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—— Abstract

We study the model checking problem of an extended MSO with local and global cardinality
constraints, called MSOE';], introduced recently by Knop, Koutecky, Masatik, and Toufar [Log.
Methods Comput. Sci., 15(4), 2019]. We show that the problem is fixed-parameter tractable
parameterized by vertex integrity, where vertex integrity is a graph parameter standing between

vertex cover number and treedepth. Our result thus narrows the gap between the fixed-parameter
tractability parameterized by vertex cover number and the W[1]-hardness parameterized by treedepth.
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1 Introduction

One of the most successful goals in algorithm theory is to have a meta-theorem that
constructs an efficient algorithm from a description of a target problem in a certain format
(see e.g., [29,30,35]). Courcelle’s theorem [6,8,9,11] is arguably the most successful example
of such an algorithmic meta-theorem, which says (with Bodlaender’s algorithm [4]) that: if a
problem on graphs can be expressed in monadic second-order logic (MSO), then the problem
can be solved in linear time on graphs of bounded treewidth. Many natural problems that are
NP-hard on general graphs are shown to have expressions in MSO and thus have linear-time
algorithms on graphs of bounded treewidth [1].

Although the expressive power of MSO captures many problems, it is known that MSO
cannot represent some kinds of cardinality constraints [10]. For example, it is easy to express
the problem of finding a proper vertex coloring with r colors in MSO as the existence of a
partition of the vertex set into r independent sets, where the length of the corresponding
MSO formula depends on r. However, the variant of the problem that additionally requires
the r independent sets to be of the same size cannot be expressed in MSO even if r = 2 (see
[10]). Indeed, this problem is known to be W[1]-hard parameterized by r and treewidth [16].1
See [3,28,41] for many other examples of such problems.

L We assume that the readers are familiar with the concept of parameterized complexity. For standard
definitions, see e.g., [12].
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For those problems that do not admit MSO expressions and are hard on graphs of bounded
treewidth, there is a successful line of studies on smaller graph classes with more restricted
structures. For example, by techniques tailored for individual problems, several problems are
shown to be tractable on graphs of bounded vertex cover number (see e.g., [15,17,18]). Such
results are known also for more general parameters such as twin-cover [24], neighborhood
diversity [36], and vertex integrity [28]. Then the natural challenge would be finding a
meta-theorem covering (at least some of) such results. Recently, such meta-theorems are
intensively studied for extended MSO logics with “cardinality constraints.” In this paper,
we follow this line of research and focus on vertex integrity as the structural parameter of
input graphs. The vertex integrity of a graph is the smallest number k = s + t such that by
removing s vertices of the graph, every component can be made to have at most ¢ vertices.
The concept of vertex integrity was introduced first in the context of network vulnerability [2].
It basically measures how difficult it is to break a graph into small components by removing a
small number of vertices. This can be seen as a generalization of vertex cover number, which
asks to remove vertices to make the graph edge-less (corresponding to the case ¢ = 1 of the
definition of vertex integrity). On the other hand, the concept of treedepth can be seen as a
recursive generalization of vertex integrity. This is because we can define the treedepth of a
graph recursively as follows: the treedepth of a graph is 1 if it has no edges, and otherwise it
is the minimum number k = s + ¢ such that s vertices can be removed from the graph to
make the treedepth of every component of the remaining graph at most t. Actually, their
definitions give us the inequality treedepth < vertex integrity < vertex cover number — 1 for
every graph (see [28]).

There is another issue about Courcelle’s theorem that the dependency of the running
time on the parameters (the treewidth of the input graph and the length of formula) is quite
high [20]. To cope with this issue, faster algorithms are proposed for special cases such as
vertex cover number, neighborhood diversity, and max-leaf number [36], twin-cover [24],
shrubdepth [25], treedepth [23], and vertex integrity [37]. The methods in these results are
similar in the sense that they find a smaller part of the input graph that is equivalent to the
original graph under the given MSO formula. Interestingly, these techniques are used also in
studies of extended MSO logics in these special cases. Our study is no exception, and we use
a result in [37] as a key lemma.

Meta-theorems on extended MSO with cardinality constraints

In this direction, there are two different lines of research, which have been merged recently.
One line considers “global” cardinality constraints and the other considers “local” cardinality
constraints.

Recall that the property of having a partition into r independent sets of equal size cannot
be expressed in MSO. A remedy for this would be to allow a predicate like | X| = |Y|. The
concept of global cardinality constraints basically implements this but in a more general way
(see Section 2 for formal definitions). It is known that the model checking for the extended
MSO logic with global cardinality constraints is fixed-parameter tractable parameterized by
neighborhood diversity [27].

The concept of local cardinality constraints was originally introduced as the fairness of a
solution [39]. The fairness of a solution (a vertex set or an edge set) upper-bounds the number
of neighbors each vertex can have in the solution. It is known that finding a vertex cover with
an upper bound on the fairness is W[1]-hard parameterized by treedepth and feedback vertex
set number [33]. On the other hand, the problem of finding a vertex set satisfying an MSO
formula and fairness constraints is fixed-parameter tractable parameterized by neighborhood
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diversity [40] and by twin-cover [33]. The general concept of local cardinality constraint
extends the concept of fairness by having for each vertex, an individual set of the allowed
numbers of neighbors in the solution. It is known that the extension of MSO with local
cardinality constraints admits an XP algorithm (i.e., a slicewise-polynomial time algorithm)
parameterized by treewidth [42].

Knop, Koutecky, Masarik, and Toufar [34] recently converged two lines and studied the
model checking of extended MSO with both local and global cardinality constraints. It is
shown that the problem admits an XP algorithm parameterized by treewidth. Furthermore,
they showed that the problem is fixed-parameter tractable parameterized by neighborhood
diversity if the cardinality constraints are “linear,” where each local cardinality constraint is
a set of consecutive integers and each global cardinality constraint is a linear inequality.

Our results

We study the linear version of the problem in [34] mentioned above; that is, the model
checking of the extended MSO logic with linear local and global cardinality constraints.
We show that this problem, called MSO‘,_S#1 MoDEL CHECKING, is fixed-parameter tractable
parameterized by vertex integrity. This result fills a missing part in the map on the complexity
of MSO, MODEL CHECKING as vertex integrity fits between vertex cover number and
treedepth: for the former the problem is fixed-parameter tractable [34], and for the latter
it is W[1]-hard [33]. Note that by MSO, we mean MSO;, which does not allow edge and
edge-set variables. After proving the main result, we show that the same result holds even
for the same extension of MSOs. We apply the results to several problems and show some
new examples that are fixed-parameter tractable parameterized by vertex integrity. We also
show that some known results can be obtained as applications of our results.?

clique-width

T~

modular-width shrub-depth treewidth

pathwidth

treedepth  feedback vertex set

twin-cover neighborhood diversity  vertex integrity

* FPT vertex cover number

Figure 1 Some of the major graph parameters and the complexity of MSOF: MODEL CHECKING.

If one parameter is an ancestor of another, then the ancestor is upper-bounded by a function of
the descendant. The fixed-parameter tractability parameterized by neighborhood diversity is shown
in [34]. The W[1]-hardness parameterized by twin-cover and by treedepth and feedback vertex set
number are shown in [33].

2 Omitted from the conference version. See the full version.
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2 Preliminaries

For two integers a and b, we define [a,b] = {x € Z | a < x < b}. We write [b] for the set [1,b].
For two tuples A = (A,,...,A,) and B = (B, ..., B,) of vertex sets, the concatenation
(Ai1,...,Ap,B1,...,By) is denoted by A + B. For a function f: X —Y and a set A C X,
the restriction of f to A is denoted by f|a4.

2.1 Graphs and colored graphs

We consider undirected graphs without self-loops or multiple edges. Let G = (V, E) be a
graph. The vertex set and the edge set of G are denoted by V(G) and E(G), respectively.
A component of G is a maximal connected induced subgraph of G. For a vertex set S of a
graph G, the subgraph of G induced by V'\ S is denoted by G — S.

A p-color list C of G is a tuple C = (C4,...,C,) of p vertex sets C; C V. Denote the
set of colors assigned by C to v € V by cole(v). Note that each vertex can have multiple
colors. That is, cole(v) = {i € [p] | v € C;}. Note that colg(v) can be computed in time
polynomial in |[V| and p. We call a tuple (G, C) a p-colored graph. If the context is clear, we
simply call it a graph.

Let G = (G1, C1) and Ga = (G2, C2) be p-colored graphs. A bijection ¢: V(G1) — V(G2)
is an isomorphism from Gy to Go if v satisfies the following conditions:

{u,v} € E(Gy) if and only if {¢)(u),¢(v)} € E(Gs) for all u,v € V(Gy);

cole, (v) = cole, (P(v)) for all v € V(Gy).

We say that G; and Gy are isomorphic if such 1 exists.

2.2 Vertex integrity

A vi(k)-set S of a graph G is a set of vertices such that the number of vertices of every
component of G — S is at most k — |S|. The vertex integrity of a graph G, denoted by vi(G),
is the minimum integer k such that there is a vi(k)-set of G. In other words, it can be defined
as follows:

SCV(G) Cece(G-S)

Vi(G) = min {|S|+ max |V(C)}7

where cc(G — 5) is the set of connected components of G — 5. A vi(k)-set of G, if any exists,
can be found in O(k*+1n) time [13], where n is the number of vertices in G.

As mentioned above, the concept of vertex integrity was originally introduced in the
context of network vulnerability [2], but recently it and its close relatives are used as
structural parameters in algorithmic studies. The safe number was introduced with a similar
motivation [22] and later shown to be (non-trivially) equivalent to the vertex integrity in
the sense that the safe number is bounded if and only if so is the vertex integrity for every
graph [21]. The definition of fracture number is almost the same as the one for vertex
integrity, where the only difference is that it asks the maximum (instead of the sum) of the
orders of S and a maximum component of G — S to be bounded by k. The ¢-component
order connectivity [13] measures the size of S and the maximum order of a component
of G — S separately, and defined to be the minimum size k of a set S such that each
component of G — S has order at most £. For example, 1-component order connectivity is
exactly the vertex cover number. Also, the 2-component order connectivity is studied as the
matching-splittability [31]. A graph has vertex integrity at most k if and only if the graph
has /-component order connectivity at most k — ¢ for some /£.
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The fracture number was used to design efficient algorithms for INTEGER LINEAR PRO-
GRAMMING [14], BOUNDED-DEGREE VERTEX DELETION [26], and LOCALLY CONSTRAINED
HoMOMORPHISM [7]. The vertex integrity was used in the context of subgraph isomorphism
on minor-closed graph classes [5], and then used to design algorithms for several problems
that are hard on graphs of bounded treedepth such as CAPACITATED DOMINATING SET,
CAPACITATED VERTEX COVER, EQUITABLE COLORING, EQUITABLE CONNECTED PAR-
TITION?, IMBALANCE, MAXIMUM COMMON (INDUCED) SUBGRAPH, and PRECOLORING
EXTENSION [28]. A faster algorithm for MSO MODEL CHECKING parameterized by vertex
integrity is also known [37].

2.3 Monadic second-order logic

A monadic second-order logic formula (an MSO formula, for short) over p-colored graphs is a
formula that matches one of the following, where x and y denote vertex variables, X denotes
a vertex-set variable, C; denotes a vertex-set constant (color): E(z,y);z =y; z € X; xz € Cj;
Jx.p, V., 3X.p, VX.0, o A, ¢ V1, and —p, where ¢ and 1) are MSO formulas. These
symbols have the following semantic meaning: E(x,y) means that 2 and y are adjacent; and
the others are the usual ones. Additionally, for convenience, we introduce MSO symbols
true and false that are always interpreted as true and false, respectively. Note that this
version of MSO is often called MSO;. In Section 4, we consider a variant called MSOs, which
has stronger expression power.

A variable is bound if it is quantified and free otherwise. An MSO formula is closed if it
has no free variables and open otherwise. We assume that every free variable is a set variable,
because a free vertex variable can be simulated by a free vertex-set variable with an MSO
formula expressing that the set is of size 1. An assignment of an open MSO formula ¢ with s
free set variables over G is a tuple X = (XC, ..., X5) of s vertex sets X& C V(G). Let G
be a p-colored graph, and ¢ be an MSO formula. If ¢ is closed, we write G |= ¢ if G satisfies
the property expressed by ¢. Otherwise, we write (G, X G) E ¢ where X @ is an assignment
of v if G and X & satisfies the property expressed by .

From the definition of MSO, one can see that no MSO formula can distinguish isomorphic
p-colored graphs. See e.g., [37] for a detailed proof.

» Lemma 2.1 (Folklore). Let G and Gy be isomorphic p-colored graphs. For every MSO
formula ¢, we have Gy = ¢ if and only if Ga = .

2.4 Extensions of MSO

We introduce an extension of MSO proposed by Knop, Koutecky, Masaiik, and Toufar [34].
Let ¢ be an MSO formula with s free set variables X1,..., X, and G be a graph with n
vertices.

We introduce a linear constraint on the cardinalities of vertex sets | X;|. A global linear
cardinality constraint is an s-ary relation R expressed by a linear inequality aq|X;|+ -+
as|Xs| < b, where a; and b are integers and the arguments X; are the free variables of (.
In the extension of MSO introduced later, global cardinality constraints are used as atomic
formulas.

3 In [15], EQUITABLE CONNECTED PARTITION was shown to be W[1]-hard parameterized simultaneously
by pathwidth, feedback vertex set number, and the number of parts. In the full version, we strengthen
the W[1]-hardness by replacing pathwidth in the parameter with treedepth.
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A local linear cardinality constraint of G on ¢ is a mapping af: V(G) — 20" where

af (v) = [I?,u?] with some integers [¥ and u?. Each af is a constraint on the number of

neighbors of each vertex that are in X;. We say that an assignment X¢ = (XE, ... X&)
obeys a tuple a® = (af,...,a¥) of local linear cardinality constraints if | X; N N (v)| € af (v)
for all v € V(G) and i € [s].

An MSOE#, formula on a p-colored graph G = (G, C) is a tuple (¢, R, %) where ¢, R, and
o are defined as follows. The tuple R = (R, ..., R,) is a tuple of global linear cardinality

G G

constraints, and a% = (af’,...,a%) is a tuple of local linear cardinality constraints. The

formula ¢ is an MSO formula with s free set variables that additionally has the g global
linear cardinality constraints R; as symbols. Now we write (G, R, X©) = ¢ if (G, X9) |= ¢
where ¢’ is an ordinary MSO formula obtained from ¢ by replacing every symbol R; with the
symbol true or false representing the truth value of the formula (| X¢|,...,|X%]) € R;.

Our problem, MSOEiI;1 MODEL CHECKING, is defined as follows.

MSOF: MoDEL CHECKING

Input: A p-colored graph G = (G, C) and an MSOEII,‘, formula (p, R, a%).

Question: Is there an assignment X = (X, ... X&) of ¢ such that (G, R, X) = ¢
and X obeys a®?

It is known that MSOFL MODEL CHECKING is fixed-parameter tractable parameterized by
neighborhood diversity [34], W[1]-hard parameterized by treedepth and feedback vertex
set [34], and W[1]-hard parameterized by twin-cover [33].

3 Model checking algorithm

In this section, we present our main result, the fixed-parameter algorithm for MSOE’#1 MODEL
CHECKING parameterized by vertex integrity. Before going into the details, let us sketch the
rough and intuitive ideas of the algorithm. Recall that our goal is to find a tuple of vertex
sets in a graph of bounded vertex integrity that satisfies

an MSO formula ¢ equipped with global linear cardinality constraints, and

local linear cardinality constraints.

We first show that for the ordinary MSO MODEL CHECKING with a fixed formula on
graphs of bounded vertex integrity, there is a small number of equivalence classes, called
shapes, of tuples of vertex sets such that two tuples of the same shape are equivalent under
the formula. To use the concept of shapes, we remove the global constraints from ¢ by
replacing each of them with a guessed truth value and we find a solution that meets the
guesses. Let ¢’ be the resultant (ordinary) MSO formula. We guess the shape of the solution
and check whether a tuple with the guessed shape satisfies ¢’ using known efficient algorithms.
If the guessed shape passed this test, then we check whether there is a tuple with the shape
satisfying the global and local cardinality constraints. We can do this by expressing the rest
of the problem as an integer linear programming (ILP) formula as often done for similar
problems (see e.g., [34]). The ILP formula we construct has constraints for forcing a solution
to be found

to have the guessed shape,

to satisfy the guessed global cardinality constraints, and

to satisfy the local cardinality constraints.

The first two will be straightforward from the definitions given below. For the local cardinality
constraints, we observe that after guessing the intersections of a vi(k)-set S and each set in
the solution, we know whether all vertices in V(G) — S obeys the local cardinality constraints.
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Thus we only need to express the local cardinality constraints in ILP for the vertices in S.

Finally, we will observe that the number of variables and constraints in the constructed ILP
formula depends only on k and |¢|. This will give us the desired result.

In the next subsections, we formally describe and prove the ideas explained above.

3.1 MSO model checking

Let G = (G, C) be a p-colored graph and S be a subset of V(G). We define an equivalence
relation of the components of G — S as follows. Two components A; and A, of G — S have the
same (G, S)-type if there is an isomorphism ¢ from (G[SUA;], C|sua,) to (G[SUA3], Clsua,)
such that the restriction |g is the identity function. We call such an isomorphism a (G, S)-
type isomorphism. Clearly, having the same type is an equivalence relation. We say that
a component A of G — S is of (G, S)-type t (or just type t) by using a canonical form ¢ of
the members of the (G, S)-type equivalence class of A. Denote by 7(g g)(A) the type of a
component A of G — S. We will omit the index (G, 5) if it is clear from the context.

We define the canonical form of a (G, S)-type as the “lexicographically” smallest one in
the equivalence class in some sense (see [28] for such canonical forms of uncolored graphs). If
S is a vi(k)-set, then in time depending only on p 4+ k we can compute the canonical form of
the equivalence class that a component A of G — S belongs to. Thus we can compute (the
canonical forms of) all (G, S)-types in time f(p + k)|G|°™") for some computable function f.
Furthermore, in time f'(p + s + k)|G|°™) for some computable function f’, we can compute
all (G', S)-types for all G’ obtained from G by adding s new colors; that is, G’ = (G,C + X)
for some X € (V(G))*.

The next lemma, due to Lampis and Mitsou [37], is one of the main ingredients of our
algorithm. It basically says that in the ordinary MSO MODEL CHECKING we can ignore
some part of a graph if it has too many parts that have the same type.

» Lemma 3.1 ([37]). Let G = (G,C) be a p-colored graph G, S CV, A be a component
of G =S, |A| <k, and ¢ be a closed MSO formula with q quantifiers. If there are at least
2k4 + 1 type 7(A) components in G — S, then (G,C) | ¢ if and only if (G —V(A),C") = ¢,
where C' is the restriction of C to V(G)\ V(A).

Lemma 3.1 leads to the following concept “shape”, which can be seen as equivalence
classes of assignments.

» Definition 3.2 (Shape). Let G = (G, C) be a p-colored graph, S be a vi(k)-set of G, and ¢
be an MSO formula with s free set variables (X1,...,Xs) and q quantifiers. Let T be the set
of all (G, S)-types, and T’ be the set of all possible (G, S)-types in (p + s)-colored graphs G’
obtained from G by adding s new colors.

An S-shape is the pair (0g,0) of a function og: S — 215X} and o function o: T' —
[0, 2k U {T}.

Let X¢ = (XC,...,X5) be an assignment of ¢, and G' = (G,C + X). The S-shape
of X% is (0s,0) if the following conditions are satisfied:

for each i € [s] andv € S, X; € o5(v) if and only if v € XE;

for each t' € T,

() = {c(t’) o) < 24,

T otherwise,

where ¢(t') is the number of (G',S)-type t' components of G — S.

20:7
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Let (0g,0) be an S-shape. If there is an assignment XY of o such that the S-shape of
X% is (0g,0), we say that the S-shape (og,0) is valid.
The following lemma indicates that S-shapes act as a sort of equivalence classes.

» Lemma 3.3. Let G = (G, C) be a p-colored graph, S be a vi(k)-set of G, and ¢ be an MSO
formula with s free set variables (X1,...,Xs). Let XY and YC be assignments of ¢ such
that their shapes are equal. Then, (G, X%) |= ¢ if and only if (G, Y°) = ¢.

Proof. Let Gx = (G,C+ X%), Gy = (G,C +YY), and (05, 0) be the S-shape of X (and
of Y). Then ¢ can be seen as a closed MSO formula for the (p + s)-colored graphs Gx and
Gy . Thus we can apply Lemma 3.1 to Gx, S, and ¢, and obtain a graph G% = (G, Cy),
such that Gx | ¢ if and only if G% = ¢ and the number of each type ¢ components of
G’y — S is at most 2%¢, where ¢ is the number of quantifiers in . We also obtain a graph
G4 in the same way as for G%. This reduction does not delete any vertex of S. The number
of components for each type t of G — S or G — S is o(t) if o(t) # T and 2 if o(¢) = T.
Therefore, there is an isomorphism from G% to Gi,, and thus G% = ¢ if and only if G{ = ¢
by Lemma 2.1. <

Now, we estimate the number of candidates for S-shapes. Observe that in Definition 3.2,
the number of candidates for og depends only on k and s. The size of 7 depends only on &
and p because it is at most the product of the number of k£ x k adjacency matrices and the
number of p-color lists for graphs of at most k vertices. Similarly, the size of 7’ depends
only on k, p and s. Since o is a function from 7" to [0,2%4] U {T}, the number of candidates
for ¢ depends only on k, p, s, and ¢. Thus the number of S-shapes depends only on k, p, s,
and gq.

» Observation 3.4. Let G = (G, C) be a p-colored graph with n vertices, S be a vi(k)-set
of G, and ¢ be an MSO formula with s free set variables and q quantifiers. The number of
S-shapes depends only on k, p, s and q.

3.2 Pre-evaluating the global constraints

Recall that in an I\/ISOE#] formula, the global cardinality constraints are used as atomic
formulas. Namely, each of them takes the value true or false depending on the cardinalities
of the free variables. To separate these constraints from the model checking process, the
approach of pre-evaluation was used in the previous studies [27,34].

» Definition 3.5 (Pre-evaluation). Let G = (G,C) be a p-colored graph, and (¢, R,a%)
be an MSOCL formula where R = (Ry,...,Ry). We call a function v: {Ry,...,R,} —
{true, false} a pre-evaluation. Denote by y(p) the MSO formula that obtained by mapping
each global linear cardinality constraints R; by ~.

Since each global linear cardinality constraint R; can be represented by a linear in-
equality, so is its complement R; = [0,n)° \ R;. Thus, for a pre-evaluation v, the integers
Z1,...,%s € [0,n] that satisfies the following conditions can be represented by a system of
linear inequalities:

If v(R;) = true, then (x1,...,2;) € R;.

Otherwise, (z1,...,zs) ¢ R;.

Denote by R, (z1,...,2s) this system of linear inequalities. If an assignment X ¢ =
(XE, ..., X&) of p satisfies the system of inequalities R, (|XT|,...,|XZ]), we say that
XY meets the pre-evaluation .
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3.3 Making the local constraints uniform

Observe that for a vi(k)-set S of a graph G, a vertex v of a component of G — S has at most
k — 1 neighbors. In other words, |N(v)| € [0, k — 1] for each vertex v € V(G — S). Therefore,
|IN(v) N X| € a(v) if and only if |[N(v) N X| € a(v) N[0,k — 1] for every combination of
X CV(G), a: V(G) — [0,n], and v € V(G — S). Thus, we can reduce the range of local
constraints as follows.

» Observation 3.6. Let G = (G, C) be a p-colored graph, S be a vi(k)-set of G, (¢, R, a%)
be an MSOFL formula where o = (ay, ..., o), and X be an assignment of ¢. Denote
by BY the local constraints obtained from oS by restricting to o (v) N[0,k — 1] for each
veV(G)\ S andi € [s]. Then, X obeys o if and only if X obeys BC.

» Definition 3.7 (Uniform). Let G = (G, C) be a p-colored graph with n vertices, S be a
vi(k)-set of G, and (¢, R,aC) be an MSOFL formula where o€ = (o, ..., o ). We say that
the graph G is uniform on the local constraints a® if for every pair of components A, and
As of G — S with the same (G, S)-type, there is a (G, S)-type isomorphism v from Ay to As
such that o (v) = af (¥(v)) for alli € [s] and v € V(Ay).

We can obtain a uniform graph G’ on a® from nonuniform graph G = (G, C) on a¢ as follows.
For each i € [s], assign to every vertex v € V(G) \ S a new color C (v) corresponding to the
local constraints «;(v). Then we obtain a uniform graph ¢’ = (G, C + (C%)ie[s},Bg[O,k—l])~
The number of new colors added to G’ is at most sk2.

» Lemma 3.8. Let G = (G, C) be a p-colored graph with n vertices, S be a vi(k)-set of G,
and (¢, R, a%) be an MSOPL formula where o = (o, ..., ay). Assume that the graph G is
uniform on the local constraints . Let X¢ = (X&,... . XE) and Y& = (YC,...,YE) be
assignments of ¢ with the same S-shape (cg,0). Then for each i € [s] and v € V(G)\ S,
|IXE N N©W)| € af(v) if and only if [Y,F NN ()| € af (v).

Proof. By symmetry, it suffices to prove the only-if direction. Assume that |[X& N N(v)| €
a%(v) for each i € [s] and v € V(G)\ S. Let Gx = (G,C + X%), Gy = (G,C +Y), and
Ay be a component of G — S. Since the S-shape of X% and Y are the same, there is a
component Ax of G — S such that the (Gx, S)-type of Ax is equal to the (Gy,.S)-type of Ay.
Then, there is an isomorphism v from Ay to Ax such that |[Y,¥ N N(v)| = |X& N N((v))|
and af (v) = af (¢(v)) for each v € Ay and i € [s], because G is uniform on . Therefore,
VSN N®©)| =|XENN@W)| €af(y(v)) =af (v) for each v € V(G)\ S and i € [s]. =

3.4 The whole algorithm

We reduce the feasibility test of global and local constraints to the feasibility test of an ILP
formula with a small number of variables. The variant of ILP we consider is formalized as
follows.

p-VARIABLE INTEGER LINEAR PROGRAMMING FEASIBILITY (p-ILP)

Input: A matrix A € Z™*P and a vector b € Z™.
Question: Is there a vector & € ZP such that Ax < b?

Lenstra [38] showed that p-ILP is fixed-parameter tractable parameterized by the number of
variables p, and this algorithmic result was later improved by Kannan [32] and by Frank and
Tardos [19].

» Theorem 3.9 ([19,32,38]). p-ILP can be solved using O(p>*°P*°(®) . L) arithmetic operations
and space polynomial in L, where L is the number of the bits in the input.
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The next technical lemma is the main tool for our algorithm.

» Lemma 3.10. Let G = (G, C) be a p-colored graph, S be a vi(k)-set of G, and (v, R, a%)
be an MSOEiI,‘1 formula where ¢ has s free set variables X1,...Xs, R = (Rq,...,Ry), and
a® = (aq,...,a,). Assume that G is uniform on . Then, there is an algorithm that given
a valid S-shape (0g,0), decides whether there exists an assignment X¢ = (X&,..., X5)
such that its S-shape is (0g,0), (G, X% R) = ¢, and X obeys o in time f(k,|p|)n®®
for some computable function f.

Proof. Our task is to find an assignment X such that

1. the S-shape of X is (0s,0),

2. (G, X% R) = ¢, and

3. | XENN®©)| € af(v) for all v € V(G) and i € [s].

Condition 1 can be handled easily by linear inequalities in our ILP formulation. Condition 2
is equivalent to the condition that there exists a pre-evaluation ~ such that (G, X ) E v(¢),
and X meets v. We check whether (G, X%) = v(¢) and whether X meets  separately.
Furthermore, Condition 3 is checked separately for vertices in S and for vertices in V/(G) \ S.

Step 1. Guessing and evaluating a pre-evaluation for the global constraints. We guess a
pre-evaluation v from 29 < 2/¢! candidates. We check whether each assignment X ¢ with
S-shape (0g,0) satisfies the MSO formula (), i.e., (G, X¢) = v(p). By Lemma 3.3, we
only need to check whether (G, X¢) = ~(¢) for an arbitrary assignment X with S-shape
(0g,0). This can be done in f(k, |¢|)n®M time [8,37]. Note that even if (G, X%) = v(p)
is true, this arbitrarily chosen X ¢ may not meet . In Step 3, we find an assignment with
S-shape (0g,0) that meets 7.

Step 2. Checking the local constraints for the vertices in V(G) \ S. By Lemma 3.8, we
can check whether all shape-(og, o) assignments satisfy the local constraints for the vertices
in V(@) \ S by constructing an arbitrary assignment Y'¢ of S-shape (og,0) and testing
whether |Y;¥ N N(v)| € a; for all v € V(G) \ S and i € [s]. Since constructing an assignment
Y © can be done in f(k, |p|)n®™M) time, this test can be done in f(k, |¢[)n®™®) time.

Step 3. Constructing a system of linear inequalities for the remaining constraints. By
Steps 1 and 2, it suffices to check whether there exists an assignment X% = (X, ... X&)
that satisfies the following conditions:

1. the S-shape of X is (0s,0),

2. X9 meets the pre-evaluation v, and

3. X¢ obeys the local constraints o for the vertices in S.

To this end, we construct a system of linear inequalities as follows.

In the following, we denote by G’ the (p + s)-colored graph (G, C + XG), where X is a
hypothetical solution we are searching for.

Let T be the set of all (G, S)-types. For every t € T, the number of type-t components
of G — S is denoted by n:. Let T’ be the set of all possible (H, S)-types in (p + s)-colored
graphs H obtained from G by adding s new colors. Observe that 7 is a superset of the set
of all (G, S)-types, no matter how X< is chosen. For every t’ € T7, the (G, S)-type of a
type-t’ component is uniquely determined and is denoted by ¢'|,. (This notation comes from
the fact that the (G, S)-type of a type-t’ component can be determined by considering the
first p-colors.) For every t' € T', we introduce the variable x that represents the number
of (G',S)-type t' components. The condition that the variables xy agree with o can be
expressed as follows:



T. Gima and Y. Otachi

Z Ty = ny for every t € T,
VET!, t]p=t
xy = o(t) for every ¢ € T’ such that o(t') # T,
zy > 2k 41 for every t' € T’ such that o(t') = T.

For every i € [s], we introduce an auxiliary variable y; that represents the size of the set X f ,
which is determined by the variables z;. The variables y; can be expressed as follows:

yi={veS|X;,€os(v)}+ Z Ty - Hi(zy) for every i € [s],
veT’

where #;(zy) is the number of vertices with color p + i in a type-t’ component, i.e., the
number of vertices assigned to the variable X; in a type-t’ component. Then, as mentioned
in Section 3.2, the global constraints that match the pre-evaluation v can be represented by
the system of inequalities R+ (y1,...,¥s)-

Finally, we formulate the local constraints for the vertices in .S into a system of inequalities.
Foreveryv € S, i € [s],and t' € T”, the number of neighbors of v with color p+i (i.e., in the set
variable X;) in a type-t’ component is denoted by d; ¢+ (v) (i.e., di ¢ (u) = |[N(u) N XEF NV (A)]
where A is a type-t’ component). All constants d; »(v) can be computed in f(k, |¢|)n®®
time. For every ¢ € [s] and v € S, we introduce an auxiliary variable z, ; that represents
the number of neighbors of v in the set X;, which is determined by the variables x;. The
variables z,; can be expressed as follows:

zvi=H{ue Nw)NS|X; € os(u)}| + Z di v (v)xy for every v € S, i € [s].
teT’

v

Since the local constraints a can be expressed by o (v) = [I¥,u}

and u} for every vertex v, the local constraints for vertices in S can be expressed as follows:

] with some integers ¥

19 <zy; <uf for every v € S,i € [s].

By finding a feasible solution to the ILP formula constructed above, we can find a desired
assignment X @ Since the number of the variables in the ILP formula depends only on k
and ||, the lemma follows by Theorem 3.9. <

» Theorem 3.11. l\/ISOEiI,‘1 MobDEL CHECKING is fived-parameter tractable parameterized by
Vi(G) and |p|.

Proof. Let k = vi(G). Let S be a vi(k)-set. Such a set can be found in O(k**1n) time [13].

We construct a uniform graph # = (G,C’) on a® from the input graph G = (G,C) as
described in Section 3.3. Here, the number of colors of H depends only on k, p, and s. We
compute the (H, S)-types of the components of G — S and count the number of (H, S)-type t

components for each ¢. This can be done in f(k, |¢|)n time with some computable function f.

We guess an S-shape (og, o) of an assignment of the input formula . By Observation 3.4,
the number of candidates for (0g,0) depends only on k, p, and s. We check whether the
guess shape (og,0) is valid. This can be done by checking whether (cg, o) is consistent with
the number of components of all (H, S)-types. Hence, this can be done in f(k, |¢|)n time
with some computable function f.

By Lemma 3.10 with the graph #, vi(k)-set S, and the input MSOFL formula (¢, R, o),
the theorem follows. <
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4 Extension to MSO,

The MSO; (or GSO) logic on graphs is a generalization of MSO; that additionally allows edge
variables, edge-set variables, and an atomic formula I(z,y) meaning that the edge assigned
to y is incident to the vertex assigned to x. Although MSO; is strictly stronger than MSO4
in general, for graphs of bounded treewidth, the model checking problem for MSOs can be
reduced to the one for MSO; in polynomial time [10]. Using a similar reduction, we show
that the same holds for MSOZ, on graphs of bounded vertex integrity.

Now we define the extension of MSOZ: with MSO,, which we call GSOS:. In GSOP:, the
local cardinality constraints for vertex-set variables and the global cardinality constraints
work in the same way as in MSOEih. The local cardinality constraints for an edge-set variable
X at a vertex v restricts the number of edges in X incident to v. We also generalize
the concept of p-colored graphs such that each color can contain edges as well. A GSO(L;#1
formula on a p-colored graph G = (G, C) is a tuple (¢, R,a%), where R = (Ry,...,Ry)
&) are the global and local cardinality constraints, and ¢ is an MSO,
formula with s free set variables that additionally equipped with symbols Ry, ..., R4. The
problem GSOCL MoDEL CHECKING is formalized as follows.

and a% = (af,...,a

GSOC: MoDEL CHECKING

Input: A p-colored graph G = (G, C), and a GSOZL formula (¢, R, a©).

Question:  Is there an assignment X = (X&, ..., X&) of ¢ such that (G, R, X%) = ¢
and X% obeys a©?

We can show the following theorem by presenting a reduction from from GSOFL MODEL

CHECKING to MSOFE MODEL CHECKING (see the full version for the proof).

» Theorem 4.1. GSO. MoDEL CHECKING is fized-parameter tractable parameterized by
vi(G) and |¢p|.

5 Concluding remarks

In this paper, we obtained an algorithmic meta-theorem for graphs of bounded vertex
integrity in a framework introduced as an extension of MSO by Knop, Koutecky, Masarik,
and Toufar [34]. Namely, we showed that MSOFL MoODEL CHECKING (or more generally,
GSOE#, MODEL CHECKING) is fixed-parameter tractable parameterized by vertex integrity.
This result partially covers the results of the previous study [28]: some problems admit

direct translations from their definitions to expressions in MSOf: (e.g., EQUITABLE -

COLORING) and some need non-trivial modifications to make them expressible in MSOZ,
(e.g., CAPACITATED VERTEX COVER). For some other problems (e.g., IMBALANCE and
Max COMMON SUBGRAPH), we were not able to determine that they can be captured
by our framework or not. Also, the result newly gives algorithms for FAIR EVALUATION
PROBLEMS [33]. It would be interesting to ask whether there is a meta-theorem that can be
applied to a larger class of problems parameterized by vertex integrity. (See the full version.)

We may also consider the fine-grained complexity of our problem. We did not explicitly
state the time complexity of our fixed-parameter algorithms. If we carefully analyze the
running time using the algorithm by Lampis and Mitsou [37], then we can show that the
algorithms run in time triple exponential in a polynomial function of the parameter. For the
ordinary MSO MODEL CHECKING, it is known that under ETH, there is no 220(k2)n0(1)—time
algorithm, where k is the vertex integrity of the input graph G and n is the number of vertices
of G [37]. This double-exponential lower bound applies also to our generalized problem.
Filling this gap would be an interesting challenge.
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