
On the Complexity of Problems on Tree-Structured
Graphs
Hans L. Bodlaender !

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Carla Groenland !

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Hugo Jacob !

ENS Paris-Saclay, France

Marcin Pilipczuk !

University of Warsaw, Poland

Michał Pilipczuk !

University of Warsaw, Poland

Abstract
In this paper, we introduce a new class of parameterized problems, which we call XALP: the
class of all parameterized problems that can be solved in f(k)nO(1) time and f(k) log n space on a
non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup
allowed). Various natural problems on “tree-structured graphs” are complete for this class: we show
that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete.
Moreover, Independent Set and Dominating Set parameterized by treewidth divided by log n,
and Max Cut parameterized by cliquewidth are also XALP-complete.

Besides finding a “natural home” for these problems, we also pave the road for future reductions.
We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of
problems solvable by an Alternating Turing Machine whose runs have tree size at most f(k)nO(1)

and use f(k) log n space. Moreover, we introduce “tree-shaped” variants of Weighted CNF-
Satisfiability and Multicolor Clique that are XALP-complete.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Parameterized Complexity, Treewidth, XALP, XNLP

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.6

Related Version Full Version: https://arxiv.org/abs/2206.11828 [8]

Funding Carla Groenland: Supported by the European Union’s Horizon 2020 research and innovation
programme under the ERC grant CRACKNP (number 853234) and the Marie Skłodowska-Curie
grant GRAPHCOSY (number 101063180).
Marcin Pilipczuk: This research is a part of a project that have received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme Grant Agreement 714704.
Michał Pilipczuk: This research is a part of a project that have received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme Grant Agreement 948057.

Acknowledgements We would like to thank the organizers of the workshop on Parameterized
complexity and discrete optimization, organized at HIM in Bonn, for providing a productive research
environment. We would also like to thank our referees for useful suggestions.

© Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0002-9297-3330
mailto:c.e.groenland@uu.nl
https://orcid.org/0000-0002-9878-8750
mailto:hugo.jacob@ens-paris-saclay.fr
https://orcid.org/0000-0003-1350-3240
mailto:malcin@mimuw.edu.pl
https://orcid.org/0000-0001-5680-7397
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://arxiv.org/abs/2206.11828
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On the Complexity of Problems on Tree-Structured Graphs

1 Introduction

A central concept in complexity theory is completeness for a class of problems. Establishing
completeness of a problem for a class pinpoints its difficulty, and gives implications on resources
(time, memory or otherwise) to solve the problem (often, conditionally on complexity theoretic
assumptions). The introduction of the W-hierarchy by Downey and Fellows in the 1990s
played an essential role in the analysis of the complexity of parameterized problems [13, 14, 15].
Still, several problems are suspected not to be complete for a class in the W-hierarchy, and
other classes of parameterized problems with complete problems were introduced, e.g., the
A-, AW-, and M-hierarchies. (See e.g., [1, 15, 19].) In this paper, we introduce a new class of
parameterized complexity, which appears to be the natural home of several “tree structured”
parameterized problems. This class, which we call XALP, can be seen as the parameterized
version of a class known in classic complexity theory as NAuxPDA[poly, log] (see [3]), or
ASPSZ(log n, nO(1)) [24].

It can also be seen as the “tree variant” of the class XNLP, which is the class of
parameterized problems that can be solved by a non-deterministic Turing machine using
f(k) log n space in f(k)nO(1) time for some computable function f , where k denotes the
parameter and n the input size. It was introduced in 2015 by Elberfeld et al. [17]. Recently,
several parameterized problems were shown to be complete for XNLP [4, 9, 7]; in this
collection, we find many problems for “path-structured graphs”, including well known
problems that are in XP with pathwidth or other linear width measures as parameter, and
linear ordering graph problems like Bandwidth.

Thus, we can view XALP as the “tree” variant of XNLP and as such, we expect that
many problems known to be in XP (and expected not to be in FPT) when parameterized
by treewidth will be complete for this class. We will prove the following problems to be
XALP-complete in this paper:

List Coloring and All-or-Nothing Flow parameterized by treewidth;
Independent Set and Dominating Set parameterized by treewidth divided by log n,
where n is the number of vertices of the input graph;
Max Cut parameterized by cliquewidth.

The problems listed in this paper should be regarded as examples of a general technique,
and we expect that many other problems parameterized by treewidth, cliquewidth and
similar parameters will be XALP-complete. In many cases, a simple modification of an
XNLP-hardness proof with pathwidth as parameter shows XALP-hardness for the same
problem with treewidth as parameter.

In addition to pinpointing the exact complexity class for these problems, such results have
further consequences. First, XALP-completeness implies XNLP-hardness, and thus hardness
for all classes W[t], t ∈ N. Second, a conjecture by Pilipczuk and Wrochna [23], if true,
implies that every algorithm for an XALP-complete problem that works in XP time (that is,
nf(k) time) cannot simultaneously use FPT space (that is, f(k)nO(1) space). Indeed, typical
XP algorithms for problems on graphs of bounded treewidth use dynamic programming, with
tables that are of size nf(k).

Satisfiability on graphs of small treewidth. Real-world SAT instances tend to have a
special structure to them. One of the measures capturing the structure is the treewidth
T W(ϕ) of the given formula ϕ. This is defined by taking the treewidth of an associated
graph, usually a bipartite graph on the variables on one side and the clauses on the other,
where there is an edge if the variable appears in the clause. Alekhnovitch and Razborov [2]

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:3

raised the question of whether satisfiability of formulas of small treewidth can be checked in
polynomial space, which was positively answered by Allender et al. [3]. However, the running
time of the algorithm is 3T W(ϕ) log |ϕ| rather than 2O(T W(ϕ))|ϕ|O(1), where |ϕ| = n + m for
n the number of variables and m the number of clauses. They also conjectured that the
log |ϕ| factor in the exponent for the running time cannot be improved upon without using
exponential space.

To support this conjecture, Allender et al. [3] show that Satisfiability where the
treewidth of the associated graph is O(log n) is complete for a class of problems called
SAC1: these are the problems that can be recognized by “uniform” circuits with semi-
unbounded fan-in of depth O(log n) and polynomial size. This class has also been shown
to be equivalent to classes of problems that are defined using Alternating Turing Machines
and non-deterministic Turing machines with access to an auxiliary stack [24, 26]. We
define parameterized analogues of the classes defined using Alternating Turning Machines or
non-deterministic Turing machines with access to an auxiliary stack, and show these to be
equivalent. This is how we define our class XALP.

Allender et al. [3] considers Satisfiability where the treewidth of the associated graph
is O(logk n) for all k ≥ 1. We restrict ourselves to the case k = 1 since this is where we could
find interesting complete problems, but we expect that a similar generalisation is possible in
our setting.

The main contribution of our paper is to transfer definitions and results from the classical
world to the parameterized setting, by which we provide a natural framework to establish the
complexity of many well-known parameterized problems. We provide a number of natural
XALP-complete problems, but we expect that in the future it will be shown that XALP is
the “right box” for many more problems of interest.

Paper overview. In Section 2, we give a number of definitions, discuss the classical analogues
of XALP, and formulate a number of key parameterized problems. Several equivalent
characterizations of the class XALP are given in Section 3. In Section 4, we introduce
a “tree variant” of the wellknown Multicolor Clique problem. We call this problem
Tree-Chained Multicolor Clique, and show it to be XALP-hard with a direct proof
from an acceptance problem of a suitable type of Turing Machine, inspired by Cook’s proof
of the NP-completeness of Satisfiability [11]. In Section 5, we build on this and give a
number of other examples of XALP-complete problems, including tree variants of Weighted
Satisfiability and several problems parameterized by treewidth or another tree-structured
graph parameter.

2 Definitions

We assume that the reader is familiar with a number of well-known notions from graph
theory and parameterized complexity, e.g., FPT, the W-hierarchy, clique, independent set,
etc. (See e.g., [12].)

A tree decomposition of a graph G = (V, E) is a pair (T = (I, F), {Xi | i ∈ T}) with
T = (I, F) a tree and {Xi | i ∈ I}) a family of (not necessarily disjoint) subsets of V

(called bags) such that
⋃

i∈I Xi = V , for all edges vw ∈ E, there is an i with v, w ∈ Xi,
and for all v, the nodes {i ∈ I | v ∈ Xi} form a connected subtree of T . The width of a
tree decomposition (T, {Xi | i ∈ T}) is maxi∈I |Xi| − 1, and the treewidth of a graph G

is the maximum width over all tree decompositions of G. A path decomposition is a tree
decomposition (T = (I, F), {Xi | i ∈ T}) with T a path, and the pathwidth is the minimum
width over all path decompositions of G.

IPEC 2022

6:4 On the Complexity of Problems on Tree-Structured Graphs

2.1 Turing Machines and Classes

We assume the reader to be familiar with the basic concept of a Turing Machine. Here, we
consider TMs that have access to both a fixed input tape (where the machine can only read),
and a work tape of specified size (where the machine can both read and write). We consider
Non-deterministic Turing Machines (NTM), where the machine can choose between different
transitions, and accepts, if at least one choice of transitions leads to an accepting state, and
Alternating Turing Machines (ATM), where the machine can both make non-deterministic
steps (accepting when at least one choice leads to acceptance), and co-non-deterministic
steps (accepting when both choices lead to acceptance). We assume a co-non-deterministic
step always makes a binary choice, i.e, there are exactly two transitions that can be done.

Acceptance of an ATM A can be modelled by a rooted binary tree T , sometimes called a
run or a computation tree of the machine. Each node of T is labelled with a configuration
of A: the 4-tuple consisting of the machine state, work tape contents, location of work tape
pointer, and location of input tape pointer. Each edge of T is labelled with a transition.
The starting configuration is represented by the root of T . A node with one child makes a
non-deterministic step, and the arc is labelled with a transition that leads to acceptance; a
node with two children makes a co-non-deterministic step, with the children the configurations
after the co-non-deterministic choice. Each leaf is a configuration with an accepting state.
The time of the computation is the depth of the tree; the treesize is the total number of
nodes in this computation tree. For more information, see e.g., [24, 23]. A computation path
is a path from root to leaf in the tree.

We also consider NTMs which additionally have access to an auxiliary stack. For those,
a transition can also move the top element of the stack to the current location of the work
tape (“pop”), or put a symbol at the top of the stack (“push”). We stress that only the top
element can be accessed or modified, the machine cannot freely read other elements on the
stack.

We use the notation N[t(n, k), s(n, k)] to denote languages recognizable by a NTM
running in time t(n, k) with s(n, k) working space and A[t(n, k), s(n, k)] to denote languages
recognizable by an ATM running in treesize t(n, k) with s(n, k) working space. We note that
we are free to put the constraint that all runs have treesize at most t(n, k), since we can add
a counter that keeps track of the number of remaining steps, and reject when this runs out
(similar to what is done in the proof of Theorem 1). We write NAuxPDA[t(n, k), s(n, k)] to
denote languages recognizable by a NTM with a stack (AUXiliary Push-Down Automaton)
running in time t(n, k) with s(n, k) working space.

Ruzzo [24] showed that for any function s(n), NAuxPDA[nO(1) time,s(n) space] =
A[nO(1) treesize, s(n) space]. Allender et al. [3] provided natural complete problems when
s(n) = logk(n) for all k ≥ 1 (via a circuit model called SAC, which we will not use in our
paper). Our interest lies in the case k = 1, where it turns out the parameterized analogue is
the natural home of “tree-like” problems.

Another related work by Pilipczuk and Wrochna [23] shows that there is a tight relationship
between the complexity of 3-Coloring on graphs of treedepth, pathwidth, or treewidth
s(n) and problems that can be solved by TMs with adequate resources depending on s(n).

2.2 From classical to parameterized

In this paper we introduce the class XALP =NAuxPDA[fpoly, f log]. Following [9], we use
the name XNLP for the class N[fpoly, f log]; fpoly is shorthand notation for f(k)nO(1) for

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:5

some computable function f , and f log shorthand notation for f(k) log n.
The crucial difference between the existing classical results and our results is that we

consider parameterized complexity classes. These classes are closed under parameterized
reductions, i.e. reductions where the parameter of the reduced instance must be bounded
by the parameter of the initial instance. In our context, we have an additional technicality
due to the relationship between time and space constraints. While a logspace reduction is
also a polynomial time reduction, a reduction using f(k) log n space (XL) could use up to
nf(k) time (XP). XNLP and XALP are closed under pl-reductions where the space bound is
f(k) + O(log n) (which implies FPT time), and under ptl-reductions running in f(k)nO(1)

time and f(k) log n space.
We now give formal definitions.
A parameterized reduction from a parameterized problem Q1 ⊆ Σ∗

1 ×N to a parameterized
problem Q2 ⊆ Σ∗

2 × N is a function f : Σ∗
1 × N → Σ∗

2 × N such that the following holds.
1. For all (x, k) ∈ Σ∗

1 × N, (x, k) ∈ Q1 if and only if f((x, k)) ∈ Q2.
2. There is a computable function g such that for all (x, k) ∈ Σ∗

1 × N, if f((x, k)) = (y, k′),
then k′ ≤ g(k).

If there is an algorithm that computes f((x, k)) in space O(g(k)+log n), with g a computable
function and n = |x| the number of bits to denote x, then the reduction is a parameterized
logspace reduction or pl-reduction.

If there is an algorithm that computes f((x, k)) in time g(k)nO(1) and space O(h(k) log n),
with g, h computable functions and n = |x| the number of bits to denote x, then the reduction
is a parameterized tractable logspace reduction or ptl-reduction.

3 Equivalent characterisations of XALP

In this section, we give a number of equivalent characterisations of XALP.

▶ Theorem 1. The following parameterized complexity classes are all equal.
1. NAuxPDA[f poly, f log], the class of parameterized decision problems for which instances

of size n with parameter k can be solved by a non-deterministic Turing machine with
f(k) log n memory in f(k)nO(1) time when given a stack, for some computable function f .

2. The class of parameterized decision problems for which instances of size n with parameter k

can be solved by an alternating Turing machine with f(k) log n memory whose computation
tree is a binary tree on f(k)nO(1) nodes, for some computable function f .

3. The class of parameterized decision problems for which instances of size n with parameter k

can be solved by an alternating Turing machine with f(k) log n memory whose computation
tree is obtained from a binary tree of depth O(log n) + f(k) by subdividing each edge
f(k)nO(1) times, for some computable function f .

4. The class of parameterized decision problems for which instances of size n with parameter
k can be solved by an alternating Turing machine with f(k) log n memory, for which the
computation tree has size f(k)nO(1) and uses O(log n) + f(k) co-non-deterministic steps
per computation path, for some computable function f .

Proof. The proof is similar to the equivalence proofs for the classical analogues, and added
for convenience of the reader. We prove the theorem by proving the series of inclusions 1 ⊆
2 ⊆ 3 ⊆ 4 ⊆ 1.

IPEC 2022

6:6 On the Complexity of Problems on Tree-Structured Graphs

1 ⊆ 2. Consider a problem that can be solved by a non-deterministic Turing Machine
T with a stack and f(k) log n memory in f(k)nO(1) time. We will simulate T using an
alternating Turing machine T ′.

We place three further assumptions on T , which can be implemented by changing the
function f slightly if needed.

The Turing machine T has two counters. One keeps track of the height of the stack, and
the other keeps track of the number of computation steps. A single computation step may
involve several operations; we just need that the running time is polynomially bounded
in the number of steps.
We assume that T only halts with acceptance when the stack is empty. (Otherwise, do
not yet accept, but pop the stack using the counter that tells the height of the stack,
until the stack is empty.)
Each pop operation performed by T is a deterministic step. This can be done by adding
an extra state to T and splitting a non-deterministic step into a non-deterministic step
and a deterministic step if needed.

We define a configuration as a tuple which includes the state of T , the value of the two
pointers and the content of the memory. In particular, this does not contain the contents of
the stack and so a configuration can be stored using O(f(k) log n) bits. (Note that the value
of both pointers is bounded by f(k)nO(1).)

We will build a subroutine A(c1, c2) which works as follows.
The input c1, c2 consists of two configurations with the same stack height.
The output is whether T has an accepting run from c1 to c2 without popping the top
element from the stack in c1; the run may pop elements that have yet to get pushed.

We write Apply(c, POP(s)) for the configuration that is obtained when we perform a pop
operation in configuration c and obtain s from the stack. This is only defined if T can do a
pop operation in configuration c (e.g. it needs to contain something on the stack). We define
the configuration Apply(c, PUSH(s)) in a similar manner, where this time s gets pushed
onto the stack.

We let T ′ simulate T starting from configuration cs as follows. Our alternating Turing
machine T ′ will start with the following non-deterministic step: guess the ca configuration
that accepts at the end of the run. It then performs the subroutine A(cs, ca).

We implement A(cs, ca) as follows. A deterministic or non-deterministic step of T is
carried out as usual.

If T is in some configuration c and wants to push s to the stack, then let c′ = Apply(c,
PUSH(s)) and let T ′ perform a non-deterministic step that guesses a configuration c′

2
with the same stack height as c′ for which the next step is to pop (and the number of
remaining computation steps is plausible). Let c2 = Apply(c′

2, POP(s)). We make T ′ do a
co-non-deterministic step consisting of two branches:

T ′ performs the subroutine A(c′, c′
2).

T ′ performs the subroutine A(c′
2, ca).

We ensure that in configuration c′
2, the number of steps taken is larger than in configuration c′.

This ensures that T ′ will terminate.
Since a configuration can be stored using O(f(k) log n) and T ′ always stores at most

a bounded number of configurations, T ′ requires only O(f(k) log n) bits of memory. The
computation tree for T ′ is binary. The total number of nodes of the computation tree of T ′ is
f(k)nO(1) since each computation step of T appears at most once in the tree (informally: our
co-non-deterministic steps split up the computation path of T into two disjoint parts), and we
have added at most a constant number of steps per step of T . To see this, the computation

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:7

tree of T ′ may split a computation path c →push c′ → · · · → c′
2 →pop c2 → · · · → ca of T

into two parts: one branch will simulate c′ → · · · → c′
2 and the other branch will simulate

c2 → · · · → ca. At most a constant number of additional nodes (e.g. the node which takes
the co-non-deterministic step) are added to facilitate this. Importantly, the configurations
implicitly stored a number of remaining computation steps, and so T ′ can calculate from
c′, c′

2 how many steps T is supposed to take to move between c′ and c′
2.

2 ⊆ 3. The intuition behind this proof is to use that any n-vertex tree has a tree
decomposition of bounded treewidth of depth O(log n).

Let A be an alternating Turing machine for some parameterized problem with a
computation tree of size f(k)nO(1) and f(k) log n bits of memory.

We build an alternating Turing machine B that simulates A for which the computation
tree is a binary tree which uses O(f(k) + log n) co-non-deterministic steps per computation
branch and O(f(k) log n) memory. We can after that ensure that there are f(k)nO(1) steps
between any two co-non-deterministic steps by adding “idle” steps if needed.

We ensure that B always has advice in memory: 1 configuration for which A accepts.
In particular, if c′ is the configuration stored as advice when A is in configuration c with a
bound of n steps, then B checks if A can get from c to c′ within n steps.

We also maintain a counter for the number of remaining steps: the number of nodes
that are left in the computation tree of A, when rooted at the current configuration c not
counting the node of c itself. In particular, the counter is 0 if c is supposed to be a leaf.

We let B simulate A as follows. Firstly, if no advice is in memory, it makes a non-
deterministic step to guess a configuration as advice.

Suppose that A is in configuration c with n0 steps left. We check the following in order.
If c equals the advice, then we accept. If n0 ≤ 0, then we reject. If the next step of A is
non-deterministic or deterministic step, then we perform the same step. The interesting
things happen when A is about to perform a co-non-deterministic step starting from c with
n0 steps left. If n0 ≤ 1, then we reject: there is no space for such a step. Otherwise, we
guess n1, n2 ≥ 0 such that n1 + n2 = n0 − 2, and children c1, c2 of c in the computation tree
of A. Renumbering if needed, we may assume that the advice c′ is supposed to appear in
the subtree of c1. We also guess an advice c′

2 for c2 We create a co-non-deterministic step
with two branches, one for the computation starting from c1 with n1 steps and the other
from c2 with n2. We describe how we continue the computation starting from c1; the case in
which c2 is analogous.

Recall that some configuration c′ has been stored as advice. We want to ensure that the
advice is limited to one configuration. First, we non-deterministically guess a configuration c′′.
We non-deterministically guess whether c′′ is an ancestor of c′. We perform different
computation depending on the outcome.

Suppose that we guessed that c′′ is an ancestor of c′. We guess integers 1
3 n1 ≤ a, b ≤ 2

3 n1
with a + b = n1. We do a co-non-deterministic step: one branch starts in c1 with c′ as
advice and a steps, the other branch starts in c′ with c′′ as advice and b steps.
Suppose that c′′ is not an ancestor of c′. We guess a configuration ℓ, corresponding
to the least common ancestor of c′ and c′′ in the computation tree. We guess integers
0 ≤ a, b, a′, b′ ≤ 2

3 n1 with a + b + a′ + b′ = n1. We perform a co-non-deterministic branch
to obtain four subbranches: starting in c with ℓ as advice and a steps, ℓ with c′ as advice
and b steps, starting in ℓ with c′′ as advice and a′ steps and starting in c′′ with no advice
and b′ steps.

IPEC 2022

6:8 On the Complexity of Problems on Tree-Structured Graphs

In order to turn our computation tree into a binary tree, we may choose to split the single
co-non-deterministic step into two steps.

Since at any point, we store at most a constant number of configurations, this can be
performed using O(f(k) log n) bits in memory.

It remains to show that B performs O(log n + f(k)) co-non-deterministic steps per
computation path. The computation of B starts with a counter for the number of steps which
is at most f(k)nO(1); every time B performs a co-non-deterministic step, this counter is
multiplied by a factor of at most 2

3 . The claim now follows from the fact that log(f(k)nO(1)) =
O(log n + log f(k)).

3 ⊆ 4. Let T be an alternating Turing machine using f(k) log n memory whose computation
fits in a tree obtained from a binary tree of depth d by subdividing each edge f(k)nO(1)

times. Then T uses f(k)nO(1) time (with possibly a different constant in the O(1)-term) and
performs at most d co-non-deterministic steps per computation path. Hence this inclusion is
immediate.

4 ⊆ 1. We may simulate the alternating Turing machine using a non-deterministic Turing
machine stack as follows. Each time we wish to do a co-non-deterministic branch, we put
the current configuration c onto our stack and continue to the left-child of c. Once we have
reached an accepting state, we pop an element c of the stack and next continue to the right
child of c. The total computation time is bounded by the number of nodes in the computation
tree and the memory requirement does not increase by more than a constant factor. (Note
that in particular, our stack will never contain more than log n + f(k) elements.) ◀

Already in the classical setting, it is expected that NL ⊊ A[poly treesize, log space].
We stress the fact that this would imply XNLP ⊊ XALP, since we can always ignore the
parameter. It was indeed noted in [3, Corollary 3.13] that the assumption NL ⊊ A[poly
treesize, log space] separates the complexity of SAT instances of logarithmic pathwidth from
SAT instances of logarithmic treewidth. Allender et al. [3] formulates this result in terms of
SAC1 instead of the equivalent A[poly treesize, log space]. We expect that a parameterized
analogue of SAC can be added to the equivalent characterization above, but decided to not
pursue this here. The definition of such a circuit class requires a notion of “uniformity” that
ensures that the circuits have a “small description”, which makes it more technical.

4 XALP-completeness for a tree-chained variant of Multicolor Clique

Our first XALP-complete problem is a “tree” variant of the well-known Multicolor Clique
problem.

Tree-Chained Multicolor Clique
Input: A binary tree T = (I, F), an integer k, and for each i ∈ I, a collection of k pairwise
disjoint sets of vertices Vi,1, . . . , Vi,k, and a graph G with vertex set V =

⋃
i∈I,j∈[1,k] Vi,j .

Parameter: k.
Question: Is there a set of vertices W ⊆ V such that W contains exactly one vertex from
each Vi,j (i ∈ I, j ∈ [1, k]), and for each pair Vi,j , Vi′,j′ with i = i′ or ii′ ∈ F , j, j′ ∈ [1, k],
(i, j) ̸= (i′, j′), the vertex in W ∩ Vi,j is adjacent to the vertex in W ∩ Vi′,j′?

This problem is the XALP analogue of the XNLP-complete problem Chained
Multicolor Clique, in which the input tree T is a path instead. This change of “path-like”
computations to “tree-like” computations is typical when going from XNLP to XALP.

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:9

For the Tree-Chained Multicolor Independent Set problem, we have a similar
input and question except that we ask for the vertex in W ∩ Vi,j and the vertex in W ∩ Vi′,j′

not to be adjacent. In both cases, we may assume that edges of the graphs are only between
vertices of Vi,j and Vi′,j′ with i = i′ or ii′ ∈ F , j, j′ ∈ [1, k], (i, j) ̸= (i′, j′). We call tree-
chained multicolor clique (resp. independent set) a set of vertices satisfying the respective
previous conditions.

The problems above can be seen as binary CSPs by replacing vertex choice by assignment
choice.

Membership of these problems in XNLP seems unlikely, since it is difficult to handle the
“branching” of the tree. However, in XALP this is easy to do using the co-non-deterministic
steps and indeed the membership follows quickly.

▶ Lemma 2. Tree-chained Multicolor Clique is in XALP.

Proof. We simply traverse the tree T with an alternating Turing machine that uses a co-
non-deterministic step when it has to check two subtrees. When at i ∈ I, the machine first
guesses a vertex for each Vi,j , j ∈ [k]. It then checks that these vertices form a multicolor
clique with the vertices chosen for the parent of i. The vertices chosen for the parent can
now be forgotten and the machine moves to checking children of i. The machine works in
polynomial treesize, and uses only O(k log n) space to keep the indices of chosen vertices for
up to two nodes of T , the current position on T . ◀

We next show that Tree-Chained Multicolor Clique is XALP-hard. We will use the
characterization of XALP where the computation tree of the alternating Turing machine is a
specific tree (3), which allows us to control when co-non-deterministic steps can take place.

Let M be an alternating Turing machine with computation tree T = (I, F), let x be its
input of size n, and k be the parameter. The plan is to encode the configuration of M at
the step corresponding to node i ∈ V (T) by the choice of the vertices in Vi,1, . . . , Vi,k′ (for
some k′ = f(k)). The possible transitions of the Turing Machine are then encoded by edges
between Vi and Vi′ for ii′ ∈ F , where Vj =

⋃
ℓ∈[1,k′] Vj,ℓ.

A configuration of M contains the same elements as in the proof of Theorem 1:
the current state of M,
the position of the head on the input tape,
the working space which is f(k) log n bits long, and
the position of the head on the work tape.

We partition the working space in k′ = f(k) pieces of log n consecutive bits, and have
a set of vertices Vi,j for each. Formally, we have a vertex vq,p,b,w in Vi,j for each tuple
(q, p, b, w) where q is the state of the machine, p is the position of the head on the input tape,
b ∈ {after, before} ⊎ [log n] indicates if the block of the work tape is before or after the
head, or its position in the block, and w is the current content of the jth block of the work
tape.

The edges between vertices of Vi enforce that possible choices of vertices correspond to valid
configurations. There is an edge between v ∈ Vi,j and w ∈ Vi,j+1 with corresponding tuples
(q, p, b, w) and (q′, p′, b′, w′), if and only if q = q′, p = p′, and either b′ = b ∈ {after, before},
or b ∈ [log n] and b′ = after, or b = before and b′ ∈ [log n].

▶ Observation 3. If v1, . . . , vk′ is path with vj ∈ Vi,j , then at most one of the vj can encode
a block with the work tape head, blocks before the head have b = before, blocks after the head
have b = after, and all blocks encode the same state and position of the input tape head.

IPEC 2022

6:10 On the Complexity of Problems on Tree-Structured Graphs

The edges between vertices of Vi and Vi′ for ii′ ∈ F enforce that the configurations chosen
in Vi and Vi′ encode configurations with a transition from one to the other. There is an
edge between v ∈ Vi,j and w ∈ Vi′,j with corresponding tuples (q, p, b, w) and (q′, p′, b′, w′),
such that (b, b′) ∈ {(after, after), (before, before), (after, 1), (before, log n)} if and only
if w = w′. There is an edge between v ∈ Vi,j and w ∈ Vi′,j with corresponding tuples
(q, p, b, w) and (q′, p′, b′, w′), such that b ∈ [log n], if and only if, there is a transition of M
from state q to state q′ that would write w′[b] when reading x[p] on the input tape and w[b]
on the work tape, move the input tape head by p′ − p and the work tape by b′ − b (where
after = 0 and before = 1 + log n), and for ℓ ∈ [log n] \ {b} w[ℓ] = w′[ℓ].

▷ Claim 4. If v1, . . . , vk′ , v′
1, . . . , v′

k′ induce a 2×k′ “multicolor grid” (i.e. v1, . . . , vk′ is a path
with vj ∈ Vi,j , v′

1, . . . , v′
k′ is a path with v′

j ∈ Vi′,j , there are edges vjv′
j for j ∈ [k′], ii′ ∈ F ,

and v′
1, . . . , v′

k′ encodes a valid configuration), then v1, . . . , vk′ encodes a valid configuration
that can reach the configuration encoded by v′

1, . . . , v′
k′ using one transition of M.

Proof. This follows easily from the construction but we still detail why this is sufficient when
the work tape head moves to a different block.

We consider the case when the head moves to the block before it. That is we consider
the case where v′

j encodes b′ = log n and vj encodes b = before. First, note that there is
an edge from vjv′

j allowing this. We use Observation 3 and conclude that v′
j+1 (if it exists)

must encode head position after for its block. The edge vj+1v′
j+1 then enforces that vj+1

encodes head position 1 but it can also exist only if there is a transition of M that moves the
work tape head to the previous block and the written character at the beginning of the block
encoded by v′

j+1 corresponds to such transition. Moving to the next block is a symmetric
case. ◁

We have further constraints on the vertices placed in each Vi,j based on what i is in T .
If i is in a leaf of T , then we only have vertices with a corresponding tuple (q, p, b, w)
with q an accepting state.
If i is in a “branching” vertex of T (i.e. i has two children), then we only have vertices
with a corresponding tuple (q, p, b, w) with q a universal state.
If i is the root, then only vertices corresponding to the initial configuration are allowed.
Otherwise, we only have vertices with tuples encoding an existential state.

Furthermore, we have to make sure that when branching we take care of the two distinct
transitions. We actually assume that T has an order on children for vertices with two children.
Then for the edge of T to the first (resp. second) child, we only allow the first (resp. second)
transition from the configuration of the parent (which must have a universal state).

We now complete the graph with edges that do not enforce constraints so that we may find
a multicolor clique instead of only a 2 × k′ multicolor grid. For every i ∈ I, and j, j′ ∈ [k′]
such that |j − j′| > 1, we add all edges between Vi,j and Vi,j′ . For every ii′ ∈ F , and
j, j′ ∈ [k′] such that j ̸= j′, we add all edges between Vi,j and Vi′,j′ . It should be clear that
to find a multicolor clique for some edge ii′ after adding these edges is equivalent to finding
a “multicolor grid” before they were added1.

▷ Claim 5. The constructed graph admits a tree-chained multicolor clique, if and only if,
there is an accepting run for M with input x and computation tree T .

1 Asking for these multicolor grids for each edge of the tree instead of multicolor cliques also leads to an
XALP-complete problem but we do not use this problem for further reductions. It could however be
used as a starting point for new reductions.

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:11

Proof. The statement follows from a straight-forward induction on T showing that for each
configuration C of M that can be encoded by the construction at i ∈ I, its encoding can be
extended to a tree-chained multicolor clique of the subtree of T rooted at i, if and only if
there is an accepting run of M from C with as computation tree the subtree of T rooted
at i. ◁

Each Vi,j has O(|Q|n2 log n) vertices (for Q the set of states). Edges are only between Vi,j

and Vi′,j′ such that ii′ ∈ F or i = i′. We conclude that there are g(k)nO(1) vertices and edges
in the constructed graph per vertex of T , which is itself of size h(k)nO(1) so the constructed
instance has size g(k)h(k)nO(1), for g, h computable functions. The construction can even be
performed using only g′(k) + O(log(n)) space for some computable function g′. Note also
that k′ = f(k): the new parameter is bounded by a function of the initial parameter. This
shows that our reduction is a parameterized pl-reduction, and we conclude XALP-hardness.
Combined with Lemma 2, we proved the following result.

▶ Theorem 6. Tree-chained Multicolor Clique is XALP-complete.

One may easily modify this to the case where each color class has the same size, by adding
isolated vertices.

By taking the complement of the graph, we directly obtain the following result.

▶ Corollary 7. Tree-Chained Multicolor Independent Set is XALP-complete.

5 More XALP-complete problems

In this section, we prove a collection of problems on graphs, given with a tree-structure, to
be complete for the class XALP. The proofs are of different types: in some cases, the proofs
are new, in some cases, reformulations of existing proofs from the literature, and in some
cases, it suffices to observe that an existing transformation from the literature keeps the
width-parameter at hand bounded.

5.1 List coloring
The problems List Coloring and Pre-coloring Extension with pathwidth as parameter
are XNLP-complete [9]. A simple proof shows XALP-completeness with treewidth as
parameter. Jansen and Scheffler [21] showed that these problem are in XP, and Fellows et
al. [18] showed W [1]-hardness.

▶ Theorem 8. List Coloring and Pre-coloring Extension are XALP-complete with
treewidth as parameter.

Proof. Membership follows as usual. The color of (uncolored) vertices is non-deterministically
chosen when they are introduced. We maintain the color of vertices of the current bag in the
working space. We use co-non-deterministic steps when the tree decomposition branches. We
check that introduced edges do not contradict the coloring being proper. This uses O(k log n)
space, and runs in polynomial total time.

We first show XALP-hardness of List Coloring. We reduce from Tree-Chained
Multicolor Independent Set. Suppose we have an instance of this problem. The set of
colors equals the set of vertices V . For each class Vij , i ∈ I, j ∈ [1, k], we take a vertex vij

with set of colors Vij .
For each pair of “incident classes” Vij , Vi′j′ with i = i′ or ii′ an edge in F , ij ̸= i′j′,

and each edge vw ∈ E ∩ Vij × Vi′j′ , we add a new vertex with set of colors {v, w}, which is
incident to vij and vi′j′ . Let H be the resulting graph.

IPEC 2022

6:12 On the Complexity of Problems on Tree-Structured Graphs

Now, H has a list coloring, if and only if there is a tree-chained multicolor independent
set in G. The transformation of solutions is straightforward: the chosen colors for vij are
equal to the chosen vertices from Vij . If we choose two adjacent vertices in incident classes,
then we do not have a color available for a new vertex; if we have a tree-chained independent
set, then each new vertex has at least one available color.

H has treewidth at most 2k − 1: take a root of T , for each i ∈ I, let Xi consist of all vij

and vi′j , i′ the parent of i, j ∈ [1, k]. Now, for each new vertex, we add a bag containing this
vertex and its two neighbors, making it incident to a bag that contains its neighbors.

The standard reduction from Pre-coloring Extension to List Coloring that adds
for each forbidden color c of a vertex v a new neighbor to v precolored with c does not
increase the treewidth, which shows XALP-hardness for Pre-coloring Extension with
treewidth as parameter. ◀

5.2 Tree variants of Weighted Satisfiability
From Tree-Chained Multicolor Independent Set, we can show XALP-completeness
of tree variants of what in [9] was called Chained Weighted CNF-Satisfiability and its
variants (which in turn are analogues of Weighted CNF-Satisfiability, see e.g. [15, 16]).

Tree-Chained Weighted CNF-Satisfiability
Input: A tree T = (I, F), sets of variables (Xi)i∈I , and clauses C1, . . . , Cm, each with
either only variables of Xi for some i ∈ I, or only variables of Xi and Xj for some ij ∈ F .
Parameter: k.
Question: Is there an assignment of at most k variables in each Xi that satisfies all
clauses?

Positive Partitioned Tree-Chained Weighted CNF-Satisfiability
Input: A tree T = (I, F), sets of variables (Xi)i∈I , and clauses of positive literals
C1, . . . , Cm, each with either only variables of Xi for some i ∈ I, or only variables of Xi

and Xj for some ij ∈ F . Each Xi is partitioned into Xi,1, . . . , Xi,k.
Parameter: k.
Question: Is there an assignment of exactly one variable in each Xi,j that satisfies all
clauses?

Negative Partitioned Tree-Chained Weighted CNF-Satisfiability
Input: A tree T = (I, F), sets of variables (Xi)i∈I , and clauses of negative literals
C1, . . . , Cm, each with either only variables of Xi for some i ∈ I, or only variables of Xi

and Xj for some ij ∈ F . Each Xi is partitioned into Xi,1, . . . , Xi,k.
Parameter: k.
Question: Is there an assignment of exactly one variable in each Xi,j that satisfies all
clauses?

▶ Theorem 9. Positive Partitioned Tree-Chained Weighted CNF-Satisfiability,
Negative Partitioned Tree-Chained Weighted CNF-Satisfiability, and Tree-
Chained Weighted CNF-Satisfiability are XALP-complete.

Proof. We first show membership for Tree-Chained Weighted CNF-Satisfiability,
which implies membership for the more structured versions. We simply follow the tree shape
of our instance by branching co-non-deterministically when the tree branches. We keep the

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:13

indices of the 2k variables chosen non-deterministically for the “local” clauses in the working
space. We then check that said clauses are satisfied.

We first show hardness for Negative Partitioned Tree-Chained Weighted CNF-
Satisfiability by reducing from Tree-Chained Multicolor Independent Set. For
each vertex v, we have a Boolean variable xv. We denote by Xi,j the set of variables
{xv : v ∈ Vi,j}, and by Xi the set of variables {xv : v ∈ Vi}. This preserves the partition
properties. For each edge uv, we add the clause ¬xu ∨ ¬xv.

▶ Observation 10. U is multicolor independent set if and only if {xu : u ∈ U} is a satisfying
assignment.

To reduce to Positive Partitioned Tree-Chained Weighted CNF-Satisfiability,
we simply replace negative literals ¬xv for xv ∈ Xi,j by a disjunction of positive literals
∨y∈Xi,j\{xv}y. This works because, due to the partition constraint, a variable x ∈ Xi,j is
assigned ⊥ if and only if another variable y ∈ Xi,j \ {x} is assigned ⊤.

To reduce to Tree-Chained Weighted CNF-Satisfiability, we simply express the
partition constraints using clauses. For each Xi,j , we add the clauses ∨y∈Xi,j y, and for each
pair {x, y} ⊆ Xi,j the clause ¬x ∨ ¬y. This enforces that we pick at least one variable, and
at most one variable, for each Xi,j . ◀

5.3 Logarithmic Treewidth
Although XALP-complete problems are in XP and not in FPT, there is a link between
XALP and single exponential FPT algorithms on tree decompositions. Indeed, by considering
instances with treewidth k log n, where k is the parameter, the single exponential FPT
algorithm becomes an XP algorithm. We call this parameter logarithmic treewidth.

Independent Set parameterized by logarithmic treewidth
Input: A graph G = (V, E), with a given tree decomposition of width at most k log |V |,
and an integer W .
Parameter: k.
Question: Is there an independent set of G of size at least W?

▶ Theorem 11. Independent Set with logarithmic treewidth as parameter is XALP-
complete.

Proof. We start with membership which follows from the usual dynamic programming on
the tree decomposition. We maintain for each vertex v in the current bag whether v is in the
independent set or not. When introducing a vertex v, we non-deterministically decide if v is
put in the independent set or not. We reject if an edge is introduced between two vertices of
the independent set. We make a co-non-deterministic step whenever the tree decomposition
is branching. Since we only need one bit of information per vertex in the bag, this requires
only O(k log n) working space, as for the running time we simply do a traversal of the tree
decomposition which is only polynomial treesize.

We show hardness by reducing from Positive Partitioned Tree-Chained Weighted
CNF-Satisfiability. We can simply reuse the construction from [9] and note that the
constructed graph has bounded logarithmic treewidth instead of logarithmic pathwidth
because we reduced from the tree-chained SAT variant instead of the chained SAT variant.
We describe the gadgets for completeness. First, the SAT instance is slightly adjusted for
technical reasons. For each Xi,j , we add a clause containing exactly its initial variables. This
makes sure that the encoding of the chosen variable is valid. We assume the variables in
each Xi,j to be indexed starting from 0.

IPEC 2022

6:14 On the Complexity of Problems on Tree-Structured Graphs

Variable gadget. For each Xi,j , let ti,j = ⌈log2 |Xi,j |⌉. We add edges 0̂α1̂α, α ∈ [1, ti,j].

Clause gadget. For each clause with ℓ literals, we assume ℓ to be even by adding a dummy
literal if necessary. We add paths p0, . . . , pℓ+1, and p′

1, . . . , p′
ℓ. For i ∈ [1, ℓ], we add the edge

pip
′
i. We then add vertex vi for i ∈ [1, ℓ], which represents the ith literal of the clause. Let

b1 . . . bti′,j′ be the binary representation of the index of the corresponding variable of Xi′,j′ .
Then vi is adjacent to pi, p′

i and the vertices 1̂ − bα for α ∈ [1, ti,j]. For the dummy literal,
there is no vertex vi.

The clause gadget has an independent set of size ℓ + 2 if and only if it contains a vertex
vi. When the variable gadgets have one vertex in the independent set on each edge, a vertex
vi of a clause can be added to the independent set only if the independent set contains
exactly the vertices of the variable gadget that give the binary representation of the variable
corresponding to vi.

Hence, the SAT instance is satisfiable if and only if there is an independent set of size∑
i,j ti,j +

∑
i 2 + ℓi in our construction. ◀

▶ Corollary 12. The following problems are XALP-complete with logarithmic treewidth as
parameter: Vertex Cover, Red-Blue Dominating Set, Dominating Set.

Proof. The result for Vertex Cover follows directly from Theorem 11 and the well
known fact that a graph with n vertices has a vertex cover of size at most L, iff it has
an independent set of size at least n − L. Viewing Vertex Cover as a special case of
Red-Blue Dominating Set gives the following graph: subdivide all edges of G, and ask
if a set of K original (blue) vertices dominates all new (red) subdivision vertices; as the
subdivision step does not increase the treewidth, XALP-hardness of Red-Blue Dominating
Set with treewidth as parameter follows. To obtain XALP-hardness of Dominating Set,
add to the instance G′ of Red-Blue Dominating Set, two new vertices x0 and x1 and
edges from x1 to x0 and all blue vertices; the treewidth increases by at most one, and the
minimum size of a dominating set in the new graph is exactly one larger than the minimum
size of a red-blue dominating set in G′. Membership in XALP is shown similar as in the
proof of Theorem 11. ◀

5.4 Other problems
Several XALP-hardness proofs follow from known reductions. Membership is usually easy to
prove, by observing that the known XP-algorithms can be turned into XALP-membership
by guessing table entries, and using the stack to store the information for a left child when
processing a right subtree.

▶ Corollary 13. The following problems are XALP-complete:
1. Chosen Maximum Outdegree, Circulating Orientation, Minimum Maximum

Outdegree, Outdegree Restricted Orientation, and Undirected Flow with
Lower Bounds, with the treewidth as parameter.

2. Max Cut and Maximum Regular Induced Subgraph with cliquewidth as parameter.

Proof.
1. The reductions given in [4] and [25] can be used; one easily observes that these reductions

keep the treewidth of the constructed instance bounded by a function of the treewidth of
the original instance (often, a small additive constant is added.)

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:15

2. The reductions given in [7] can be reused with minimal changes, only the bound on linear
clique-width becomes a bound on clique-width because of the “tree-shape” of the instance
to reduce. ◀

Chosen Maximum Outdegree, Circulating Orientation, Minimum Maximum
Outdegree, Outdegree Restricted Orientation, and Undirected Flow with
Lower Bounds, together with All-or-Nothing Flow were shown to be XNLP-complete
with pathwidth as parameter in [4]. Gima et al. [20] showed that Minimum Maximum
Outdegree with vertex cover as parameter is W [1]-hard. For related results, see also [25].

In [6], it is shown that Tree-Partition-Width and Domino Treewidth are XALP-
complete, which can be seen as an analog to Bandwidth being XNLP-complete.

6 Conclusions

We expect many (but not all) problems that are (W[1]-)hard and in XP for treewidth as
parameter to be XALP-complete; our paper gives good starting points for such proofs. Let
us give an explicit example. The Pebble Game Problem [16, 22] parameterized by the
number of pebbles is complete for XP, which is equal to XAL=A[∞, f log]. The problem
corresponds to deciding whether there is a winning strategy in an adversarial two-player
game with k pebbles on a graph where the possible moves depend on the positions of all
pebbles. We can expect variants with at most f(k) + O(log n) moves to be complete for
XALP.

Completeness proofs give a relatively precise complexity classification of problems. In
particular, XALP-hardness proofs indicate that we do not expect a deterministic algorithm
to use less than XP space if it runs in XP time. Indeed the inclusion of XNLP in XALP is
believed to be strict, and already for XNLP-hard problems we have the following conjecture.

▶ Conjecture 14 (Slice-wise Polynomial Space Conjecture [23]). No XNLP-hard problem has
an algorithm that runs in nf(k) time and f(k)nc space, with f a computable function, k the
parameter, n the input size, and c a constant.

While XNLP and XALP give a relatively simple framework to classify problems in terms
of simultaneous bound on space and time, the parameter is allowed to blow up along the
reduction chain. One may want to mimic the fine grained time complexity results based
on the (Strong) Exponential Time Hypothesis. In this direction, one could assume that
Savitch’s theorem is optimal as was done in [10].

Since XNLP is above the W-hierarchy, it could be interesting to study the relationship
of XALP with some other hierarchies like the A-hierarchy and the AW-hierarchy. It is also
unclear where to place List-Coloring parameterized by tree-partition-width2. It was shown
to be in XL and W[1]-hard [5] but neither look like good candidates for completeness.

References
1 Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter tractability

and completeness IV: On completeness for W [P] and PSPACE analogues. Ann. Pure Appl.
Log., 73:235–276, 1995. doi:10.1016/0168-0072(94)00034-Z.

2 A tree-partition of a graph G is a decomposition of V (G) into bags (Bi)i∈V (T), where T is a tree, such
that uv ∈ V (G) implies that the bags of u and v are the same or adjacent in T . The width is the size
of the largest bag, and the tree-partition-width of G is found by taking the minimum width over all
tree-partitions of G.

IPEC 2022

https://doi.org/10.1016/0168-0072(94)00034-Z

6:16 On the Complexity of Problems on Tree-Structured Graphs

2 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and tseitin
tautologies. In Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS
’02, pages 593–603, USA, 2002. IEEE Computer Society.

3 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng
Tang. Width-parametrized SAT: time–space tradeoffs. Theory of Computing, 10:297–339,
2014. doi:10.4086/toc.2014.v010a012.

4 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. arXiv, abs/2202.06838, 2022. Extended abstract to
appear in Proceedings WG 2022. arXiv:2202.06838.

5 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. List colouring trees in logarithmic
space. arXiv, abs/2206.09750, 2022. arXiv:2206.09750.

6 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. On the parameterized complexity of
computing tree-partitions. arXiv, abs/2206.11832, 2022. arXiv:2206.11832.

7 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. XNLP-completeness for parameterized
problems on graphs with a linear structure. arXiv, abs/2201.13119, 2022. arXiv:2201.13119.

8 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk.
On the complexity of problems on tree-structured graphs. CoRR, 2022. doi:10.48550/arXiv.
2206.11828.

9 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
pages 193–204, 2021. doi:10.1109/FOCS52979.2021.00027.

10 Yijia Chen, Michael Elberfeld, and Moritz Müller. The parameterized space complexity of
model-checking bounded variable first-order logic. Log. Methods Comput. Sci., 15(3), 2019.
doi:10.23638/LMCS-15(3:31)2019.

11 Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, STOC 1971, pages 151–158. ACM, 1971. doi:10.1145/
800157.805047.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

14 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1&2):109–131, 1995. doi:
10.1016/0304-3975(94)00097-3.

15 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
doi:10.1007/978-1-4612-0515-9.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

17 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

18 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful problems
parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011. doi:10.1016/j.ic.2010.
11.026.

19 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. doi:
10.1007/3-540-29953-X.

https://doi.org/10.4086/toc.2014.v010a012
http://arxiv.org/abs/2202.06838
http://arxiv.org/abs/2206.09750
http://arxiv.org/abs/2206.11832
http://arxiv.org/abs/2201.13119
https://doi.org/10.48550/arXiv.2206.11828
https://doi.org/10.48550/arXiv.2206.11828
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.23638/LMCS-15(3:31)2019
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:17

20 Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi.
Exploring the gap between treedepth and vertex cover through vertex integrity. Theoretical
Computer Science, 918:60–76, 2022. doi:10.1016/j.tcs.2022.03.021.

21 Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied
Mathematics, 75(2):135–155, 1997. doi:10.1016/S0166-218X(96)00085-6.

22 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete
problems. SIAM Journal on Computing, 8(4):574–586, 1979. doi:10.1137/0208046.

23 Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Transactions on Computation Theory, 9(4):18:1–18:36, 2018.
doi:10.1145/3154856.

24 Walter L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences,
21(2):218–235, 1980. doi:10.1016/0022-0000(80)90036-7.

25 Stefan Szeider. Not so easy problems for tree decomposable graphs. In Advances in Discrete
Mathematics and Applications: Mysore, 2008, volume 13 of Ramanujan Math. Soc. Lect. Notes
Ser., pages 179–190. Ramanujan Math. Soc., Mysore, 2010. arXiv:1107.1177.

26 H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and System
Sciences, 43(2):380–404, 1991. doi:10.1016/0022-0000(91)90020-6.

IPEC 2022

https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.1016/S0166-218X(96)00085-6
https://doi.org/10.1137/0208046
https://doi.org/10.1145/3154856
https://doi.org/10.1016/0022-0000(80)90036-7
http://arxiv.org/abs/1107.1177
https://doi.org/10.1016/0022-0000(91)90020-6

	1 Introduction
	2 Definitions
	2.1 Turing Machines and Classes
	2.2 From classical to parameterized

	3 Equivalent characterisations of XALP
	4 XALP-completeness for a tree-chained variant of Multicolor Clique
	5 More XALP-complete problems
	5.1 List coloring
	5.2 Tree variants of Weighted Satisfiability
	5.3 Logarithmic Treewidth
	5.4 Other problems

	6 Conclusions

