
External-Memory Dictionaries with Worst-Case
Update Cost
Rathish Das #

University of Liverpool, UK

John Iacono #

Université libre de Bruxelles, Belgium
New York University, USA

Yakov Nekrich #

Michigan Technological University, Houghton, MI, USA

Abstract
The Bϵ-tree [Brodal and Fagerberg 2003] is a simple I/O-efficient external-memory-model data
structure that supports updates orders of magnitude faster than B-tree with a query performance com-
parable to the B-tree: for any positive constant ϵ < 1 insertions and deletions take O(1

B1−ϵ logB N)
time (rather than O(logB N) time for the classic B-tree), queries take O(logB N) time and range
queries returning k items take O(logB N + k

B
) time. Although the Bϵ-tree has an optimal up-

date/query tradeoff, the runtimes are amortized. Another structure, the write-optimized skip list,
introduced by Bender et al. [PODS 2017], has the same performance as the Bϵ-tree but with runtimes
that are randomized rather than amortized. In this paper, we present a variant of the Bϵ-tree with
deterministic worst-case running times that are identical to the original’s amortized running times.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Sorting and searching; Theory of computation → Design and analysis of
algorithms

Keywords and phrases Data Structures, External Memory, Buffer Tree

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.21

Funding Rathish Das: Supported by the Canada Research Chairs Programme and NSERC Discovery
Grants.
John Iacono: Supported by Fonds de la Recherche Scientifique-FNRS under Grants MISU F 6001 1
and CDR/OL J.0101.22 – 40008322.

1 Introduction

The external memory model of Aggarwal and Vitter [1], sometimes called the I/O model
or the Disk-Access Model (DAM), has been the most successful model of computation for
problems where the data can not fit into RAM and the transfers between main memory and
external memory strongly dominate the runtime on real machines. External memory data
structures [2, 3, 7, 8, 10, 11, 13, 15, 21, 22, 24, 25, 27] have played a significant role in improving
the performance of applications involving large datasets; the above references are but a
small sample of related work in the external memory model, DBLP currently lists over 400
publications with external memory in the title.

In the external memory model, there are two levels of memory: an internal memory of
size M and an external memory of unbounded size connected to the internal memory. Data
is transferred between the two levels of memory in contiguous blocks of size B. The cost
of an algorithm or a data structure is measured by the number of block transfers between
internal and external memory; all computation in internal memory is free. When designing
an algorithm in the external-memory model, the values of M and B are known, in contrast
to the cache-oblivious model [18].

© Rathish Das, John Iacono, and Yakov Nekrich;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rathish.das@liverpool.ac.uk
mailto:john@johniacono.com
mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2022.21
https://dblp.org/search?q=external+memory
https://dblp.org/search?q=external+memory
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 External-Memory Dictionaries with Worst-Case Update Cost

The B-tree, introduced by Bayer and McCreight fifty years ago [5], is the archetypal data
structure in the external memory model. It stores a set of totally ordered keys, and supports
insertions, deletions, predecessor queries in time O(logB N), and range searches returning k

elements in time O(logB N + k
B) in the external memory model. The B-tree is simple, is a

standard part of the CS curriculum, and in optimized form is widely implemented as the
cornerstone structure of databases due to its excellent real-world performance.

In internal memory, updates and searches share the same O(log N) runtime which is
achieved by classic structures such as the AVL tree and the Red-Black tree. However, in
external memory it is possible to substantially speed up updates with little increase in the
search time. This trade-off was explored primary from the lower-bound view by Brodal
and Fagerberg [11]. On one extreme of this trade-off curve, B-trees have an optimal query
(e.g., predecessor query) bound but have a slow update bound. On the other extreme of the
trade-off curve, buffer-repository trees [13] have far better update bound than B-tree but
have a poor query bound.

Brodal and Fagerberg [11] introduced Bϵ-tree at a “sweet spot” on the update-query
trade-off curve. Bϵ-tree performs insertions orders of magnitude faster than B-tree with
a query performance comparable to B-tree. The improvement in insertion performance of
Bϵ-tree comes due to the use of buffers at nodes. Instead of inserting an individual key into
the tree, the key is queued in the buffer of the root node, and when a significant number of
keys are buffered, they are flushed recursively to the next level of the tree. This buffering
technique allows Bϵ-tree to achieve an amortized update cost O(1

B1−ϵ logB N), while slowing
down the queries by but a 1

ϵ factor (ϵ is a tuning parameter that is between 0 and 1); they
showed this is optimal for a random insertion workload [11]. Data structures for other
fundamental abstract data types (ADTs) in the external memory and cache oblivious models
with fast updates have also been created; see for example cache-oblivious dictionaries [9],
priority queues [4, 12,14,17,19,23], hashing (only exact search) [21] and point location [20].

The Bϵ-tree structure is very simple and easy to implement, but it has one major flaw:
the runtimes hold in the amortized sense only and in the worst case the entire structure
may need to be modified to execute a single query. Such performance is clearly unacceptable
in the target application of a database. As we describe below, the Bϵ-tree is just a B-tree
with fanout Bϵ, and where there is a buffer on each internal node which caches updates and
only distributes them to the children when the buffer is full. The deterministic worst-case
running time guarantee is very poor due to flushing cascades. A flushing cascade occurs
when flushing the buffer of a node triggers flushes into multiple children nodes, which in turn
trigger flushes to their children and so on. Flushing cascades become most acute when two
nodes are merged into a new node, and their buffers are merged into a single buffer. The
resulting buffer can overflow if the merged buffer can not hold all the items of the original
two buffers. A buffer overflow can trigger new flushes, which again cause cascades and more
node merges in the whole tree. In the worst-case, a single update (insert or delete) could
trigger modifications to Ω(N1−o(1)) nodes of the tree [6].

There have been several attempts to deterministically de-amortize the performance of
Bϵ trees. In Bender et al. [8], a variant of skip lists was presented where a query takes
O(logB N) I/O with high probability and an update takes O(1

B1−ε logB N) I/O amortized
with high probability. Recently Bender et al. [6] introduced a randomized universal buffer
flushing strategy that achieves an update bound of O(1

B1−ε logB N) with high probability
(not amortized) for a variant of the Bϵ-tree.

So, using the best previously known results, O(1
B1−ϵ logB N) updates and O(logB N)

queries are possible in either the amortized sense, or randomized with high probability.

R. Das, J. Iacono, and Y. Nekrich 21:3

This paper. Our contribution is that these running times can be achieved deterministically
in the worst-case (i.e., deamortized) with a structure based on the Bϵ-tree.

It seems difficult to apply standard de-amortization techniques to our problem without
sacrificing performance. The standard global re-building technique [26] works by copying
insertions into a new tree using a background process. When all insertions are copied into a
new tree, the old tree is discarded. This approach can guarantee that the height of the tree
is bounded by O(logB N). However, we can have a large sequence of leaves with a very small
number of insertions in each leaf. This can significantly increase the cost of range queries; in
the worst scenario we may have to visit Ω(N/B) leaf nodes in order to answer a range query.
Another approach is to maintain the sizes of buffers in internal nodes using a background
process. However, the merging of two nodes can lead to a cascade of deletions. Thus each
round of the background process could take almost linear time as explained above [6].

In this paper we de-amortize the Bε-tree through a combination of several techniques. At
a high level, this involves having large leaves stored in a separate structure, and periodically
splitting or merging selected leaves rather than when they reach certain sizes. Splitting
and merging needs to be propagated up the structure, and splitting in particular can cause
overflow which requires flushing data down the structure. And, all of this needs to be done
while new updates keep arriving though a very careful choice of relevant parameters.

What does it mean to deamortize a structure whose per-operation runtime may be
subconstant, as it is likely to be in the case of O(1

B1−ε logB N)? This means that if the
update cost of 1

B1−ε logB N is subconstant, then a constant number of I/Os are executed
every B1−ϵ

logB N operations.
We proceed by reviewing the standard Bϵ-tree in Section 2 and presenting our variant in

Section 3.

2 The Bϵ-tree

Buffer of
size B

Θ(Bϵ) pivots

B items
· · ·Θ

(
N
B

)
leaves · · ·

· · ·Θ(Bϵ) children · · ·

Θ(logBϵ N)
Θ(Bϵ) pivots Θ(Bϵ) pivots

Buffer of
size B

Buffer of
size B

B items

Figure 1 Bϵ-tree.

Abstract data type

The data structure maintains a set S of keys (or key-value pairs), where the keys are
constant-sized and come from a totally ordered universe, under the following operations:

Insert(x): Adds key x to S under the precondition that x ̸∈ S.
Delete(x): Removes key x from S under the precondition that x ∈ S

Predecessor(x): Returns the largest key y ∈ S such that y ≤ x

Range-Report(x, y): Returns all keys in [x, y] ∩ S in sorted order.
We use N to denote |S|, and use the word update to generically refer to an insertion or
deletion.

ISAAC 2022

21:4 External-Memory Dictionaries with Worst-Case Update Cost

Structure description

See Figure 1. A Bϵ-tree is just a standard B-tree where internal nodes have Θ(Bϵ) children
and an additional buffer of size B which stores updates that are destined to the subtree of
the node; leaves store Θ(B) keys. The buffers of internal nodes store updates, that is, both
insertions and deletions.

Predecessor queries can be done with a single root-to-leaf traversal, pushing updates
on the search path down to the leaf. During this process, paired insertions and deletions
annihilate each other. In the case where such annihilations require restructuring via standard
splits and merges, it is paid for in the amortized sense with the removal of the updates from
the tree.

When a buffer is full, some of the updates are removed and copied to the buffer of a child,
with the child being chosen so as to maximize the number of updates pushed down; as the
buffer is size B, the keys are constant sized, and the number of children is Θ(Bϵ), there must
be at least one child buffer with Ω(B1−ϵ) updates to be pushed down to it. Determining this
child and moving the data can be done in a constant number of block transfers. When leaves
are full or become more than a constant factor empty, splits and merges are performed in
the usual way, though merges may cause overflows of merged buffers which could cause more
updates to be propagated, which could cause more merges, and this could continue as possibly
effect every node in the structure. However, the amortized cost of an insertion/deletion is
O(1

B1−ϵ logB N) as each update will be involved in O(logB N) buffer overflows at a unit cost
of each, spread over B1−ϵ items. We summarize the performance of Bϵ trees:

▶ Theorem 1 ([11]). Given any constant ε, 0 < ε < 1, the Bϵ-tree supports updates in
amortized time O(1

B1−ε logB N), predecessor searches in worst-case time O(logB N), and
range searches that return k elements in worst-case time O(logB N + k

B) in the external
memory model.

3 Our Data Structure

Out data structures performance is summarized by the following theorem, which we will
spend the rest of this section proving:

▶ Theorem 2. Given any constant ε, 0 < ε < 1, our data structure supports updates
in worst case time O(1

B1−ε logB N) (meaning O(1) I/Os every O(B1−εlogB N) updates if
1

B1−ε logB N < 1), predecessor searches in worst-case time O(logB N), and range searches
that return k elements in worst-case time O(logB N + k

B) in the external memory model.

3.1 Our Approach
We make several major changes in our structure compared to a standard buffered Bϵ-tree in
order to obtain worst-case bounds. We describe these changes at a high level first, and then
give a full description of our data structure. Following the convention used in many previous
papers, our data structure stores updates. An update is a key combined with a flag indicating
whether it is an insertion or a deletion. To avoid confusion, we use update operation to
refer to a insertion or deletion operation executed by the user, and update without the word
“operation” to refer to a key/flag pair stored by the data structure. We define δ = ε/2.
We assume N is an upper bound on the number of keys logically stored by the structure,
and will state several invariants of the structure in terms of N ; should the actual number of
keys logically stored vary polynomially from from N , the structure will need to be rebuilt,
which we explain how to do in §3.6. We make the following major changes in our structure
compared to the standard Bϵ-tree:

R. Das, J. Iacono, and Y. Nekrich 21:5

We increase the size of leaf nodes to Θ(B log2
B N). Each leaf is stored in an auxiliary

data structure implemented as a two-level tree, with fan-out Θ(logB N).
Each internal node stores a buffer of size at most B1−δ. The only exception is we allow
the root and one other node to have a buffer size double that, 2B1−δ, because two buffers
were just combined as a result of a merge.
Instead of splitting and merging leaves when they reach some size thresholds, we alternate
picking the largest leaf and splitting it (if it is large enough) and picking the smallest leaf
and merging it with a sibling (if it is small enough), and then possibly splitting it. Such
splits and merges are propagated up in the normal way. We show that this is sufficient to
maintain the size invariants of the leaves.
To ensure that a node’s buffer size is within range, either because it is the root and
updates have been added as the result of update operations or a merge caused the two
sibling buffers to be combined, B1−2δ items are moved from a buffer to a single child (a
flush), and this flush is repeated down to a leaf. Multiple such flushes, up to Bδ may be
required to reduce a merged buffer of size 2B1−δ down to B1−δ.
We maintain auxiliary information in each internal node. Such information includes the
key values needed for searching, which is standard, as well as augmented information that
allows the algorithm to find the leaves storing the most/least updates. When changes are
made to leaves, the auxiliary information may need to be updated in its ancestors.
We alternate waiting for the user to execute Θ(B1−2δ

logB N) update operations (as well as
an unlimited number of queries), and doing structural work to maintain the invariants
until there is an I/O. The various parameters are chosen with care so that the number of
update operations does not overwhelm the rebalancing in progress.
Queries do not change the structure. Instead, we guarantee by construction that all
updates found in buffers of internal nodes on a root-to-leaf path fit in Θ(logB N) blocks
and that the insertions on the path asymptotically dominate the deletions. Thus all
of these updates can be copied into a temporary workspace, all insert-delete pairs are
removed, the result of the predecessor query is determined and returned. Range queries
work in a similar manner, with the insertions contained in the buffers that cover any
range dominating the deletions. This approach avoids the need to answer queries by
pushing down the changes to the root and causing a possibly uncontrolled number of
cascading changes as in the classic Bϵ-tree.

Summing up, our tree is leaf-heavy, among the updates stored in the buffers insertions
asymptotically dominate deletions, most updates are stored in the leaves, and each leaf stores
Θ(B log2

B N) updates. The tree structure is maintained by regularly splitting and merging
the leaves that are largest and smallest and not at some fixed threshold of size.

3.2 Invariants

As in a standard Bϵ tree, internal nodes store buffers of updates that are destined for some
leaf in their subtreee, and keys to guide the search. The leaves, however, are separate
structures described in §3.4.

Child count. Every internal node has a number of children in the range [1
2 Bδ, Bδ]. The root

may have less children, but at least 2. This invariant can be violated by a single node at
any given time, and may only violate it by ±1.

Leaf size. Every leaf stores a number of updates in the range [B log2
B N, 5B log2

B N]. We do
not count matching insertion/deletion pairs in a leaf as these will be eliminated.

ISAAC 2022

21:6 External-Memory Dictionaries with Worst-Case Update Cost

Internal node buffer size. Each internal node has at most B1−δ updates in its buffer. This
invariant can be violated by two nodes at any given time. One of which is the root, and
the other is a node that will have just had its buffer merged with a sibling. For these two
nodes we ensure that there are at most 2B1−δ updates in their buffers. These nodes are
said to be overfull.

Height. The height of the tree is always at most ch logB N for some constant ch. This follows
from the preceding invariants.

Auxiliary information. As is standard in a leaf oriented-tree, each internal node stores keys
needed to guide searches. Additionally, each internal node stores which child contains
the subtree with the leaf of maximum size, and what that size is, as well as the same
information for the leaf of minimum size.

3.3 Updates
First we describe at a high level how update operations are executed, then present in Figure 2
the details, followed by justification of correctness and runtime.

One core subroutine is the flush which moves B1−2δ updates from a node’s overfull buffer
to one of its children, and then repeats this process on that child until either a non-overfull
buffer or a leaf is reached. If a buffer is overfull it has at least B1−δ updates in its buffer.
Thus, by pigeonhole there must be one of its at most Bδ children for which it can move
B1−2δ updates to.

At a high level, our algorithm can be thought of always being in the process of doing one
of the following:

While the root buffer is overfull, flush. This could require Θ(Bδ) flushes.
The largest leaf is split if it stores at least 4 log2

B N updates. This split is propagated up
the tree.
The smallest leaf is merged if it stores less than 2 log2

B N updates. This merge is
propagated up the tree. However, each merge may cause a buffer to become too large, up
to 2B1−δ instead of the normal limit of B1−δ; this is fixed by performing O(Bδ) flushes
on the overfull buffer to remove the overfull condition. It is crucial to note that O(Bδ)
flushes could be performed starting on each of the O(logB N) nodes being split; as the
flush is itself a loop that could visit O(logB N) nodes, this creates a triple-nested loop
whose innermost operations, one step of a flush, could run Θ(Bδ log2

B N) times.

One cycle will consist of either splitting or merging a leaf and propagating upwards, where
after each time a node is split or merged the root is flushed. Figure 2 shows the full details
of this.

The crucial point is that after every I/O in the above infinite process the algorithm stops
and waits for the user to execute B1−2δ

ci logB N update operations, which it adds to the root’s
buffer, before continuing; the constant ci is defined later.

We now argue the claimed runtime is correct, the claimed number of times each loop
runs is correct, and the invariants hold. Arguing that the leaf size invariant holds is the most
involved part of the result.

The leaf data structure: a preview

We include here a summary of the leaf operations and their performance so that we may
analyze the main update procedure using the leaves as a black box. Section 3.4 describes how
the leaves are implemented to achieve this. The leaf data structure will support the following
subroutines; as in the description of the main procedure to execute update operations, these
algorithms alternate execution and waiting for the user to execute update operations.

R. Das, J. Iacono, and Y. Nekrich 21:7

[1] Alternate between a split phase and a merge phase. Together, these are a cycle.
[2] Set n1 to the root. Move n1 to the leaf with the most/least updates if a split/merge

phase by repeatedly moving n1 down to the appropriate child using the auxiliary
information. (This takes ch logB N steps).

[3] If a split phase and n1’s buffer has at least 4B log2
B N , split n1; if a merge phase

and n1 has at most 2B log2
B N updates, merge n1 with one of its siblings and if this

results in a leaf with more than 5B log2
B N updates split it evenly.

[4] Propagate splits/merges up. While n1 is not null: (the parent of the root)
(This loop will run at most ch logB N times).

[5] Move n1 to its parent.
[6] Split/merge n1 as in a B-tree if needed; also split or merge the buffer(s). Update

the auxiliary information in n1.
[7] Set n2 to n1.
[8] Repeated flushing of split/merge node. While n2 is an internal node with

an overfull buffer: (This loop will run at most Bδ times).
[9] Set n3 to n2.
[10] Propagating a flush of a split/merge node downward. While n3 is an

internal node with n3 an overfull buffer: (This loop will run at most ch logB N

times).
[11] Identify a child of n3, call it n4, for which the buffer of n3 can move at

least B1−2δ elements from n3’s buffer to n4’s, this exists by pigeonhole.
[12] Move B1−2δ items from n3’s buffer to n4’s.
[13] Set n3 = n4.

[14] Update auxiliary information. Move n3 to its parent until it reaches
the root while updating the auxiliary information. (This loop runs at most Bδ

times).
[15] While the root buffer is overfull, set n5 to the root and: (This loop runs at

most Bδ times).
[16] Flush from root. While the buffer of n5 is overfull: (This loop runs at

most ch logB N times).
[17] Identify a child of n5, call it n6, for which the buffer of n5 can move at

least B1−2δ elements from n5’s buffer to n6’s; this exists by pigeonhole.
[18] Move B1−2δ items from n5’s buffer to n6’s.
[19] Set n5 = n6.

[20] Update auxiliary information. Moving n5 to its parent until it reaches
the root while updating the auxiliary information.

Figure 2 Full description of how update operations are executed. Note that this is presented as
an infinite loop. In addition to the above description, every time there is an I/O the algorithm stops
and waits for the user to execute B1−2δ

ci logB N
update operations and then contininues until the next

I/O occurs.

ISAAC 2022

21:8 External-Memory Dictionaries with Worst-Case Update Cost

Bulk-insert of updates. B1−2δ updates are added to the leaf. During the execution of this
O(logB N) I/Os are performed, with the algorithm stopping after each one to wait for
the user to execute B1−2δ

ci logB N update operations which are added to the root buffer of the
main tree.

Split and merge. These take O(Bδ logB N) I/Os to complete; the algorithm stops after each
I/O to wait for the user to execute B1−2δ

ci logB N update operations which are added to the
root buffer of the main tree.

Runtime

We require that after each I/O we wait for B1−ϵ

ci logB N update operations to be executed by the
user (recall 2δ = ϵ). This is exactly what having a worst case runtime of O(logB N

B1−ϵ) means,
when 1

B1−ϵ < 1, a constant number of I/Os every B1−ϵ

ci logB N updates.
We have presented the algorithm and analysis for the (common) case where B1−ϵ

ci logB N is
at least one. If, however, we are in the (uncommon) case where B1−ϵ

ci logB N is less than one,
instead wait for the user to execute a single update operation and add it to the root buffer
every ci logB N

B1−2δ I/Os. This trivially gives the claimed runtime.

Loops

Here we argue that each loop runs the number of times indicated. The number of times each
loop runs, except those of lines 8 and 15 of Figure 2, are clearly bounded by the height of the
structure as they involve going up or down. However, the repeated flushing in lines 8 and 15
requires a different argument. If one of these loops run, it is because a flush is happening
at one of the two nodes that may violate size of an internal node invariant, either the root
(line 15) or a node that had just had it buffer merged with another (line 10). These nodes
may have up to 2B1−δ updates in their buffers. Each execution of these loops will remove
B1−2δ elements from the node being flushed. This will require looping at most Bδ times to
restore the invariant that they have at most B1−δ updates in their buffer.

Children

As in a standard B or Bϵ tree, the number of children may be out of range, and only by
one, while in the process of propagating a split or merge up; this node where the splits and
merges are in progress is n1 in our presentation.

Internal node buffer size

In each execution of the loop at line 4, the total number of I/Os is at most ciB
δ logB N , for

some ci. This is where ci is defined. Since B1−2δ

ci logB N update operations are executed per I/O
by adding the updates to the root, this means B1−δ updates are added to root per execution
of the loop at line 4. In execution of the loop at line 4 we explicitly flush from the root in
line 15 until the internal buffer size is not longer overfull.

The only other time an internal node’s buffer becomes overfull is after a merge, but in
line 10 flushes are performed until the node is no longer overfull.

Leaf size

In order to show that the leaf size invariant is maintained, that is each leaf holds from
B log2

B N to 5B log2
B N updates, we will need the following result which comes from Theorem

5 of [16]. Our formulation of this theorem will allow its easy use later.

R. Das, J. Iacono, and Y. Nekrich 21:9

▶ Theorem 3. Let X be a set of real valued positive variables and let b be a positive constant.
All variables x ∈ X are initially 0. We execute the following process which proceeds in rounds
and in each round may change the values of the x ∈ X as follows:
1. Values may be decreased without restriction
2. The sum of the increases in x of those x ∈ X that increase in a round is at most b.
3. During each round, the maximum value of x must be set to zero at some point.
Additionally, new elements may be added to X with a value of 0 and elements with a value
of 0 may be removed from X at any time. If |X| is always bounded by m, there is a constant
ct such that at all times xj ≤ ctb log m for all j.

▶ Lemma 4. The leaf size invariant is always satisfied, that is, the number of updates in
each leaf node is always between B log2

B N and 5B log2
B N .

Proof. To avoid repetitive clutter, let τ denote B log2
B N .

We examine how the number of updates in each leaf can change. These changes are
caused by the flushing of updates into the leaves, splitting leaves, and merging leaves. We
discuss each of these separately.

Let L be the set of leaves, and let n(ℓ) be the number of insertions stored in a leaf ℓ

without a matching delete. Define d(ℓ) be max(0, n(ℓ) − 4τ), and d′(ℓ) be max(0, τ − d(ℓ)).
Thus, d is nonzero when a leaf is within τ of its upper limit and d′ is nonzero when a leaf is
within τ of its lower limit.

In a cycle, updates can be added to leaves when a flush reaches a leaf, this could happen in
lines 12 and 18 of Figure 2. Multiplying by the number of times these lines may be executed
in a cycle, the number of updates that are added to all leaves is at most caB1−δ logB N for
some constant ca. This can cause

∑
ℓ∈L d(ℓ) to increase by that much during a cycle as

insertions are added to a leaf. When an deletion is added to a leaf, this will cause n(ℓ) to
decrease by 1. Thus

∑
ℓ∈L d′(ℓ) can also increase by caB1−δ logB N per cycle.

Additionally, any split will cause the created leaves during the split to have d(ℓ) and d′(ℓ)
be zero as they will have a size of at least 4τ and at most 5τ before the split, which results
in a size of at least 2τ and at most 5

2 τ .
If no split is performed then n(ℓ) < 4τ for all leaves ℓ and thus d(ℓ) is zero for all leaves ℓ.
If a merge is performed, a node with n(ℓ) in the range [τ..2τ] merges with its sibling

which has n(ℓ) in the range [τ..5τ], resulting a new leaf with size in the range [2τ..6τ]. If
its size is in the range [2τ..4τ] it has a d(ℓ) and d′(ℓ) value of 0. Otherwise its size is in the
range [4τ..6τ] and it is split evenly into two nodes each of which has size [2τ..3τ] and thus
has d(ℓ) and d′(ℓ) be 0.

Thus in each cycle we have shown that
∑

ℓ∈L d(ℓ) and
∑

ℓ∈L d′(ℓ) each increase by at
most caB1−δ logB N and the leaf ℓ with maximum d(ℓ) and ℓ′ with maximum d′(ℓ) will both
have their values d and d′ reset to zero if a split/merge was performed, and if it was not,
they were zero already. Thus we can apply Theorem 3 twice: one where the elements of X

represent the d(ℓ) values, m represents the number of leaves (which is trivially at most N)
and b represents caB1−δ logB N , and once using d′(ℓ) instead.

This yields bounds on maxℓ d(ℓ) and maxℓ d′(ℓ) of (caB1−δ logB N) · ct log N , which is at
most B log2

B N , for large enough B.
The bounds on d(ℓ) and d′(ℓ) being at most τ immediately follows by the definition of d

and d′ that n(ℓ) is in the range [τ, 5τ] which, recalling that τ = B log2
B N , is the claim of the

Lemma. ◀

ISAAC 2022

21:10 External-Memory Dictionaries with Worst-Case Update Cost

3.4 Leaf Data Structures
We now describe how the leaf data structures are implemented. Each leaf data structure
supports adding B1−2δ updates into the leaf, splits, merges, and searches. The main structure
ensures that splits and merges are performed to maintain the leaf’s size invariant.

We store each leaf ℓ as a two-level tree, and use the terminology micro-root and micro-leaf
to avoid confusion with the main structure. Each leaf T (ℓ) consists of a micro-root with
Θ(logB N) child micro-leaves. Each micro-leaf of T (ℓ) contains Θ(B logB N) updates in
sorted order. The micro-root of T (ℓ) has a buffer with at most B1−δ logB N updates. Every
time when we flush B1−2δ updates into ℓ we add them to the root buffer of T (ℓ). If the
root buffer contains over B1−δ logB N updates, we identify the micro-leaf ν where at least
B1−2δ updates can be moved. We flush those updates to ν and add them to blocks of ν.
We can merge the newly flushed updates with the extant updates in ν in O(logB N) I/Os,
while maintaining the updates in sorted order, and annihilating matching insertion/deletion
pairs on the same element. A deletion that is added to a micro-leaf is mutually annihilated
with the insertion of the same element, which must be present in the leaf. Thus micro-leaves
contain insertions only. Since deletions can be present only at the buffer of the micro-root of
Tℓ, there can be at most B1−δ logB N deletions in any leaf node. Micro-leaves of T (ℓ) can
be split and merged in a standard way so that each micro-leaf holds Θ(B logB N) updates.

When a leaf ℓ is split into ℓ1 and ℓ2, we distribute the micro-leaves of T (ℓ) among T (ℓ1)
and T (ℓ2); one micro-leaf can be possibly split into two parts. The cost is O(logB N) I/Os.
When two leaves ℓ1 and ℓ2 are merged, all micro-leaves of T (ℓ1) and T (ℓ2) become the
micro-leaves of T (ℓ). The buffers of the micro-roots of T (ℓ1) and T (ℓ2) are merged too. The
cost of merging is O(logB N) I/Os. After merging, the micro-root buffer of T (ℓ) can contain
up to 2B1−δ logB N I/Os. We “repair” the micro-root buffer by moving excessive updates
to micro-leaves. We can flush B1−2δ updates to a micro-leaf in O(logB N) I/Os. Hence the
total cost of flushing all excessive updates to micro-leaves is O(Bδ logB N).

In all of these operations, every time there is an I/O the algorithm stop and waits for
B1−2δ

ci logB N update operations to be executed by the user, adds these operations to the buffer of
the root of the main tree, and then resumes.

3.5 Queries
To answer a range reporting query [a, b], we identify all leaves that intersect with the range
[a, b]. If a leaf ℓ intersects with but is not contained in [a, b], we identify the micro-leaves
that intersect with [a, b]. If a micro-leaf ℓm intersects with [a, b], we traverse ℓm and make a
list of insertions stored in [a, b]. If a micro-leaf is entirely contained in [a, b], we list all its
insertions. Let L(ℓ) denote the list of insertions found in ℓ. We examine updates stored in
the root buffer of T (ℓ) and modify L(ℓ) accordingly. Since the updates in the root buffer
are in sorted order, L(ℓ) can be modified in O(logB N + |L(ℓ)|/B) I/Os, where |L| denotes
the number of updates in a list L. If a leaf ℓ is entirely contained in [a, b], we make a list
L(ℓ) containing all insertions stored in micro-leaves and in the root buffer of T (ℓ) (minus the
deletions in the root buffer of T (ℓ)). This takes O(|L(ℓ)|/B) I/Os. There are at most two
leaves that partially intersect with the query range [a, b]. Hence total cost of generating lists
L(ℓ) for all relevant leaves ℓ is O(k/B + logB N), where k is the number of insertions that
must be reported. We then visit all ancestors of relevant leaves ℓ, add insertions from [a, b]
to an extra list La, and copy all updates from [a, b] to internal memory. Finally we report all
elements from L(ℓ), excluding the deletions. Assuming that the internal memory can hold
O(logB N · B1−δ) deletions, this can be done in O(k/B) I/Os. Thus we can answer reporting

R. Das, J. Iacono, and Y. Nekrich 21:11

queries in O(k/B + logB N) I/Os under assumption that the internal memory is not too
small, M > B logB N . We note that Bϵ trees as well as the structures of Bender et al. and
Bender et al. [6, 8] all similarly require small non-constant amounts of memory for queries.

To answer a predecessor query q (i.e., to find the largest element that is not larger than
q), we create a list L1 of B logB N largest insertions stored in the leaf nodes that are ≤ q.
This can be done in O(logB N) I/Os using the same reporting procedure as described above.
Since a leaf holds Θ(B log2

B N) insertions, insertions in L are from at most two consecutive
leaves. We examine all insertions stored in ancestors of these two leaves and make a list
L2 of all insertions ≤ q. Let L3 denote the list of B logB N largest elements in L2 and L3.
Finally we make the list Ld that consists of all deletions ≤ q stored in ancestors. We find
the largest element in L3 that is not in Ld using the following lemma.

▶ Lemma 5. Let X and Y be two sets such that |X| = 2m, |Y | = m, and Y ⊂ X. We can
find the largest element e ∈ X, such that e ̸∈ Y in O(m/B) I/Os.

Proof. Let e(X, r) and e(Y, r) denote the r-th largest elements in X and Y respectively. Let
X(r1, r2) be the set of elements e(X, r1), . . ., e(X, r2). The cost of finding e(X, r) and e(Y, r)
for any r is O(m

B) using linear-time selection.
If e(X, k) = e(Y, k), then the k largest elements in X and Y are identical. If e(X, k) >

e(Y, k), then at least one among the k largest elements of X does not occur in Y . We must
find the smallest k′, such that e(X, k′) > e(Y, k′). Clearly e(X, k′) is the required element.
If e(X, m) = e(Y, m), then k′ = m + 1. Otherwise e(X, m) > e(Y, m) and we proceed as
follows. We compare e(X, m/2) and e(Y, m/2). If e(X, m/2) = e(Y, m/2), we recursively
search for k′ among elements of X(m/2, m) and Y (m/2, m). If e(X, m/2) > e(Y, m/2), we
recursively search for k′ among the elements of X(1, m/2 − 1) and Y (1, m/2 − 1). The total
runtime is O(m/B) I/Os. ◀

Lists L1, L2, L3, and Ld can be constructed in O(logB N) I/Os. We can find the largest
insertion x in L3 that is not in Ld in O(|L3|/B) = O(logB N): first we extract from Ld all
deletions that do not exceed q and then we apply Lemma 5. Clearly, x is the largest element
that is not deleted and is not larger than q. Hence x is the predecessor of q and can be found
in O(logB N) I/Os.

Summing up, we can answer predecessor and membership queries in O(logB N) I/Os. The
cost of answering a reporting query is O(logB N + k/B) where k is the number of reported
values. For reporting queries (but not for membership and predecessor queries), we need to
make an assumption that the internal memory can hold at least logB N blocks. However the
same assumption is also necessary in the case of standard Bε-trees with amortized updates.

3.6 Rebuilding
In our description we assumed that the values of logB N and τ are fixed. However, if the size
of the data structure changes significantly (e.g., the number of updates in the data structure
changes from N0 to below

√
N0), the value of τ can change by more than a constant factor.

Hence the invariant of leaf size, that is the Θ(B log2
B N) bound on leaf size can be violated.

In order to maintain the invariant of leaf size, we must re-build the tree in certain
situations. Let N0 denote the number of updates in the tree when it was re-built for the last
time. If N ≥ (1/2)N2

0 or N ≤ (3/2)
√

N0, we set τ ′ = B log2
B N and construct a new tree,

such that all leaves hold between (1/4)τ ′ and (7/4)τ ′ updates. The new tree T new can be
constructed in the background as explained below.

ISAAC 2022

21:12 External-Memory Dictionaries with Worst-Case Update Cost

Let T old denote the currently used tree and let T new denote the new constructed tree.
We traverse the updates stored in the leaf nodes of T old in left-to-right order. Updates
stored in each leaf are examined in increasing order (this is easy to do because the updates
in micro-leaves and in the root node buffer of T (ℓ) are sorted). Let ℓ denote the currently
visited leaf node and let L denote the list of insertions stored in the ancestors of ℓ. During
each round we examine the next 2B1−δ insertions stored in ℓ. We add these insertions to
L and extract the set S of B1−δ smallest insertions. Next, we visit all ancestors of ℓ and
remove from S all deletions (that is, if S contains an insertion e and an ancestor of ℓ stores
a deletion e, then e is removed from S). We also remove all deletions stored in the root
buffer of T (ℓ). All insertions that remain in S are added into the new tree T new. When all
insertions in a leaf ℓ are examined, we move to the right neighbor of ℓ and update the list L

accordingly.
When new updates are added to T old, we also add them to T new. The only exception are

deletions that correspond to unprocessed insertions: Let vmax denote the key value of the
largest insertion from T old that was added to T new. All deletions with key value v ≤ vmax
are added to T new; deletions with key value v > vmax are not added to T new. When all
insertions in the leaves of T old are examined and copied to T new, we discard T old and start
using T new to answer queries.
▶ Remark. To simplify the description, we set δ = ε/2 in our data structure. Hence the
height of our tree is two times larger than the height of the standard Bε-tree. It is possible
to use any constant δ < ε such that Bδ log B < Bε. Thus it is possible to reduce the height
ratio of our tree and the standard Bε-tree to any constant ρ > 1.

References
1 Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, September 1988.
2 Lars Arge. The buffer tree: A technique for designing batched external data structures.

Algorithmica, 37(1):1–24, 2003.
3 Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.

Cache-oblivious priority queue and graph algorithm applications. SIAM Journal on Computing,
36(6):1672–1695, 2007.

4 Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.
An optimal cache-oblivious priority queue and its application to graph algorithms. SIAM
Journal on Computing, 36(6):1672–1695, 2007. doi:10.1137/S0097539703428324.

5 Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189, February 1972. doi:10.1145/1734663.1734671.

6 Michael A Bender, Rathish Das, Martín Farach-Colton, Rob Johnson, and William Kuszmaul.
Flushing without cascades. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 650–669. SIAM, 2020.

7 Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C.
Kuszmaul, and Jelani Nelson. Cache-oblivious streaming B-trees. In Proc. 19th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 81–92, 2007.

8 Michael A. Bender, Martin Farach-Colton, Rob Johnson, Simon Mauras, Tyler Mayer, Cynthia
Phillips, and Helen Xu. Write-optimized skip lists. In Proc. 36th ACM Symposium on
Principles of Database Systems (PODS), pages 69–78, May 2017.

9 Gerth Stølting Brodal, Erik D. Demaine, Jeremy T. Fineman, John Iacono, Stefan Langerman,
and J. Ian Munro. Cache-oblivious dynamic dictionaries with update/query tradeoffs. In
Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1448–1456.
SIAM, 2010. doi:10.1137/1.9781611973075.117.

10 Gerth Stølting Brodal and Rolf Fagerberg. Funnel heap – A cache oblivious priority queue. In
Proc. 13th International Symposium on Algorithms and Computation (ISAAC), pages 219–228,
2002.

https://doi.org/10.1137/S0097539703428324
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1137/1.9781611973075.117

R. Das, J. Iacono, and Y. Nekrich 21:13

11 Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries. In
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 546–554,
2003.

12 Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Norbert Zeh. Cache-oblivious data
structures and algorithms for undirected breadth-first search and shortest paths. In Torben
Hagerup and Jyrki Katajainen, editors, Algorithm Theory – SWAT 2004, pages 480–492,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

13 Adam L Buchsbaum, Michael H Goldwasser, Suresh Venkatasubramanian, and Jeffery R
Westbrook. On external memory graph traversal. In SODA, pages 859–860, 2000.

14 Rezaul A. Chowdhury and Vijaya Ramachandran. Cache-oblivious buffer heap and cache-
efficient computation of shortest paths in graphs. ACM Trans. Algorithms, 14(1):1:1–1:33,
January 2018. doi:10.1145/3147172.

15 Erik D. Demaine, John Iacono, and Stefan Langerman. Worst-case optimal tree layout in
external memory. Algorithmica, 72(2):369–378, 2015. doi:10.1007/s00453-013-9856-2.

16 Paul F. Dietz and Daniel Dominic Sleator. Two algorithms for maintaining order in a list. In
Proc. 19th Annual ACM Symposium on Theory of Computing (STOC), pages 365–372, 1987.
doi:10.1145/28395.28434.

17 R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on secondary
storage. Theor. Comput. Sci., 220(2):345–362, June 1999. doi:10.1016/S0304-3975(99)
00006-7.

18 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, 2012. doi:10.1145/2071379.
2071383.

19 John Iacono, Riko Jacob, and Konstantinos Tsakalidis. External memory priority queues
with decrease-key and applications to graph algorithms. In Michael A. Bender, Ola Svensson,
and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 60:1–60:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.60.

20 John Iacono, Ben Karsin, and Grigorios Koumoutsos. External memory planar point location
with fast updates. In Pinyan Lu and Guochuan Zhang, editors, 30th International Symposium
on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai University of
Finance and Economics, Shanghai, China, volume 149 of LIPIcs, pages 58:1–58:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ISAAC.2019.58.

21 John Iacono and Mihai Pătraşcu. Using hashing to solve the dictionary problem (in external
memory). In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
algorithms, pages 570–582. SIAM, 2012.

22 Shunhua Jiang and Kasper Green Larsen. A faster external memory priority queue with
decreasekeys. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1331–1343. SIAM, 2019.

23 Vijay Kumar and Eric J. Schwabe. Improved algorithms and data structures for solving graph
problems in external memory. In Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing (SPDP ’96), SPDP ’96, pages 169–, Washington, DC, USA, 1996. IEEE
Computer Society. URL: http://dl.acm.org/citation.cfm?id=829517.830723.

24 J. Ian Munro and Yakov Nekrich. Dynamic planar point location in external memory. In
35th International Symposium on Computational Geometry (SoCG), pages 52:1–52:15, 2019.
doi:10.4230/LIPIcs.SoCG.2019.52.

25 Patrick O’Neil, Edward Cheng, Dieter Gawlic, and Elizabeth O’Neil. The log-structured
merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996. doi:10.1007/s002360050048.

26 Mark H Overmars. The design of dynamic data structures, volume 156. Springer Science &
Business Media, 1987.

27 Russell Sears, Mark Callaghan, and Eric Brewer. Rose: Compressed, log-structured replication.
Proceedings of the VLDB Endowment, 1(1):526–537, 2008.

ISAAC 2022

https://doi.org/10.1145/3147172
https://doi.org/10.1007/s00453-013-9856-2
https://doi.org/10.1145/28395.28434
https://doi.org/10.1016/S0304-3975(99)00006-7
https://doi.org/10.1016/S0304-3975(99)00006-7
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.4230/LIPIcs.ESA.2019.60
https://doi.org/10.4230/LIPIcs.ISAAC.2019.58
http://dl.acm.org/citation.cfm?id=829517.830723
https://doi.org/10.4230/LIPIcs.SoCG.2019.52
https://doi.org/10.1007/s002360050048

	1 Introduction
	2 The B^{epsilon}-tree
	3 Our Data Structure
	3.1 Our Approach
	3.2 Invariants
	3.3 Updates
	3.4 Leaf Data Structures
	3.5 Queries
	3.6 Rebuilding

