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Abstract
An indexed list supports (efficient) access to both the offsets and the items of an arbitrarily ordered
set under the effect of insertions and deletions. Existing solutions are engaged in a space-time
trade-off. On the one hand, time efficient solutions are composed as a package of data structures: a
linked-list, a hash table and a tree-type structure to support indexing. This arrangement observes a
memory commitment that is outside the information theoretic lower bound (for ordered sets) by a
factor of 12. On the other hand, the memory lower bound can be satisfied, up to an additive lower
order term, trivially with an array. However, operations incur time costs proportional to the length
of the array.

We revisit the list indexing problem by attempting to balance the competing demands of space
and time efficiency. We prepare the first succinct indexed list that supports efficient query and
update operations. To implement an ordered set of size n, drawn from the universe {1, . . . , m}, the
solution occupies n(log m + o(log n)) bits (with high probability) and admits all operations optimally
in O(log n/ log log n) time.
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1 Introduction

List indexing is a popular problem in the data structures literature from the previous century.
The problem demands a representation of a list L that supports the following operations:

insert(L, x, y): insert element y at the index succeeding element x.
delete(L, x): delete element x from the list.
index(L, i): return the element at index i in the list.
position(L, x): return the index of element x in the list.

A list that supports these operations1 is named an indexed list. Notably, the position
query is a key inbuilt function in programming languages such as Python and Java. For
a list encoding an arbitrarily ordered set L ⊆ [m] of size n, a lower bound of (amortized)
Ω(log n/ log log n) time per operation is due to Fredman and Saks [4]. The bound is assembled
in the cell probe model. Matching upper bounds, in the word RAM model, are provided by
Dietz [3]. As is noted by Andersson [1], the solution requires item pointers be provided as
arguments to the operations. Thus, the data structure of Dietz appears in three components;
a hash-table to retrieve item pointers; the underlying linked-list; and the structure to support
(fast) indexing. This configuration requires O(n log m) bits of space with a constant factor
around 12.

1 We assume that the update sequence does not contain any repetitions. We elaborate on the implication
of including repetitions in Appendix A.
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65:2 Succinct List Indexing

A data structure, supporting a particular query (or set of queries), is succinct if it
accommodates a memory commitment “close to” the information-theoretic lower bound and
admits the prescribed query operation(s) “efficiently”. Formally, if a minimum of B bits
are required, in the information-theoretic sense, to store the data, a succinct data structure
occupies B + o(B) bits of memory. Despite the affluent and diverse state of the field of
succinct data structures [5, 9, 11, 14, 18], a succinct representation of an indexed list does
not exist and we pursue the problem of finding such a representation.

The information-theoretic lower bound for encoding an ordered set is

B(m, n) = log
(

m!
(m− n)!

)
= n(log m−O(1)) (1)

bits. A low-memory solution can be constructed by positioning the items consecutively in
an array that has log m bit cells. The per-item cost of the encoding is O(1) bits above the
information-theoretic lower bound. However, updates to the list and position queries are
slow, requiring O(n) time. This observation leads to an interesting question: can a list be
encoded at close to log m bits per item and support dynamic indexing operations efficiently?

In response to this question, we first present a simple data structure, named the Princess
List (PL), that significantly improves the update and query efficiency of the canonical linked-
list at a small space overhead. We then detail an optimized implementation of the Princess
List (named PL+) that occupies n(log m + o(log n)) bits of space, with high probability, and
admits optimal query and update times, matching the prior state-of-the-art. The structure
pays, per-item, a sublogarithmic number of bits above the information-theoretic lower bound
for ordered sets. In the appendix we demonstrate an alternate solution that achieves the
memory commitment with probability 1, but with update times close to optimal with high
probability.

The Princess List

At a high level, the PL is a divide-and-conquer approach, where the list items are partitioned,
via a hash function, into a collection of disjoint sublists. If the hash function that performs
the partition maps on to a small range [σ] = {0, 1, . . . , σ − 1}, the list can be mapped to a
random string on the alphabet [σ]. Each character c ∈ [σ] represents an order-preserved
sublist Lc on the set Sc = {x ∈ L | h(x) = c} and each occurrence of a character represents
a unique item. The PL is comprised of the random string h(L) and the sublists Lc.

An operation entails identifying, through the random string, the correct (and unique)
sublist to update or query, followed by an execution of the operation on the small sublist.
The random string maintains the inter-order between the sublists and, consequently, allows
us to relate each subproblem to the superproblem. Thus, the dynamic string negotiates the
divide-and-conquer strategy and, simultaneously, maintains the order of the full list. In other
words, the string articulates both how we branch into subproblems and how we merge the
sublists back together. With this set-up, queries are fast, comprising a constant number of
queries on the string and a linear scan on a subproblem.

The high level structure, composed of the random string and the sublists, introduces
three key challenges. First, as each item is represented by both a string character and
an item identifier in the sublist, the representation of an item in each component must
be concise. Item identifiers are expensive, requiring log m bits, and we exploit a random
permutation of the universe to partition each identifier into both its hash character and a
small unique identifier in the assigned sublist. This is a technique known as the quotient
filter [17]. Consequently, the total information needed for both the reduced small-alphabet
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string and the sublists is concise. Second, we need to maintain all the component data
structures in a compact form. To store the small alphabet string we utilize an existing
solution for succinct dynamic strings [15]. To reduce the size of the bit allocation for the
sublists, we use a linked-list representation with ω(1) items packed into each node. This
allows the per-item cost of the pointers to be sublogarithmic. Third, as we are required to
perform linear scans on the sublists, we don’t want the cardinality of any sublist to grow
too large. To mitigate the impact of a large sublist, we introduce a threshold and store
any sublist that exceeds the threshold under the non-succinct but time-optimal solution of
Dietz [3].

1.1 Contribution and outline
We present the first succinct indexed list with update time and query time performance
identical to the state-of-the-art. We first introduce a simple and novel solution to list
indexing (the PL) that lowers the traversal cost on a linked-list (§3). We then curate an
optimized instance of our simple solution (the PL+) that achieves the attributes available in
the following theorem (§4).

▶ Theorem 1. For any constant γ > 0, an ordered set of n items, drawn from the universe
[m], where m = poly(n), can be stored in n(log m+o(log n)) bits with probability 1−O(1/nγ)
and support index and position in O(log n/ log log n) time and insert and delete in
O(log n/ log log n) amortized time.

This constitutes our main result and contribution. The significance here is that our data
structure performs all operations optimal in run time – equal to the prior state-of-the-art –
while spending close to log m bits per item. As a comparison, we achieve better asymptotic
performance than balanced binary search trees for updates and access queries with additional
support for indexing on ordered sets and a succinct representation (over ordered sets) with
high probability. In addition, to obtain a succinct representation with probability one, we
demonstrate a modified construction (detailed in the appendix) that secures the following
properties.

▶ Theorem 2. For any constant γ > 0, an ordered set of n items, drawn from the universe
[m], where m = poly(n), can be stored in n(log m + o(log n)) bits and support index in
O(log n/ log log n) time, position in O(log n) time with probability 1 − O(1/nc) and any
sequence of O(n) updates (insert or delete) takes O(n log n) time with probability 1 −
O(1/nγ).

One constraint for the data structure is that the universe size is a polynomial in the
problem size. Therefore, as currently stated, our result will not hold on small problem
instances. However, as small problem sizes are less interesting, this is only a minor concern .
In these instances we can afford to store a non-optimal representation and, indeed, this is
likely preferable. The constraint is a condition of our hash family [20]. Other succinct data
structures, such as Backyard Cuckoo Hashing [2], which utilize the latter result, also inherit
this condition.

1.2 The rank-select problem
List indexing has proximity to the well known rank-select problem [6, 7]. For the latter, a
solution constitutes a succinct representation of a sequence C (where repetitions are allowed),
drawn from a universe (or alphabet) Σ, that supports the following operations.

ISAAC 2022
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C[i]: return the character at index i.
rankb(C, i): given i ∈ {0, . . . , n− 1} and b ∈ Σ return |{j ∈ {0, . . . , i} | C[j] = b}|, i.e.,
the number of occurrences of character b in the subsequence C[0 . . . i].
selectb(C, j): given j ∈ {0, . . . , n− 1} and b ∈ Σ return min{x | rankb(C, x) = j}, i.e.,
the index of the jth occurrence of b in C.

The select operation is equivalent to the position query and an access C[i] is exactly
the index query. Thus, a compressed rank-select data structure for dynamic sequences
[10, 13, 15, 16] would act as a solution to the list indexing problem. The two problems
are very close and, indeed, the rank-select problem inherits the time lower bounds of the
list indexing problem. The main difference between the two problems is the assumption
about the universe size. For the rank-select problem it is reasonable to focus on texts drawn
from a small universe of characters. However, the solutions become intractable for problems
on larger universes and, in particular, where repetitions do not occur. For example, with
m = |Σ|, a state-of-the-art solution by Navarro and Nekrich has a memory allocation with a
redundancy term of O(m log n) [15]. In the list indexing problem, where m ≥ n, this leads to
a non-succinct representation. Further, a solution by Munro and Nekrich [13] that supports
“arbitrarily large alphabets” meets a similar fate. While the memory allocation is quoted as
Hk(C) + o(n log m) bits2, it appears to require (implicitly) that m ≤ n. The issue is that
an auxiliary data structure is stored for each character in Σ. Resolving this issue is not as
simple as assigning 0 bits for non-occurring characters as this introduces the need for a search
structure. Even a state-of-the-art dynamic succinct dictionary [2] would push the memory
allocation over a succinct allowance. A succinct indexed list remedies this restriction on the
universe size and is an open problem that we address here.

To help distinguish our problem from this influential strain of prior work, it is best to
think of an indexed list as a dictionary. In this context, it would make little sense to use a
compressed sequence as a solution to the problem. Before we progress with the exposition, we
introduce some background around strings, the hashing scheme we engage and the existing
solutions to list indexing

2 Background

We proceed in the (unit cost) word RAM model of computation, with word size w = Θ(log m).
Consequently, items from the universe can be stored in O(1) machine words and bitwise
operations on words can be performed in constant time. We use the superscript notation
indexM , positionM , insertM , deleteM to refer (unambiguously) to query and update
algorithms on a list under the representation of the data structure M . We drop the superscript
M and the argument L when both are obvious from the context.

2.1 Strings

In addition to the rank and select queries, a dynamic string supports the following update
operations:

insertSt(C, b, i): insert character b ∈ Σ at index i in string C.
deleteSt(C, i): delete character at index i in string C.

2 Hk(S) is the kth order empirical entropy of the string S. This term is somewhat redundant in our
setting; as repetitions are not allowed, the empirical entropy is high.
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The fundamental dynamic string implementation is the wavelet tree. It emerged in the
context of text compression [8], as a tool for compressing suffix arrays, and has since seen
application in a diverse range of problems. The power of the wavelet tree rests in its capacity
to support both the compression of strings and fast query and update operations. The
state-of-the-art wavelet tree is advanced by Navarro and Nekrich and acknowledges the
following properties.

▶ Lemma 3 ([15]). For φ ∈ (0, 1), a dynamic string of length n on an alphabet of
size σ can be stored in n log σ + O(n log σ/ log1−φ n) + O(σ log n) bits and support the
queries rank and select in O(φ−2 log n/ log log n) time and insertSt and deleteSt in
O(φ−2 log n/ log log n) amortized time.

2.2 k-wise independent hashing
The division of the list into disjoint sublists is coordinated by a random source. Our compact
representation utilizes existing hash families with limited independence, small description
and constant time evaluation.

A family of functions is k-wise independent if, for a function f [m]→ [r] selected uniformly
at random from the family, the image of any k-tuple, (f(x1), . . . , f(xk)), is uniformly
distributed in [r]k. There exists no family of k-wise independent hash functions that meets
our requirements – that is, small description and constant time evaluation. However, the
construction of Siegel [20] is a good approximation and is sufficient for our purposes.

▶ Theorem 4 ([20]). Let S ⊆ U = [m] be a set of n = kO(1) elements. For any constants
ε, c > 0 there is a RAM algorithm constructing a random family H of functions in o(n) time
(provided m = poly(n)) and o(k) words of space, such that:

with probability 1−O(1/nc), H is k-wise independent;
there is a RAM data structure of O(k1+ε) words representing its functions such that a
function can be evaluated in constant time. The data structure can be initialized to a
random function in O(k1+ε) time.

Significantly, the tail probabilities of k-wise independent random variables can be bound
with a Chernoff-like result. The result we employ comes from Schmidt et. al [19].

▶ Theorem 5 ([19] Theorem 5.III.b). If X is the sum of k-wise independent random variables,
each confined to the interval [0, 1], with µ = E[X] and k = ⌊δµe−1/3⌋, then Pr[|X − µ| ≥
δµ] ≤ e−δµ/3.

Negatively related random variables
Furthermore, in our analysis, we encounter instances of sums of indicator random variables
that are not k-wise independent, but do hold the property of being negatively related.
Happily, Jansen established that Chernoff bounds apply to sums of negatively related random
variables [12] and we utilize this result in our analysis.

2.3 Prior work
The literature on list indexing assumes that item pointers are readily available (doubtless
through a hash table) as arguments to the operations. A non-optimal or naive solution entails
a straightforward application of a balanced (or height-bounded) binary tree. List items are
stored, in order from left to right, in the leaves of the tree and internal nodes store a count
of the number of leaves (or, the size of the sublist) in the subtree rooted at the internal node.
An index(i) query begins at the root and, following the logic of the counts stored at internal
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nodes, can branch into the sublist containing the correct index. Conversely, position(x)
begins at a leaf and accumulates a global index on a leaf-to-root path; the count of any left
sibling at an internal node gets aggregated to the current index. Updates require recourse to
a balancing criteria and may entail some restructuring. All operations take O(log n) time
(worst-case or amortized depending on the choice of tree) and the tree requires O(n log m)
bits to store.

This idea was extended by Dietz with what are now fairly standard techniques [3]. The
binary tree is replaced with a weight balanced B-tree with branching factor Θ(logφ m), for
φ ∈ (0, 1). As before, internal nodes count the number of leaves in the subtree they root. On
a leaf-to-root path, a position query accumulates the counts, at each internal node, of all
left siblings. To remove dependence on the branching factor, the sum of the counts of left
siblings is evaluated on a partial sums data structure. The latter stores an array of integers
A[1 . . . b] and admits the following procedures.

add(i, δ): perform A[i]← A[i] + δ, where δ = logO(1) m.
sum(j): return

∑
i≤j A[i].

On problem size b = O(logφ m), both operations can be performed in O(1) amortized time.
Thus, the cost of a position query is bound by the height (O(loglogφ m n)) of the tree.
Efficient navigation for index(i) queries is provided by the additional operation:

select_ps(i): return the smallest j such that sum(j) ≥ i.
Although the partial sums structure of Dietz does not explicitly solve the abstraction of
select queries of prefix sums3, a constant time solution, on small problem sizes, is provided
by Raman et al. [18]. Thus, the cost of both query operations is bound by the height of the
tree and is thereby optimal at O(log n/ log log n). Due to rebuilding requirements on both
the partial sums structure and the weight balanced B-tree, update costs are amortized. The
solution requires O(n log m) bits.

▶ Lemma 6 ([3]). The list indexing problem can be solved by a data structure, occupying
O(n log m) bits, that supports index and position in O(log n/ log log n) time and insert
and delete in O(log n/ log log n) amortized time.

Andersson and Petersson define an approximate version of the problem [1]. The position
query is permitted to err with a user defined relative error and the index query can retrieve
any item from a neighborhood, of size proportional to the relative error, surrounding the
correct index. The added flexibility allows the authors to remove the dependence on the
problem size from the update and query costs. For relative error parameter ε ∈ (0, 1), queries
can be evaluated in constant worst-case time and updates in amortized O(ε−2).

3 The Princess List: a simple solution to list indexing

The linked-list, obliged to traverse all preceding nodes in the ordered set, performs the
operation index(i) in O(i) time. To reduce this expense, the PL employs a divide-and-
conquer strategy that partitions the list into a collection of disjoint sublists. A search
proceeds on a single sublist and thereby reduces the expense of the linear scan. To allocate
items to sublists, we map the list, via a hash function h, onto a small alphabet Σ = [σ] and
represent the mapped list

h(L) ∼= ⟨h(L[0]), . . . , h(L[|L| − 1])⟩

3 They augment the weight balanced B-tree with additional pointers that implicitly implement the
functionality.
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Figure 1 The Princess List. The list L of items from U ∼= {1, . . . , 16} is hashed, via the function
h : U → {0, . . . , 3}, into the string h(L). Items mapping to character c are stored in the (linear)
sublist Lc. To evaluate index(9): identify h(L)[9] = 2; calculate rank2(h(L), 9) = 2; and perform
index(L2, 2) = 14 with a linear scan.

with a dynamic string. Under this regime, multiple items may map to the same character
and we store such a set of items under a (order-preserved) list representation. The random
string h(L) organises the branching into subproblems and, simultaneously, preserves the
order of the full list. The range of the hash function permits control over the size of the
sublists. An image of the PL arrangement, which outlines, at a high level, the division of the
problem into subproblems and the support of the string h(L) towards managing the relation
between subproblems, is available in Figure 1.

Fixing notation, let M denote the list data structure used to implement the sublists LΣ
and PLM (L, σ) name the subsequent Princess List representation. To evaluate index(i),
the program begins by identifying the relevant sublist through the operation c = h(L)[i].
Therefore, the item at location i in L belongs to sublist Lc. Subsequently, the global location
i needs to be translated to a local location on the sublist. This is achieved by a rank
query; i′ = rankc(h(L), i) − 1 denotes the position of L[i] in the sublist Lc. The query
is completed by the operation indexM (Lc, i′), which, under a linked-list representation,
stipulates a linear scan and requires O(i′) time. Conversely, to evaluate position(x), the
program starts at the sublist Lh(x). The value j = positionM (Lh(x), x) + 1 provides the
rank of the character occurrence h(x) that corresponds to the item x. The query is completed
by determining the global index of the jth occurrence of h(x) in h(L) through the query
position(x) = selecth(x)(h(L), j). Pseudo-code for the query operations is available in
Figure 2.

The update insert(x, y) begins by identifying the index of insertion in both the string
i = positionPL(L, x) and the relevant subproblem i′ = rankh(y)(h(L), i). Character h(y)
is then inserted at index i + 1 in the dynamic string and item y is placed after item
positionM (Lh(y), i′) in sublist Lh(y). The delete(x) operation proceeds in a similar fashion;
it locates the index of the placeholder of x in h(L) and identifies the relevant subproblem
c = h(x). The character at this index is then removed from h(L) and x is removed from Lc.
Pseudo-code for the update operations is available in Figure 3.

The efficiencies of the operations depend on the efficiency of the dynamic string h(L) and
the size of the sublists. By Lemma 3, all string queries can be supported in O(log n/ log log n)
time and string updates in O(log n/ log log n) amortized time. Each sublist has expected size
n/σ. The amount by which sublist sizes deviate from their expectation depends on both σ

and the randomness of the underlying hashing scheme.
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Procedure indexPL(i)
c← h(L)[i]
i′ ← rankc(h(L), i)− 1
return indexM (Lc, i′)

Procedure positionPL(x)
c← h(x)
j ← positionM (Lc, x) + 1
return selectc(h(L), j)

Figure 2 Query operations for the PLM (L, σ) representation of the list L. The data structure M

is used to implement the sublists.

Procedure deletePL(x)
i← positionPL(x)
c← h(x)
deleteM (Lc, x)
deleteSt(h(L), i)
return

Procedure insertPL(x, y)
i← positionPL(x)
c← h(y)
i′ ← rankc(h(L), i)
z ← positionM (Lc, i′)
insertM (Lc, z, y)
insertSt(h(L), c, i + 1)
return

Figure 3 Update operations for the PLM (L, σ) representation of the list L.

3.1 Towards a compact representation

In itself, the PL does not articulate a succinct form. Thus, before moving to the main result,
we need to construct the bridge between the general form and an optimal encoding. This
is achieved in three parts. First, we need to paramteterize the PL by choosing an alphabet
size. The verdict on the parameter choice is provided by the Ω(log n/ log log n) time lower
bound for the operations of an indexed list [4]. We require linear scans when operating on
sublists. Thus, it is desirable that subproblems have size O(log n/ log log n). As sublists have
expected cardinality n/σ, the latter implies an alphabet size of

σ = Ω
(

n · log log n

log n

)
. (2)

Second, when following a standard linked-list implementation, the memory allocation of the
subproblems trespasses over n(log m+o(log n)) bits. Therefore, an alternate list representation
is required at the sublists. Multiple directions are available and we opt for packing a super-
constant number of items in the nodes of a linked-list to reduce the per-item cost of the
pointers. Third, in light of the space allocated to the dynamic string – which is ω(1) bits
per character by equation (2) – we cannot afford to store the full key of each item. The
key length can be reduced with a technique, standard in succinct dictionaries [17], named
the quotient filter. A random permutation π : [m] → [m] is employed. For item x, the
leftmost log σ bits of π(x) specify the subproblem to which x is a member and the rightmost
(log m− log σ) bits of π(x) are stored in the list. In this manner, the representation of the
item is split between a character in the dynamic string and an identifier in the allocated
sublist. Permutations are necessary to avoid collisions in the sublists. The remainder of the
paper illustrates the details of the bridge outlined above. We refer to this construction, an
optimal instance of the PL, as PL+.
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xl xr

πl(x) πr(x)

h⊕

Figure 4 One-round Feistal permutation [2].

4 PL+: state-of-the-art wavelet trees and packed linked-lists

Items are allocated to sublists with Siegel’s hash family [20]. Therefore, by Theorem 4, with
probability 1 − O(1/nγ), item allocations are k-wise independent, for kO(1) = n and any
constant γ > 0. Further, the hash function is evaluated in constant time and is stored in
o(n) bits. For our construction, we require that log n = Θ(log m) = Θ(w). In other words, it
is assumed that the universe size is a polynomial in the problem size.

Our structure, PL+, is an instantiation of the PLPackUnpack(L, Θ(n log log n/ log n)) form,
where PackUnpack refers to a type of linked-list that we detail below. To implement the
dynamic string, PL+ appoints the wavelet tree of Navarro and Nekrich [15]. As the ideal
alphabet size changes with n, the structure is periodically rebuilt to conform with the
configuration of asymptotic constaints of the alphabet. We set σ to a power-of-two (for
efficiency) such that

σ ∈
[

1
2n · log log n

log n
, 2n · log log n

log n

]
(3)

Therefore, a rebuild happens, in the worst-case, every Ω(n) updates. A simple rebuild
can be performed by constructing a new string under the updated alphabet. This takes
O(n log n/ log log n) time by Lemma 3. In addition, selecting a new hash function from the
constructed hash family takes o(n) time. Periodically, but not with every rebuild, we will also
have to reconstruct the hash family. The latter occurrence takes o(n) time. Thus, rebuilding
contributes O(log n/ log log n) amortized time to each update.

4.1 A random permutation
Without loss of generality, and for ease of demonstration, we assume that m is a power-of-two.
The permutation is generated from a collection of one-round Feistal permutations. We use
them in a manner similar to Arbitman et al. [2], where existing hash functions, and the
properties they inhabit, are recruited to generate the randomness. Let Hσ be a class of
h : [m/σ]→ [σ] functions. Let xl denote the leftmost log σ bits of a key x and xr denote the
rightmost log(m/σ) bits. A permutation πh : [m]→ [m] is defined for each instance h ∈ Hσ:

πh(x) = (πl(x), πr(x)) = (xl ⊕ h(xr), xr).

This is a permutation as every pair of keys x and y, where xr = yr, receive the same hash
value, but map to a different bucket under the ⊕ operation. An image of the permutation is
provided in Figure 4. With the permutation π, an item x is allocated to a subproblem with
the random character c = xl ⊕ h(xr) and is stored under the representation xr in Lc. In this
manner, items are allocated to subproblems according to the randomness prescribed by our
hashing scheme.

ISAAC 2022
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4.2 The sublists
From Lemma 3 (with the parameter φ set to some constant), the dynamic string h(L)
occupies

n log σ + o(n log n) +O(σ log n) = n(log σ + o(log n)) (4)

bits. Thus, for a list implementation that is asymptotically close to n log m bits, the remaining
budget available to the sublists is n(log m− log σ + o(log n)). As stated above, an item is
stored in sublist Lπl(x) with the (log m− log σ) (permuted) bits of πr(x). This representation
is in line with the budget stated above. It remains to demonstrate how the collection of
sublists can be stored efficiently, with low redundancy.

A sublist is stored in a packed linked-list. A node in the linked-list contains at most
log log n items stored in a packed array. If the keys are represented in K bits, the contents
of each node occupy K · log log n bits. Only the last node in the list is permitted to have less
than log log n items. Consequently, the nodes are packed as tight as possible. Updates and
queries can be performed on linear traversals. Note that the update operations require the
shifting of items prior to insertion and after deletion.

As we perform linear scans (in the tradition of the linked-list), the runtime of operations
depends on the cardinality of the sublists. Thus, for optimality, sublist cardinalities can-
not exceed O(log n/ log log n). Unfortunately, in all likelihood, some sublists will contain
ω(log n/ log log n) items. To mitigate this outcome, we track the cardinalities of each sublist
and, for a large enough constant C > 0, if a sublist cardinality exceeds C log n/ log log n,
we implement the sublist with an uncompressed solution. The latter could be the time
optimal solution put forth by Dietz [3] (see Lemma 6). With this set-up all operations require
O(log n/ log log n) time to complete. We refer to this list data structure, which resorts to an
uncompressed solution when its cardinality exceeds a specified threshold C · log n/ log log n,
as a pack-unpack list with threshold parameter C (PackUnpack(C)).

4.3 Memory allocation for sublists
The proofs for the remainder of this section are located in Appendix B.2. The key with PL+
is to ensure that the number of items that belong to uncompressed sublists does not grow too
large. To provide an upper bound on the latter, we compute both the maximum cardinality
of the sublists and bound the number of sublists with cardinalities that exceed our threshold.
We begin with the former. The upcoming pair of lemmas rely on the properties of k-wise
independence. Recall that the construction of the hash family fails with probability O(1/nγ),
for any constant γ > 0, and the analysis of the probabilities must account for this occurrence.
We use the notation ξγ = O(1/nγ) to refer to this error term incurred by our choice of hash
family.

▶ Lemma 7. For γ > 0,

max
c∈[σ]

|Lc| ≤ C1 log n (5)

with probability at least 1− e−O(C1) log n − ξγ .

The proof is a standard rehearsal of bounding the maximum load in a balls-in-bins problem
with a Chernoff bound. We now bound the number of sublists that exceed the threshold.
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▶ Lemma 8. For C1 = O(log n), C set to a sufficiently large constant and any γ > 0,

|{c | |Lc| ≥ C · log n/ log log n}| ≤ n

C1 log n · log log n
(6)

with probability at least 1− e−n/(O(C1) log n log log n) − ξγ .

Let QC be the set of items that belong to unpacked lists when using threshold parameter
C. The cardinality |QC | is less than the product of the max load and the number of sublist
cardinalities that exceed the threshold. Therefore, with the combination of Lemmas 7 and 8,
and an appropriate choice of C1, we arrive at the following result.

▶ Lemma 9. For a sufficiently large constant C and γ > 0, |QC | ≤ n/ log log n with
probability at least 1− ξγ .

Each item in an unpacked list requires O(log n) bits to store. Therefore, this result
implies that, with high probability, items belonging to unpacked lists occupy a total of
O(n log n/ log log n) bits. This allocation is dominated by the space occupied by the packed
lists and leads to the following result.

▶ Lemma 10. For any γ > 0, if each item occupies K bits, the memory allocation of the
sublists, with sufficiently large threshold parameter C, aggregates to n(K + o(log n)) + o(n)K
bits with probability at least 1−O(1/nγ).

5 Space and time efficiency of PL+

The memory allocation for PL+ is determined by the implementations of the string h(L) and
the sublists {Lc}. Therefore, with the combination of Lemma 3 and Lemma 10, we arrive at
a bound on the memory allocation of PL+.

▶ Lemma 11. For any γ > 0, for m = poly(n), to store a list of n items, PL+ occupies
n(log m + o(log n)) bits of space with probability at least 1−O(1/nγ).

As the alphabet size is a function of the number of items, PL+ needs to be rebuilt
periodically. By relation (3), this occurs every Ω(n) updates. The change in alphabet also
affects the permutation and we periodically require a different initialization of the hash family
to support the scheme. As discussed above, the string can be rebuilt in O(n log n/ log log n)
time. For a crude bound – which assumes that all items are uncompressed – the sublists
can be rebuilt in O(n log n/ log log n) time. Therefore, the overall cost of the rebuild is
O(log n/ log log n) amortized time per update.

▶ Lemma 12. On a list of n items, PL+ performs index and position in O(log n/ log log n)
time and updates (insert or delete) complete in O(log n/ log log n) amortized time.

Combined, Lemmas 11 and 12 curate our main result, which we restate below.

▶ Theorem 1. For any constant γ > 0, an ordered set of n items, drawn from the universe
[m], where m = poly(n), can be stored in n(log m+o(log n)) bits with probability 1−O(1/nγ)
and support index and position in O(log n/ log log n) time and insert and delete in
O(log n/ log log n) amortized time.

ISAAC 2022
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The error term in Theorem 1 is dominated by the likelihood that the hash family fails.
On the condition that the construction of the random hash family is successful, the desired
bit allocation holds with probability 1 − (1/n)ω(1). The fail rate applies to each update.
Therefore our result holds, with high probability, on any sequence of operations that is
polynomial in length. Notably, the structure incurs, per-item, a sublogarithmic number of
bits above the information theoretic bound and, taken with the efficient query and update
operations, constitutes a succinct representation: by equation (1),

n(log m + o(log n)) = B(m, n) +O(n) + n · o(log n)
= (1 + o(1))B(m, n).

The significance of the result is that the runtime of all operations is optimal, matching the
previous best, and we reduce the memory commitment to a succinct representation with
high probability.

To remove the probabilistic expression surrounding the memory allocation, we can just
commit to using packed linked-lists for all sublists irrespective of their cardinalities. The
outcome of this set-up is described in Theorem 2 and we provide the necessary detail and
analysis in Appendix C.

6 Conclusion

The PL is an uncomplicated approach to list indexing. The algorithms are simple and offer
immediate improvements over solutions that employ linear traversals. The data structure
admits an instance that is close to optimal in space with respect to ordered sets. This is
the first succinct indexed list with optimal time query and update operations. There are
two directions for further work. In all prior work, update operations are amortized. Thus,
even in the non-succinct case, designing worst-case update operations is an open problem.
Further, achieving a non-probabilistic memory allocation with optimal time operations would
conclude this line of work.

References
1 Arne Andersson and Ola Petersson. Approximate indexed lists. Journal of Algorithms,

29(2):256–276, 1998.
2 Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case

operations with a succinct representation. In FOCS, pages 787–796. IEEE, 2010.
3 Paul F Dietz. Optimal algorithms for list indexing and subset rank. In Workshop on Algorithms

and Data Structures, pages 39–46. Springer, 1989.
4 Michael Fredman and Michael Saks. The cell probe complexity of dynamic data structures. In

STOC, pages 345–354, 1989.
5 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug

and play with succinct data structures. In SEA, pages 326–337. Springer, 2014.
6 Alexander Golynski, J Ian Munro, and S Srinivasa Rao. Rank/select operations on large

alphabets: a tool for text indexing. In SODA, volume 6, pages 368–373, 2006.
7 Rodrigo González and Gonzalo Navarro. Rank/select on dynamic compressed sequences and

applications. Theoretical Computer Science, 410(43):4414–4422, 2009.
8 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text

indexes. In SODA, pages 841–850. Society for Industrial and Applied Mathematics, 2003.
9 Torben Hagerup. Highly succinct dynamic data structures. In International Symposium on

Fundamentals of Computation Theory, pages 29–45. Springer, 2019.



W. L. Holland 65:13

10 Meng He and J Ian Munro. Succinct representations of dynamic strings. In International
Symposium on String Processing and Information Retrieval, pages 334–346. Springer, 2010.

11 William L Holland, Anthony Wirth, and Justin Zobel. Recency queries with succinct repres-
entation. In 31st International Symposium on Algorithms and Computation (ISAAC 2020),
2020.

12 Svante Janson. Large deviation inequalities for sums of indicator variables. arXiv preprint,
2016. arXiv:1609.00533.

13 J Ian Munro and Yakov Nekrich. Compressed data structures for dynamic sequences. In
Algorithms-ESA 2015, pages 891–902. Springer, 2015.

14 J Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In 29th International
Symposium on Algorithms and Computation (ISAAC 2018), 2018.

15 Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations. In SODA,
pages 865–876. SIAM, 2013.

16 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Transactions on Algorithms (TALG), 10(3):1–39, 2014.

17 Rasmus Pagh. Low redundancy in static dictionaries with o (1) worst case lookup time. In
ICALP, pages 595–604. Springer, 1999.

18 Rajeev Raman, Venkatesh Raman, and S Srinivasa Rao. Succinct dynamic data structures.
In WADS, pages 426–437. Springer, 2001.

19 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

20 Alan Siegel. On universal classes of extremely random constant-time hash functions. SIAM
Journal on Computing, 33(3):505–543, 2004.

A Allowing for Repetitions

If we allow for repetitions, there are some precedents (from Python or Java) on how to
modify the behavior of the operations. For example, the position function could return
the lowest index of an item occurrence. The question is; how does this affect the theoretical
performance?

Repetitions reduce the entropy of the list and the size of the lower bound. Certainly there
are mechanisms that can leverage the reduction in entropy in the sublists (i.e. we can apply
compression techniques). However, there is a point (in terms of the number of repetitions)
at which this becomes a dynamic sequences problem and we would shift towards using the
dynamic string of Munro and Nekrich [13].

The key difference between our version of the problem and that of the original propblem
proposed by Dietz [3], is that the updates and the position query take pointers (or “records”)
as inputs. It would make less sense to have repeated records in the list if we access them via
pointers. Thus it is sensible to think of these records – each associated with a key in the
list – as distinct from each other. Given that the index query returns a key but not a record,
we think, even under the Dietz version of the problem, it is natural to think of the keys as
distinct.

Further, we think our formalization of indexing an ordered set is what makes this an
interesting problem.
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B Relegated Proofs

B.1 Memory Allocation for Sublists
▶ Lemma 7. For γ > 0,

max
c∈[σ]

|Lc| ≤ C1 log n (5)

with probability at least 1− e−O(C1) log n − ξγ .

Proof. Fix a sublist c. Let Xi be an indicator for the event that the ith item added to L is
placed in sublist c. It holds that E[Xi] = 1/σ. The cardinality X =

∑n
i=1 Xi of sublist c

is the sum of k-wise independent random variables (for k = nα, α ∈ (0, 1)). Therefore, by
Theorem 5, with µ = E[X] ∈ [log n/(2 log log n), 2 log n/ log log n] by Equation (3),

Pr[X ≥ C1 log n] ≤ Pr[X ≥ C1 log log n/2 · µ]
≤ Pr[|X − µ| ≥ (C1 log log n/2− 1) · µ]

≤ e−O(C1)·log n,

by our choice of k and Theorem 4. The third line holds on the condition that C1 ≥ 3 log log n.
A union bound absorbs the probability that the construction of the hash family fails and we
arrive at the stated result. ◀

▶ Lemma 8. For C1 = O(log n), C set to a sufficiently large constant and any γ > 0,

|{c | |Lc| ≥ C · log n/ log log n}| ≤ n

C1 log n · log log n
(6)

with probability at least 1− e−n/(O(C1) log n log log n) − ξγ .

Before we proceed with the proof, we need an additional result. Let Xi,c indicate that item
i is allocated to sublist c and Xc =

∑n
i=1 Xi,c denote the sublist cardinalities for c ∈ [σ].

Further, we define

Yc =
{

1 if Xc > C · log n/ log log n

0 otherwise

to indicate the event that sublist c exceeds the threshold. The task is to bound the sum∑σ
c=1 Yc. However, the random variables {Yc} are not independent. Fortunately, the {Yc}

are negatively related and a Chernoff bound can be applied to acquire a concentration result
on the sum of the indicators [12]. Negatively related random variables are defined as follows.

▶ Definition 13 ([12]). The indicator random variables {Yi}i∈[σ] (defined on some probability
space) are negatively related if for each j ≤ σ there exists further random variables {Ji,j}i∈[σ]
defined on the same probability space such that:

the definition of the random vector {Ji,j}i∈[σ] equals the conditional distribution of
{Yi}i∈[σ] given Yj = 1;
Ji,j ≤ Yi,∀i ̸= j.

▶ Lemma 14. The random variables {Yc}c∈[σ] are negatively related.
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Proof. We can imagine this as an experiment where n balls are thrown into σ bins where
the bin locations for the balls are nα-wise independent for α ∈ (0, 1). Let Xc denote the load
of bin c and let L = C · log n/ log log n. The indicator Yc is 1 if Xc > L. To demonstrate
that the indicators {Yc} are negatively related we construct the distributions {Jc,j}c∈[σ] for
j ∈ [σ] that satisfy the two properties of Definition 13. Fix a j ∈ [σ]. The random variables
{Jc,j} take the following form. First throw the n balls into σ bins as above. If Xj > L,
then set Jc,j = Yc for all c ∈ [σ]. Otherwise, pick ⌊(L−Xj + 1)⌋ balls uniformly at random
from bins in [σ] \ {j} and place them in bin j. Let X∗

c denote the modified bin loads. Now,
Jc,j = 1 if X∗

c > L. As the bin loads X∗
c are conditioned on Xj > L, the indicators have the

correct distribution. Further, Jc,j ≤ Yc as we only remove items from bins. Thus, the {Yc}
are negatively related. ◀

Now that we can apply a Chernoff bound, we can complete the proof of Lemma 8.

Proof of Lemma 8. As X is the sum of k-wise independent random variables, by Theorem
5, our choice of k and the observation that µ = E[X] ≤ 2 log n/ log log n, the following holds:

Pr[Yc = 1] = Pr[Xc > C · log n/ log log n]
≤ Pr[|Xc − µ| > (C/2− 1) · µ]

≤ e−O(C)µ.

Let Y =
∑σ

c=1 Yc denote the number of sublists that exceed the cardinality threshold.

E[Y ] ≤ e−O(C)µ · σ ≤ e−O(C) log n/ log log n · n log log n

log n
≤ n

(log n)O(C) . (7)

The indicators {Yc} are not independent. However, by Lemma 14, they are negatively
related and we are permitted to apply a Chernoff bound on their sum. Therefore, for
δ = n/(C1 · 2E[Y ] log n log log n),

Pr[Y > n/(C1 · log n log log n)] ≤ Pr
[
|Y − E[Y ]| > δE[Y ]

]
≤ e−n/(O(C1) log n log log n)

on the condition that δ ≥ 1. The latter occurs if

1 ≤ δ = n

C1 · 2E[Y ] log n log log n
≤ (log n)O(C)

2C1 log log n

The second inequality comes from Equation (7) and holds for C1 = O(log n) and sufficiently
large C. Adding the error rate of the hash family, via the union bound, completes the proof.

◀

▶ Lemma 9. For a sufficiently large constant C and γ > 0, |QC | ≤ n/ log log n with
probability at least 1− ξγ .

Proof. By design, |QC | ≤ n/ log log n if inequalities (5) & (6) both hold. By Lemmas 7 and
8, with C1 = Θ(log n), in conjunction with a union bound, both the inequalities hold with
probability 1− (1/n)ω(1) − ξγ . This completes the proof. ◀

▶ Lemma 10. For any γ > 0, if each item occupies K bits, the memory allocation of the
sublists, with sufficiently large threshold parameter C, aggregates to n(K + o(log n)) + o(n)K
bits with probability at least 1−O(1/nγ).

ISAAC 2022
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Proof. The structure is comprised of at most σ packed linked-lists. These linked-lists contain
at most n/log log n + σ nodes. Each node contains log log n items of K bits and two O(log n)
bit pointers. This accumulates to a bit commitment of size(

n

log log n
+ σ

)
(K · log log n +O(log n))

= nK + n · o(log n) + σK · log log n + σO(log n)

= n(K + o(log n)) + KΘ
(

n log2 log n

log n

)
+ Θ(n log log n)

= n(K + o(log n)) + o(n)K. (8)

By Lemma 9, the structure contains at most n/ log log n uncompressed items with probability
1 − ξγ = 1 − O(1/nγ). Each uncompressed item occupies O(log n) bits. Thus, combined,
uncompressed items occupy

n/ log log n · O(log n) = n · o(log n)

bits. This allocation is absorbed by the allocation for compressed items (Equation (8)). ◀

B.2 Performance for PL+
▶ Lemma 11. For any γ > 0, for m = poly(n), to store a list of n items, PL+ occupies
n(log m + o(log n)) bits of space with probability at least 1−O(1/nγ).

Proof. For the permutation π : [m]→ [m], the leftmost log σ bits specify the subproblem
and the rightmost ⌈log m⌉ − log σ bits are stored in the sublist. Thus, the space occupied by
the sublists is determined by Lemma 10 with key size K = ⌈log m⌉ − log σ. By equation (4),
the cost of the dynamic string is n(log σ + o(log n)) bits. Aggregated with the sublists, we
get a memory commitment (measured in bits) of

n(log σ + o(log n)) + nK + n · o(log n) + o(n)K
= n(log σ + o(log n)) + n log(m/σ) + o(n) log(m/σ)
= n(log m + o(log n)) + o(n)
= n(log m + o(log n)),

as required. The forth term in line 2 is o(n) on the stated condition m = poly(n). The
failure probability is inherited from Lemma 10. ◀

▶ Lemma 12. On a list of n items, PL+ performs index and position in O(log n/ log log n)
time and updates (insert or delete) complete in O(log n/ log log n) amortized time.

Proof. By Lemma 3, taking parameter φ as constant, all queries to the random string take
O(log n/ log log n) time and update operations require O(log n/ log log n) amortized time.
By Lemma 6, all operations on the uncompressed implementation for PackUnpack take
O(log n/ log log n) time. The query indexPL+(i) demands two operations on the random
string and an indexPackUnpack query on a sublist. The local indexPackUnpack(Lc, i′) requires
either a linear scan of length O(log n/ log log n) or an index operation on a fast uncompressed
solution. The positionPL+ query requires one constant time hash evaluation, a select
query and positionPackUnpack query on the subproblem. Similar to the case of the index
query, all subroutines take O(log n/ log log n) time and the claim for position holds.
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An update is obtained by a combination of an update to the dynamic string and an
update to the subproblems. The former operation has an amortized cost of O(log n/ log log n)
and the runtime of the latter, similar to the query operations, requires a constant number of
(possibly amortized) O(log n/ log log n) time subroutines. Periodic rebuilding adds amortized
o(log n/ log log n) time to each update. This completes the proof. ◀

C Alternative implementation for PL+

In our main result we achieve a succinct representation with high probability. The structure
can be modified such that a succinct representation occurs with probability one: we commit
to using packed linked lists (pack) and tolerate sublists with cardinality ω(log n/ log log n).
Further, the local indexPack(Lc, i) query can take advantage of knowing which node the offset
i belongs to. For every packed linked-list, we store a dynamic array of pointers, which we
name skip pointers, where the jth pointer points to the jth node in the chain. This permits
constant time access to a specified node. Consequently, the indexPack(Lc, i) performs small
O(log log n) traversals on a portion of the sublist Lc. The skip pointers add a negligible
σ · O(log n) bits to the memory allocation of the structure. The runtimes of the other
operations depend on the cardinality of the engaged sublist. The latter is at most O(log n)
with probability 1−O(1/nγ). Note that Lemma 10 accounts for σ packed lists. Thus, we
arrive at the following result.

▶ Theorem 2. For any constant γ > 0, an ordered set of n items, drawn from the universe
[m], where m = poly(n), can be stored in n(log m + o(log n)) bits and support index in
O(log n/ log log n) time, position in O(log n) time with probability 1 − O(1/nc) and any
sequence of O(n) updates (insert or delete) takes O(n log n) time with probability 1 −
O(1/nγ).

As the expected cardinality of a sublist is n/σ = O(log n/ log log n), the expected runtime
of position and the expected amortized runtime of the updates is O(log n/ log log n).

ISAAC 2022


	1 Introduction
	1.1 Contribution and outline
	1.2 The rank-select problem

	2 Background
	2.1 Strings
	2.2 k-wise independent hashing
	2.3 Prior work

	3 The Princess List: a simple solution to list indexing
	3.1 Towards a compact representation

	4 PL+: state-of-the-art wavelet trees and packed linked-lists
	4.1 A random permutation
	4.2 The sublists
	4.3 Memory allocation for sublists

	5 Space and time efficiency of PL+
	6 Conclusion
	A Allowing for Repetitions
	B Relegated Proofs
	B.1 Memory Allocation for Sublists
	B.2 Performance for PL+

	C Alternative implementation for PL+

