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—— Abstract

We consider evacuation of two robots from an Exit placed at an unknown location on the perimeter
of a unit (radius) disk. The robots can move with max speed 1 and start at the center of the disk
at the same time. We consider a new communication model, known as the SR model, in which
the robots have communication faults as follows: one of the robots is a Sender and can only send
wirelessly at any distance, while the other is a Receiver in that it can only receive wirelessly from
any distance. The communication status of each robot is known to the other robot. In addition,
both robots can exchange messages when they are co-located, which is known as Face-to-Face (F2F)
model.

There have been several studies in the literature concerning the evacuation time when both
robots may employ either F2F or Wireless (WiFi) communication. The SR communication model
diverges from these two in that the two robots themselves have differing communication capabilities.
We study the evacuation time, namely the time it takes until the last robot reaches the Exit, and
show that the evacuation time in the SR model is strictly between the F2F and the WiFi models.
The main part of our technical contribution is also an evacuation algorithm in which two cooperating
robots accomplish the task in worst-case time at most 7w + 2. Interesting features of the proposed
algorithm are the asymmetry inherent in the resulting trajectories, as well as that the robots do not
move at full speed for the entire duration of their trajectories.
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1 Introduction

Evacuating a group of autonomous mobile agents (or robots) operating over a specified
planar domain (e.g., circle, square, convex set, etc.) from an unknown (to the robots) Exit is
an important paradigm in group search for understanding the tradeoffs of communication
and mobility in distributed computing. The communication capabilities of the robots that
have been considered in the literature so far are limited mainly to Wireless (WiFi) and
Face-to-Face (F2F), see [2]. An important aspect in this type of group search is the ability of
the robots to evacuate despite the presence of communication faults. Two types of faults have
been considered in the literature: crash (passive and non-malicious) and Byzantine (active
and malicious). Note that in our model only the robots’ communication capabilities are
affected and both robots are honest (i.e., they send correct messages and the communication
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is always available). Despite its importance, fault tolerant group search has been considered
less extensively mainly due to the complexity of the resulting optimization problem for this
task (see [3]).

In this paper we explore two robot evacuation in the plane under a different type of
faulty behaviour whereby the robots have different communication capabilities, namely one
robot is a Sender in that it can only send messages wirelessly and the other is a Receiver
in that it can only receive messages wirelessly. For this setting we obtain the following
contributions. First we show that any algorithm is bound to have running time strictly more
than the provably optimal evacuation time of two Wireless robots. Second, we provide a
novel evacuation algorithm whose running time is better than the best lower bound known
for two Face-to-Face robots, separating this way the two well-studied models.

1.1 Preliminaries and notation

Two robots are initially collocated in the plane and can travel with speed at most 1. An Exit
is placed at known distance 1 from the robots at an unknown location (therefore defining a
disk with center the original position of the robots). The robots can always communicate
F2F (when co-located). In addition, one of the robots is a Sender (i.e., can send messages
wirelessly, but cannot receive messages from distance) and the other is a Receiver (i.e., can
receive wirelessly, but cannot send messages from distance). The communication capabilities
of the robots are known to themselves and to each other, namely the robots know who is
the Sender and who is the Receiver and moreover the Sender knows it can send and the
Receiver it can receive messages wirelessly, the messages are transferred instantly. The goal
is to design an evacuation algorithm which specifies trajectories which enable the robots
to reach the unknown Exit. During their trajectories the robots can take shortcuts in the
interior of the disk and can recognize its perimeter. The quality of the algorithm is measured
by the time it takes the last robot to reach the Exit, which is defined as the evacuation time
(of the algorithm).

Next we define more precisely the concept of evacuation time restricted to our search
domain, namely the unit disk, which will be used in the rest of the paper.

» Definition 1. The evacuation time E4(p) of an algorithm A for an Exit placed at an
unknown (to the robots) location p on the perimeter of the unit disk is the time it takes for
the two robots starting from the centre of the unit disk and following algorithm A to evacuate
from the Ezit placed at p. The worst case evacuation time of an algorithm A is defined as
the sup, Ea(p), where p may be any point on the perimeter of the unit circle.

Consider a class A of all possible evacuation algorithms on the unit disk arising from the
chosen communication model (e.g., F2F, WiFi, etc.).

» Definition 2. The evacuation time for a class A of algorithms is defined as infgc4 E4.

For the purposes of the current work, a robot may be in one of four possible communication
states, namely F2F (Face-to-Face), WiFi (Wireless, both send and receive), S (only send
wirelessly), and R (only receive wirelessly). All previous studies considered evacuation in
which the robots have identical communication capabilities (e.g., both F2F, or both WiF1i).
Our focus in this paper is to consider robots with different communication capabilities.
Before proceeding any further it will be useful to make an observation which clarifies the
communication potential of an ensemble of two evacuating robots assuming that they both
maintain their F2F (both send and receive only when co-located) communication capability.
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» Observation 3. There are only three possibilities for the communication capabilities of an
ensemble of two robots which are (at least) able to communicate F2F: either both are WiFi,
or both are only F2F, or one is a Sender and the other a Receiver.

To see why this is true, recall that by assumption, at a minimum the robots are assumed to
be able to communicate F2F. Moreover, one can think of a robot with WiFi communication
potential as a robot which is both Sender and Receiver. If one of the robots can only
communicate F2F then regardless of the communication capabilities the other robot has, the
ensemble of two robots behaves as if both robots have only F2F communication. Similarly,
if both robots are Senders or both are Receivers; the robots can communicate only F2F
with each other. If one of the robots has WiFi communication but the other is only either a
Sender or Receiver then the WiFi cannot use its full communication potential and therefore
can only use its Sender status with a Receiver and its Receiver status with a Sender. Thus
the validity of the observation follows by combining all three previous assertions.

Let Epar, resp. Ewiri, be the evacuation times when both robots use F2F, resp. WiFi,
communication. Further, let SR denote the mixed Sender and Receiver model described
above. From previous studies we know that Ew;r; < EFar. The main questions of interest
are the following:

1. Can we find an optimal evacuation algorithm in the Sender/Receiver model?

2. Tt is easy to see that the evacuation time in these models satisfies Eyip; < Esr < Epor.

Can we differentiate the three models and show that the inequalities are strict?

It turns out that this communication asymmetry between Sender and Receiver gives
rise to interesting trade-offs which are unique to the SR model. Regarding the proposed
questions, we answer them as follows.

1. We provide a technical algorithm with evacuation time strictly less than Epop and that
we conjecture is optimal.

2. We show that any algorithm is bound to have evacuation time strictly more than Eyy;p;.

1.2 Mobility Model

We use the standard evacuation model for search on a unit disk where the Exit is placed on
the perimeter and the robots may take short-cuts in its interior. The robots are autonomous
and can exchange messages instantly using the SR communication model. The robots run
synchronized clocks. They know the unit disk (its center and unit radius) and can recognize
its perimeter. At any time they can stop and start, change direction and speed but their
speed can never exceed 1. An evacuation algorithm is defined by the trajectories of the
two robots. A robot trajectory is a continuous function f : [0,7] — R? over time, such

that f(t) is the location of the robot at time ¢ and T is the duration of a robot’s trajectory.

Moreover, the robot’s speed can never exceed 1, meaning that || f(t) — f(t')]|2 < |t — /|, for
all 0 < t,¢/ < T, where || - || denotes the Euclidean norm in the plane R2.

1.3 Related work

In all the results below we consider worst-case evacuation time and limit our discussion
mostly to the case of two robots. The general evacuation model on a disk discussed in our
paper was first introduced in [2]. In this paper, among other results, the optimal value for
the WiFi model was determined, namely Ew;p; = 1+ %’r + /3 ~ 4.826, while for the value
of the F2F model it was shown that 5.199 ~ 3 + T + V2 < Epsp < 5.74. The lower bound
was later improved to 3 + & + V3 & 5.255 < Epgp in [6]. Most recently, [12] improving on
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results of [1], has improved the upper bound from 5.74 (which was first proved in [2]) to
Eror < 5.6234. However, it is worth noting that, in general, worst-case tight bounds for
evacuation of two robots in the F2F model remain elusive to this day.

Search and evacuation with multiple faulty robots on an infinite line was initiated in
the work of [5] and [11]. For three robots one of which is Byzantine, [16] shows that the
proportional schedule presented in [11] can be analyzed to achieve an upper bound of 8.653055.
More importantly, [10] gives a new class of algorithms for n robots when the number of
Byzantine among them is near majority, which in turn implies the best known upper bound
of 7.437011 on an infinite line for three robots one of which is Byzantine.

There is also a limited number of studies for the unit disk. In [3] the authors consider
evacuation of three robots from a disk one of which may be a crash or Byzantine faulty
robot. For the case of crash faults the lower bound achieved is &~ 5.188 and the upper bound
~ 6.309, while for Byzantine faults the lower bound is ~ 5.948 and the upper bound =~ 6.921.
In [13] and [15] the authors consider search on a disk for n robots at most f of which may be
faulty, i.e., crash or Byzantine (it turns out that search is simpler to analyze than evacuation
since success is achieved when the first non-faulty robot finds the Exit.) In addition, [§]
studies search for n robots in the plane with faulty robots; in this model the robots have
arbitrary (not necessarily identical) max speeds and visibility ranges. Moreover, in [14] the
authors study the problem on the disk with two robots one of which can have speed more
than 1, while the robots can communicate wirelessly. Finally, [7] presents a survey of group
search which could be useful to the reader.

The SR mixed communication model studied in our current paper was considered as a
way to model group search in the presence of robots with faulty communication capabilities
and was first introduced for an infinite line in [9], but otherwise has never been studied in
any other domain, such as the unit disk.

1.4 Results of the paper

We show that evacuation in which one robot is a Sender and the other is a Receiver is more
powerful than evacuation when both robots use F2F communication and less powerful when
both robots use WiFi communication. We give upper and lower bounds for the evacuation
time of two robots in the SR communication model. For the upper bound, see Section 2,
we design a new evacuation algorithm which leads to evacuation time at most m + 2. The
novelty of our upper bound pertains also to the asymmetry of the proposed algorithm, as
well as that the robots follow trajectories in which their speed is not always 1. A similar
feature was deployed previously only in the F2F model for searching on the line [4], but
with an objective different than minimizing the evacuation time. For the lower bound, see
Section 3, we show that there is no evacuation algorithm in the SR model whose evacuation
time is equal to the optimal evacuation time in the WiFi model.

2 The Upper Bound of 2 +

In the present section we give an evacuation algorithm in the SR model and analyze its
competitive ratio. The main result is the following.

» Theorem 4. FEvacuation of two robots from a disk in the Sender Receiver communication
model can be accomplished in time 2 + 7.
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For the proof of Theorem 4 we design trajectories for the robots and show that for
every placement of the Exit on the unit circle, the evacuation time is at most 2 + w. For
convenience we think of the search domain, the unit circle, in a Cartesian system, i.e.
C = {CYCLE (¢),t € [0,27]}, where CYCLE (t) = (cost,sint) is a parametric description of
the unit circle. Note that both robots start from the center of circle C.

We give trajectories for the robots in two steps, parameterized by the same function
a: [0,7] — R (to be fixed later). For notational convenience, we occasionally write o
instead of a(t). The trajectories depend on when (and if) robots find the Exit at some point
CYCLE (t). The description below uses the assumption that should the Sender locate the Exit
in CYCLE (t) then the information will be transmitted to the Receiver instantaneously and
the Receiver will abandon her trajectory in order to reach CYCLE (¢) in the fastest possible
way (along a line segment). The time that the Receiver will reach CYCLE (¢) will be the total
evacuation time for that placement of the Exit. Therefore, the Sender’s trajectory needs to
be described only under the assumption that no Exit has been found by her. The trajectory
of the Sender will be fully determined once we fix the aforementioned function a(-). It is
worthwhile mentioning in advance that the Sender’s trajectory will not be unit speed at all
times during the execution of the algorithm.

CYCLE(1)

Sender

Receiver

' CYCLE(-m/4)

CYCLE(—2m/3) ——

Figure 1 Robots’ trajectories, for the optimal choice of parameter function «(-). Red and blue
are the Sender’s and Receiver’s trajectories respectively (assuming no Exit is found). The thick red
curve corresponds to the Sender’s partial trajectory M;, t =0,...,w. Note that when the Sender
reaches point (—1,0) she starts moving towards the center (0,0). Figure also depicts two examples
of Exit placements, CYCLE (—7/4), CYCLE (—27/3), along with the corresponding circles with these
centers and radii wr /4, wW_2./3, along with the directive points A4, A_y./3 (indicating the direction
the Receiver attempts to meet the Sender), along with the intended meeting points My 4, M_25/3,
respectively.

In contrast, the Receiver’s trajectory will depend on whether she has found the Exit or
not. If the Receiver finds the Exit at CYCLE (¢), then starting from CYCLE (t) she will follow
a trajectory in order to meet the Sender in her trajectory so that together they return to the
Exit in time at most 2 4+ 7 in total. The Receiver’s trajectory will be determined uniquely
once we fix function a(-), but the Receiver will maintain a unit speed at all times (except
from some placements of the Exit, in which case the Receiver will wait idle in some point in
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order to meet the Sender and return together to the Exit). The description of our algorithm
is coupled with the illustration of Figure 1 that we explain as we present the technicalities of
the algorithm.

2.1 Robots’ Trajectories

We now give more formally the robots’ trajectories and the main algorithm of the paper.

Algorithm 1 Sender-Receiver Search Algorithm.

1: Receiver’s Trajectory (input: re-
served function «af-))
2: Phase R1: At unit speed go to CYCLE (1).

1: Sender’s Trajectory (input: speed
compliant SPT pair (S, 7))

2: Phase S1: At unit speed go to CYCLE (1).
3: Phase S2: At unit speed, search C counter-

clockwise up to point CYCLE (7), or until
exit is found. If exit is found at CYCLE (z)
then send the Receiver the position for
her to come to the exit and wait.

4: Phase S3: At unit speed go to point (1 —

3: Phase R2: Search C clockwise towards

point CYCLE (7). If Exit is found at
CYCLE (t), t € [0,1], start R3. If Exit
found at CYCLE (—t), t € (0, 7], start R4.

: Phase R3: Go to (1 —/2,0) and wait for

Sender, then return to CYCLE ().

7/2,0). 5: Phase R4: Move toward A; := («(t),0)

for time wy := (m — t)/2 (to meet
5: Phase S4: Reset the clock and traverse ¢ . ( )/2
. . the Sender at point M;) and return to
curve § with timing rule 7.
CYCLE (—t).

2.1.1 Sender’s Trajectory

Let f,g:[0,7] — R be continuous and differentiable real functions defining a closed curve
S :={(f(s),9(s)),s € [0,7]}. Consider also continuous and differentiable 7 : [0,7/2] — S
(that we will call the timing-rule for §). The pair (S, 7) will be called SPT (Sender’s Partial
Trajectory) if the following conditions are satisfied:

lim £(£) = 1~ m/2, lim f(t) = ~1, lim g(t) = lim g(t) =0 (1)
r(0) = lm (£(1), g(t)), 7(w/2) = lim (£(t), 9(+)) (2)

We think of the timing rule 7 as specifying the position 7(t) € S of the Sender at time ¢,
which is used only during the traversal of curve S. Hence, the pair (S, 7) determines uniquely
the speed ||7/(¢)|| of the Sender while traversing curve S, that takes a total time of /2. The
pair (S, 7) will be called speed compliant, if the movement along S with the timing rule 7
induces speed which is at most 1.

The Sender’s trajectory is parameterized by a speed compliant SPT pair (S, 7). Both
S, 7 will be determined later as a function of some «: [0, 7] — R. It is worthwhile mentioning
that, strictly speaking, curve S is induced by timing rule 7, so one would only need to specify
7. Nevertheless, it is a technicality of our argument that requires first to determine S (as a
function of «(-)), and then the timing rule 7(-) (implicitly, as a function of «(-)).

The formal description of the Sender’s trajectory can be found in Algorithm 1, and is
also depicted in Figure 1 as the red trajectory (for a specific choice of a SPT pair (S, 7)).
Note that the SPT pair (S,7) guarantees that point CYCLE (7)) = (—1,0) is visited twice
by the Sender, and what (S, 7) determines is the nature of the curved trajectory after the
Sender visits point (1 — 7/2,0), denoted as Ap in Figure 1.

Note that since (S,7) is SPT, the above trajectory is indeed feasible (it defines a
continuous curve on the plane; see transition between phases S3, S4). Moreover, if (S, 1) is
speed compliant, then the Sender’s trajectory has speed at most 1 during the execution of
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the move. The Sender, during phase S1, will move from the center of the circle to CYCLE (1),
which takes 1 time unit. During phase S2 the sender moves counter-clockwise on the circle
from CYCLE (1) towards the point (—1,0), and this phase takes time = — 1. In phase S3 the
sender moves from point (—1,0) to the point (1 — 7/2,0) which is the point Ay as shown in
Figure 1, this phase takes time 2 — 7 /2. Finally, for phase S4 the sender moves in a trajectory
from point (1 — 7/2,0) to reach point (—1,0) for the second time. Phase S4 takes time 7 /2,
which gives us the total time of 2 + 7.

2.1.2 Receiver’s Trajectory

A continuous and differentiable a: [0, 7] — [—1,1] will be called reserved if ap =1 — /2,
and the limit lim;_, . O“S_lirf‘t)” exists and is not equal to 1 (the latter technical condition will
be used in the Proof of Claim 6 in order to show that a(-) induces SPT pair (S, 7) for the
Sender). Note also that the latter condition also implies that lim;_,, o = —1. The trajectory
of the Receiver is parameterized by some reserved a(-). Intuitively, oy will determine its
movement if the Exit is found at point CYCLE (—t), when t € [0, 7].

The formal description of the Receiver’s trajectory can be found in Algorithm 1, and

is also depicted in Figure 1 as the blue trajectory (for a specific choice of a reserved a(-)).

According to the description of the trajectory, there are two cases in which the Receiver
attempts to visit the Sender, see phases R3 and R4. Correctness of phase R3 will be shown
later in Claim 8, and is independent of function «(-). The correctness of phase R4 will be
shown later in Claim 9, and will follow once we fix a() that will also determine the Sender’s
trajectory (hence pair (S,7)). Also this step will be correct independently of whether (S, 7)
is speed complaint.

Note that the total duration of the trajectory of the Receiver, under the assumption that
no Exit is found, is 2 + 7, when she meets with the Sender at point (—1,0), and they arrive
at that point simultaneously.

2.2 Determining a Partial Trajectory and a Timing-Rule for the Sender

In this section we show how a choice of a function a(-), as the one used to determine the
Receiver’s trajectory, can also determine the Sender’s trajectory and in particular phase S4
of her trajectory. More specifically, given function a(-) we determine a pair (S, 7) that we
also call a-induced.

Intuitively, for every 0 < t < m we require that the Sender is at point M; at the same
time the Receiver would arrive there if the Exit was found at CYCLE (—t). First we determine
points M;. As per the description of the Receiver’s trajectory, if the Exit is found at some
CYCLE (—t), for ¢t € (0, ], then the Receiver, starting from CYCLE (—t), moves with unit
speed for time! w; = (7 —t)/2 towards point A;. Therefore point M; = (f(t),g(t)) can be
found as the intersection of the line passing through points CYCLE (—t) = (cost, —sint) and
A; = (a4, 0), and the circle of center CYCLE (—t) and radius wy, lying within the unit circle.
Point M; can be therefore determined as one of the roots of the following quadratic system
with = f(t) and y = g(¢).

1 This is the maximum time that the receiver can move away from the exit in order to be able to return
back to it for a total time of 2 + m. We just need to ensure that the Sender reaches M; at the same
time the Receiver does.
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(y + sint)(ay — cost) = (x — cost)sint
(x — cost)? 4 (y + sint)? = w?
Solving the system gives one of the roots to be
(o — cost) ™t
Vsin?t + (o — cost)?
sint 75t

Vsin?t + (o — cost)?

f(t) =cost+ (3)

g(t) = —sint +

(4)

The above pair is the point on the line segment with endpoints CYCLE (—t), A, and from
CYCLE (—t) to the direction of A; (the other root is its antipodal on the circle with center
CYCLE (—t) and radius wy).

We now define the a-induced pair (S,7). We set S := {M; : ¢t € [0, 7]}. Also, assuming
that the Sender reaches point (1 — 7/2,0) (i.e. no Exit is found earlier by the Sender), reset
the clock for the Sender and require that for every ¢ € [0, 7], the Sender lies at M, exactly at
time ¢/2. Note that this defines indeed a timing-rule 7 : [0,7/2] — S. Later we show that
pair (S, 7) is indeed SPT (i.e., Conditions 1 and 2 are satisfied) for a proper choice of «af(-).

2.3 Correctness and Performance Analysis

In this section we show that starting with a reserved a(-), the a-induced pair (S, 7) is indeed
SPT, and that this guarantees that robots meet as per the description of their trajectories,
as well as that the running time is at most 2 4+ 7. The results are summarized in Lemma 5.

We need to emphasize that results of this section do not touch on the Sender’s speed
induced by the choice of a(-). Finding a proper «(-) that induces a speed-compliant pair
(8,7) (i-e., a pair that keeps the Sender’s speed to at most 1) is the topic of the next section.

» Lemma 5. If a(-) is reserved, then Algorithm 1 solves the sender-receiver problem with
evacuation time at most 2+ w. In particular, the Receiver’s move is of unit speed (while it
is moving), while the Sender’s move has speed (possibly more than 1) that depends on the
choice of a(-).

The proof of Lemma 5 is given by the following claims. First we show that the a-induced
pair (S, 7) of Section 2.2 is SPT (and therefore v determines indeed continuous trajectories).

> Claim 6. If a(-) is reserved, then the a-induced pair (S,7) is SPT.

Proof. Since « is reserved we have that «(0) =1 —7/2 and a(7) = —1. We use the formulas
for M, = (f(t), g(t)) of Section 2.2 as a function of a(-). A direct substitution gives
(a0 —1)7
0) =1+ ——a0 22— 1 _g/2
f( ) 0+ (010 - 1)2 /

since ap — 1 < 0. The value f(7) is indefinite, so we compute
— cost —t
lim f(t) = =14 | lim de — o8 <lim T )
b= =7 \/sin?t + (a; — cost)? | \t=7 2

1 _
R (nmﬂ ’f)
t—m (at+1)2 t—r 2

Il
|
=
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Again, a direct substitution gives g(0) = 0. The next step is the only one that uses that

ae—Cost exists and is not equal to %1 (since a(-) is reserved). We have

limt—)w

) . sin t”T_t . sint . om—1t
lim ¢g(t) = lim = [ lim lim
i t=m /sin?t + (ay — cost)? t=m \/sin?t + (ay — cost)? ] \t=m 2

. 1 .o —t
thm = thm 5 =0,
—T S —T
1 4 (atfcost)

sint

where the second to last limit exists and is some constant, due to the fact that «(-) is reserved.

Next we study the timing-rule 7(-), and we verify that 7(0) = (£(0),g(0)),7(7/2) =
(f(m),g(m)). Indeed, reset the clock to 0 at the time the Sender reaches point (1 — 7/2,0).
Recall that for every t € [0, 7], 7 was defined so that at time ¢/2 the Sender is at point
M. For ¢ — 0, our previous calculations for f,g show indeed that lim:—o(f(¢),g(t)) =
(1 —7/2,0), which is exactly where the Sender is at time 0. Finally, for ¢ — 7, we know that
lim; . (f(t),g(t)) = (=1,0), while M, was indeed defined as point (—1,0). This is because
M, is the attempted meeting point if the Exit is found at point CYCLE (), in which case,
by definition, M, is w, = (7 — 7)/2 = 0 away from CYCLE (7). <

Next note that, given the described trajectories (and independently of a(-)), the Sender
searches all points CYCLE (¢) with 1 < ¢ < 7, while the Receiver searches all points CYCLE ()
with —7 <¢ < 1. Now assume that the Exit is indeed in some CYCLE (t), where -7 <t <
(i.e., anywhere on the unit circle). Claim 7 below covers the case that 1 <t < 7, hence the
Exit is found by the Sender. Claim 8 below covers the case 0 < ¢t < 1, hence the Exit is
found by the Receiver. Lastly, Claim 9 below covers the case —m < ¢ < 0, hence the Exit
is found by the Receiver, not before she has spent time 1 searching on the circle. All these
claims assume that the provided a(-), determining robots’ trajectories, is reserved.

In the first case, the evacuation cost is strictly less than 2 + 7.

> Claim 7. If the Exit is found by the Sender in CYCLE (¢), with 1 < ¢ < &, then the
evacuation time is less than 2 + .

Proof. Consider the Exit at point CYCLE (1 + z) for some z € [0, 7—1]. The Exit is discovered
by the Sender at time 1 + z, after spending time z moving counter-clockwise, starting from
CYCLE (1). Until the Exit is found, the Receiver moves in the opposite direction, starting
again from CYCLE (1). Therefore, when the Receiver’s receives the message from the Sender,
the two are at arc-distance 2z, or equivalently at Euclidean distance 2sinx. It follows that
the worst case evacuation in this case equals

max {l+z+2sinz} <7+ 2sinl <7+ 2. <
0<z<mr—1

In the second case, the evacuation cost is at most 2 + 7, and equality holds for selected
placements of the Exit.

> Claim 8 (Correctness of phase R3 of Receiver's Trajectory). If the Exit is found by the
Receiver in CYCLE (1 —t), with 0 <t < 1, then the evacuation time is at most 2 + 7.

Proof. As per the Receiver’s trajectory, if the Exit is found in T := {CcYCLE (1 — ¢) : t € [0,1]},
the Receiver attempts to meet the Sender in point P = (1 — 7/2,0). Note that for the
duration that the Receiver is exploring T" the corresponding part of the circle, the Receiver’s
distance to P is increasing. Hence, the latest time that the Receiver reaches point P, over
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all placements of the exits that induce this move, is when the Exit is placed at cYCLE (0). It
is also important to note that the move is the same limiting move that the Receiver makes
in order to meet the Sender if the Exit is at CYCLE (t), and ¢ tends to 0, either from the left
or the right. In this case it is easy to see that the Receiver reaches point P at time 2 4 /2.
Hence, for any placement of the Exit in T, the Receiver reaches P at time at most 2 + 7/2,
and waits for the Sender who arrives at P at time exactly 2 + 7/2 (1 to reach the perimeter,
7 — 1 to explore her part of the circle, and 2 — 7/2 to reach P from CYCLE ()). Noting that
P is /2 away from CYCLE (0), and in fact at most 7/2 away from any point in T, concludes
the proof. <

In the third case, we show that the evacuation cost stays invariant (for infinite and
uncountable many placements of the Exit).

> Claim 9 (Correctness of phase R4 of Receiver's Trajectory). If the Exit is found by the
Receiver in CYCLE (—t), with 0 < ¢ < 7, then the evacuation time equals 2 + 7.

Proof. Consider the Exit at point CYCLE (—t). The Receiver arrives at the point in time
2+t (1 to reach the perimeter, extra time 1 to reach CYCLE (0), and another ¢ to reach
CYCLE (—t)). Then, the Receiver spends time w; toward the (intended) meeting point M,
which is reached at time 2+t +w; =2+t + (7 —t)/2=2+7/2 + /2.

Now we show that the Sender arrives at M; at the exact same time (and note that the
Sender follows her trajectory without knowing the findings of the Receiver). Observe first
that the Sender reaches point My = (1 — 7/2,0) in time 2 + 7/2 (1 to reach the perimeter,
extra time 7 — 1 to reach CYCLE (7), and extra time 2 — /2 to reach Mj). Since the Sender’s
trajectory uses the a-induced pair (S, 7) thereafter (see definition in Section 2.2), the Sender
reaches M; in additional time ¢/2 for a total of 2 + 7 /2 + ¢/2, which is simultaneously with
the Receiver.

Since the two robots do indeed meet at point M; in time 2 4+ 7/2 + t/2, they return
together to CYCLE (—t) in extra time wy, for a total of 2 +7/2 +1¢/2 + wy =2 + 7. <

This concludes the proof of Lemma 5.

2.4 Speed Compliant Partial Trajectory (Proof of Theorem 4)

In this section we provide the missing component toward the proof of Theorem 4, a reserved
function «(-). To this end we define a: [0, 7] — [—1,1] as

a(t):=1—7/2+ (=2 +7/2)sin(t/2)
which also gives rise to the a-induced pair (S, 7) as per Section 2.2.
» Lemma 10. Function a(-) is reserved.

Proof. Direct substitution shows that «(0) = 1—7/2, a(w) = —1. Moreover, using ’'Hopital’s
rule

lim & cost _ lim 1—7/24(-2+ 7r/2) sin(t/2) — cost
t—m  sint t—m sint
. 2(—=2+m/2) cos(t/2) +sint
= lim =0,
t—m cost

which concludes that «(-) is indeed reserved. <
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Since by Lemma 10 the function «f(-) is reserved, Lemma 5 applies, according to which
the robots’ trajectories of Algorithm 1 solve the sender-receiver problem with evacuation
time at most 2 + 7. The Receiver maintains speed 1 (except from when she is idle), while
the Sender’s speed is induced by «(-). Therefore, Theorem 4 follows once we show that the
a-induced pair (S, 7) is speed compliant. This is done in Lemma 11 below.

We emphasize that our proof is computer-assisted in the following sense (but still
rigorous). First we rely on numerical evaluations of formulae that admit closed (symbolic)
forms. Specifically for our goal to show that a certain function (the one describing the
Sender’s speed) takes values at most 1 over a domain, we discretize the domain and we
identify a “safe” subdomain where the function is bounded away from 1. Given that we show
that the function is smooth enough, the provided discretization shows that the calculations
are robust against (possible) numerical inaccuracies and hence the function is at most 1 in
the safe subdomain. In the complementary “critical” subdomain where the function admits
values close to 1, we study the monotonicity of our function. To that end, we identify points
in the critical subdomain in which the function provably evaluates to 1, and then we show
that these points correspond to local strict maximizers (where the locality of the argument
covers the entire “critical” subdomain).

» Lemma 11. The a-induced pair (S, 1) is speed compliant.

Proof. We show that the a-induced pair (S, 7) gives rise to a movement of speed at most
1. Indeed, as per the definition of the trajectory, and for ¢ € [0, 7], the Sender is at point
M, = (f(t),g(t)) in time ¢/2. Therefore, for ¢ € [0,7/2], the Sender’s speed is given by

speed(t) = ((jtf(%))Q " (ig@t))Q) "

where functions f, g are given in (3), (4) (see Figure 2a for the plot of the function). We need
to verify that speed(t) < 1, for all ¢ € [0, 7/2]. For this we rely on a computer assisted proof
that relies on a refined enough discretization of domain [0,7/2]. By calculating speed(t)
exclusively on the discretized domain, and after we identify key monotinicity properties
of the function, we show that indeed the speed is at most 1. Towards that direction we
define functions fo(t) = speed®(t), f1(t) = fi(t), f2(t) = fi(t); see Figures 2b, 2c and 2d
for their plots, respectively. We will verify that fo(¢) < 1, for all ¢ € [0,7/2]. The main
idea behind our argument is that for values of ¢ for which fy(t) is bounded away from 1,
numerical (computer-assisted) evaluations of the function are robust enough to guarantee
that the function is indeed at most 1. A special treatment is required for the neighborhood
of values in which fy(¢) attains provably value equal to 1.

Note that all functions f;(¢),7 = 0,1,2 admit closed formulae, so all arguments below
that refer to Figures 2b, 2c¢, 2d for the sake of intuition, are actually supported by concrete
symbolic evaluations of functions f;(¢) in the discretized domain.

From the corresponding evaluation of fo(t) in the discretized space of [0,7/2], we see
that fo(t) is bounded away from 1 as long as t is bounded away from 0 and 7/2. Indeed,
by Figure 2b we have that fo(t) < 0.97 for all ¢ € [0.1,1]. Hence, it remains to show that
fo(t) <1 also in the neighborhoods close to t = 0 and ¢t = 7/2, covering in particular the
intervals [0,0.1] and [1,7/2].

Starting with the neighborhood of ¢ = 0, and with direct symbolic calculations, we see

that lim;_,o+ fo(t) = 1. At the same time we see that f1(¢) < —1 for all ¢ < 0.1, see Figure 2c.

It can be shown that the derivative of f;(¢) is bounded and therefore a refined evaluation of
f1(t) that shows it is negative for ¢ < 0.1 is enough to justify that fo(t) is at most 1. We
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S S R L .
0.5 1.0 15 0.5+ 0.5 1.0 15

(a) The plot of function speed(t),t € [0, 7/2]. (b) The plot of function fo(t),t € [0,7/2].

L L T
0.5 1.0 15

(c) The plot of function fi(t) = fi(t),t € (d) The plot of function f2(t) = f§'(t),t €
[0,7/2]. [0,7/2].

Figure 2 Numerical evaluation of functions speed(t), fi(t),s = 0,1,2 for t € [0, 7/2].

conclude that even with the considered discretization, function fy(t) is strictly decreasing
for t < 0.1. That accounts for any possible numerical inaccuracies when computing fo (%)
numerically, and hence fy(t) < 1 for all ¢ < 0.1.

Next we study the neighborhood of ¢ = 7/2. Direct symbolic calculations show that
limy_, /2 fo(t) = 1. However, lim;_,, /5 f1(t) = 0, so we need to follow a different argument
than before. In that direction, we study f2(t), see Figure 2d. We observe that when
t € [1,7/2], then f2(t) < —0.4. Hence, we have numerical verification that fo(t) is strictly
negative in [1,7/2] (bounded away from 0), and hence fo(t) is strictly concave in the same
interval. As a result, t = 7/2 is a strict local maximum of f(t), and therefore fo(¢) <1 for
all t € [1,7/2], concluding our argument. <

3 Lower Bound

We prove the following theorem which differentiates the WiFi and the SR models with respect
to evacuation time.

» Theorem 12. The evacuation time of any algorithm which accomplishes evacuation from
an unknown Ezit in o unit disk using the SR model is strictly bigger than 1 + %’T + /3, the
optimal evacuation time for the WiFi model.

Proof. The proof is based on the fact that if the evacuation time is exactly 1+ %" +1/3 then
the robots must follow specific trajectories. The robots begin their search starting from the
center of the unit disk. They need at least one time unit to reach the perimeter after which
they begin their exploration of the perimeter in order to find the Exit. Consider the two
robots at time exactly 1 + %’r Together the robots can cover a length of at most %" on the
perimeter. We first prove a useful lemma which is similar to Lemma 3 in [2].
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» Lemma 13. If at time exactly 1 + %’T for some x > 0 the total perimeter explored by the
two robots is at most 4?” — x then there is a chord on the circle of length > \/3 none of whose
endpoints has been visited by a robot.

Proof. Assume on the contrary there is no such chord, i.e., for every chord of length > /3 at
least one of its endpoints has been explored by a robot. Consider a point A on the perimeter
which has not been explored by a robot. Consider two points A; and As to the left and
right of A such that we get two arcs, one starting from A; and moving clockwise towards Ag
without passing from A, and one starting from A; and moving counter-clockwise passing
through A and then reaching As as shown in Figure 3.

We choose points A; and A, such that every point in the arc A; A, has been explored by
a robot.

If there is an unexplored point B to the left of A then we can use the same reasoning as
above to expand the explored arc below the arc A; A2. Moreover, the farther the point B
from A the longer the arc. Take the point B farthest and to the left of A which is unexplored
by a robot. Using the same reasoning take the point C' farthest and to the right of A which is
unexplored by a robot. Clearly, the arc BA; A>C is fully explored by robots with the exception
of the endpoints B and C. However, by the hypothesis of the lemma the arc BA; A>C has
length at most 4T — 2. It follows that |[BC| > /3 but this is a contradiction since both

endpoints B and C have not been explored by a robot. This proves Lemma 13. <
A X
A/
27
Ay 4 3
2r
3
C
B B
B/
A Y

Figure 3 Robot configuration at time 1 +
2,7". A is a point that has not been visted by
any of the two robots. The arcs ZXE,@
have length %’r

Figure 4 Two non-overlapping contiguous
trajectories, forming respective arcs AB and
A'B’, each of length 2% by the Sender and
the Receiver, respectively, at time 1 + %”

Now we proceed to the main proof of Theorem 12 and to this end we consider three cases.

Case 1.
trajectories is non-contiguous.
If the trajectories of the robots have an overlap of length ¢, for some £ > 0 then it is clear that

The trajectories of the robots either have a nontrivial overlap or one of the

in time 27/3 the robots cannot cover together more than a length of %’r — £ of the perimeter.

Therefore by Lemma 13 there is a chord of length > v/3 none of whose endpoints has been
explored by a robot. Similarly, if one of the robots’ trajectories is not contiguous, i.e., one of
the robots moves through the interior of the disk during its trajectory from one point on
the perimeter to another, then it is clear that the robots cannot cover together more than a
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length of 4?” — £ of the perimeter, where £ is the length of the arc a robot avoids by moving
across the chord of this arc. Therefore again making use of Lemma 13 we see that there is a
chord of length > v/3 none of whose endpoints has been explored by a robot. In either case,
depending on which endpoint of this chord is visited first by a robot the adversary places the
Exit at the other endpoint and the additional time required will be bigger than /3. This
proves the theorem in Case 1.

So without loss of generality from now on we may assume that both robot trajectories
are contiguous (they do not skip any length on the circle) and have no non-trivial overlap.
We consider two additional cases.

Case 2. If the perimeter explored by both robots by time 1 + %’r is itself non-continguous.

Note that each robot explores a contiguous arc of the perimeter of length %’T Moreover the
two trajectories are non-overlapping as depicted in Figure 4. Hence there is a chord of length
2 none of whose endpoints has been explored by a robot. Arguing as before the resulting
evacuation time will be at least 1 + 2?” + 2. Hence the theorem is proved in Case 2 as well.

Therefore it remains to consider the cases where the trajectories of the robots on the
perimeter form a single contiguous curve of length %”. This gives rise to the following case.

Case 3. The perimeter explored by both robots by time 1 + %’r is itself a contiguous arc of

length %’r.

There are four Subcases to consider depending on where the robots start and finish on the
perimeter. If any of the following three Subcases depicted in Figure 5 occurs the evacuation
time will be 1+ %’r +2. Indeed, in each Subcase the trajectories are contiguous and overlapping

Sender .
Receiver

Receiver

S S

Figure 5 Three cases of possible trajectories of the two robots at time 1 + %” forming a single
contiguous segment on the perimeter of total length 4,7”.

at the single point N (at the north pole of the perimeter of the circle). Since all the points
in the arc of length %” at the bottom are unexplored we can find a point S at the bottom
(namely the south pole) unexplored by any of the robots. If the adversary places the Exit
at the south pole S (a point antipodal to V) either the Sender or the Receiver will have to
spend an additional time 2 to evacuate. Arguing as before the resulting evacuation time will
be at least 1 + %’T + 2. Hence the theorem is proved for these three Subcases of Case 3 as
well.

The last remaining Subcase is depicted in Figure 6 in which both robots go together to
the north pole N and then traverse the perimeter for a time %’r In this final case we will
make use of the fact that the Receiver cannot send messages wirelessly. Without loss of
generality let the Receiver follow the left arc VX and the Sender the right arc NY. Consider
the two robots at an additional time @ On the one hand, if the Sender robot does not
reach the midpoint M of the chord XY then the adversary can place the Exit at a suitable

point close to X in the arc X.SY so that evacuation takes additional time which is more
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Figure 6 Robot configuration at time 1+ %’T + g The robots meet at the midpoint M of the
chord XY.

than @ thus proving that the evacuation time exceeds 1 + 2% + /3. On the other hand, if
the Sender reaches the point M it cannot have explored any point in the arc X.SY other
than the point Y. Therefore a similar reasoning applies if at the same time the Receiver does
not reach the midpoint M of the chord XY: the adversary can place the Exit at a suitable
point close to Y in the arc X SY so that evacuation takes additional time which is more than
§ thus proving again that the evacuation time exceeds 1 + %’T +/3.

So without loss of generality we may assume that in time exactly 1+ %” + § both robots
meet at the point M without having explored any other part of the perimeter other than the
arc X NY. Moreover, it is clear that none of the robots has explored any point on the arc
XSY. Consider a point X’ close to X on the arc XSY which is at distance € from X for
some € > 0 sufficiently small. The adversary places the Exit at one of the endpoints of the
chord X’S and the evacuation will require additional time |M S|+ |X’S| — € which is clearly
at least § + % — ¢. To see this, depending on which of the endpoints of the chord X’S is
visited first by a robot the adversary places the Exit at the other endpoint. Therefore in this
case the evacuation time exceeds 1 + %’r +v3+ % — €. This gives the proof in this case as
well and the proof of Theorem 12 is now complete. <

4 Conclusion

In this paper we considered the evacuation problem for two robots in the SR model from
an unknown Exit placed on the perimeter of the unit disk. We proved upper and lower

bounds for evacuation and showed that the evacuation time of our algorithm is at most m+ 2.

Closing the gap between the lower and upper bounds remains a challenging open question.
The mixed communication model considered is interesting for multiple robots. For example,
suppose we have n robots all of which can communicate F2F while s among the n are senders
(can only send wirelessly) and the remaining r are receivers (can only receive wirelessly) such
that n = s + r. Nothing is known about the optimal evacuation time in this more general
model. (Note that if a sender and a receiver join and move together as one robot then they
behave as a fully wireless robot.) In our study, the communication status of the robots (i.e.,
either sender or receiver) is known in advance. An interesting extension worth considering is
when the communication status of the robots may be set by an adversary.
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