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Abstract
We provide new (parameterized) computational hardness results for Interval Scheduling on
Unrelated Machines. It is a classical scheduling problem motivated from just-in-time or lean
manufacturing, where the goal is to complete jobs exactly at their deadline. We are given n jobs
and m machines. Each job has a deadline, a weight, and a processing time that may be different on
each machine. The goal is find a schedule that maximizes the total weight of jobs completed exactly
at their deadline. Note that this uniquely defines a processing time interval for each job on each
machine.

Interval Scheduling on Unrelated Machines is closely related to coloring interval graphs
and has been thoroughly studied for several decades. However, as pointed out by Mnich and van
Bevern [Computers & Operations Research, 2018], the parameterized complexity for the number m

of machines as a parameter remained open. We resolve this by showing that Interval Scheduling
on Unrelated Machines is W[1]-hard when parameterized by the number m of machines. To this
end, we prove W[1]-hardness with respect to m of the special case where we have parallel machines
with eligible machine sets for jobs. This answers Open Problem 8 of Mnich and van Bevern’s
list of 15 open problems in the parameterized complexity of scheduling [Computers & Operations
Research, 2018].

Furthermore, we resolve the computational complexity status of the unweighted version of
Interval Scheduling on Unrelated Machines by proving that it is NP-complete. This answers
an open question by Sung and Vlach [Journal of Scheduling, 2005].
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1 Introduction

In scheduling problems, we wish to assign jobs to machines in order to maximize a certain
optimization objective while respecting certain constraints. In many traditional scheduling
settings, jobs can be scheduled to start at any point in time and then need a given processing
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18:2 Hardness of Interval Scheduling on Unrelated Machines

time to be completed. However, in a typical interval scheduling problem, each job can be
processed only in a fixed time interval, or sometimes in a set of time intervals, that may vary
from machine to machine [16, 17]. Many different variations of interval scheduling have been
considered and investigated [1, 2, 4, 5, 6, 7, 27].

In interval scheduling in its most basic form, we are given a set of n jobs and a set of m

identical parallel machines that each can process one job at a time. Each job has a processing
time, a deadline, and a weight, and shall be processed such that it finishes exactly at its
deadline. This uniquely defines an interval for each job in which it can be processed. A
schedule assigns a subset of the jobs to machines. Unassigned jobs are rejected. We call a
schedule feasible if no two jobs with overlapping processing time intervals are assigned to the
same machine. The goal is to find a feasible schedule that maximizes the weighted number
of scheduled jobs.1

This setting corresponds to the concept of just-in-time (JIT) or lean manufacturing that
revolutionized industrial production processes in the 1980s and 1990s [18, 23, 26, 30, 31].
Herein, the main goal is to provide and receive goods precisely when they are needed in order
to reduce storage costs and wastage. The first implementation of this manufacturing paradigm
is attributed to the Japanese automobile company Toyota and is sometimes also called Toyota
Production System (TPS) [23, 26]. Naturally, just-in-time and interval scheduling in many
different variants has received much attention from the research community since the late
1980s until today [1, 3, 4, 5, 6, 7, 9, 13, 19, 20, 25, 27, 28].

The basic form of interval scheduling as described above is known to be solvable in
polynomial time [2, 7, 8, 9, 13]. It is closely related to the classical problems of finding
maximum independent sets in interval graphs and coloring interval graphs [8, 11, 24, 32].
The jobs of an interval scheduling instance naturally define an interval graph with vertex
weights. For example, if there is only one machine, then interval scheduling is equivalent
to finding a maximum weight independent set in an interval graph. Coloring an interval
graph or, more specifically, computing its chromatic number is equivalent to determining the
minimum number of machines necessary to schedule all jobs.

In our work, we investigate several natural generalizations and variants of interval schedul-
ing and answer some longstanding open questions about their (parameterized) computational
complexity.

The first problem we consider in this paper is Interval Scheduling on Eligible
Machines, a natural generalization of the basic interval scheduling problem we introduced
earlier. Here, each job additionally has a set of eligible machines and each job can only be
assigned to a machine in this set in a feasible schedule. Arkin and Silverberg [2] proved in
1987 that Interval Scheduling on Eligible Machines is strongly NP-hard and can be
solved in O(mnm+1) time. In terms of parameterized complexity, Arkin and Silverberg [2]
showed that Interval Scheduling on Eligible Machines is in XP when parameterized
by the number m of machines. However, they left open whether Interval Scheduling
on Eligible Machines also admits an FPT-algorithm for parameter m. Mnich and van
Bevern [22] included this question as Open Problem 8 in their 2018 list of 15 open problems
in the parameterized complexity of scheduling. We answer this question negatively in our
first main contribution of this paper.

1 In the standard three field notation for scheduling problems of Graham [12] this problem is sometimes
denoted by P | pj = dj − rj |

∑
j

wjUj , or P ||
∑

j
wjEj , or P || JIT. We give a more formal definition

in Section 2.
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▶ Theorem 1. Interval Scheduling on Eligible Machines is strongly2 W[1]-hard
when parameterized by the number m of machines.

A natural and well-studied generalization of Interval Scheduling on Eligible Ma-
chines is Interval Scheduling on Unrelated Machines. In the latter, the processing
time of each job can be machine-dependent whereas the deadline stays the same on all
machines. Furthermore, each job is eligible on all machines. This definition stems from the
just-in-time motivation, where each job should be finished exactly at its deadline but on
different machines it may take different times to complete the job. We mention in passing
that if both processing times and deadlines can be machine-dependent, the problem becomes
NP-hard on two machines [17, 27]. Sung and Vlach [28] showed that Interval Scheduling
on Unrelated Machines can also be solved in O(mnm+1) time, generalizing the result of
Arkin and Silverberg [2]. Mnich and van Bevern [22] asked in Open Problem 8 for an FPT-
algorithm for Interval Scheduling on Eligible Machines parameterized by the number
m of machines as a first step towards finding an FPT-algorithm for Interval Scheduling
on Unrelated Machines parameterized by m. However, Theorem 1 naturally implies
that Interval Scheduling on Unrelated Machines presumably also does not admit an
FPT-algorithm for the number m of machines as a parameter.

▶ Corollary 2. Interval Scheduling on Unrelated Machines is strongly W[1]-hard
when parameterized by the number m of machines.

We point out that all known hardness reductions for Interval Scheduling on Un-
related Machines require job weights, raising the question whether the weights play an
integral role in the computational complexity of the problem. Unweighted Interval
Scheduling on Unrelated Machines is the natural special case of Interval Schedul-
ing on Unrelated Machines where all jobs have weight one. Sung and Vlach [28] asked in
2005 to resolve the computational complexity status of Unweighted Interval Scheduling
on Unrelated Machines. We give an answer to this in our second main contribution.

▶ Theorem 3. Unweighted Interval Scheduling on Unrelated Machines is NP-
complete.

We remark that our reduction for Theorem 3 does not imply hardness for the unweighted
version of Interval Scheduling on Eligible Machines. We leave this open for future
research. An additional immediate question that we leave open for future research is whether
Unweighted Interval Scheduling on Unrelated Machines admits an FPT-algorithm
for the number m of machines as a parameter.

With Theorem 1, Corollary 2, and Theorem 3 we answer fundamental longstanding
open questions concerning the (parameterized) computational complexity of natural interval
scheduling problems. For Interval Scheduling on Eligible Machines and Interval
Scheduling on Unrelated Machines, our results together with the XP-containment
results from Arkin and Silverberg [2] and Sung and Vlach [28], respectively, essentially
resolve their parameterized complexity classification for the number m of machines as a
parameter. We point out that all considered problem variants are known to be fixed-parameter
tractable when parameterized by the number n of jobs. This can be shown with a simple
reduction to Multicolored Independent Set on Interval Graphs parameterized

2 A parameterized problem is strongly W[1]-hard if it remains W[1]-hard when all numbers are encoded
unarily.
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by the number of colors, which is known to be fixed-parameter tractable [4, 5]. Hence, we
make an important further step towards fully understanding the parameterized complexity
of several basic and natural interval scheduling problems. We remark that our results also
imply that Multicolored Independent Set on Interval Graphs is W[1]-hard when
parameterized by the maximum number of vertices of any color.

The rest of the paper is organized as follows: we give formal definitions of all problems in
Section 2. We prove Theorem 1 and Corollary 2 in Section 3 and we prove Theorem 3 in
Section 4. We conclude with future research directions in Section 5.

2 Problem Setting

The first problem we consider is Interval Scheduling on Eligible Machines. Here, we
have a set of n jobs {j1, j2, . . . , jn} and a set of m machines {i1, i2, . . . , im} that each can
process one job at a time. Each job j has a processing time pj , a deadline dj , a weight wj ,
and a set of eligible machines Mj ⊆ {i1, i2, . . . , im}. Job j can be processed in exactly one
fixed time interval (dj − pj , dj ], specified by its processing time and deadline, that is the
same on each of its eligible machines. A schedule is a mapping from jobs to machines. More
formally, a schedule is a function σ : {j1, j2, . . . , jn} → {i1, i2, . . . , im, ⊥}. If for job j we have
σ(j) = i (with i ̸= ⊥), then job j is scheduled to be processed on machine i. If for job j we
have σ(j) = ⊥, then job j is not scheduled, that is, it is not assigned to any machine. We say
that two jobs j, j′ are in conflict on a machine i if (dj − pj , dj ] ∩ (dj′ − pj′ , dj′ ] ̸= ∅, that is,
the processing time intervals corresponding to jobs j and j′ on machine i overlap. A schedule
σ is feasible if there is no pair of jobs j, j′ with σ(j) = σ(j′) = i ̸= ⊥ that is in conflict on
machine i and each job is mapped to one of its eligible machines. The goal is to find a feasible
schedule that maximizes the weighted number of scheduled jobs W =

∑
j|σ(j)̸=⊥ wj . In the

standard three field notation for scheduling problems of Graham [12] Interval Scheduling
on Eligible Machines is sometimes denoted by P | Mj , pj = dj − rj |

∑
j wjUj , or

P | Mj |
∑

j wjEj , or P | Mj | JIT.
The second problem we consider is Interval Scheduling on Unrelated Machines.

Here, for each job j the processing time pi,j can depend on machine i whereas the deadline
dj is the same on all machines. Hence, the processing time interval of job j on machine i is
(dj −pi,j , dj ]. Moreover, the all jobs are eligible on all machines, that is, Mj = {i1, i2, . . . , im}
for all jobs j. In the standard three field notation for scheduling problems of Graham [12]
Interval Scheduling on Unrelated Machines is sometimes denoted by R | pj =
dj − rj |

∑
j wjUj , or R ||

∑
j wjEj , or R || JIT.

Finally, the third problem we consider is Unweighted Interval Scheduling on
Unrelated Machines, the unweighted version of Interval Scheduling on Unrelated
Machines. Here, we have that wj = 1 for all jobs j. In the standard three field notation for
scheduling problems of Graham [12] Unweighted Interval Scheduling on Unrelated
Machines is sometimes denoted by R | pj = dj − rj |

∑
j Uj , or R ||

∑
j Ej , or R | wj = 1 |

JIT.

3 W[1]-Hardness of Interval Scheduling on Eligible Machines

In this section, we prove Theorem 1 from which Corollary 2 follows directly. To prove
Theorem 1, we present a parameterized polynomial-time reduction from Multicolored
Clique parameterized by the number of colors to Interval Scheduling on Eligible
Machines parameterized by the number m of machines. In Multicolored Clique, we
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Figure 1 Illustration of the edge selection machine for color combination ℓ, ℓ′ with ℓ < ℓ′. Depicted
are intervals of jobs relating to v ∈ Vℓ, w ∈ Vℓ′ , and e = {v, w} ∈ E. Gray intervals correspond to
jobs that are not eligible on the machine.

are given a k-partite graph G = (V1 ⊎ V2 ⊎ . . . ⊎ Vk, E), we are asked whether G contains a
clique of size k. The k vertex parts V1, V2, . . . , Vk are called colors. Multicolored Clique
parameterized by k is known to be W[1]-hard [10].

Given an instance of Multicolored Clique, we construct an instance of Interval
Scheduling on Eligible Machines as follows.

▶ Construction 1. Let G = (V1 ⊎ V2 ⊎ . . . ⊎ Vk, E) be a k-partite graph with nG vertices.
Assume we have some total ordering <π over V := V1 ⊎ V2 ⊎ . . . ⊎ Vk such that for all v ∈ Vℓ

and w ∈ Vℓ′ we have that if ℓ < ℓ′ then v <π w. Let π(v) denote the ordinal position of
v ∈ V in the ordering <π.

In the following, we describe the jobs and specify their processing times, deadlines and
weights. Then we describe the machines and the eligible machine sets for the jobs. In order
to describe the weights more easily, we introduce the following three values: c1 = nG + 1,
c2 = (k − 1)nGc1 + nG + 1, and c3 = (knG + k2nG)nGc2 + 1. We create the following jobs:

For each vertex v ∈ V , we create k vertex jobs j
(1)
v , j

(2)
v , . . . , j

(k)
v , where one of the vertex

jobs corresponds to the color of v and the k − 1 other vertex jobs correspond to the other
k − 1 colors.
Let v ∈ Vℓ. The processing time of j

(ℓ)
v (the vertex job corresponding to the same color

as v) is k + 2, the deadline of j
(ℓ)
v is (k + 2)π(v) + 1, and the weight of j

(ℓ)
v is one.

The processing time of j
(ℓ′)
v with ℓ′ ̸= ℓ (vertex jobs corresponding to a different color

than v) is one, the deadline of j
(ℓ′)
v with ℓ′ ≠ ℓ is (k + 2)π(v) − ℓ′, and the weight of j

(ℓ′)
v

with ℓ′ ̸= ℓ is c1.
For each edge e = {v, w} ∈ E with v ∈ Vℓ, w ∈ Vℓ′ , and ℓ < ℓ′, we create one edge job
je with processing time (k + 2)(π(w) − π(v)) − ℓ + ℓ′, deadline (k + 2)π(w) − ℓ − 1, and
weight c2(π(w) − π(v)) + c3.
For each color combination ℓ, ℓ′ with ℓ < ℓ′ we create |Vℓ| + |Vℓ′ | color combination jobs,
one for each v ∈ Vℓ and one for each w ∈ Vℓ′ .
Let v ∈ Vℓ, we create a job j

(ℓ,ℓ′)
v with processing time (k + 2)π(v) − ℓ′ − 2, deadline

(k + 2)π(v) − ℓ′ − 1, and weight c2π(v).
Let w ∈ Vℓ′ , we create a job j

(ℓ,ℓ′)
w with processing time (k + 2)(nG − π(w)) + ℓ + 2,

deadline (k + 2)nG + 2, and weight c2(nG − π(w)).

We create m =
(

k
2
)

+ 1 machines i1, i2, . . . , i(k
2)+1. We call the first

(
k
2
)

machines edge
selection machines (one machine for each color combination) and we call the remaining
machine validation machine.

Consider color combination ℓ, ℓ′ with ℓ < ℓ′ and let i be the corresponding edge selection
machine.

IPEC 2022
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Figure 2 Illustration of the validation machine. Depicted are intervals of jobs corresponding to
vertices v, u, w ∈ Vℓ with v <π u <π w.

For each vertex v ∈ Vℓ we add machine i to the set of eligible machines of job j
(ℓ′)
v and of

job j
(ℓ,ℓ′)
v .

For each vertex w ∈ Vℓ′ we add machine i to the set of eligible machines of job j
(ℓ)
w and

of job j
(ℓ,ℓ′)
w .

For each edge e = {v, w} ∈ E with v ∈ Vℓ and w ∈ Vℓ′ we add machine i to the set of
eligible machines of job je.

We give an illustration of the edge selection machines in Figure 1. Finally, consider the
validation machine i(k

2)+1. We add the validation machine to the set of eligible machines of
all vertex jobs. We give an illustration of the validation machine in Figure 2.

This finishes our construction of the Interval Scheduling on Eligible Machines
instance. We first show that given a clique of size k in G, we can create a feasible schedule
for the constructed instance such that the total weight of scheduled jobs attains at least a
certain value.

▶ Lemma 4. Let G be an instance of Multicolored Clique. Let I be the Interval
Scheduling on Eligible Machines instance computed from G as specified by Construc-
tion 1. If G contains a clique of size k, then there is a feasible schedule σ for I such that for
the total weight W of scheduled jobs we have

W ≥
(

k

2

)
c3 +

(
k

2

)
nGc2 + (k − 1)nGc1 + k.

Proof. Let G = (V1 ⊎V2 ⊎. . .⊎Vk, E) be an instance of Multicolored Clique and consider
the corresponding Interval Scheduling on Eligible Machines instance specified by
Construction 1. Assume there is a clique X of size k in G. Then we schedule the following
jobs.

For color combination ℓ, ℓ′ with ℓ < ℓ′ let {v} = X ∩ Vℓ and {w} = X ∩ Vℓ′ . Since X is a
clique in G, we know that e = {v, w} ∈ E. On edge selection machine i corresponding to
color combination ℓ, ℓ′ we schedule the following jobs: je, j

(ℓ,ℓ′)
v , j

(ℓ,ℓ′)
w , j

(ℓ′)
v , and j

(ℓ)
w . By

construction of the instance, the intervals of the jobs are non-intersecting on the machine
i, and machines i is in the eligible set of the four jobs. Hence, scheduling these jobs on
machine i yields a feasible schedule. Furthermore, it accounts for weight c3 + nGc2 + 2c1
of scheduled jobs per color combination.
Summing over all color combinations, we obtain weight

(
k
2
)
c3 +

(
k
2
)
nGc2 + k(k − 1)c1.

Note that for each {v} = X ∩ Vℓ we have scheduled all vertex jobs j
(ℓ′)
v with ℓ ̸= ℓ′.

On the validation machine i(k
2)+1 we schedule the following jobs. Let {v} = X ∩ Vℓ,

then we schedule vertex job j
(ℓ)
v . Note that this job is only in conflict with vertex jobs

j
(ℓ′)
v with ℓ ≠ ℓ′, which are scheduled on the edge selection machines. Furthermore, we
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schedule all jobs j
(ℓ′)
w with v ̸= w ∈ Vℓ and ℓ ̸= ℓ′. By construction, all these jobs can be

scheduled on machine i(k
2)+1 without conflicts and all these jobs have machine i(k

2)+1 in
their set of eligible machines.
For all colors, this accounts for weight (nG − k)(k − 1)c1 + k of scheduled jobs.

Clearly, we have that the constructed schedule is feasible. Furthermore, it is straightfor-
ward to check that the total weight of scheduled jobs in this constructed schedule is W . ◀

Before we show a similar statement for the opposite direction, we make an observation
about feasible schedules in Interval Scheduling on Eligible Machines instances from
Construction 1. We show that we can assume that any feasible schedule where the total
weight of scheduled jobs is at least

(
k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k schedules exactly one

edge job on each edge selection machine.

▶ Observation 5. Let I be an instance of Interval Scheduling on Eligible Machines
resulting from applying Construction 1 to some k-partite graph G. Let σ be a feasible schedule
such that for the total weight W of scheduled jobs we have

W ≥
(

k

2

)
c3 +

(
k

2

)
nGc2 + (k − 1)nGc1 + k.

Then exactly
(

k
2
)

edge jobs are scheduled, one on each edge selection machine.

Proof. We first show that no feasible schedule with total weight W ≥
(

k
2
)
c3 +

(
k
2
)
nGc2 + (k −

1)nGc1 + k of scheduled jobs can schedule more than
(

k
2
)

edge jobs. Let ℓ, ℓ′ with ℓ < ℓ′ be a
color combination. On the edge selection machine corresponding to color combination ℓ, ℓ′

we have that all edge jobs corresponding to edges that do not connect vertices of colors ℓ and
ℓ′ are not eligible. Furthermore, all edge jobs corresponding to edges that connect vertices of
colors ℓ and ℓ′ are pairwise in conflict. It follows that on each edge selection machine, at
most one edge job can be scheduled. Hence, any feasible schedule can schedule at most

(
k
2
)

edge jobs, one on each edge selection machine.
We next show that any feasible schedule with W ≥

(
k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k

needs to schedule at least
(

k
2
)

edge jobs. Assume we have a feasible schedule that schedules
(strictly) less than

(
k
2
)

edge jobs. Note that each edge job has weight at least c3. Furthermore,
there are at most knG + k2nG jobs that are not edge jobs and those jobs each have weight
at most nGc2. Let σ be a feasible schedule that does not schedule all edge jobs and let W be
the total weight of all jobs scheduled by σ. Let W ⋆ denote the sum of weights of all jobs
that are not edge jobs. Then we have

W < (
(

k

2

)
− 1)c3 + W ⋆ <

(
k

2

)
c3.

Hence, the observation follows. ◀

Now we are ready to show how to construct a clique of size k from a feasible schedule
where the total weight of scheduled jobs is at least

(
k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k.

▶ Lemma 6. Let G be an instance of Multicolored Clique. Let I be the Interval
Scheduling on Eligible Machines instance computed from G as specified by Construc-
tion 1. If there is a feasible schedule σ for I such that for the total weight W of scheduled
jobs we have

W ≥
(

k

2

)
c3 +

(
k

2

)
nGc2 + (k − 1)nGc1 + k,

then G contains a clique of size k.

IPEC 2022
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Proof. Let G = (V1 ⊎V2 ⊎. . .⊎Vk, E) be an instance of Multicolored Clique and consider
the corresponding Interval Scheduling on Eligible Machines instance specified by
Construction 1. Assume we have a feasible schedule σ such that the for the total weight W

of scheduled jobs we have W ≥
(

k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k. We construct a clique of

size k in G as follows.
By Observation 5 we know that σ schedules one edge job on each edge selection machine.

We can also observe that on the validation machine, only vertex jobs are eligible and can
be scheduled. Note that the sum of weights of all vertex jobs is (k − 1)nGc1 + nG, which is
strictly smaller than c2.

Assume that edge job je is scheduled on the edge selection machine i corresponding to
color combination ℓ, ℓ′ with ℓ < ℓ′. Then by construction, e = {v, w} ∈ E with v ∈ Vℓ and
w ∈ Vℓ′ . Now by construction of the instance, two color combination jobs can be scheduled
on machine i, one for a vertex of color ℓ and one for a vertex of color ℓ′. In order to obtain a
weight of scheduled jobs of at least c3 + nGc2 it is necessary that jobs j

(ℓ,ℓ′)
v and j

(ℓ,ℓ′)
w are

scheduled (note that the weights of je, j
(ℓ,ℓ′)
v , and j

(ℓ,ℓ′)
w sum up to exactly c3 + nGc2). Any

other selection of color combination jobs to schedule either results in a weight that is lower by
at least c2 or in an infeasible schedule. Now, by construction, the only further jobs that can
be scheduled are j

(ℓ′)
v and j

(ℓ)
w . It follows that the maximum weight achievable on any edge

selection machine is c3 + ngc2 + 2c1. Since
(

k
2
)
2c1 < c2, it follows that for each edge selection

machine corresponding to color combination ℓ, ℓ′ with ℓ < ℓ′ we have the following: one edge
job je for e = {v, w} with v ∈ Vℓ and w ∈ Vℓ′ is scheduled and the two color combination
jobs j

(ℓ,ℓ′)
v and j

(ℓ,ℓ′)
w are scheduled.

We can conclude that the jobs scheduled on all edge selection machines have a total
weight of at least

(
k
2
)
c3 +

(
k
2
)
nGc2. Hence, there are additional jobs scheduled that have a

total weight of (k − 1)nGc1 + k on the validation machine.
Since no additional edge jobs or color combination jobs can be scheduled, we have that

all (k − 1)nG vertex jobs j
(ℓ′)
v with v ∈ Vℓ and ℓ ̸= ℓ′ (having weight c1 > nG) are scheduled.

Furthermore, at least k vertex jobs j
(ℓ)
v with v ∈ Vℓ (having weight one) are scheduled.

Let X be the set of vertices in G such that if v ∈ X and v ∈ Vℓ, the job j
(ℓ)
v is scheduled.

We claim that X is a clique of size at least k in G.
By construction we have that |X| ≥ k, assume for contradiction that X is not a clique

in G. Then there are two vertices v, w ∈ X such that e = {v, w} /∈ E. Let v ∈ Vℓ and
w ∈ Vℓ′ . Then, in particular, vertex jobs j

(ℓ′)
v and j

(ℓ)
w cannot be scheduled on the validation

machine, since they are in conflict with vertex jobs j
(ℓ)
v and j

(ℓ′)
w , respectively. However, as

observed above, vertex jobs j
(ℓ′)
v and j

(ℓ)
w can only be scheduled on the edge selection machine

corresponding to color combination ℓ, ℓ′ if there is edge job je with e = {v, w} scheduled on
that machine, a contradiction to the assumption that e = {v, w} /∈ E. ◀

Finally, we have all ingredients to prove Theorem 1.

Proof of Theorem 1. To prove Theorem 1, we show that Construction 1 is parameterized
polynomial-time reduction from Multicolored Clique parameterized by the number of
colors to Interval Scheduling on Eligible Machines parameterized by the number m

of machines. First, it is easy to observe that given an instance of Multicolored Clique,
the Interval Scheduling on Eligible Machines instance specified by Construction 1
can be computed in polynomial time. Furthermore, if k is the number of colors in the
Multicolored Clique instance, then the number of machines in the constructed Interval
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Scheduling on Eligible Machines instance is m =
(

k
2
)

+ 1. Lastly, observe that all
weights in the constructed Interval Scheduling on Eligible Machines instance are in
n

O(1)
G (where nG is the number of vertices in the Multicolored Clique instance).

The correctness of the reduction follows from Lemmas 4 and 6. Since Multicolored
Clique parameterized by the number of colors is W[1]-hard [10], we have that Theorem 1
follows. ◀

4 NP-Hardness of Unweighted Interval Scheduling on Unrelated
Machines

In this section we prove Theorem 3. The containment of Unweighted Interval Schedul-
ing on Unrelated Machines in NP is easy to see, hence we focus on proving NP-hardness.
To this end, we present a polynomial-time many-one reduction from Exact (3,4)-SAT to
Unweighted Interval Scheduling on Unrelated Machines. In Exact (3,4)-SAT
we are given a Boolean formula ϕ in conjunctive normal form where every clause has exactly
three literals and every variable appears in exactly four clauses, and are asked whether ϕ has
a satisfying assignment. Exact (3,4)-SAT is known to be NP-hard [29].

Given such a formula ϕ, we construct an instance I of Unweighted Interval Schedul-
ing on Unrelated Machines as follows.

▶ Construction 2. Let ϕ be a Boolean formula in conjunctive normal form where every
clause has exactly three literals and every variable appears in exactly four clauses. Let α

be the number of variables in ϕ and let β be the number of clauses in ϕ. We construct an
instance I of Unweighted Interval Scheduling on Unrelated Machines as follows.

We first describe the jobs, then we define an ordering of the jobs and use it to specify
their deadlines. Lastly, we describe the processing times of the jobs on the different machines.
We create the following jobs.

For every variable x, we create two variable jobs: xT and xF .
For every clause c, we create three clause jobs: c1, c2, and c3.
We create 2α + 2β dummy jobs.

We next define an ordering π of the jobs, which we will use to define the deadlines of the
jobs. To this end, we partition the jobs into the following sets.

Let T = {xT | x is a variable in ϕ}.
Let F = {xF | x is a variable in ϕ}.
Let P = {cℓ | the ℓth literal of clause c of ϕ is non-negated}.
Let N = {cℓ | the ℓth literal of clause c of ϕ is negated}.
Let D be the set of dummy jobs.

Now we define π as a total ordering of the jobs such that

D ≺ N ≺ F ≺ P ≺ T,

and the jobs within the sets are ordered in an arbitrary but fixed way. Let π(j) denote the
ordinal position of job j in π. For each job j, we set

dj = π(j).

We next describe the machines, more specifically, the processing times of all jobs on each
of the machines. We first introduce α variable selection machines, one for each variable in ϕ.
Let x be a variable in ϕ, then we introduce a machine where the processing time of variable
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xT
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T

Figure 3 Illustration of the job intervals on the variable selection machine for variable x. On this
machine only one of jobs xT and xF (bold) can be scheduled alongside with one dummy job.

job xT is π(xT ) − 2α − 2β and the processing time of variable job xF is π(xF ) − 2α − 2β. We
set the processing times of all other jobs to their respective deadlines. We give an illustration
of the variable selection machines in Figure 3.

Next, we introduce 2β clause selection machines, two for each clause in ϕ. Let c be a
clause in ϕ, then we introduce two machines where the processing times of c1, c2, and c3 are
π(c1) − 2α − 2β, π(c2) − 2α − 2β, and π(c3) − 2α − 2β, respectively. We set the processing
times of all other jobs to their respective deadlines. We give an illustration of the clause
selection machines in Figure 4.

Furthermore, we have α validation machines, one for each variable in ϕ. Let x be a
variable in ϕ, then we introduce a machine where

the processing time of xT is π(xT ) − π(xF ) + 1,
the processing time of xF is π(xF ) − 2α − 2β,
if x appears in the ℓth literal of clause c, then the processing time of cℓ is one, and
processing times of all other jobs are set to their respective deadlines.

We give an illustration of the validation machines in Figure 5.

This finishes our construction of the Unweighted Interval Scheduling on Unre-
lated Machines instance. We first show that given a satisfying assignment for ϕ, we can
create a feasible schedule for the constructed instance such all jobs are scheduled.

▶ Lemma 7. Let ϕ be an instance of Exact (3,4)-SAT. Let I be the Unweighted
Interval Scheduling on Unrelated Machines instance computed from ϕ as specified
by Construction 2. If ϕ is satisfiable, then there is a feasible schedule σ for I such that all
jobs are scheduled.
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c2

P

...
...

T

Figure 4 Illustration of the job intervals on the clause selection machine for clause c. On this
machine only one of the jobs c1, c2 and c3 (bold) can be scheduled alongside with one dummy job.

Proof. Let ϕ be an instance of Exact (3,4)-SAT and consider the corresponding Un-
weighted Interval Scheduling on Unrelated Machines instance specified by Con-
struction 2. Assume there is a satisfying assignment for ϕ. Then we schedule the jobs as
follows.

We first describe on which machine we schedule each variable job. Let x be a variable in
ϕ. If x is set to true in the satisfying assignment, we schedule variable job xT on the variable
selection machine corresponding to x and we schedule variable job xF on the validation
machine corresponding to x. Otherwise, we schedule variable job xF on the variable selection
machine corresponding to x and we schedule variable job xT on the validation machine
corresponding to x.

Next, we describe on which machine to schedule each clause job. Let c be a clause in
ϕ. Let clause c be satisfied by its ℓth literal (if multiple literals satisfy the clause, pick one
of them arbitrarily). Let x be the variable appearing in the ℓth literal of c. We schedule
clause job cℓ on the validation machine corresponding to x. We schedule clause jobs cℓ′ with
ℓ′ ∈ {1, 2, 3} \ {ℓ} on the two clause selection machines corresponding to c, respectively.

Lastly, notice that the number of dummy jobs equals the number of machines. For each
dummy job we arbitrarily choose a distinct machine and schedule it on this machine.

In the constructed schedule, we clearly schedule each job. We next show that the schedule
is feasible.

Notice that on each variable selection machine and each clause selection machine we
schedule exactly two jobs, one dummy job and one variable job of the variable corresponding
to the variable selection machine or, respectively, one clause job of the clause corresponding
to the clause selection machine. Since the processing time intervals of the variable jobs of
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1
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Figure 5 Illustration of the job intervals on the validation machine for variable x for the case that
x appears in clauses c and c′ non-negated in positions one and two, respectively, and that x appears
in clauses c′′ and c′′′ negated in positions three and one, respectively. Processing time intervals of
jobs that do not conflict with dummy jobs on this machine are depicted in bold.

variables corresponding to the variable selection machines start at 2α + 2β and the deadline
of each dummy job is at most 2α + 2β, the schedules for the variable selection machines are
feasible. Analogously, the schedules for the clause selection machines are feasible.

It remains to show that the schedules for the validation machines are feasible. Notice
that by construction, the variable jobs and clause jobs that are potentially scheduled on a
validation machine cannot conflict with any dummy job. Furthermore, the variable jobs that
are potentially scheduled on a validation machine cannot conflict with each other. We have
the same for the clause jobs.

Hence, the only way to obtain an infeasible schedule is if a variable job and a clause job
are in conflict. Assume the variable xT is scheduled (the case of variable job xF is analogous)
and clause job cℓ is scheduled and the two jobs are in conflict. Note that this implies that
we are dealing with the validation machine for variable x. By construction of the schedule,
this means that variable x is set to false in the satisfying assignment. However, the jobs cℓ

and xT are in conflict on the validation machine for x (and the job of cℓ is not in conflict
with the dummy jobs) if x appears non-negated in the ℓth literal of clause c. Furthermore,
by construction of the schedule, we have that clause c is satisfied by its ℓth literal. This is a
contradiction to x being set to false in the satisfying assignment. ◀

Now we show how to construct a satisfying assignment from a feasible schedule where all
jobs are scheduled.
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▶ Lemma 8. Let ϕ be an instance of Exact (3,4)-SAT. Let I be the Unweighted
Interval Scheduling on Unrelated Machines instance computed from ϕ as specified
by Construction 2. If there is a feasible schedule σ for I such that all jobs are scheduled, then
ϕ is satisfiable.

Proof. Let ϕ be an instance of Exact (3,4)-SAT and consider the corresponding Un-
weighted Interval Scheduling on Unrelated Machines instance specified by Con-
struction 2. Assume we have a feasible schedule for the constructed instance such that all
jobs are scheduled. We construct a satisfying assignment for ϕ as follows.

First, observe that by construction, the at most one dummy job can be scheduled on each
machine. Since the number of dummy jobs equals the number of machines, we have that on
each machine exactly one dummy job is scheduled. This means that on each machine no
non-dummy jobs that conflict with a dummy job (that is, jobs with processing time equal to
their deadline) can be scheduled.

We can further observe that on the variable selection machine of variable x, apart from a
dummy job, only the variable job xT or the variable job xF can be scheduled. Since the two
jobs conflict, they cannot both be scheduled. We assume w.l.o.g. that exactly one of the two
jobs is scheduled. If the variable job xT is scheduled, we set variable x to true, otherwise we
set variable x to false. In the remainder, we show that this yields a satisfying assignment
for ϕ.

Assume for contradiction that ϕ is not satisfied by the constructed assignment. Then there
is a clause c in ϕ such that none of its literals are satisfied. Consider the three clause jobs c1,
c2, and c3 associated with the three literals in clause c. Each of these three jobs can only be
scheduled (without creating a conflict with a dummy job) on the clause selection machines
corresponding to c, and the validation machine corresponding to the variable appearing
in the respective literal of the clause c. Since we only have two clause selection machines,
at least one of the clause jobs c1, c2, and c3 has to be scheduled on a validation machine.
Assume c1 is scheduled on a validation machine (the case of c2 and c3 is symmetric). Let x

be the variable appearing in the first literal of c. Assume the variable job xT is scheduled
on the variable selection machine corresponding to x (the case where the variable job xF is
scheduled is symmetric). Then the variable job xF has to be scheduled on the validation
machine corresponding to x, since on all other machines it is in conflict with all dummy jobs.
However, by construction of the validation machines, the clause job c1 and the variable job
xF can only both be scheduled on the validation machine corresponding to x if setting x to
true satisfies the first literal of c, a contradiction to the assumption that c is not satisfied. ◀

Finally, we have all ingredients to prove Theorem 3.

Proof of Theorem 3. To prove Theorem 3, we show that Construction 2 is polynomial-time
many-one reduction from Exact (3,4)-SAT to Unweighted Interval Scheduling
on Unrelated Machines. First, it is easy to observe that given an instance of Exact
(3,4)-SAT, the Unweighted Interval Scheduling on Unrelated Machines instance
specified by Construction 2 can be computed in polynomial time. The correctness of the
reduction follows from Lemmas 7 and 8. Since Exact (3,4)-SAT is NP-hard [29], we have
that Theorem 3 follows. ◀

IPEC 2022



18:14 Hardness of Interval Scheduling on Unrelated Machines

5 Conclusion

We proved that Interval Scheduling on Eligible Machines and its generalization
Interval Scheduling on Unrelated Machines are W[1]-hard when parameterized by
the number m of machines, and that Unweighted Interval Scheduling on Unrelated
Machines is NP-complete, answering two open questions by Mnich and van Bevern [22]
and Sung and Vlach [28], respectively. With this, we contribute to the understanding of the
(parameterized) computational complexity of basic and natural interval scheduling problems.

Our results leave two main open questions. Our NP-hardness proof for Unweighted
Interval Scheduling on Unrelated Machines does not imply NP-hardness of Un-
weighted Interval Scheduling on Eligible Machines, which leaves the following
question.

▶ Open Question 1. What is the computational complexity of Unweighted Interval
Scheduling on Eligible Machines?

Furthermore, the reduction used in our NP-hardness proof for Unweighted Interval
Scheduling on Unrelated Machines uses an unbounded number of machines, and hence
does not imply W[1]-hardness of Unweighted Interval Scheduling on Unrelated
Machines when parameterized by the number m of machines. Hence, we have the following
question.

▶ Open Question 2. What is the parameterized complexity of Unweighted Interval
Scheduling on Unrelated Machines when parameterized by the number m of machines?

Lastly, we want to point out that the parameterized reduction we use to prove that In-
terval Scheduling on Eligible Machines and Interval Scheduling on Unrelated
Machines are W[1]-hard when parameterized by the number m of machines roughly squares
the parameter. More precisely, we reduce from Multicolored Clique parameterized
by the number k of colors and for the number m of machines in the produced Interval
Scheduling on Eligible Machines / Interval Scheduling on Unrelated Machines
instances we have m ∈ O(k2). This implies that assuming the Exponential Time Hypothesis
(ETH) [14, 15], that there are no f(m)(n + m)o(

√
m) algorithms for Interval Scheduling

on Eligible Machines and Interval Scheduling on Unrelated Machines for any
function f [21]. However, the best known algorithms have running time (n + m)O(m) [2, 28].
Hence, there is still a gap between the upper and lower bound.
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