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Abstract

Graph product structure theory expresses certain graphs as subgraphs of the strong product
of much simpler graphs. In particular, an elegant formulation for the corresponding structural
theorems involves the strong product of a path and of a bounded treewidth graph, and allows to lift
combinatorial results for bounded treewidth graphs to graph classes for which the product structure
holds, such as to planar graphs [Dujmović et al., J. ACM, 67(4), 22:1-38, 2020].

In this paper, we join the search for extensions of this powerful tool beyond planarity by
considering the h-framed graphs, a graph class that includes 1-planar, optimal 2-planar, and k-map
graphs (for appropriate values of h). We establish a graph product structure theorem for h-framed
graphs stating that the graphs in this class are subgraphs of the strong product of a path, of a planar
graph of treewidth at most 3, and of a clique of size 3⌊ h

2 ⌋ + ⌊ h
3 ⌋ − 1. This allows us to improve over

the previous structural theorems for 1-planar and k-map graphs. Our results constitute significant
progress over the previous bounds on the queue number, non-repetitive chromatic number, and
p-centered chromatic number of these graph classes, e.g., we lower the currently best upper bound on
the queue number of 1-planar graphs and k-map graphs from 115 to 82 and from ⌊ 33

2 (k + 3⌊ k
2 ⌋ − 3)⌋

to ⌊ 33
2 (3⌊ k

2 ⌋ + ⌊ k
3 ⌋ − 1)⌋, respectively. We also employ the product structure machinery to improve

the current upper bounds on the twin-width of 1-planar graphs from O(1) to 80. All our structural
results are constructive and yield efficient algorithms to obtain the corresponding decompositions.
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1 Introduction

Graph product structure theory [15] was recently introduced and is receiving considerable
attention, as it gives deep insights that allow a host of mathematical and algorithmic tools to
be applied. Despite being a relatively new development, it is having significant impact [25].
Initially, it was introduced to settle a long-standing conjecture by Heath, Leighton and
Rosenberg [21] related to the queue number of planar graphs [15]. Recently, it has been
further exploited to solve several other combinatorial problems that were open for years, e.g.,
it was used to prove that planar graphs have bounded non-repetitive chromatic number [15],
to improve the best known bounds for p-centered colorings of planar graphs and graphs
excluding any fixed graph as a subdivision [11], to find shorter adjacency labelings of planar
graphs [7], and to find asymptotically optimal adjacency labelings of planar graphs [13].

In its simplest form, the product structure theorem states that every planar graph is
a subgraph of the strong product of a path and of a planar graph of treewidth at most
6 [15, 27]. The bound on the treewidth can be improved by allowing more than two graphs
in the strong product, as it is known that every planar graph is a subgraph of the strong
product of a path, of a 3-cycle and of a planar graph of treewidth at most 3 [15]. These
theorems are attractive, since they describe planar graphs in terms of graphs of bounded
treewidth, which are considered much simpler than the planar ones. Furthermore, they
enable combinatorial results that hold for graphs of bounded treewidth to be generalised
for planar graphs and, more generally, for graphs where similar structural theorems can be
obtained. On the algorithmic side, it has been recently shown that the graphs involved in
the product structure theorem can be computed in linear time [10], improving upon [24].

Analogous results are known for graphs of bounded Euler genus [15], apex-minor-free
graphs [15], graphs with bounded degree in proper minor-closed classes [14], and graphs in
non-minor closed classes [17]; see [19] for a survey. Related to our work are the structural
theorems for k-planar and k-map graphs (the former ones are the graphs that can be drawn
with at most k crossings per edge, whereas the latter ones are the contact-graphs of regions
homeomorphic to closed disks such that at most k regions may share the same point). In
particular, it is known that every k-planar graph is a subgraph of the strong product of
a path, of a graph of treewidth at most 1

6 (k + 4)(k + 3)(k + 2) − 1, and of a clique on
18k2 + 48k + 30 vertices, while every k-map graph is a subgraph of the strong product of a
path, of a planar graph of treewidth at most 3, and of a clique on k + 3⌊ k

2 ⌋ − 3 vertices [17].

Our contribution. In this work, our focus is on the class of h-framed graphs, which were
recently introduced as a notable subclass of k-planar and a superclass of k-map graphs (for
appropriate values of k) [5]; a graph is h-framed, if it admits a drawing on the Euclidean
plane whose uncrossed edges induce a biconnected spanning plane graph with faces of size
at most h. Since any h-framed graph is O(h2)-planar, it follows from the aforementioned
product structure theorem for k-planar graphs that every h-framed graph is a subgraph of a
path, of a graph with treewidth O(h6) and of a clique of size O(h4). Our main contribution
is to show the following structural result (which guarantees that the graph of bounded
treewidth is planar and of improved treewidth, from O(h6) to O(1), and lowers the size of
the involved clique to O(h)): Every h-framed graph is a subgraph of the strong product of a
path, of a planar graph of treewidth at most 3, and of a clique on 3⌊ h

2 ⌋ + ⌊ h
3 ⌋ − 1 vertices1;

1 Note that, almost concurrently with our result, a slightly weaker version of our product structure theorem
for h-framed graphs appeared in [17], where the size of the involved clique is larger, namely, h+3⌊ h

2 ⌋−3.
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Table 1 Previous [17] and new bounds on the queue number, non-repetitive and p-centered
chromatic number, and twin-width for h-framed, 1-planar, optimal 2-planar, and k-map graphs. We
denote by χp(H) the p-centered chromatic number of planar 3-trees.

h-framed/h-map 1-planar opt 2-planar

queue num
old ⌊ 33

2 (h + 3⌊ h
2 ⌋ − 3)⌋ 115 132

new ⌊ 33
2 (3⌊ h

2 ⌋ + ⌊ h
3 ⌋ − 1)⌋ 82 82

non-repetitive
chr. num

old 44 · (h + 3⌊ h
2 ⌋ − 3) 1792 2048

new 44 · (3⌊ h
2 ⌋ + ⌊ h

3 ⌋ − 1) 1536 1536
p-centered
chr. num

old (h + 3⌊ h
2 ⌋ − 3)(p + 1)χp(H) 7(p + 1)χp(H) 8(p + 1)χp(H)

new (3⌊ h
2 ⌋ + ⌊ h

3 ⌋ − 1)(p + 1)χp(H) 6(p + 1)χp(H) 6(p + 1)χp(H)

twin-width
old − O(1) O(1)
new 17h + 13 80 80

see Theorem 3.1. Note that, since any planar graph is a subgraph of some triangulation
(and thus of a 3-framed graph), we have that, for h = 3, Theorem 3.1 coincides with the
product structure theorem for planar graph proved in [15]. This is an indication that our
theorem may be tight for the graphs in this family. Furthermore, we provide an alternative
formulation, where the role played by a path is instead played by the ⌊h/2⌋-th power of
a path, which allows us to further reduce the size of the clique involved in the product to
max(3, h − 2); see Theorem 3.5. All our structural results are constructive and yield efficient
algorithms to obtain the corresponding decompositions. Our techniques provide improved
upper bounds on the queue number, on the non-repetitive chromatic number, and on the
p-centered chromatic number of h-framed graphs that are linear in h; see Theorem 4.2,
Corollary 4.7, and Lemma 4.8, respectively. Finally, by extending the product structure
machinery, we are able to give an efficient construction to obtain an explicit, linear in h,
upper bound on the twin-width of h-framed graphs, while the currently best explicit upper
bound derives from the one for k-planar graphs and it is hence exponential in O(h2) [8, 9];
see Theorem 5.1.

Consequences on related graph classes. Since 1-planar and optimal 2-planar graphs
are subgraphs of 4- and 5-framed graphs, respectively [2, 4], and since k-map graphs are
subgraphs of k-framed graphs [3, 5], the product structure theorems mentioned above imply
significant improvements on the currently best bounds for the following parameters (refer to
Table 1). For definitions, see Section 4.

Queue number: Using Theorem 3.1, we improve the best known upper bound on the
queue number of k-map graphs from ⌊ 33

2 (k + 3⌊ k
2 ⌋ − 3)⌋ [17] to ⌊ 33

2 (3⌊ k
2 ⌋ + ⌊ k

3 ⌋ − 1)⌋
(Corollary 4.3), whereas, using Theorem 3.5, we lower the best known upper bounds
on the queue number of 1-planar and optimal 2-planar graphs from 115 and 132 [17],
respectively, both to 82 (Theorem 4.5).
Non-repetitive chromatic number: Theorem 3.1 allows us to improve the best
known upper bound on the non-repetitive chromatic number of k-map graphs from
44 · (k + 3⌊ k

2 ⌋ − 3) [17] to 44 · (3⌊ k
2 ⌋ + ⌊ k

3 ⌋ − 1). In particular, for the class of 1-planar
graphs our improvement is from 1792 to 1536 (Corollary 4.7). The latter is a bound that
notably holds also for optimal 2-planar graphs, which forms an improvement over the
one of 2048 that was previously known [17].

For the sake of completeness, even though the results in [17] are still unpublished, we will compare the
bounds stemming from our product structure theorem with those stemming from the one in [17].
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(a)

X
Y

(b)

Figure 1 Illustration of: (a) a 4-framed topological graph whose skeleton edges (crossing edges)
are black (blue), and (b) the strong product X ⊠ Y of a planar graph X (red) and a path Y (blue).

p-centered chromatic number: Theorem 3.1 allows us to improve the best known upper
bound on the non-repetitive chromatic number of k-map graphs from (k + 3⌊ k

2 ⌋ − 3)(p +
1)χp(H) [17] to (3⌊ k

2 ⌋+⌊ k
3 ⌋−1)(p+1)χp(H), where χp(H) ≤ (p+1)(p⌈log(p + 1)+2p+1)

denotes the p-centered chromatic number of planar 3-trees [11]. In particular, we lower
the best known upper bounds on the p-centered chromatic number of 1-planar and
optimal 2-planar graphs from 7(p + 1)χp(H) and 8(p + 1)χp(H) [17], respectively, both
to 6(p + 1)χp(H) (Corollary 4.9).
Twin-width: Theorem 5.1 improves the currently best upper bound on the twin-width
of 1-planar and optimal 2-planar graphs, from O(1) [8] to 80, whereas our improvement
for k-map graphs is limited to certain value of k, as these graphs have bounded twin-
width independently of k [8].

2 Preliminaries

For standard graph-theoretic terminology and notation we refer the reader, e.g., to [12].

Graphs. A graph is simple if it contains neither loops nor multi-edges. For a general
graph G (not-necessarily simple), let si(G) denote the simplification of G, i.e., the simple
graph obtained from G by removing all loops and replacing each bunch of parallel edges
with a single edge. For any i ≥ 1, the i-th power Gi of a graph G is the graph with the
same vertex set as G, in which two vertices are adjacent if and only if they are at distance at
most i in G. Clearly, G ⊆ Gi. A graph H is a minor of a graph G, if H can be obtained
from a subgraph of G by contracting edges.

Topological graphs. A topological graph is a graph drawn on the plane such that any two
edges cross in at most one point and no edge crosses itself. In this paper, we will solely
consider topological graphs in which no two adjacent edges cross and no three edges cross
in the same point (in the literature, such drawings are commonly referred to as “simple”).
A plane graph is a topological graph with no crossing edges. A graph is k-planar if it
is isomorphic to a topological graph in which each edge crosses at most k other edges.
Furthermore, a k-planar graph with the maximum number of edges is called optimal. A
k-map graph is one that admits a k-map, i.e., a representations where each vertex is a region
homeomorphic to a closed disk, such that regions have pairwise disjoint interiors, no more
than k regions share the same boundary point, and two regions touch if and only if the
corresponding vertices are adjacent.
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Given a topological graph G, the subgraph sk(G) of G consisting of all its vertices and
uncrossed edges is the skeleton of G; refer to Fig. 1a. A topological graph G whose skeleton
sk(G) is biconnected is called h-framed [5], if all the faces of sk(G) have size at most h, and
internally h-framed, if all the faces of sk(G), except for possibly one, have size at most h. The
importance of this class lies in the following connections with k-planar and k-map graphs [3, 5].
Optimal 1-planar and optimal 2-planar graphs are 4- and 5-framed, respectively, while general
1-planar graphs can be augmented to 8-framed graphs, if multi-edges are forbidden, or to
4-framed graphs, if multi-edges are allowed. Finally, note that any k-map graph is a subgraph
of a k-framed (multi-)graph and of a 2k-framed simple graph [3, 5].

Treewidth. Let (X , T ) be a pair such that X = {X1, X2, . . . , Xℓ} is a collection of subsets of
vertices of a graph G, called bags, and T is a tree whose nodes are in one-to-one correspondence
with the elements of X . The pair (X , T ) is a tree-decomposition of G if it satisfies the following
two conditions: (i) for every edge (u, v) of G, there exists a bag Xi ∈ X that contains both u

and v, and (ii) for every vertex v of G, the set of nodes of T whose bags contain v induces a
non-empty subtree of T . The width of a tree-decomposition (X , T ) of G is maxℓ

i=1 |Xi| − 1,
while the treewidth tw(G) of G is the minimum width over all tree-decomposition of G.

Quotient graph. For a graph G and a partition P of V (G), the quotient of G by P , denoted
by G/P , is a graph containing a vertex vP for each part P in P (we say that vP stems from P )
and an edge (vP ′ , vP ′′) if and only if there exists a vertex in P ′ adjacent to a vertex in P ′′ in
G. Note that, G/P is a minor of G, if every part in P induces a connected subgraph of G.

Strong product. The strong product of two graphs X and Y , denoted by X⊠Y , is the graph
whose vertex set V (X ⊠ Y ) is the Cartesian product V (X) × V (Y ), such that there exists
an edge in E(X ⊠ Y ) between the vertices ⟨x1, y1⟩, ⟨x2, y2⟩ ∈ V (X ⊠ Y ) if and only if one of
the following occurs: (a) x1 = x2 and (y1, y2) ∈ E(Y ), (b) y1 = y2 and (x1, x2) ∈ E(X), or
(c) (x1, x2) ∈ E(X) and (y1, y2) ∈ E(Y ); see Fig. 1b. Dujmović et al. [15, 17] and Ueckerdt,
Wood, and Yi [27] showed the following main graph product structure results.

▶ Theorem 2.1 (Dujmović et al. [15, 17], Ueckerdt et al. [27]). For a graph G, the next hold:
(a) If G is planar, then G ⊆ P ⊠ H, for a path P and a planar graph H with tw(H) ≤ 6.
(b) If G is planar, then G ⊆ P ⊠H⊠K3, for a path P and a planar graph H with tw(H) ≤ 3.
(c) If G is 1-planar, then G ⊆ P ⊠ H ⊠ K7, for a path P and a planar

graph H with tw(H) ≤ 3.
(d) If G is k-planar with k > 1, then G ⊆ P ⊠ H ⊠ K18k2+48k+30, for a path P and a graph

H with tw(H) ≤ 1
6 (k + 4)(k + 3)(k + 2) − 1.

(e) If G is a k-map graph, then G ⊆ P ⊠ H ⊠ K21k(k−3), for a path P and a graph H with
tw(H) ≤ 9.

Layering. Consider a graph G. A layering of G is an ordered partition (V0, V1, . . . ) of V (G)
such that, for every edge (v, w) of G with v ∈ Vi and w ∈ Vj , it holds |i − j| ≤ 1. If i = j,
then (v, w) is an intra-level edge; otherwise, (v, w) is an inter-level edge. Each part Vi is
called a layer. Let T be a BFS tree of G rooted at a vertex r. The BFS layering of G

determined by r is the layering (V0, V1, . . .) of G such that Vi contains all vertices of G at
distance i from r. Given a partition P of V (G) and a layering L of G, the layered width of P
with respect to L is the size of the largest set obtained by intersecting a part in P and a layer
in L. The layered width of P is the minimum layered width of P over all layerings of G.

ISAAC 2022
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3 Computing the Product Structure

This section is devoted to the proof of a product structure theorem for h-framed graphs,
summarized in the next theorem; several applications of this result are presented in Section 4.

▶ Theorem 3.1 (Product Structure Theorem for h-Framed Graphs). Let G be a not-necessarily
simple h-framed graph with h ≥ 3. Then, si(G) is a subgraph of the strong product H ⊠ P ⊠
K3⌊ h

2 ⌋+⌊ h
3 ⌋−1, where H is a planar graph with tw(H) ≤ 3 and P is a path.

The algorithm supporting Theorem 3.1 is going to recursively decompose the graph G into
parts with special properties, such that the resulting quotient graph will be H, and the
additional properties of the constructed partition will imply the claimed product structure.
We start with a technical setup followed by the core recursion in Lemma 3.2.

Layering G. Let T be a BFS tree of sk(G) rooted at an arbitrary vertex r incident to
the unbounded face of sk(G). For an arbitrary H and its implicitly fixed BFS tree T ′ ⊆ H

(such as H = sk(G) and T ′ = T in our case), we call a path P ⊆ sk(G) vertical if P is a
subpath of some root-to-leaf path of T ′. Let L = (V0, V1, . . . , Vb) be the BFS layering of sk(G)
determined by r. Observe that, if P is a vertical path in sk(G), then P intersects every part of
L in at most one vertex. Given L, we define a new ordered partition W = (W0, W1, . . . , Wℓ)
of the vertex set of G with ℓ =

⌈
b/⌊ h

2 ⌋
⌉

− 1, by merging consecutive ⌊ h
2 ⌋-tuples of layers of L.

This is done as follows. For i = 0, 1, . . . , ℓ, we let Wi :=
⋃⌊h/2⌋−1

j=0 Vi⌊h/2⌋+j (assuming Vx = ∅
if x > b). Then, W := (W0, W1, . . . , Wℓ) is a layering of G; see [6].

Partitioning G. The core of our algorithm is a construction of a special partition R of V (G)
such that H = G/R is a planar graph with tw(H) ≤ 3, and the layered width of R with
respect to W is not large. Our recursive decomposition of G is analogous to the one in [15]
(as applied to planar graphs); however several non-trivial changes are needed to exploit the
existence of the underlying (plane) skeleton of G. The algorithm starts from the unbounded
face and recursively “dives” into gradually-shrinking areas of G.

Central in our approach is the following notion. For a cycle C ⊆ sk(G), the subgraph
of G bounded by C, denoted by GC , is the subgraph of G formed by the vertices and edges
of C and the vertices and edges of G drawn inside C. Consider a subset U ⊆ V (G). For the
partition L (resp., the partition W), the width of U with respect to L (resp. to W), denoted
by λL(U) (resp. by λW(U)), is the largest size of a set obtained by intersecting U and a part
of L (resp. of W). We are now ready to present our main technical lemma.

▶ Lemma 3.2. Let G be an h-framed graph with h ≥ 3 and let L be a BFS layering of G.
Also, let C be a cycle in sk(G), and let GC be the subgraph of G bounded by C. Further,
for some k ∈ {1, 2, 3}, let P1, . . . , Pk be paths belonging to C such that R0 = {Xi : Xi :=
V (Pi), 1 ≤ i ≤ k} is a partition of V (C). Then, it is possible to construct in quadratic time
a good partition R′ of V (GC), i.e., one that satisfies the following properties:
1. R′ ⊇ R0, and for every part X ∈ R′ \ R0, there exist q ∈ {1, 2, 3} and X ′ ⊆ X such that2

X \ X ′ is a union of the vertex sets of at most q vertical paths of sk(G), and so, in
particular, λL(X \ X ′) ≤ q, and
|X ′| ≤ h − 3 if q = 1, |X ′| ≤ ⌊(h − 1)/2⌋ − 1 if q = 2, and |X ′| ≤ ⌊h/3⌋ − 1 if q = 3.

2 The somehow technical Property 1 of Lemma 3.2 will imply that λW (X) ≤ 3⌊ h
2 ⌋ + ⌊ h

3 ⌋ − 1 in the proof
of Theorem 3.1, but we will also make use of the stated more detailed treatment.
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Figure 2 Illustrations of graph C ∪ D for the separable case of GC (Definition 3.3). The number
a of τ -faces is 4 in (a) and 1 in (b). (c) A case when Property 2 of Definition 3.3 is not met (by τ4).

2. the quotient graph H ′ = GC/R′ is a planar graph with tw(H ′) ≤ 3, and
3. the vertices of H ′ that stem from Xi, with 1 ≤ i ≤ k, are incident to the same face of H ′

and induce a clique (i.e., either a vertex, or an edge, or a triangle).

Proof. We prove Lemma 3.2 by providing a recursive procedure that we describe in the
following. The base case of the recursion occurs when V (GC) = V (C) (i.e., there are no
vertices in the interior of C and the edges in E(GC) \E(C) are chords of C). In this case, the
algorithm returns the partition R′ = R0, which is clearly good since the graph H ′ is a plane
clique of size k whose vertices stem from the parts of R0. Note that, if |E(GC) \ E(C)| = 0,
then V (GC) = V (C), since GC cannot have isolated vertices.

In the recursive step of the algorithm, we assume that there exist vertices and edges
of GC that lie in the interior of C. Our aim is to recurse on instances that contain fewer
edges in the interior, but not on the boundary, of the cycle delimiting their unbounded face.
We first need to handle a possible degenerate case3 of GC . Recall that, since G is h-framed,
all bounded faces of GC ∩ sk(G) have length at most h.

▶ Definition 3.3. We say that GC is separable if the following conditions hold (see Fig. 2):
1. The plane graph GC ∩ sk(G) contains a bounded face σ0 that intersects C in a ≥ 1

disjoint maximal subpaths (some of the paths may consist of single vertices). Denoting
by D the facial cycle of σ0, let τ1, . . . , τa be the bounded faces of the plane graph C ∪ D

other than σ0.
2. For each τj , with j = 1, . . . , a, the boundary of τj is a cycle Cj of sk(G), at most two parts

of R0 intersect Cj, and every part of R0 intersecting Cj does so in a single subpath.4

Separable case. Suppose that GC is separable and let Gj , j = 1, . . . , a, denote the subgraph
of GC bounded by the facial cycle Cj of τj

5. By definition, we have that |E(Gj) \ E(Cj)| ⊆
|E(GC) \ E(C)| (even when a = 1). Since E(Cj) \ E(C) ̸= ∅, the latter implies |E(Gj) \
E(Cj)| < |E(GC) \ E(C)|. Also, let Y denote the vertices of D that do not belong to C,
i.e., Y = V (D) \ V (C); refer to the hollow vertices of Fig. 2. By the previous, we have
|Y | ≤ |D| − 2 ≤ h − 2.

For j = 1, . . . , a, let R0
j be the partition of V (Cj) consisting of the set Yj = Y ∩ V (Cj), if

it is not empty, and of the sets Xj
i = Xi ∩V (Cj), i = 1, . . . , k, if Xj

i is not empty; by Property
2 of Definition 3.3, R0

j consists of at most three parts. Therefore, by a recursive application
of our algorithm, each graph Gj , j = 1, . . . , a, admits a good partition Rj ⊇ R0

j of V (Gj).

3 Such a case does not explicitly occur in the planar proof of [15], but the implicit case of a so-called [15]
“tripod” with degenerate legs is analogous to what we are defining here.

4 A part of R0 indeed may intersect the boundary Cj of τj in two subpaths (see Fig. 2c). This, however,
can happen only if k ≤ 2.

5 Note that, if a = 1, we have |V (D) ∩ V (C)| ≥ 2, since otherwise the face τ1 would not be bounded by a
cycle as required by Property 2 of Definition 3.3.
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Figure 3 Illustrations of graph C ∪ D for the general case of GC , for k = 1 (a) and k = 2 (b)(c).

We construct a partition R′ of V (GC) by putting into R′ the parts of R0, the set Y (if
non-empty), and the recursively obtained parts of each Gj that do not touch Cj ; formally,
R′ = R0 ∪ {Y } ∪

⋃
j=1,...,a(Rj \ R0

j), or R′ = R0 ∪
⋃

j=1,...,a(Rj \ R0
j) if Y = ∅. Note that

R′ is indeed a partition of V (GC), since each vertex of GC that lies in the interior of C must
belong either to Y or to a part X ∈ Rj \ R0

j , for some j ∈ {1, . . . , a}. We show that the
constructed partition R′ is good in [6].

General case. Now we move to the general (i.e., not-necessarily separable) case of GC in
Lemma 3.2. If k = 1, we pick the bounded face σ0 of GC ∩ sk(G) incident to the single edge
of E(C) \ E(P1); refer to Fig. 3a. The face σ0 then witnesses the separable case for GC ,
by Definition 3.3, which is solved as above. If k = 2, then we pick e0 ∈ E(C) as one of the
edges joining P1 and P2 on C, and σ0 as the bounded face of GC ∩ sk(G) incident to e0; see
Figures 3b and 3c. Then we are back to the separable case for GC with σ0, by Definition 3.3.

In the remainder, we assume k = 3. First, we color every vertex v of GC by the color
i ∈ {1, 2, 3} if the (unique) path in the BFS tree T from v to the root r hits V (Pi) before
possibly hitting other parts of R0. In particular, the vertices of Pi are colored i. Our aim is
to find, in the plane graph F := GC ∩ sk(G), a bounded face σ1 containing vertices of all the
three colors on its boundary. There our arguments divert from those used in [15] – since F

is generally not a near-triangulation, and we additionally need that the face σ1 intersects the
boundary cycle C at most once (which requires additional care). We exploit the following.

▷ Claim 3.4. (*) In the setting above, there exists a cycle R bounding a bounded face σ1
of F , such that V (R) contains all three of our colors, and R intersects C in at most one
connected piece. Furthermore, the colors on R appear in three consecutive sections.

Next, consider the set V (R) ∩ V (C). If this set contains all three colors, then all three
colors occur on the path R0 := C ∩ R, and one of them, say color 1, occurs only on internal
vertices of R0 (and nowhere else on C). In this case, the face σ1 again witnesses the case of
separable GC with a = 1 which is solved as above. If, instead, the set V (R) ∩ V (C) does not
contain all three colors, then we choose on R representatives – vertices ti ∈ V (R) of color i

where i = 1, 2, 3, as in one of the following three possible cases of V (R) ∩ V (C) (refer to
Fig. 4):
C.1 If V (R) ∩ V (C) contains two colors, say 1 and 2, we choose t1, t2 ∈ V (R) ∩ V (C) as

neighbors on C and t3 ∈ V (R) \ V (C) arbitrarily; refer to Fig. 4a.
C.2 If V (R) ∩ V (C) contains one color, say 1, we choose t1 ∈ V (R) ∩ V (C) arbitrarily and

pick t2, t3 ∈ V (R) \ V (C) such that t2t3 ∈ E(R) (this is unique). Furthermore, up to
symmetry between the colors 2 and 3, we may assume that the distance on R between t2
and V (C) is not smaller than the distance on R between t3 and V (C); refer to Fig. 4b.
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C.3 If V (R) ∩ V (C) = ∅, then, up to symmetry between the colors, we may assume that the
color 3 occurs in V (R) no more times than each of the colors 1 and 2. We then choose
t3 ∈ V (R) arbitrarily (of color 3), and set t1 and t2 to the two (unique) vertices colored
1 and 2 on R that are neighbors of vertices of color 3 on R; refer to Fig. 4c.

For i = 1, 2, 3, let Ri denote the unique vertical path in T from ti to V (Pi); see Fig. 4.
Note that some vertices ti may lie on C, and then Ri = ti is a single-vertex path. Let Q be
the subpath of R with the ends t1 and t2 and avoiding t3. We define R′ ⊆ R as the subpath
or cycle (in the case R′ = R) obtained from R by deleting all internal vertices of Q. Finally,
we set R+ := R′ ∪ R1 ∪ R2 ∪ R3 which is a connected subgraph of F (R+ will play the same
role here as the so-called tripods in [15]).

Observe that C ∪ R+ is a 2-connected plane graph (in each of the three cases above).
Moreover, it contains a ∈ {2, 3} bounded faces τ1, . . . , τa, plus the bounded face σ1 in the
case of R′ = R; for the latter see Fig. 4c. We denote by Cj , j ∈ {1, . . . , a}, the facial cycle
of τj . It is now important to notice that each cycle Cj intersects at most two parts of R0,
which follows from our “multi-colored” choice of t1, t2, t3 and R1, R2, R3 in all three cases.
Furthermore, every two parts of R0 are together intersected by at most one of Cj .

We next proceed similarly as in the separable case above. Let Gj ⊊ GC , j ∈ {1, . . . , a}, be
the strict subgraph of GC bounded by Cj , and let R0

j be the partition of V (Cj) consisting of
V (Cj) \ V (C) and of the non-empty parts X ∩ V (Cj) over X ∈ R0. So, |R0

j | ≤ 3. Therefore,
by a recursive application of our algorithm, we may assume that each graph Gj admits a
good partition Rj ⊇ R0

j of V (Gj), with j = 1, . . . , a.
We construct a partition R′ ⊇ R0 of V (GC) similarly as before; besides R0 we add the

set Z := V (R+) \ V (C) ̸= ∅ as whole, and the recursively obtained parts of each Gj that do
not touch Cj . Formally, R′ = R0 ∪ {Z} ∪

⋃
j=1,...,a(Rj \ R0

j ). Note that R′ is a partition of
V (GC) – in particular, each vertex of GC which is not on C must belong either to Z or to
a part X ∈ Rj \ R0

j , for some j ∈ {1, . . . , a}, by induction. We show that the constructed
partition R′ is good in [6].

We conclude the proof of Lemma 3.2 by discussing the time complexity of our algorithm,
which follows the same ideas as the ones by Dujmovic et al. [15] to compute the decomposition
deriving from their product structure theorem for n-vertex planar graphs6. To show that a

6 Note that subsequent improvements have brought the running time of this procedure first to
O(n log n) [24] and finally to O(n) [10].
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Figure 4 Illustrations for the representatives t1, t2, and t3, and the vertical paths R1, R2, and R3.
The vertices of R bound the gray shaded region. R′ is depicted with black thick edges.
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good partition of GC can be obtained in O(|V (GC)|2) time, it suffices to observe that the
non recursive work needed to compute the graphs on which the recursive calls are applied
can be easily implemented to run in O(|V (GC)|) time, by performing a visit of the planar
skeleton of the input h-framed graph and of its BFS-tree (provided that GC is a topological
h-framed graph). Since the total number of recursive calls is at most linear in |V (GC)|, the
total running time is thus quadratic in |V (GC)|. ◀

Proof of Theorem 3.1. Let C denote the cycle bounding the unbounded face of sk(G), which,
by a possible homeomorphism of the sphere, may be assumed to satisfy |V (C)| ≥ 3. Based
on the BFS tree T of sk(G) rooted in a vertex r ∈ V (C), we define the following partition R0

of C: We split C into a path P1 only consisting of the vertex r, and two paths P2 and P3 of
lengths at most ⌊ h−1

2 ⌋ and ⌊ h
2 ⌋, respectively. Then, we set R0 = {V (P1), V (P2), V (P3)} and

apply the algorithm given in the proof of Lemma 3.2. This way we obtain a good partition
R′ of V (GC) = V (G) and graph H ′ := GC/R′ in O(|V (G)|2) time.

Note that, in general, GC ≠ G as G may have edges drawn in the unbounded face
(bounded by C) of sk(G). However, by setting H = H ′, we guarantee all edges of G in the
unbounded face of sk(G) are “captured”, since the quotient graph H ′ anyway contains a
triangle on the vertices that stem from R0. In fact, we have just obtained the graph H with
the desired properties, i.e., H is planar and of tw(H) ≤ 3.

What remains to prove is that G indeed is a subgraph of the strong product H ⊠ P ⊠
K3⌊ h

2 ⌋+⌊ h
3 ⌋−1 for some path P . Recall that the number of layers of the layering W is ℓ + 1,

and that W was obtained by merging consecutive ⌊ h
2 ⌋-tuples of layers of L. We set P to

be the path on ℓ + 1 vertices denoted in order by p0, p1, . . . , pℓ. To a vertex v ∈ V (G), we
assign the pair (t, pi) where t ∈ V (H) if t stems from the part of R′ that v belongs to, and
v ∈ Wi ∈ W. This assignment is sound and unique.

If vv′ ∈ E(G) is any edge of G, and v and v′ are assigned the pairs (t, pi) and (t′, pj) as
above, then tt′ ∈ E(H) or t = t′ since H = G/R′ is the quotient graph, and pipj ∈ E(P ) or
i = j since W is a layering of G. Using Property 1 of Lemma 3.2, we furthermore estimate,
for every part X ∈ R′ and its X ′ ⊆ X (cf. Property 1),

λW(X) ≤ |X ′| + λL(X \ X ′) · ⌊h/2⌋
≤ max

(
h − 3 + ⌊h/2⌋, ⌊h/2⌋ − 1 + 2⌊h/2⌋, ⌊h/3⌋ − 1 + 3⌊h/2⌋

)
≤ 3⌊h/2⌋ + ⌊h/3⌋ − 1 ,

and hence at most 3⌊ h
2 ⌋ + ⌊ h

3 ⌋ − 1 vertices of G are assigned to the same pair (t, pi). This
concludes the proof that si(G) ⊆ H ⊠ P ⊠ K3⌊ h

2 ⌋+⌊ h
3 ⌋−1. ◀

We next present a variant of Theorem 3.1, which reduces the size of the clique in the
product by replacing the path with a power of it. The variant does not immediately follow
from the statement of Theorem 3.1. However, it can easily be derived by adopting in the
proof of Theorem 3.1 the layering L instead of the layering W.

▶ Theorem 3.5. Let G be an h-framed graph (where G is not necessarily simple). Then
si(G) is a subgraph of the strong product of three graphs H ⊠ P ⌊h/2⌋ ⊠ Kmax(3,h−2), where H

is a planar graph with tw(H) ≤ 3 and P is a path.

Proof. Recall that L = (V0, V1, . . . , Vb) is a BFS layering of the skeleton sk(G), and thus every
edge of G has ends in parts Vi, Vj ∈ L such that |i−j| ≤ ⌊h/2⌋. Hence, we may choose P as the
path on b+1 vertices (p0, p1, . . . , pb), use P ⌊h/2⌋, and assign each vertex v ∈ V (G) to the pair
(t, pi) where t ∈ V (H) if t stems from the part of R′ that v belongs to, and v ∈ Vi ∈ L. Now,
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the number of vertices of G assigned to the same pair (t, pi) (where t stems from a part X) is at
most λL(X) ≤ |X ′|+λL(X \X ′) ≤ max(h−3+1, ⌊h/2⌋−1+2, ⌊h/3⌋−1+3

)
= max(3, h−2).

This concludes that si(G) ⊆ H ⊠ P ⌊h/2⌋ ⊠ Kmax(3,h−2). ◀

4 Consequences of the Product Structure

As mentioned in the introduction, Dujmović et al. [17] have derived upper bounds on the
queue number, on the non-repetitive chromatic number, and on the p-centered chromatic
number of k-planar and k-map graphs exploiting Theorem 2.1. In the following, we present
our improvements to each of these problems.

Queue number. A queue layout of a graph G is a linear order σ of the vertices of G together
with an assignment of its edges to sets, called queues, such that no two edges in the same
set nest. The queue number qn(G) of a graph G is the minimum number of queues over
all queue layouts of G. In [15], Dujmović et al. have proved the following useful lemma
concerning the queue number of graphs that can be expressed as subgraphs of the strong
product of a path P , a graph H with queue number qn(H), and a clique Kℓ on ℓ vertices.

▶ Lemma 4.1 (Dujmović et al. [15]). If G ⊆ P ⊠ H ⊠ Kℓ then qn(G) ≤ 3ℓ qn(H) + ⌊ 3
2 ℓ⌋.

Combining Lemma 4.1 and Theorem 2.1(d), together with the fact that the queue number
of planar 3-trees is at most 5 [1], Dujmović, Morin, and Wood showed the first constant upper
bound on the queue number of k-planar graphs [17], thus resolving a long-standing open
question. Analogously, by combining Lemma 4.1 and Theorem 3.1, we obtain the following.

▶ Theorem 4.2. The queue number of h-framed graphs is at most⌊
33
2

(
3⌊h

2 ⌋ + ⌊h

3 ⌋ − 1
)⌋

.

Dujmović et al. [15] first showed the queue number of k-map graphs is at most 2(98(k+1))3.
Later, by combining Theorem 2.1(e) and Lemma 4.1, Dujmović et al. [16] improved this
bound to 32225k(k − 3). More recently, Dujmović et al. [17] have also observed that k-map
graphs are k-framed and have exploited this observation to further improve this bound to
⌊ 33

2 (k + 3⌊ k
2 ⌋ − 3)⌋. By Theorem 4.2, we can further improve these bounds by also leveraging

the fact that these graphs are subgraphs of k-framed graphs [3, 5].

▶ Corollary 4.3. The queue number of k-map graphs is at most⌊
33
2

(
3⌊k

2 ⌋ + ⌊k

3 ⌋ − 1
)⌋

.

For h ∈ 4, 5, Theorem 4.2 gives us an upper bound of 95. Since any 1-planar graph
can be augmented to a (not-necessarily simple) 4-framed graph [2], Theorem 4.2 improves
the currently best upper bound of 1-planar graphs from 115 [17] to 95. Since any optimal
2-planar graph is 5-framed, Theorem 4.2 improves the currently best upper bound on their
queue number from 132 [17] to 95. Next, we show a generalization of Lemma 4.1 that allows
further improvements.

▶ Lemma 4.4. (*) If G ⊆ H ⊠ P i ⊠ Kℓ then qn(G) ≤ iℓ + (2i + 1)ℓqn(H) + ⌊ ℓ
2 ⌋.

Lemma 4.4 in conjunction with Theorem 3.5 yields a quadratic (in h) upper bound on the
queue number of h-framed graphs. However, for h ≤ 5, it implies an improved bound on the
queue number of 1-planar and optimal 2-planar graph, which we summarize in the following.

▶ Theorem 4.5. The queue number of 1-planar and optimal 2-planar graphs is at most 82.
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Non-repetitive chromatic number. An r-coloring of a graph G is a function ϕ :V(G)→ [r].
A path p = (v1, v2, . . . , v2τ ) is repetitively colored by ϕ if ϕ(vi) = ϕ(vi+τ ) for i = 1, 2, . . . , τ .
A coloring ϕ of G is non-repetitive if no path of G is repetitively colored by ϕ. Clearly,
non-repetitive colorings are proper, i.e., ϕ(u) ̸= ϕ(v) if u and v are adjacent in G. The
non-repetitive chromatic number π(G) of G is the minimum integer r such that G admits a
non-repetitive r-coloring. In [18], Dujmović et al. developed the following lemma to upper-
bound the non-repetitive chromatic number of graphs that can be expressed as subgraphs of
the strong product of a path P , a graph H with tw(H), and a clique Kℓ on ℓ vertices.

▶ Lemma 4.6 (Dujmović et al. [18]). If G ⊆ P ⊠ H ⊠ Kℓ, then π(G) ≤ 4tw(H)+1 · ℓ.

Using Lemma 4.6 and Theorem 2.1(c), Dujmović et al. [17] provide an upper bound of
1792 and of 2048 on the non-repetitive chromatic number of 1-planar and optimal 2-planar
graphs, respectively. Since 1-planar and optimal 2-planar graphs are 4-framed and 5-framed,
respectively, we improve both bounds to 1536. By Lemma 4.6 and the product structure
theorem for h-framed graph in [17], one can obtain an upper bound of 44 · (h + 3⌊ h

2 ⌋ − 3)
for the non-repetitive chromatic number of the graphs in this family. By Lemma 4.6 and
Theorem 3.1, we can further improve this upper bound to 44 · (3⌊ h

2 ⌋ + ⌊ h
3 ⌋ − 1). Also, since

k-map graphs are subgraphs of k-framed graphs [3, 5], their non-repetitive chromatic number
is also improved from to 44 · (k + 3⌊ k

2 ⌋ − 3) to 44 · (3⌊ k
2 ⌋ + ⌊ k

3 ⌋ − 1). Specifically, we get
the following.

▶ Corollary 4.7. For a graph G, it holds:
π(G) ≤ 44 · 6, if G is 1-planar,
π(G) ≤ 44 · (3⌊ k

2 ⌋ + ⌊ k
3 ⌋ − 1), if G is k-map, and

π(G) ≤ 44 · (3⌊ h
2 ⌋ + ⌊ h

3 ⌋ − 1), if G is h-framed.

p-centered chromatic number. For any c, p ∈ N with c ≥ p, a c-coloring of a graph G is
p-centered if, for every connected component X of G, at least one of the following holds:
(i) the vertices of X are colored with more than p colors, or (ii) there exists a vertex v of
X that is assigned a color different from the ones of the remaining vertices of X. For any
graph G, the p-centered chromatic number χp(G) of G is the minimum integer c such that
G admits a p-centered c-coloring. The following lemma is implied by combining results by
Pilipczuk and Siebertz [26], Debski et al. [11] and Dujmović et al. [17].

▶ Lemma 4.8 ([11, 17, 26]). If G ⊆ P ⊠H ⊠Kℓ, where H is a planar graph with tw(H) ≤ 3,
it holds that χp(G) ≤ ℓ(p + 1)2(p⌈log(p + 1) + 2p + 1).

By Lemma 4.8 and Theorem 2.1, Dujmović et al. [17] showed the following upper
bounds: χp(G) ≤ 7(p + 1)2(p⌈log(p + 1) + 2p + 1) if G is a 1-planar graph, χp(G) ≤
8(p + 1)2(p⌈log(p + 1) + 2p + 1) if G is an optimal 2-planar graph, χp(G) ≤ (k + 3⌊ k

2 ⌋ −
3)(p + 1)2(p⌈log(p + 1) + 2p + 1) if G is a k-map graph, and χp(G) ≤ (h + 3⌊ h

2 ⌋ − 3)(p +
1)2(p⌈log(p + 1) + 2p + 1) if G is an h-framed graph. By exploiting Theorem 3.1 and
Lemma 4.8, we get the next.

▶ Corollary 4.9. For a graph G, it holds:
χp(G) ≤ 6(p + 1)2(p⌈log(p + 1) + 2p + 1), if G is 1-planar or optimal 2-planar,
χp(G) ≤ (3⌊ k

2 ⌋ + ⌊ k
3 ⌋ − 1)(p + 1)2(p⌈log(p + 1) + 2p + 1), if G is k-map, and

χp(G) ≤ (3⌊ h
2 ⌋ + ⌊ h

3 ⌋ − 1)(p + 1)2(p⌈log(p + 1) + 2p + 1), if G is h-framed.
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5 Bounding Twin-width

Besides the direct consequences of the product structure theorem(s) surveyed in Section 4,
the construction presented in Section 3 has another strong implication described next.

Consider only simple graphs for the coming definition.7 A trigraph is a simple graph G

in which some edges are marked as red, and we then naturally speak about red neighbors
and red degree in G. We denote the set of red neighbors of a vertex v by Nr(v). For a
pair of (possibly not adjacent) vertices x1, x2 ∈ V (G), we define a contraction of the pair
x1, x2 as the operation creating a trigraph G′ which is the same as G except that x1, x2 are
replaced with a new vertex x0 whose full neighborhood is the union of neighborhoods of x1
and x2 in G, that is, N(x0) = (N(x1) ∪ N(x2)) \ {x1, x2}, and the red neighbors Nr(x0) of
x0 inherit all red neighbors of x1 and of x2 and those in N(x1) ⊕ N(x2), that is, Nr(x0) =(
(Nr(x1) ∪ Nr(x2)) \ {x1, x2}

)
∪

(
N(x1) ⊕ N(x2)

)
, where ⊕ denotes the symmetric difference.

A contraction sequence of a trigraph G is a sequence of successive contractions turning G

into a single vertex, and its width is the maximum red degree of any vertex in any trigraph of
the sequence. The twin-width is the minimum width over all possible contraction sequences
(where for an ordinary graph, we start with the same trigraph having no red edges). As
noted already in the pioneering paper on this concept [8], the twin-width of k-planar graphs
is bounded for any fixed k by means of FO transductions (which, therefore, gives a not-
even-asymptotically expressible bound). Explicit asymptotic bounds for the twin-width of
k-planar graphs (albeit with O(k) in the exponent, and so not giving an explicit number
for e.g. k = 1) are in [9] (with a generalization to higher surfaces), and specially for planar
graphs, the current upper bounds on twin-width are 583 in [9], improved to 183 in [23], to 37
in [6] and to 9 in [22], which is currently the best known one. It is worth to mention that
both [9, 23], more or less explicitly, use the product structure machinery of planar graphs.
Here, we give a new explicit (non-asymptotic) bounds on the twin-width of h-framed and
1-planar graphs.

▶ Theorem 5.1. (*) Let G be a simple spanning subgraph of an h-framed graph with h ≥ 4.
Then the twin-width of G is at most 33⌊h/2⌋ + ⌊h/3⌋ + 13 ≤ 17h + 13.

Proof sketch. The rough idea (inspired in part by [23, Section 4]) is to recursively decom-
pose G into subgraphs bounded by cycles of the plane skeleton of an h-framed supergraph of
G – the same decomposition that has been used to obtain the product structure in Lemma 3.2.
Then, on the “way back” from the recursion, we contract vertices inside these cycles which
are at the same time in the same BFS layer in a controlled way, that is, not creating too-high
red degrees in general, and completely avoiding red edges to suitably selected vertices on the
bounding cycles (however, unlike [23], we do not exploit planarity for the latter task). ◀

▶ Corollary 5.2. The twin-width of simple 1-planar and optimal 2-planar graphs is at most 80.

We point out that Theorem 5.1 implies an improvement on the twin-width of k-map graphs
only up to a certain k, as these graphs have bounded twin-width independently of k [8].

7 In general, the concept of twin-width is defined for binary relational structures of a finite signature, and
so one may either define the twin-width of a multigraph as the twin-width of its simplification, or allow
only bounded multiplicities of edges and use the more general matrix definition of twin-width.

ISAAC 2022



23:14 Graph Product Structure for h-Framed Graphs

6 Conclusions

In this paper we have provided a product structure theorem for h-framed graphs. Our
approach is constructive and can easily be implemented to run in quadratic time to obtain
the corresponding decomposition, provided that the input graph is a topological h-framed
graph.

A major open question is to obtain a speed up in the construction; the recent algorithmic
advances in [10, 24] have the potential to lead to improvements in the running time. Another
important open problem is whether each k-planar graph is a subgraph of the strong product
of a path, a (planar) graph of constant treewidth, and a clique whose size is a function of k;
our results suggest that such a structure might be possible.

References
1 Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey

Pupyrev. Queue layouts of planar 3-trees. Algorithmica, 82(9):2564–2585, 2020. doi:10.1007/
s00453-020-00697-4.

2 Md. Jawaherul Alam, Franz J. Brandenburg, and Stephen G. Kobourov. Straight-line grid
drawings of 3-connected 1-planar graphs. In Stephen K. Wismath and Alexander Wolff,
editors, Graph Drawing, volume 8242 of LNCS, pages 83–94. Springer, 2013. doi:10.1007/
978-3-319-03841-4_8.

3 Michael A. Bekos, Giordano Da Lozzo, Svenja Griesbach, Martin Gronemann, Fabrizio
Montecchiani, and Chrysanthi N. Raftopoulou. Book embeddings of nonplanar graphs with
small faces in few pages. CoRR, abs/2003.07655, 2020. arXiv:2003.07655.

4 Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On optimal 2- and
3-planar graphs. In Boris Aronov and Matthew J. Katz, editors, SoCG, volume 77 of LIPIcs,
pages 16:1–16:16. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.SoCG.2017.16.

5 Michael A. Bekos, Giordano Da Lozzo, Svenja Griesbach, Martin Gronemann, Fabrizio
Montecchiani, and Chrysanthi N. Raftopoulou. Book embeddings of nonplanar graphs with
small faces in few pages. In SoCG, volume 164 of LIPIcs, pages 16:1–16:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

6 Michael A. Bekos, Giordano Da Lozzo, Petr Hlinený, and Michael Kaufmann. Graph product
structure for h-framed graphs. CoRR, abs/2204.11495, 2022. arXiv:2204.11495.

7 Marthe Bonamy, Cyril Gavoille, and Michal Pilipczuk. Shorter labeling schemes for planar
graphs. In Shuchi Chawla, editor, SODA, pages 446–462. SIAM, 2020. doi:10.1137/1.
9781611975994.27.

8 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022.

9 Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative
strengthening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858,
2022. arXiv:2202.11858.

10 Prosenjit Bose, Pat Morin, and Saeed Odak. An optimal algorithm for product structure in
planar graphs. CoRR, abs/2202.08870, 2022. arXiv:2202.08870.

11 Michal Debski, Stefan Felsner, Piotr Micek, and Felix Schröder. Improved bounds for centered
colorings. In Shuchi Chawla, editor, SODA, pages 2212–2226. SIAM, 2020. doi:10.1137/1.
9781611975994.136.

12 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

13 Vida Dujmovic, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat Morin.
Adjacency labelling for planar graphs (and beyond). In FOCS. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00060.

https://doi.org/10.1007/s00453-020-00697-4
https://doi.org/10.1007/s00453-020-00697-4
https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1007/978-3-319-03841-4_8
http://arxiv.org/abs/2003.07655
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
http://arxiv.org/abs/2204.11495
https://doi.org/10.1137/1.9781611975994.27
https://doi.org/10.1137/1.9781611975994.27
http://arxiv.org/abs/2202.11858
http://arxiv.org/abs/2202.08870
https://doi.org/10.1137/1.9781611975994.136
https://doi.org/10.1137/1.9781611975994.136
https://doi.org/10.1109/FOCS46700.2020.00060
https://doi.org/10.1109/FOCS46700.2020.00060


M. A. Bekos, G. Da Lozzo, P. Hliněný, and M. Kaufmann 23:15

14 Vida Dujmovic, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood. Clustered
3-colouring graphs of bounded degree. Comb. Probab. Comput., 31(1):123–135, 2022. doi:
10.1017/S0963548321000213.

15 Vida Dujmovic, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R.
Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020. doi:
10.1145/3385731.

16 Vida Dujmovic, Pat Morin, and David R. Wood. Graph product structure for non-minor-closed
classes. CoRR, abs/1907.05168v3, 2020. arXiv:1907.05168v3.

17 Vida Dujmovic, Pat Morin, and David R. Wood. Graph product structure for non-minor-closed
classes. CoRR, abs/1907.05168v4, April 2022. arXiv:1907.05168v4.

18 Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David Wood. Planar
graphs have bounded nonrepetitive chromatic number. Advances in Combinatorics, March
2020. doi:10.19086/aic.12100.

19 Zdenek Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood. Notes on
graph product structure theory. CoRR, abs/2001.08860, 2020. arXiv:2001.08860.

20 Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized
complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82–123, 2021.
doi:10.4230/DagRep.11.6.82.

21 Lenwood S. Heath, Frank Thomson Leighton, and Arnold L. Rosenberg. Comparing queues
and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math., 5(3):398–412, 1992.
doi:10.1137/0405031.

22 Petr Hliněný. Twin-width of planar graphs is at most 9. CoRR, abs/2205.05378, 2022.
arXiv:2205.05378.

23 Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar
graphs, and bipartite graphs. CoRR, abs/2201.09749, 2022. arXiv:2201.09749.

24 Pat Morin. A fast algorithm for the product structure of planar graphs. Algorithmica,
83(5):1544–1558, 2021. doi:10.1007/s00453-020-00793-5.

25 Pat Morin, Vida Dujmović, Sergey Norin, and David Wood. Graph product structure theory.
Banff Int., November 21-26 2021.

26 Michal Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings on
proper minor-closed graph classes. J. Comb. Theory, Ser. B, 151:111–147, 2021. doi:
10.1016/j.jctb.2021.06.002.

27 Torsten Ueckerdt, David R. Wood, and Wendy Yi. An improved planar graph product
structure theorem. CoRR, abs/2108.00198, 2021. arXiv:2108.00198.

ISAAC 2022

https://doi.org/10.1017/S0963548321000213
https://doi.org/10.1017/S0963548321000213
https://doi.org/10.1145/3385731
https://doi.org/10.1145/3385731
http://arxiv.org/abs/1907.05168v3
http://arxiv.org/abs/1907.05168v4
https://doi.org/10.19086/aic.12100
http://arxiv.org/abs/2001.08860
https://doi.org/10.4230/DagRep.11.6.82
https://doi.org/10.1137/0405031
http://arxiv.org/abs/2205.05378
http://arxiv.org/abs/2201.09749
https://doi.org/10.1007/s00453-020-00793-5
https://doi.org/10.1016/j.jctb.2021.06.002
https://doi.org/10.1016/j.jctb.2021.06.002
http://arxiv.org/abs/2108.00198

	1 Introduction
	2 Preliminaries
	3 Computing the Product Structure
	4 Consequences of the Product Structure
	5 Bounding Twin-width
	6 Conclusions

