v) ⊆ S. There is a solution W for I such that either v ∈ W

or |W ∩ N(v)| ≥ 2.

Hence, we obtain the following branching rule. Here, we are interested in swapping two
independent neighbors of v at a time to obtain a better branching vector than the one, we
could obtain by swapping only a single neighbor of v at a time.

▶ Branching Rule 5.1. Let I = (G = (V, E), S, k, d) be an instance of GLS-VC and let v be
a vertex of S with N(v) ⊆ S. For each swap W ∈ (

(
N(v)

2
)

\ E) ∪ {{v}}, branch into the case
of swapping W .

As mentioned above, if the branching rule cannot be applied anymore, then each valid
improving swap contains at least two vertices. Before applying the second branching rule,
we perform the following preprocessing. First, we compute for each j ∈ [2, d] some minimum
valid connected j-improving k-swap Wj for S in G if there is any. Consider some valid
minimum solution W for I and let C be a connected component in G[W] with the minimal
improvement. Let ℓ := α(C) and let W ′ = (W \ C) ∪ Wℓ. Since Wℓ contains at most |C|
vertices, we have |W ′| ≤ k. The resulting swap W ′ is a solution for I if W ∩ N [Wℓ] = ∅.

The idea of the branching rule is now the following: either the d-improving swap con-
tains Wℓ, some neighbor of Wℓ, or no connected component that is exactly ℓ-improving.
First, we present an algorithm to efficiently find the swaps Wj for all j ∈ [1, d] using the
algorithm of Katzmann and Komusiewicz [18] as a subroutine and afterwards, we formally
prove the correctness of this branching.

▶ Proposition 5.4 (*). Let I = (G = (V, E), S, k, d) be an instance of GLS-VC. For
all j ∈ [1, d], one can find some minimum valid connected j-improving k-swap Wj for S

in G with |Wj \ S| ≤ (k − d)/2 or correctly output that no such swap exists in total in
O(2k · (∆ − 1)(k+d)/2 · k3 · n) time.

▶ Proposition 5.5. Let I = (G = (V, E), S, k, d) be a yes-instance of GLS-VC and, for
each j ∈ [1, ⌊ d

2 ⌋], let Wj denote a minimum valid connected j-improving (k−d+j)-swap for I.
There is a solution W for I such that (i) W is connected or (ii) there is some j ∈ [1, ⌊ d

2 ⌋]
such that Wj ⊆ W or W ∩ N(Wj) ̸= ∅.

IPEC 2022

20:12 Parameterized Local Search for Vertex Cover

Proof. Let W be a minimum solution for I. Hence, the improvement of W is exactly d.
Suppose that W is not connected and that for each j ∈ [1, ⌊ d

2 ⌋], Wj ̸⊆ W and W ∩N(Wj) = ∅,
as otherwise the statement already holds. Let C be a connected component in G[W]
that minimizes α(C), that is, the connected swap of W with the smallest improvement.
Let ℓ := α(C). Since W is not connected and has improvement exactly d, ℓ ≤ ⌊ d

2 ⌋. Note
that ℓ ≥ 1 as, otherwise, W is not minimum. Moreover, note that W ′ := W \ C is a
valid (d − ℓ)-improving (k − |C|)-swap for I and |C| < k. Since W has size at most k and
is d-improving, |W \ S| ≤ (k − d)/2, which implies that |C| ≤ k − d + ℓ. Recall that Wℓ

is some minimum valid connected ℓ-improving (k − d + ℓ)-swap for I. Hence, |C| ≥ |Wℓ|.
Recall that by assumption Wℓ ̸⊆ W and N(Wℓ) ∩ W = ∅. Since W is minimum, this
implies that Wℓ ∩ W = ∅, as otherwise Wℓ ∩ W is a connected component in G[W] such
that 0 < α(Wℓ ∩W) < α(C). We set W ∗ := W ′ ∪Wℓ. Note that W ∗ is a d-improving k-swap
for S in G. It remains to show that W ∗ is valid. Since W ′ and Wℓ are both valid, it follows
that W ∗ is valid if W ′ ∩ N(Wℓ ∩ S) ∩ S = ∅. By assumption, this is the case. ◀

Hence, we derive the following branching rule.

▶ Branching Rule 5.2. Let I = (G = (V, E), S, k, d) be an instance of GLS-VC such
that there is no connected solution for I. Moreover, for each j ∈ [1, ⌊ d

2 ⌋], let Wj denote a
minimum valid connected j-improving (k − d + j)-swap for S in G. For each swap W ∈{

{w} | w ∈ N(Wj), j ∈ [1, ⌊ d
2 ⌋]

}
∪

{
Wj | j ∈ [1, ⌊ d

2 ⌋]
}

, branch into the case of swapping W .

With these branching rules, we are now able to prove Theorem 5.2. To obtain the stated
running time of Theorem 5.2, we apply a branching algorithm using three steps in each node
of the branching tree. First, check in O(n + m) time if there is a vertex v ∈ S with N(v) ⊆ S.
If this is the case, apply Branching Rule 5.1. Due to Proposition 5.3, this is correct. If
there is no vertex v ∈ S with N(v) ⊆ S, find some minimum valid connected j-improving k-
swaps Wj for I where |Wj \ S| ≤ (k − d)/2 (if such a swap exists), for each j ∈ [1, d]. Due to
Proposition 5.4, this can be done in O(2k · (∆ − 1)(k+d)/2 · k3 · n) time. If Wd exists, answer
yes. Otherwise, apply Branching Rule 5.2.

Note that this is (besides the change from the 2k factor to a k! factor in the running
time) a direct generalization of the previous best algorithm for LS-VC which runs in O(2k ·
(∆ − 1)k/2 · k · n) time [18] to GLS-VC.

5.2 Parameterizing Weighted Gap Local Search by Maximum Degree

▶ Proposition 5.6 (*). Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC. One
can enumerate all valid connected k-swaps for I in O(2k(∆ − 1)k · k3 · n) time.

Due to Observation 3.4 and Proposition 5.6 we obtain the following.

▶ Corollary 5.7. LS-WVC can be solved in O(2k · (∆ − 1)k · k3 · n) time.

To solve GLS-WVC, again, we encounter the problem that the sought solution is not
necessarily connected. Hence, for GLS-WVC we show a related algorithm to the one we
presented for GLS-VC using only one branching rule which is, more or less, an adaptation
of Branching Rule 5.2 to the weighted version. Consider a solution W for I. This time,
we want to find some valid improving j-swap Wj for S in G for each j ∈ [1, k] and branch
into the cases of either swapping Wj or swapping some neighbor of Wj . Unfortunately, a

C. Komusiewicz and N. Morawietz 20:13

result similar to Proposition 5.3 cannot be obtained1. Hence, in the worst case, each of these
branching cases reduces the parameter k only by one which would lead to a running time
factor of (∆ − 1)2·k instead of (∆ − 1)k. Our goal is, thus, to reduce the number of cases in
which the parameter is only reduced by one. To this end, we analyze the swap W1 separately.
Let S1 := {v ∈ S | N(v) ⊆ S} denote the set of vertices of improving 1-swaps for S in G

and let v∗ be the unique vertex of W1. Since v∗ is some vertex in S1 of highest weight,
if W ∩ N [v∗] = W ∩ N [W1] = ∅, then we can replace some distinct vertex w∗ of S1 contained
in W by v∗ and also obtain a solution for I. Hence, we can then reduce our branching cases
for j ≥ 2 to the ones in which we consider either swapping Wj or some neighbor of Wj which
is not contained in S1. Since the remaining considered swaps for j ≥ 2 have size at least 2,
only |N [W1]| ≤ ∆ + 1 cases remain in which the parameter is only reduced by one. Hence,
these ideas lead to the following branching rule.

▶ Branching Rule 5.3. Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC
such that I has no connected solution. For each j ∈ [1, ⌊ k

2 ⌋], let Wj denote some valid
connected j-swap for I with maximal improvement. Branch into the case of swapping W for
each swap W ∈ {{w} | w ∈ N(W1)} ∪

{
Wj | j ∈ [1, k

2]
}

∪ {{w} | w ∈ N(Wj) \ S1, j ∈ [2, k
2]}.

With this branching rule, we are now able to show the following.

▶ Theorem 5.8 (*). GLS-WVC can be solved in O(k! · (∆ − 1)k · n) time.

To obtain this running time, we do the following in each node of the branching tree. First,
find for each j ∈ [1, k] some valid connected j-swap Wj for I that maximizes α(Wj). Due
to Proposition 5.6, this can be done in O(2k · (∆ − 1)k · k3 · n) time. Now, if α(Wk) ≥ d,
then I is a yes-instance of GLS-WVC. Otherwise, there is no connected solution for I,
since Wk has the maximal improvement of all valid connected k-swaps. Compute the
set S1 := {v ∈ S | N(v) ⊆ S} of possible improving swaps of size 1 and apply Branching
Rule 5.3.

Finally, we show that we can replace ∆(G) in the above running time by the h-index of G.
The idea behind this algorithm is to branch on all possibilities on how a potential improving
swap may intersect the set of high-degree vertices. For each of these potential intersections,
we compute the corresponding swap instance and solve it with the help of Theorem 5.8 after
removing the remaining high-degree vertices. This is correct due to the following lemma.

Since a valid swap W for S in G that avoids a given set V ′ does not contain any vertex
of S \ V ′ adjacent to some vertex of V ′ \ S, we define an exclusion instance I ′ for V ′ and I as
the instance of GLS-WVC, where all vertices of V ′ ∪N(V ′ \S) are removed from I. Formally,
let I = (G, ω, S, k, d) be an instance of GLS-WVC, then the exclusion instance I ′ of GLS-
WVC for V ′ and I is defined as I ′ := (G′, ω, S′, k, d), where G′ := G − (V ′ ∪ N(V ′ \ S))
and S′ := S ∩ V (G′). Due to the above, we obtain the following.

▶ Lemma 5.9 (*). Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC and
let V ′ ⊆ V . There is a solution W for I with W ∩ V ′ = ∅ if and only if the exclusion
instance I ′ of V ′ and I is a yes-instance of GLS-WVC.

▶ Theorem 5.10 (*). GLS-WVC can be solved in O(k! · (h − 1)k · n) time.

1 Consider the path (u, v, w), with ω(v) = 3, and ω(u) = ω(w) = 1. Let S = {u, v}, k = d = 2. The
only 2-improving 2-swap is {v, w}. Note that this swap avoids the only valid improving 1-swap {u} and
contains only one neighbor of u.

IPEC 2022

20:14 Parameterized Local Search for Vertex Cover

6 Using Modular Decompositions

Next, we provide FPT-algorithms that use modular decompositions which, roughly speaking,
provide a hierarchical view of the different neighborhoods in a graph G.

We now provide a dynamic programming algorithm over the modular decomposition
of G. The nodes of the decomposition are processed in a bottom-up manner. The idea is to
consider for a node x the possibilities of how a swap may interact with the vertex sets that
are represented by the vertices y of β(x). We use the fact that any valid swap of G must
also correspond in the natural way to a valid swap of β(x). More precisely, if some vertex in
the set represented by y goes to the independent set, then the vertex cover must include the
vertex set represented by z for all neighbors z of y in β(x).

▶ Theorem 6.1 (*). GLS-WVC can be solved in O(mw(G)k · k · (mw(G) + k) · n + m) time.

Proof. Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC. First, we compute a
modular decomposition (T = (V, A, x∗), β) of minimal width in O(n + m) time [22]. Note
that T has O(n) quotient graphs. Next, we describe a dynamic program on the modular
decomposition (T , β) to solve GLS-WVC.

For each node x ∈ V in the modular decomposition, we have a dynamic programming
table Dx. The table Dx has entries of type Dx[k′] for k′ ∈ [0, k]. Each entry Dx[k′] stores
the maximal improvement αS(W) of a valid k′-swap W ⊆ Vx for S ∩ Vx in Gx.

Next, we describe how to fill the dynamic programming tables. Let ℓ be a leaf node of T
and let v be the unique vertex of V (β(ℓ)) = Vℓ. We fill the table Dℓ by setting

Dℓ[k′] :=
{

0 v /∈ S ∨ k′ = 0
ω(v) v ∈ S ∧ k′ > 0

for each k′ ∈ [0, k].
To compute the entries for all remaining nodes x of T , we use an auxiliary table QSx

.
Let Sx be an independent set in β(x) and let Sx(i) denote the ith vertex of Sx according to
some arbitrary but fixed ordering with i ∈ [1, |Sx|]. Moreover, let V ≥i

x =
⋃|Sx|

j=i VSx(j). The
dynamic programming table QSx [i, k′] has entries for i ∈ [1, |Sx| + 1] and k′ ∈ [0, k] and
stores the maximal improvement of a valid k′-swap W for S ∩ V ≥i

x in G[V ≥i
x], such that there

is at least one vertex in S ∩ W ∩ VSx(j) for each j ∈ [i, |Sx|]. We set

QSx [i, k′] :=


−∞ |Sx| − i + 1 > k′,

0 i = |Sx| + 1, and
max1≤k′′≤k′ DSx(i)[k′′] + QSx

[i + 1, k′ − k′′] otherwise.

The entries for Dx can then be computed as follows:

Dx[k′] := max
Sx⊆V (β(x))

|W ∗|≤k′

Sx is independent

QSx
[1, k′ − |W ∗|] − ω(W ∗)

where W ∗ :=
⋃

y∈Nx(Sx)(Vy \ S).
The maximal improvement of any valid k-swap for S in G can be found in Dx∗ [k], where x∗

is the root of the modular decomposition.
Next, we analyze the running time. For each non-leaf node x, and each independent

set Sx of size at most k in β(x), there are O(k2) table entries in QSx and each of these entries
can be computed in O(k) time. For a set of size x, let

(
x

≤k

)
denote the number of different

C. Komusiewicz and N. Morawietz 20:15

subsets of size at most k. Since each quotient graph has O(
(mw(G)

≤k

)
) many independent

sets of size at most k, all entries of all tables QSx can be computed in O(
(mw(G)

≤k

)
· k3 ·

n) time, since the modular decomposition has O(n) quotient graphs. For each node x,
there are O(k) table entries in Dx. We will show that we can compute each of them in
O(k2 · (mw(G) + k)) time. To this end, we precompute for each node x the size |Vx \ S| and
the weight ω(Vx \ S) to compute |W ∗| and ω(W ∗) in O(k) time afterwards. Since for all
non-leaf nodes x, Vx \ S =

⋃
y∈V (β(x))(Vy \ S), we can compute |Vx \ S| as

∑
y∈V (β(x)) |Vy \ S|

and ω(Vx \ S) as
∑

y∈V (β(x)) ω(Vy \ S). This can be done in O(mw(G) · n) time since the
modular decomposition has O(n) quotient graphs. Hence, for an independent set Sx of size
at most k, we can compute |W ∗| and ω(W ∗) in O(k) time. Since we can enumerate all
subsets Sx of size at most k of V (β(x)) in O(

(mw(G)
≤k

)
) time and check in O(mw(G) · k) time

if Sx is independent in β(x), we can compute Dx[k′] in O(
(mw(G)

≤k

)
· k2 · (k + mw(G))) time.

Consequently, we can compute all entries of the dynamic programming tables in O(
(mw(G)

≤k

)
·

k3 · (k + mw(G)) · n + m) time, which is O(mw(G)k · k · (mw(G) + k) · n + m) time (the proof
of this fact is deferred to Appendix B).

Since the value of QSx
[1, k′] is only evaluated one time during the whole computation of

this dynamic programming algorithm, we can remove the table QSx after evaluating QSx [1, k′]
for each k′. Consequently, this algorithm also only uses polynomial space. ◀

With a slight modification, we can improve the running time for GLS-VC.

▶ Corollary 6.2. GLS-VC can be solved in O(mw(G) k+d
2 · k · (mw(G) + k) · n + m) time.

We also obtain an FPT-algorithm for GLS-VC for a new parameter that is upper-bounded
by the maximum degree ∆(G) and by the modular-width mw(G). We call this parameter the
maximum modular degree and it is defined by taking the maximum degree over all quotient
graphs of a modular decomposition of minimum width.

▶ Definition 6.3. Let (T = (V, A, x∗), β) be a modular decomposition of a graph G. Then
the maximum modular degree of (T , β) is ∆md(T , β) := maxx∈V ∆(β(x)). Moreover, the
maximum modular degree ∆md(G) of G is the maximum modular degree of a modular
decomposition (T ′, β′) of G that minimizes ∆md(T ′, β′).

Since mw(G) is the largest vertex count of any quotient graph, we have ∆md(G) < mw(G).
Moreover, the graph β(x) is isomorphic to an induced subgraph of G for all x, and thus
∆md(G) ≤ ∆(G).

▶ Proposition 6.4 (*). Let (T = (V, A, x∗), β) be a modular decomposition of a graph G of
minimum width where the quotient graph β(x) is prime for each x ∈ V. Then, ∆md(T , β) =
∆md(G).

▶ Theorem 6.5 (*). GLS-VC can be solved in
(
∆md(G)(k2 + 2)

)k · nO(1) time.

In the algorithm for ∆md(G), to avoid considering all k-swaps of a quotient graph β(x), we
instead adapt the algorithm of Section 5.2 to find suitable swaps of β(x). The main difficulty
is that we need to consider all possibilities of how many vertices have been swapped in the
subtree of β(x).

IPEC 2022

20:16 Parameterized Local Search for Vertex Cover

7 Conclusion

We introduced the notion of FPT running times that grow mildly with respect to some
parameter ℓ and strongly with respect to another parameter k. Such running times are
desirable in the setting where the parameter k is much smaller than ℓ. Parameterized local
search is one scenario in which this assumption is certainly true, when k is the operational
parameter that bounds the size of the local search neighborhood. We showed that such
running times are achievable for one of the most important graph problems in parameterized
local search, LS-Vertex Cover, and different well-known structural parameters taking the
place of ℓ.

There are numerous possibilities for future research. First, it seems interesting to study
further parameterized local search problems with the aim of achieving FPT-algorithms whose
running times grow strongly only with respect to the operational parameter k. This could
also be relevant in other scenarios with operational parameters, for example in turbo-charging
of greedy algorithms [2, 8, 12]. Second, it is open to improve our running time bounds
for LS-Vertex Cover since our conditional lower bounds are not completely tight. For
example, for LS-Vertex Cover parameterized by k and the h-index it is open whether
a running time of O(hk/2 · n) is possible. Third, it would be interesting to explore gap
versions of further local search problems, both from a theoretical and a practical perspective.
Furthermore, in our study, we did not explicitly consider permissive local search, where
one may report better solutions outside of the local neighborhood if they exist [13]. Our
positive and negative results also work in this setting, but it would be interesting to identify
structural parameters ℓ where permissive local search has an FPT-algorithm with running
time ℓg(k) · nO(1) and strict local search does not.

Finally, it is open to explore the concrete practical potential of our results for Vertex
Cover: Can our theoretical results lead to good implementations of parameterized local
search for Weighted Vertex Cover? Moreover, can the performance of the parameterized
local search algorithm for unweighted Vertex Cover with parameter (∆, k) [18] be improved
by some of the techniques presented in this work?

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. SIAM Journal on Computing, 47(6):2527–2555,
2018. doi:10.1137/16M1061771.

2 Faisal N. Abu-Khzam, Shaowei Cai, Judith Egan, Peter Shaw, and Kai Wang. Turbo-charging
dominating set with an FPT subroutine: Further improvements and experimental analysis.
In Proceedings of the 14th Annual Conference on Theory and Applications of Models of
Computation (TAMC ’17), volume 10185 of Lecture Notes in Computer Science, pages 59–70,
2017.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms
(SODA ’21), pages 522–539. SIAM, 2021. doi:10.1137/1.9781611976465.32.

4 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

5 Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained
complexity of k-OPT in bounded-degree graphs for solving TSP. In Proceedings of the 27th
Annual European Symposium on Algorithms (ESA ’19), volume 144 of LIPIcs, pages 23:1–23:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

6 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An efficient local search
algorithm for minimum vertex cover. Journal of Artificial Intelligence Research, 46:687–716,
2013.

https://doi.org/10.1137/16M1061771
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/S0097539793251219

C. Komusiewicz and N. Morawietz 20:17

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Alexander Dobler, Manuel Sorge, and Anaïs Villedieu. Turbocharging heuristics for weak
coloring numbers. In Proceedings of the 30th Annual European Symposium on Algorithms
(ESA ’22), volume 244 of LIPIcs, pages 44:1–44:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022.

9 David Eppstein and Emma S. Spiro. The h-index of a graph and its application to dynamic
subgraph statistics. Journal of Graph Algorithms and Applications, 16(2):543–567, 2012.

10 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
and Yngve Villanger. Local search: Is brute-force avoidable? Journal of Computer and System
Sciences, 78(3):707–719, 2012.

11 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms, 14(3):34:1–34:45, 2018. doi:10.1145/3186898.

12 Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rüm-
mele. Turbocharging treewidth heuristics. Algorithmica, 81(2):439–475, 2019. doi:
10.1007/s00453-018-0499-1.

13 Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider. Don’t
be strict in local search! In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI ’12). AAAI Press, 2012.

14 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity
of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013.

15 Jiong Guo, Danny Hermelin, and Christian Komusiewicz. Local search for string problems:
Brute-force is essentially optimal. Theoretical Computer Science, 525:30–41, 2014.

16 Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004.

17 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

18 Maximilian Katzmann and Christian Komusiewicz. Systematic exploration of larger local
search neighborhoods for the minimum vertex cover problem. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, (AAAI ’17), pages 846–852. AAAI Press, 2017.

19 Christian Komusiewicz and Nils Morawietz. Finding 3-swap-optimal independent sets and
dominating sets is hard. In Proceedings of the 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS ’22), volume 241 of LIPIcs, pages 66:1–66:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

20 Ruizhi Li, Shuli Hu, Shaowei Cai, Jian Gao, Yiyuan Wang, and Minghao Yin. NuMWVC: A
novel local search for minimum weighted vertex cover problem. Journal of the Operational
Research Society, 71(9):1498–1509, 2020.

21 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Operations Research
Letters, 36(1):31–36, 2008.

22 Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’94), pages 536–545. ACM/SIAM, 1994.

23 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

24 Stefan Szeider. The parameterized complexity of k-flip local search for SAT and MAX SAT.
Discrete Optimization, 8(1):139–145, 2011.

25 Gerhard J. Woeginger. Space and time complexity of exact algorithms: Some open problems
(invited talk). In Proceedings of the First International Workshop on Parameterized and Exact
Computation (IWPEC ’04), volume 3162 of Lecture Notes in Computer Science, pages 281–290.
Springer, 2004.

IPEC 2022

https://doi.org/10.1145/3186898
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.1007/s00453-018-0499-1

20:18 Parameterized Local Search for Vertex Cover

A Tree Decompositions and Treewidth

A tree decomposition of a graph G = (V, E) is a pair (T , β) consisting of a rooted tree T =
(V, A, x∗) with root x∗ ∈ V and a function β : V → 2V such that
1. for every vertex v ∈ V , there is at least one x ∈ V with v ∈ β(x),
2. for each edge {u, v} ∈ E, there is at least one x ∈ X such that u ∈ β(x) and v ∈ β(x),

and
3. for each vertex v ∈ V , the subgraph T [Vv] is connected, where Vv := {x ∈ V | v ∈ β(x)}.
We call β(x) the bag of x. The width of a tree decomposition is the size of the largest bag
minus one and the treewidth of a graph G, denoted by tw(G), is the minimal width of any
tree decomposition of G.

We consider tree decompositions with specific properties. A node x ∈ V is called:
1. a leaf node if x has no child nodes in T ,
2. a forget node if x has exactly one child node y in T and β(y) = β(x) ∪ {v} for some v ∈

V \ β(x),
3. an introduce node if x has exactly one child node y in T and β(y) = β(x) \ {v} for

some v ∈ V \ β(y), or
4. a join node if x has exactly two child nodes y and z in T and β(x) = β(y) = β(z).
A tree decomposition (T = (V, A, x∗), β) is called nice if the bag of the root and the bags of
all leaf nodes are empty sets and if every node x ∈ V is either a leaf node, a forget node, an
introduce node, or a join node.

For a node x ∈ V, we denote with Vx the union of all bags β(y), where y is reachable
from x in T . Moreover, we set Gx := G[Vx] and Ex := EG(Vx).

B Bounding the Number of Small Subsets

To obtain small polynomial factors in the running times of our algorithms, we show the
following.

▶ Lemma B.1 (*). Let k ≥ 1 be an integer and let X be an arbitrary set of size x ≥ 3.
Moreover, let

(
x

≤k

)
denote the number of different subsets of X of size at most k. Then,

(
x

≤k

)
≤

256 · (x − 1)k/k2.

Proof. Note that
(

x
≤k

)
=

∑k
r=0

(
x
r

)
≤ 2x and

(
x

≤k

)
≤ xk. If k ≤ 4, then xk ≤ 16 · (x−1)k and

since k2 ≤ 16,
(

x
≤k

)
≤ 256·(x−1)k/k2. If k ≥ max{4, x/2}, then 4k ≥ 2x and 2k ≥ k2. Hence,

if x ≥ 9, then by the fact that k ≥ x/2,
(

x
≤k

)
≤ 2x ≤ 4k ≤ 8k/2k ≤ 8k/k2 ≤ (x − 1)k/k2.

If 4 ≤ x ≤ 8, then
(

x
≤k

)
≤ 2x ≤ 256 · (x − 1)k/k2 since (x − 1)k > k2 for all k ≥ 2, and

for x = 3,
(

x
≤k

)
≤ 2x = 8 ≤ 256 · 2k/k2 for all k ≥ 2. If 4 < k < x/2, then 2 ·

(
x
k

)
≥∑k

r=0
(

x
r

)
=

(
x

≤k

)
. Hence

(
x

≤k

)
≤ 2 ·

(
x
k

)
≤ 2 ·x!/(x−k)! ·1/k! ≤ 2 ·x · (x−1)!/(x−k)! ·1/k2 ≤

2 · 2(x − 1) · (x − 1)k−1 · 1/k2 = 4(x − 1)k/k2 < 256 · (x − 1)k/k2. ◀

	1 Introduction
	2 Preliminaries
	3 Basic Observations and Lower Bounds
	4 Parameterization by Treewidth
	5 Degree-Related Parameterizations
	5.1 Parameterizing Unweighted Gap Local Search by Maximum Degree
	5.2 Parameterizing Weighted Gap Local Search by Maximum Degree

	6 Using Modular Decompositions
	7 Conclusion
	A Tree Decompositions and Treewidth
	B Bounding the Number of Small Subsets

