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Abstract

The demand of collaborative robots has been growing in the industry in general, and with

it the need for new ways to improve and make this work environment between human

and robot safer and efficient. The objective of this work is to improve and make this

environment safer and efficient by controlling the robot’s speed using a fuzzy approach

and by getting track of the hand of the operator. For this purpose, the UR3 robot

from Universal Robots and Leap Motion was used, which is a sensor capable of detecting

the hand, as well as its movements, with the data obtained it was possible to create

a system that has the robot’s speed as an output through fuzzy logic, and using the

distance between the hand and the gripper obtained from the Leap Motion and UR3 data

respectively as input to the fuzzy logic. With this it was possible to achieve satisfactory

speed control, moreover, in all the tests performed the approach proved to be able to avoid

collisions, and with the testing of different defuzzification methods in the fuzzy control,

it was also possible to achieve smooth speed control for some of the methods used, with

this in mind the system showed promise for improving Human-Robot Collaboration.

Keywords: Human-Robot Collaboration; Human-Robot Interaction; Collaborative Robotics;

Hand Tracking; Fuzzy Controller.
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Resumo

A procura de robôs colaborativos tem crescido na indústria em geral, e com ela a ne-

cessidade de novas formas de melhorar e tornar este ambiente de trabalho entre o ser

humano e o robô mais seguro e eficiente. O objetivo deste trabalho é melhorar e tornar

este ambiente mais seguro e eficiente, controlando a velocidade do robô através de uma

abordagem fuzzy e da localização da mão do operador. Para o efeito, foi utilizado o robô

UR3 dos Universal Robots e do Leap Motion, o qual é um sensor capaz de detectar a mão,

bem como os seus movimentos. Com os dados obtidos foi possível criar um sistema com

a lógica fuzzy, tendo como saída a velocidade do robô e a entrada a distância entre a mão

e a garra, obtida pelos dados do Leap Motion e do UR3, respectivamente. Com isto foi

possível obter um controlo de velocidade satisfatório, além disso, em todos os testes real-

izados a abordagem provou conseguir evitar colisões, e com o teste de diferentes métodos

de defuzzificação no controle fuzzy, também foi possível alcançar um controle suave da

velocidade para alguns dos métodos utilizados, com isto em mente o sistema mostrou-se

promissor para melhorar a Colaboração Humano-Robot.

Palavras-chave: Colaboração Humano-Robo; Intereção Humano-Robo; Robotica Co-

laborativa; Rastreio das mãos; Controlador Fuzzy.
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Chapter 1

Introduction

Throughout history, humanity has undergone several transformations in its economic

structure due to major technological changes in the production of goods, such as the

industrial revolutions. The first of these was marked by the emergence of the steam

engine and the mechanization of work, while the second brought electricity, production

lines, and large-scale manufacturing. The third revolution was marked by the emergence of

computers and the internet, and the beginning of automation [1]. Currently, the industrial

revolution is in its fourth phase, also called industry 4.0 [2]. This is a German term

that emerged in 2011, which is defined by the use of highly technological strategies to

create highly automated industries through Human-Robot Interaction (HRI), that is, the

purpose of industry 4.0 is to try to bring a smarter, more efficient and more accurate

industrial technology [3].

Among the technologies related to Industry 4.0, this thesis has a major focus on col-

laborative robotics. To understand it first it is necessary to understand that robotics

in general can be divided into three directions. The first is industrial, where the more

traditional robots are found. These are reprogrammable, multipurpose industrial manip-

ulators. The second direction is service robotics. The third is the collaborative robotics

[4]. An example from the first direction are the robots shown in Figure 1.1, where they

are being used in the automotive industry, in order to assemble and weld car body parts.

A service robot is defined by ISO/TC 299 as a robot that performs useful tasks for

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Industrial Robot in Automotive Industry [5].

humans or equipment, excluding industrial automation-related applications. In Figure 1.2

it is possible to observe an example of this direction, being this cleaning robot Cleanfix -

RA 660 from ©BlueBotics.

Figure 1.2: Service Robot Cleanfix - RA 660 of ©BlueBotics [6].

In the Figure 1.3 it is possible to see a collaborative robot that was implemented at

Scott Fetzer Electrical Group, this robot being an example of the second direction of

robotics.

The collaborative robots or cobots objective is not to replace the human being on the

production line, but to work side by side [8], [9], thus uniting the ability of a robot to per-

form tasks with greater speed, precision, repeatability and strength with cognitive skills,

flexibility, intelligence, decision-making and the ability to act in unexpected situations

provided by a human [8], [10]. Most applications of collaborative robots are in the auto-

motive manufacturing industries, where cobots perform a variety of tasks ranging from
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Figure 1.3: Collaborative Robot [7].

picking, packing and palletizing, welding, assembling items, handling materials, product

inspection [8].

Cobots are also lighter, offer great mobility, can be used to perform a wide variety of

tasks, thus allowing them to be used in a wide range of industries and are also easier to

program compared to large industrial robots [8]. However, due to this great interaction

between human and robot, several challenges in how to guarantee safety and efficiency in

this shared work environment arise [4]. One of these challenges is the unpredictability and

the difficulty of accurately and at runtime obtaining the exact position of the operator,

which can collide, creating a dangerous situation around the robot [11].

1.1 Objectives

The objective of this thesis is to develop a system capable of identifying the position of the

operator’s hands in real time, in order to avoid collisions and improve the Human-Robot

Interaction (HRI), improving the safety and efficiency between a collaborative robot and

collaborators. To do this, image processing systems will be used to detect hand position

and a fuzzy control algorithm will be developed to control the speed of a collaborative

robot.

To achieve this goal, the work must guarantee the following conditions:

• Develop fuzzy control algorithm with low response time, if the delay of the algorithm
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response is too high it may not be able to avoid the collision.

• A robust hand tracking, being able to detect the hand at every angle on the bench.

Blind spots in this collaborative work environment can lead to accidents, since the

sensor will not be able to track the operator in these areas.

• Ensure safety in industrial environments, guaranteeing the safety of the collaborator,

as well as for other possible workers that may be in the vicinity of this environment,

not being able to harm them in any way.

• Identify all the hands present at the collaborative workbench, both for safety and

efficiency, failure to detect all the hands present can lead to accidents, as well as

hinder the collaboration between human and robot.

• Identify which hand is closer to the robot, in case of more than one hand present

on the robot bench, since this hand is in a more dangerous situation (higher chance

of collision) compared to the other more distant hands.

The major contribution of this thesis is an algorithm development that can increase

the efficiency and safety of the system by improving the HRI, through fuzzy speed control

and hand position detection.

1.2 Document Structure

This document is organized in 6 chapters. After this introductory chapter, Chapter

2 consists of a review of the literature regarding collaborative robotics, as well as the

related works and the study tools used. Chapter 3 presents the description of the case

study, which shows the environment where the system proposed in this thesis will be

developed. Chapter 4 contains the methodology and development of the project. While

chapter 5 contains the experiments performed to validate this solution as well as the

results found. Finally, the last chapter presents the conclusions and suggestions for future

work.



Chapter 2

State of the Art and Study of Tools

This chapter brings the concepts of collaborative robotics and fuzzy logic and the works

related to these areas. In the first part there is a review of the literature on collaborative

robotics, followed by related work, and in the second part a review of fuzzy logic, and

finally related work.

2.1 Collaborative Robotics

More and more industrial robots are being deployed in industry to replace or assist humans

in hazardous and repetitive activities [9], having an increase of approximately 31% in new

installations in 2021 compared to 2020 [12]. With this also grows the need for humans

not only to share the same work environment with robots, but also to work with them

as collaborators in the industrial environment. Robots used for this purpose are called

industrial collaborative robots or simply cobots [9].

The cobots are designed for easy programming [8], [13], because they have a friendly

interface and simple and intuitive programming language, facilitating their use by people

with no prior knowledge in programming [14]. Compared to industrial robots, collabora-

tive robots offer greater productivity, flexibility, versatility, and safety [8]. In addition to

a lower installation and maintenance cost compared to traditional robots [13], [14], but

these advantages over industrial robots come at the cost of reduced load capacity and

5
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speed, in order to avoid crushing and drilling, as well as to avoid collisions [13], [15].

Other advantages of cobots are related to Human-Robot Collaboration (HRC), as it

unites the precision, repeatability and speed of a robot, with the intelligence, flexibility

and ability to act in unexpected situations of a human being [16]. Sherwani, Asad, and

Ibrahim [8] bring in a table, which can be seen in Figure 2.1, a comparison between

human and robot capabilities, to show that the robot is designed to complement human

weaknesses in certain things.

Humans Robots
Advantages Disadvantages Advantages Disadvantages

Dexterity Weakness Strength No Process Knowledge
Flexibility Fatigue Endurance Lack of Experience
Creativity Imprecision Precision Lack of Creativity

Decision Making Low Productivity High Productivity No Decision Power

Table 2.1: Comparison Between Humans and Robots. Adapted from [8].

To ensure a good HRC, it is necessary that the HRI is safe and efficient [9]. In [9],

Abdelfetah et al. brings challenges and constraints that need to be studied and developed

in order to ensure better HRI, these being:

• Obtain robust detection of human motion in order to build good predictive systems.

• Achieving robust detection that can identify when contact between robot and human

occurs.

• Develop responsive controllers capable of rapidly replanning the robot’s trajectory in

a complex and unpredictable environment in real time.

Next, some works related to the challenges presented by Hentout, Aouache, Maoudj,

et al. [9] will be briefly presented, in order to verify what has already been developed on

these issues.

Regarding the route planning, Dumonteil, Manfredi, Devy, et al. [17] uses in its work

reactive planning and a Kinect sensor to avoid collision trajectories and detect obstacles

on the way, respectively. In simplified form, the operation happens as follows: if the
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robot is executing a path and encounters a new obstacle, it will request a new route,

thus avoiding the collision. In [18] the researchers develop a method to plan paths for

robotic arms based on computer vision, Q-learning and neural networks, where the system

works as follows, first it was trained to detect three 3D shapes, a sphere, a pyramid and

a cube, where they would be the starting point, obstacle and target for the robotic arm,

respectively. Having the coordinates of these objects, the Q-learning algorithm determines

the sequence of actions that the arm must take, and finally a trained neural network

converts this sequence of actions into the respective joint angles, quickly replanning the

robot’s trajectory in a 3D environment and in real time.

As for collision detection, Heo, Kim, Lee, et al. [19] propose a new collision detec-

tion framework called CollisionNet, which is based on deep learning. In this project, the

researchers trained the neural network with 160,055 samples from 210 collisions, which

contain high-dimensional signals from the robot joints. Thus, it was possible to achieve

high collision sensitivity and robustness to false-positive detection induced by noisy signals

and model uncertainties. In [20], a Back-Input Compensation (BICom) system is pro-

posed in countermeasure to Generalized Momentum Observer (GMO) collision detection

techniques that are widely used in cobots and High-Pass Filter (HPF) based detection

techniques. Simply put, GMO are techniques that detect impact using information from

robot joints [21]. Because GMO is somewhat of a low-pass filter, it does not have much

delay to detect sharp collisions. HPF-based methods are able to detect sharp collisions

almost instantaneously, but are not sensitive to quasi-static contacts. BICom proved to

be able to efficiently detect both soft and hard collisions, hard collisions are when a sharp

impact occurs, while soft collisions are linked to pull, push and grab movements. In ad-

dition to also being able to monitor quasi-static contact, and also to decrease the number

of false positives compared to the methods [20].

On the subject of human detection, Kang, Kim, and Kim [22] have developed a collab-

orative robot workplace safety monitoring system, to this end the researchers use depth

sensors to acquire images of the workspace, and use a neural network model to identify the

worker and the robot. From the detected information, the system estimates the distance



8 CHAPTER 2. STATE OF THE ART AND STUDY OF TOOLS

between the worker and the robot, and the classic in three levels:

• Worker safety area.

• Worker attention area.

• Dangerous worker area.

In the first level nothing happens to the robot, in the second level it is slowed down,

and finally in the hazardous area it is stopped. In this way, the safety of the operators

is increased by controlling the robot in dangerous situations. In [23], meanwhile, the

researchers present a control strategy that allows a cobot UR3 to be triggered to perform

the task of object transfer between an operator’s hand and the robot’s tool. To this end,

the researchers use multiple Microsoft Kinects sensors, to acquire a dynamic skeleton

of the hand. After detection, the skeleton data is sent to an algorithm that plans a

route for the robot tool to stop at an opportune position to collect the object, ensuring

safety, improving efficiency, and making the HRC more dynamic. Different from the

paper Scimmi, Melchiorre, Mauro, et al. [23], Aleotti, Micelli, and Caselli [24] aiming to

improve also the HRC are not only concerned with transferring the object to the user, but

transferring the object with comfort. To accomplish this 3 processes are performed, where

in the first one an eye-in-hand laser scanner sensor is used, which first detects what is the

shape of the object to be handed to the operator, and then the object image is processed

in order to verify what is the part of the object (known a priori) that will be pointed to the

operator in order to guarantee the best comfort when picking up the object. In the second

part a fixed depth sensor (kinect) is used, which detects when a human approaches the

table where the robot is fixed and also consists in the route planning part, which consists in

finding the claw’s closing force and planning the trajectory so that the object is delivered

in a comfortable configuration for the user. The last step consists in verifying that the

user has caught the object after the robot finishes the trajectory to open the gripper. This

is done using an algorithm that uses the kinect data to detect the collision.

In work [25], a workbench composed of a collaborative robot was used, with a force

sensor coupled to the cobot grip and camera to perform quality control in small electronic
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devices. The collaborative robot presses buttons on the device and, through a machine

learning algorithm, identifies whether the buttons are working or not. In addition, through

visual inspection based on camera images, the system detects failures in the displays

of electronic devices. As a result of the work, the authors identified that the robot’s

collaboration in the quality control task reduces errors caused by repetition or fatigue of

the operator.

In the work Kaplanoglu, Nasab, Erdemir, et al. [26], Kaplanoglu, Nasab, Erdemir, et

al. [26] uses detection to develop a way to control a robotic arm through hand movements,

in order to improve HRC other than through predictive systems. The hand gestures are

detected through the MYO bracelet, which is a bracelet that uses Electromyography

(EMG) to identify the gestures. EMG is the process of measuring the electrical activity

caused by muscles during their contraction. The gestures are sent to a Raspberry Pi,

where data processing occurs, resulting in a movement that the robotic arm must perform

In order to verify the effectiveness of this control method, the researchers simulated an

assembly line. First, the process was done manually, and three different people were

used for the test, who did everything individually. After this, the same simulation was

performed, but with the help of the robot, and finally the assembly was carried out in a

fully automated way, in order to verify the assembly time for each situation. The subjects

working together with the robot resulted in a 40% decrease in assembly time compared

to the subjects without the help of the robot, and compared to the robot alone there

was only an approximate 8% decrease [26]. However, bearing in mind that there are

some tasks that may be too complex to be fully achieved by traditional robots or too

expensive to be fully automated [9]. In this way, the authors have shown the efficiency

of the proposed solution. In [27], the authors complement a Faster Region-based Region-

based Convolutional Neural Network (R-CNN) gesture recognition system to improve

performance over the previous project [28]. R-CNN is a deep convolutional network used

for object detection. For this, the researchers trained the convolutional neural network

to detect four simple and different gestures in order to test the capabilities of the Faster

R-CNN method. The new solution implemented by the researchers proved promising with
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a low inference time, which is suitable for real-time applications [27].

In addition, there are also projects being done to improve safety and productivity

through speed control. In [29]. The researchers develop a method and speed control that

satisfies both safety and productivity in the collaborative work environment by applying

the maximum safe speed allowed. In order to find the maximum safe allowed speed, the

researchers use a layered collision model to calculate the impact pressure/force using the

pressure and force limit specified in ISO/TS 15066 as a basis. In this way, the researchers

are able to keep the robot’s speed at the maximum possible within the control zone that

does not exceed the force and pressure limits in an impact with a human.

2.2 Fuzzy Control Systems

Fuzzy logic is a technique was first proposed in 1965 by Zadeh [30] in his publication .

According to Lanzillotti, Lanzillotti, and SINTZ [31], unlike the Boolean logic, where 0

indicates false and 1 true, fuzzy logic can simply assume any real value between 0 and 1,

in other words, it is a logic that was extended to deal with the concept of partial truth,

seeking to imitate human reasoning Ahlawat, Gautam, Sharma, et al. [32]. In this way,

this concept can be used to develop a controller through human experience. Where the

main advantage is the possibility to implement through experience, intuition and risk,

and the fact that it is not necessary to have a model of the process [33]. That is, fuzzy

control logic is nothing more than a form of control to control complex process systems

through human experience. Unlike conventional (nonfuzzy) where the control system is

designed with the help of physical models of the process [34].

In 1975 the first fuzzy controller applied successfully by Mamdani and Assilian in a

laboratory environment. Then occurred its first industrial application of fuzzy controllers

by Holmblad and Østergaard, two civil engineers, around 1980, the company F.L. Schmidt

for the control of cement kilns [35]. Since its first publication, fuzzy logic has stood out

among researchers due to its versatility and expressiveness.
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2.3 Fuzzy Solutions in Collaborative Robotics

With the insertion of collaborative robotics in the industrial environment, creates situa-

tions of risk to humans and the need to mitigate these risks, identifying the hazards in

their nature and severity among other parameters to apply risk assessment algorithms

based on fuzzy logic. This being a tool capable of dealing with subjectivity and complex

issues through mathematical methods and analysis and probabilistic [36] [37].

For such estimates it is necessary to obtain information about the environment, work

space, task being executed as well as the behavior of the users obtained through cameras

and sensors that are arranged by the work environment of this robot. The application

of this method, or even together with artificial neural network algorithms as produced

by Beltran, Diwa, Gales, et al. [38], proved to be capable of controlling and managing

the speed and the movement vectors of the robotic manipulators, obtaining satisfactory

results and providing risk reduction associated to the operation of these robots [38] [37]

[39].

In the paper [40] the fuzzy approach ensured greater efficiency in dealing with the

randomness of the system, where fuzzy logic was used in the schedule of tasks performed

between an operator and a cobot, which due to the unpredictable nature of the operator

and its variability in time to complete the same task, in addition to the possible interac-

tions that it could do with the robot, which makes the cycle time non-deterministic, but

with the use of fuzzy logic to model this system, there is a decrease in the prediction of the

temple of cycle and compared to linear modeling methods [40]. The work also presents

the proposal of a new fuzzy approach to reduce and quantify the risk in human-robot

interaction.

In the work [41] the author combines two methods, the Safety Through Prediction

(STP), which consists of using a depth camera and thermals for a reliable detection of

a human operator, together with the Safety Through Control (STC) that proposes a

fuzzy inference system capable of dynamically computing the shortest protective distance

according to a risk analysis based on perceptual data. The combination of these two
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methods allowed the system to be more productive, minimizing robot downtime, while

still ensuring safety.

2.4 Python

Python is a high-level programming language [42], which was designed with emphasis on

the work of the developer. For it has a simpler, cleaner and more readable code writing,

making it easier to write code for smaller applications as well as more complex programs

[43].

Python is used in a variety of applications, ranging from website development, scien-

tific computation, software development and games [44]. Currently, there are two series

of versions of Python, being 2.x and 3.x, where version 2.x is older, its support and main-

tenance ended on January 1, 2020 [45], Version 3.x consists of a redesign of version 2.x,

which is actively supported [44].

2.4.1 PyCharm

PyCharm is a Python Integrated Development Environment (IDE), that is software for

building applications that combines common developer tools into a single graphical user

interface (GUI). The objective is to simplify software development and facilitate the iden-

tification and minimize coding mistakes and typos [46].

Segundo Gayratovich [47]: PyCharm is an indispensable modern environment for

Python programming language.

.



Chapter 3

Case Study Description

With the ever-increasing advancement of technology involving collaborative robotics,

these types of robots are being used more and more [9]. Thus, there is an increasing

amount of workspace sharing between humans and robots. An example of this is the

bench in Figure 3.1.

Figure 3.1: Workbench Division.
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The workbench in Figure 3.2 can be used for applications that require Pick and Place

of objects, as well as for part assembly and quality inspection, for example. Currently,

the bench is located at IPB in the laboratory of the Research Center in Digitalization and

Intelligent Robotics (CeDRI). In which it is used with the intention of similar collaborative

working environment between man and cobot.

As observed in Figure 3.1, this bench is divided into two spaces, one for collaborative

work, and one autonomous space. In the collaborative space the human and the robotic

arm share the space, being able to perform activities simultaneously, and the other space

is dedicated to the autonomous activities of the robot.

The workbench consists of a UR3, which is a collaborative robotic arm (cobot) from

Universal Robots, the Leap Motion which is an optical hand tracking sensor, and a light

curtain safety sensor. All the components can be seen in Figure 3.2.

Figure 3.2: Arrangement of the Components.
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3.1 Collaborative Robot Arm UR3

Unlike a traditional robotic arm, the objective of cobot is not to replace the human being in

the industry, but to work side by side with them, thus uniting the precision, repeatability

and speed of a robot, with the intelligence, flexibility and ability to act in unexpected

situations of a human being, in order to obtain better productivity and industrial quality

[8], [9], [16].

The UR3 is a collaborative robot arm from Universal Robots, with the ability to lift

up to 3 kg, 500 mm reach and 6 rotating joints, it is a robot to perform light tasks, such as

assembly, and also for jobs that require a lot of precision [48]. The cobot is equipped with

a magnetic gripper and a Wrist camera model Q-00104, where the gripper with camera

assistance can be used for activities such as Pick and Place with metal objects.

3.2 Leap Motion Controller

Leap Motion sensor is an optical and infrared light hand tracking sensor, which can

capture hand and finger movement, that was developed by Leap Motion, Inc.

Figure 3.3: Leap Motion Controller Schematic [49].

The sensor in conjunction with its Application Programmer Interface (API) can pro-

vide the position of hands and fingers with good accuracy in a Cartesian plane relative to

the center point of the Leap Motion Controller, which is located on the second Infrared

(IR) LED, where it is centered, as illustrated in Figure 3.3. It has two IR cameras, with

640 x 240 pixels. It can track hands from a depth of 10 cm, up to a maximum of 80 cm,

and with a 140×120° field of view.
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3.3 OMRON Safety Light Curtain F3SG

A light curtain sensor consists of two parts, a receiver and a transmitter, where the

transmitter contains multiple LEDs that send IR pulses to the receiver, while the receiver

waits to receive these pulses at the right frequency and time. If an object, such as a hand,

passes between the transmitter and receiver, it will cause interference to be generated in

the signal, causing the receiver to stop receiving pulses, and send a trigger signal to a

machine or device connected to it. An example of this can be seen in Figure 3.4.

Figure 3.4: Example of Interference with the Light Curtain Sensor [50].

On the workbench, the sensor used is the OMRON Safety Light Curtain F3SG-

2RE0750P30 model, which is specific for hand protection. Some of its specifications

are that the safety field reaches a height of up to 750 mm and can cover up to a maximum

distance of 20 meters between the receiver and the transmitter. This sensor also has a

response time of only ms, which is the time it takes for the receiver to trigger when it

detects an object between the receiver and the transmitter.



Chapter 4

Methodology and Development

There is a growing need for systems that ensure the safety of the human being, who works

side by side with the machine, that is, a system capable of dealing in real time with human

unpredictability in order to ensure safety and efficiency in the workplace.

Therefore, the approach adopted in this study in order to improve the HRI, consists

of implementing a fuzzy control of the robotic arm speed. Where this in turn has as input

the Euclidean distance between the operator’s hand and the robot’s claw, the robot’s

speed, and whether the claw is approaching or moving away from the hand.

The use of fuzzy logic happens, because it is a powerful tool to deal with the unpre-

dictability characteristic of the real world [36], because it allows to represent models that

contain a certain degree of uncertainty or imprecision. Thus, fuzzy control was used to

deal with the unpredictability of human-machine interaction.

The speed control, on the other hand, is done to avoid possible collisions and thus

increase the operator’s safety. The better the speed control, the better the efficiency of

the system.

Python was used as the programming language for Leap Motion, UR3 and also to

develop the fuzzy controller. The Python version used in this project is 2.7.3 because

versions 2.x and 3.x are not fully compatible, and the latest Leap Motion Software De-

velopment Kit for Python is developed for version 2.7.3. To obtain statistical data from

the acquired data set and to make box diagrams.

17
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4.1 System Architecture

In this section the architecture of the system will be presented, using the block diagram

contained in Figure 4.1 and each block will be explained.

Figure 4.1: System Architecture.

The system starts when the security sensor detects the presence of one or more hands

between the receiver and the transmitter. The sensor provides this information to the

processing unit. From this the processing unit will trigger Leap Motion, where from its

API it can extract the position of the hands, which will be sent to the processing unit.
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The processing unit will also extract from the UR3’s Modbus server the position of the

robot’s claw, as well as its speed via socket. Modbus is a serial communication protocol

developed by Modicon in 1979. Modbus is a method used to transmit information over

serial lines between electronic devices. The device requesting or writing information can

be called the Modbus client, and the device providing or receiving this information is

referred to as the Modbus server [51]. With the data acquisition, the processing unit can

make the necessary calculations to finally provide the robot arm with the new speed. In

the flowchart present in Figure 4.2, it is possible to observe in more detail how the system

works.

Figure 4.2: Flowchart Showing the Simplified Operation of the System.

4.2 Safety and Hand Tracking Based on OMRON

and Leap Motion

Two sensors were used, one being the OMRON Safety Light Curtain F3SG which is called

the “Safety Sensor” in the diagram in Figure 4.1 and the Leap Motion Controller. The
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safety sensor as mentioned earlier is responsible for detecting the presence of the hand(s)

on the robot workbench. As soon as the hand is detected by the safety sensor, it sends

a signal to the processing unit. For this, it was necessary to develop a routine in Python

that uses ModBus communication. The functioning of the code can be observed by the

flowchart in Figure 4.3.

Try connecting with the Safety 
Sensor

Was the connection 
established?

Performs the register reading via 
Modbus

Is the register high?

Returns 1, that means an object was 
detected between the receiver and the 

transmitter

Returns 0, this means that no object was 
detected between the receiver and the 

transmitter

No

NoYes

Yes

Figure 4.3: Flowchart of the Safety Sensor Routine.

The Leap Montion controller together with its API is responsible for tracking the

hand in real time and providing the respective data to the processing unit. For this, a

Python code was developed using the Software Development Kit (SDK) provided by Leap

Motion, Inc. Using this SDK made it possible to develop a class in Python that contains

a function with the ability to collect in real time the position of the operator’s hand. You

can see how the function works by looking at the flowchart in Figure 4.4.
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Get a frame from the Leap Motion 
controller

There are hands in the 
frame?

Obtain the X, Y and Z 
coordinates of the palm for 

each hand present in the 
frame

Have you finished 
collecting the hand 

positions?

No

No Yes

Yes

Figure 4.4: Flowchart of the Hand’s Palm Position Function.

4.3 Speed Control in the UR3 Controller

The UR3 controller was called “Cobot” in Figure 4.1, it acts as a Modbus server (port

502), which allows connections to be made to it in order to send Modbus requests, either

read or write. The UR3 controller was used to obtain the UR3 gripper position in runtime,

as well as to control the speed of the robot arm. To access the gripper position in real time,

a Python code was developed using the pyModbusTCP library version 0.1.10. Figure 4.5

shows the gripper position obtained remotely with this code.

The speed control of the UR3 occurs by remotely changing the speed slider of the

teach pendant. To perform this control remotely, a socket connection was established

with port 30002, which is responsible for connecting to the UR3 dashboard. To make this

connection, Python’s socket library was used. The resulting function works as follows:

first it connects via socket to port 30002, when connected it is able to receive a value

between 0 and 1, where 0 means 0% of the maximum cobot speed and 1 indicates 100%

of it, with the speed value set the function sends it to the dashboard. The operation of
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Figure 4.5: Gripper Position Data in Real-time.

this function is shown in Figure 4.6.

Connects via socket TCP with a 
30002 port

Was the connection 
successful?

Define the new UR3 
speed

Has the speed 
been set?

Send the new speed to the UR3 via the 
socket connection with 30002 port

No

No

Yes

Yes

Figure 4.6: Flowchart of the Set Speed Function.
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4.4 Algorithm for Fuzzy Speed Control Based on Eu-

clidean Distance

In the processing unit is where the calculation of the new UR3 speed through the fuzzy

controller, and the calculation of the Euclidean distance between the robot and the hand

occurs in real time.

4.4.1 Fuzzy Controller for the Robot Speed

The fuzzy controller was developed in Python using the library skfuzzy V0.4.2. The fuzzy

inference method used was the Mamdani, because it is very intuitive, and well suited for

a human input and has a more interpretable rule base. Three inputs and one output were

defined, and they are respectively the Euclidean distance between the robot gripper and

the hand measured in millimeters (mm), the current speed of the robot in percentage (%),

and whether the gripper is approaching or moving away from the adimensional robot, and

this is a Boolean variable, and finally the output speed in percentage (%).

To use the Mamdani method you must fuzzify the input and output variables, then

define a fuzzy rule set, activate that rule set for the input crisp values, and finally defuzzify.

Fuzzification

First the input and output variables were fuzzified, that is, the linguistic variables with

their Membership Functions (MFs) for each input variable are defined. In Figure 4.7 it

is possible to observe the linguistic variables with their respective membership functions

for each of the input variables. The fuzzy set of the Euclidean distance, which is an input

variable, was defined according to the following linguistic terms: very close (vC), Close

(C), Average (A), Far (F), Very Far (vF). Whereas for the input speed variable, the

linguistic terms are: very slow (vS), slow (S), average (A), high (H), very high (vH), and

finally the Boolean approximation variable, which was represented through two linguistic

variables: separating, approaching.
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Figure 4.7: Fuzzification of Input Variables.

The fuzzy sets of the input variables (Euclidean distance and velocity) were defined

using trapezoidal (at the edges) and triangular (in the middle) MFs.

For the variable output speed were used the same linguistic variables that the input

speed, but the fuzzy sets were defined using only triangular MFs, in order to bring the

results of defuzzification closer to 0 and 100. The MFs of the output speed can be seen

in Figure 4.8.

Figure 4.8: Fuzzification of Output Variables.
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Fuzzy Rules

The Fuzzy inference system uses a set of IF-THEN rules that maps the MFs of the input

variables to the MFs of the output variables. The decision table is shown in Figure 4.9,

the table presents the rules defined for the Fuzzy system. Each cell represents the result

of a logical operation AND between the input variables (rows and columns).

Figure 4.9: Fuzzy Rules/Decision Table.

Rules Activation

With the rules and membership functions defined, it is possible to calculate the activation

of the rules in the inference step for a given Euclidean distance in mm, a speed in percent,

and an approximation value. In a given scenario, a rule can be activated as follows: “IF

Euclidean distance = vC AND input velocity = vH AND approach\separate = approach-

ing THEN velocity output is vS”. The result of this inference is an output fuzzy set, which

is used in the defuzzification step.

Defuzzification

Defuzzification consists of transforming a fuzzy set into a crisp output value. In order

to find the best defuzzification method for this system, different defuzzification methods

were tested, consisting of Centroid, Bisector, Mean of Maxima (MoM), Largest of Maxima



26 CHAPTER 4. METHODOLOGY AND DEVELOPMENT

(LoM), Smallest of Maxima (SoM), in order to verify if there are significant improvements

in speed control in one method over another.

The centroid method consists of returning a crisp value based in the center of gravity

of the fuzzy set. That is, the total area of the membership function distribution used to

represent the output is divided into several subareas. The area and centroid of each sub-

area are calculated, and then the sum of all these subareas is taken to find the defuzzified

value for a fuzzy set. In Figure 4.10 you can see the crisp values of the output velocity as

a function of the 3 inputs for this defuzzification method.

Figure 4.10: Centroid Defuzzication.

The bisector method consists of calculating the position under the curve where the

areas of both sides are equal. The crisp output for this method can be seen in Figure

4.11.

Figure 4.11: Bisector Defuzzication.
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The SoM is the method that determines the smallest value of the domain with maxi-

mum membership value. The crisp output for this method can be seen in Figure 4.12.

Figure 4.12: Smallest of Maxima (SoM) Defuzzication.

The LoM method is the opposite of SoM, in this method the highest value of the

domain with maximum association value is determined. The crisp output for this method

can be seen in Figure 4.13.

Figure 4.13: Largest of Maxima (LoM) Defuzzication.

Finally, MoM is the method where the defuzzified value is taken as the element with

the highest membership values. When there is more than one element with maximum

membership values, the average value of the maximums is taken. The crisp output for

this method can be seen in Figure 4.14.
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Figure 4.14: Meam of Maxima (MoM) Defuzzication.

Fuzzy Speed Controller Function

With all the steps to perform the fuzzy control defined, it was possible to develop the

function in Python, the function has as input the current speed of the robot, the current

Euclidean distance, the previous Euclidean distance to the current one and the deffuzifica-

tion method to be used. With the previous and current Euclidean distance it’s possible to

calculate if the gripper is approaching or moving away from the hand, for this the previous

distance is subtracted from the current distance, the result of this operation is normalized

to a value between -1 and 1, where a negative result indicates that the hand is moving

away, a result equal to zero indicates that there is no variation between the distance of

the robot and the gripper, and a positive result indicates that the gripper and the hand

are moving closer. After performing this operation all the input variables necessary for

the inference method defined were obtained, so the next step consisted in calculating the

pertinence of the input variables for each linguistic variable, with the pertinence values

obtained it was possible to perform the activation of the rules, the next step consisted

in calculating the pertinence of the input variables for each linguistic variable, with the

obtained pertinence values it was possible to perform the activation of the rules, thus ob-

taining the activity of the MFs of the output velocity, finally the activity of the MFs were

aggregated, allowing to calculate the velocity based on the chosen defuzzication method,

which consists of a value between 0% and 100%, the resulting velocity was divided by 100
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in order to normalize it to a value between 0 and 1. In Figure 4.15 you can see a flowchart

containing the step-by-step of this routine.

Get the current robot speed, the previous and current 
Euclidean distance, and the defuzzification method

Have all the variables been 
obtained?

Evaluate through the previous and current 
Euclidean distance whether the distance is 

decreasing or increasing, and finally normalize it 
between -1 and 1

Have all the variables for the 
inference method been obtained?

Evaluate the pertinence value for each linguistic 
variable of the input variables,

Were the pertinence values 
obtained?

Activation of the fuzzy rules

The activity of the output 
membership functions were 

obtained?

Aggregate the membership functions and 
defuzzify the output to the respective crisp value 

that represents the new UR3 speed for the 
selected method.

Was the crisp value 
obtained?

Returns the normalized crisp value

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

Figure 4.15: Flowchart of the Fuzzy Speed Control Function.

4.4.2 Euclidean Distance Evaluation

To obtain the Euclidean distance between the robot and the hand it was necessary two

steps, where the first step consists of the code shown in Figure 4.4, which obtains the

position of the hand palm in real time relative to the Leap Motion’s Cartesian plane.

The second step is to convert this position from the Leap Motion Cartesian plane to

the robot’s plane, which is located at the base of the robot. The position and orientation

of the planes can be seen in Figure 3.2. This is necessary, because to be able to calculate
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the Euclidean distance between them, which is one of the input variables needed for the

fuzzy controller, both positions must be in the same plane.

From the properties of rotation and translation, it was concluded that it was necessary

to rotate once with respect to the x-axis, once with respect to the z-axis, and finally to

translate to the origin of the robot plane. The final equation is 4.1:
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(4.1)

Being x’, y’ and z’ the Cartesian coordinates of the center of the hand in the UR3

plane in mm. The dx, dy and dz are the physical distance between the origin of the

sensor and the origin of the robotic arm, where dx, dy and dz are respectively worth

approximately 55 mm, -310 mm and 815 mm. These values were found from the physical

measurement of the distance between the origin of the sensor and the UR3. The angle of

rotation in z, θ1 is equal to that of rotation in x, θ2 which is worth -90º. Whereas x, y

and z consist of the position of the hand relative to the plane in mm of Leap Motion.

Thus, using Python, it was possible to make a routine that converts in runtime the

position of the hand from one plane to the other. In Figure 4.16 it is possible to observe

the position of the hand in real time in relation to the origin of the collaborative robot. If

more than one hand is present on the robot workbench, the routine will also compare the

Euclidean distance of each hand to the gripper, checking which is the smallest, in order to

return the Euclidean distance of the hand closest to the gripper to be used by the fuzzy

speed control function.
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Figure 4.16: Hand Position Data in Robot Plane.

4.5 Systems Integration

The Python programming language was used to integrate all the functions and routines

used in this project, the main routine gathers what was developed for each block of the

system architecture (Figure 4.1), in order to perform speed control and avoid collisions

in the system. The main routine was developed on top of the class shown in Figure 4.4.

In order to facilitate the understanding of the routine, a flowchart with its operation is

shown in Figure 4.17. As not all defuzzification methods can reach the 0% output speed

value, and because the minimum speed that can be sent to the UR3 controller is 2%

(controller limitation), it was necessary to add to the main routine a condition based on

the Euclidean distance between the gripper and the hand, where if it is smaller than 75

mm the robot is paused, if the distance is greater than 75 mm and less than 550 mm

the robot movement is resumed and speed control happens by the fuzzy controller, if the

distance is greater than 550 mm the robot speed is kept at maximum, since the gripper

is physically far enough from the operator, and any speed control in this situation would

only result in loss of efficiency for the system. All the codes, functions and routines used
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and developed in this project are available in the link present in annex A.

Starts and connects to the 
Leap Motion

Function of the 
safaty sensor1

Function of the 
safaty sensor1

The function 
returns 1?

Get a frame from the Leap 
Motion controller

There are hands in the 
frame?

Obtain the X, Y and Z 
coordinates of the palm for 

each hand present in the 
frame

No

Yes

Translates and rotates the 
coordinates from the Leap 
Motion plane to the UR3 

Cartesian plane

Evaluate the Euclidean 
distances between the 
robot's gripper and the 

operator hands

Compare the distances obtained in order 
to obtain the one with the smallest value

Get the current X, Y and Z 
coordinates of the gripper

Get the current robot 
speed

Select a defuzzification method 
and send the variables to the 

fuzzy control function

Is the smallest Euclidean 
distance smaller than 75 mm?

Is the smallest Euclidean 
distance between 75mm 

and 550mm?

Is the smallest Euclidean 
distance greater than 550 

mm?

Pause the 
robot

Resume 
the robot

Set the robot speed 
to 100% and 

resume the robot

2

Set speed function3

Was the process unit able to 
connect with the Leap Motion?

Legend:
1 - Function shown in Figure 4.3
2 - Function shown in Figure 4.15
3 - Function shown in Figure 4.6

Legend:
1 - Function shown in Figure 4.3
2 - Function shown in Figure 4.15
3 - Function shown in Figure 4.6

No

No

No No

Yes

Yes

Yes

Yes Yes

Figure 4.17: Main Routine Developed.
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Experiments and Results

5.1 Experiments Methodology

In order to validate this method of fuzzy speed control, a routine was developed in Python

to collect and export to real time .csv files containing the robot’s gripper position, hand

position, Euclidean distance, gripper speed, and timestamp, the routine is described in

the chapter 5. The data was collected from four different routes that the robot traveled.

The routes were called Square, Round, Collision, 3-Dimensional.

To ensure data reliability, 10 tests were performed for each defuzzification method on

each of the routes, for a total of 200 tests. All tests had the same running time, consisting

of 300 samples. The wooden hand was fixed in the same position for all routes.

To verify the results, graphs were made showing the speed behavior for each defuzzifi-

cation method in each route, allowing a visual analysis of them. A routine in Python was

also used to calculate the average velocity for each of the 200 tests, in order to generate

box diagrams, allowing a visual analysis of the difference between the average velocity for

each method and each route. And finally, Excel was used to perform the two-tailed t-test

for two samples assuming different variances with an α of 0.05, in order to verify whether

the variation in speed between the different methods is significant for each of the routes.
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5.2 Experiments

As mentioned in the previous chapter, the experiment to test the fuzzy speed control

consisted in attaching a wooden hand to the bench, simulating a human hand, and check-

ing how the speed of the robotic arm varied in 4 different routes, called Square, Round,

Collision and 3-Dimensional.

In the Figure 5.1 you can see how the routes of the UR3 gripper were defined, for all

routes, the gripper will start its movement from the starting point, indicated in the Figure

5.1, and the direction of its movement is indicated by the red arrows, the four routes are

closed loops, which will be repeated until the desired number of samples is reached, finally,

in all routes the position of the center hand is indicated by a red diamond. Where in the

Square route the gripper performed linear movements only in the XY plane, without

varying the height, in order to facilitate the observation of the velocity behavior. The

Round route also remained in the XY plane, but with circular movements. The Collision

route is a path where the gripper must pass through where the wooden hand is attached,

and then return to the origin point. The objective of this route is to observe if the speed

control method is able to prevent a collision with the hand. The analysis to verify that

contact occurred between the gripper and the hand was done empirically through a visual

analysis in each test performed using this route. In the 3-Dimensional route, points were

defined with different coordinates in the x, y and z axis. For this, approaches and moves

away from the hand position were performed, with varied angles and directions, in order

to verify the behavior of the gripper velocity for the largest number of cases.

To perform the data collection, it was necessary to develop an auxiliary routine in

Python. In order to maintain a pattern in the collection, the routine kept the UR3 in

the starting position of the route until it started collecting data. The routine kept the

UR3 at the starting point of the route or started it, through a signal via Modbus, it also

collected, the robot’s claw position, the hand position, the Euclidean distance, the claw

speed and the timestamp until it reached a total of 300 samples, exporting the data to

a .csv file, and finally it also started the main program, responsible for performing the
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Figure 5.1: (a) Square’s Trajectory, (b) Round’s Trajectory, (c) Collision’s Trajectory and
(d) 3-Dimension’s Trajectory.

speed control via fuzzy and start the hand tracking.

With this, the experiment proceeded as follows: first, the defuzzification method and

the route were defined. Then the UR3 was manually positioned in the origin position of

the chosen route, with the robot in the origin the auxiliary routine was manually started,

and as soon as it exported the .cvs file it was manually interrupted. This process was

repeated for all defuzzification methods and routes 10 times, totaling 200 tests. A test

process was recorded 1 and in Figure 5.2 it is possible to see the stages of the test process

step by step through a flowchart.

A simple experiment was also performed in order to verify if there are any hand

1Available in https://youtu.be/52834KI6CzU

https://youtu.be/52834KI6CzU
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Placing the gripper at the 
beginning of the route

Start the auxiliary Python 
routine

Triggers the robotic arm 
to begin the route

Start the main Python 
routine

Is gripper at the start point?

Is the number of 
samples equal 300?

Data 
acquisition

Stops the main Python 
routine

Store the data in the 
processing unity in 
the .csv file format

Is the number of .csv files equal 
10 to this method and route?

Select the defuzzyfication method and 
the gripper's route

Stops the auxilary routine

No

Yes

Yes

No

No

Yes

Have you used this method with this 
route before?

No

Yes

Figure 5.2: Flowchart of the Testing Process.
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tracking limitations, such as possible blind spots, due to the use of only one Leap Motion

sensor. The experiment consisted in positioning the UR3’s gripper just below the Leap

Motion sensor and passing the hand under the gripper, while a Python routine displays

in real time the position of the hand. An interruption in the hand position display will

indicate at any point in the experiment that Leap Motion could not keep track of the

hand to that position. The results were obtained empirically through visual analysis.

5.3 Results

This section is dedicated to presenting and discussing the results found.

By performing the second experiment, it was possible to notice that one sensor is

not enough to guarantee that no blind spots occur in the hand tracking, because it was

visually perceived an interruption in the hand tracking at the moment it passed under

the robot’s gripper. One possible solution to solve this problem would be to insert more

sensors to cover the blind spots in the system.

5.3.1 Speed Behavior For Each Route and Defuzzification Method

From the data set, graphs were generated for each method and route that show the robot’s

speed at each instant of the route. The velocities of the robot at each time point were

superimposed over their respective trajectories, the absolute value of the velocity at each

point was mapped using a color scale, as can be seen in the Figures 5.3, 5.4, 5.5, 5.6 and

5.7, this process was performed in one experiment for each method and route, allowing

the visualization of the speed control behavior for each method. The annex B contains the

average speed for each test performed on the determined routes for each defuzzification

method.



38 CHAPTER 5. EXPERIMENTS AND RESULTS

Centroid

The velocity dataset for the Square, Round and Collision route was plotted on a two-

dimensional Cartesian plane (Figure 5.3, having the position of the robot’s hand and origin

mirrored to the same plane where the gripper’s trajectory occurs, in order to facilitate

visualization of the result, this same process is performed for all methods.

Figure 5.3: Centroid: (a) Square’s Velocity Data, (b) Round’s Velocity Data, (c) Colli-
sion’s Velocity Data and (d) 3-Dimension’s Velocity Data.

Through visual analysis of Square and Round routes showed in Figure 5.3, it is possible

to observe that the Centroid method varied the robot’s speed with a certain linearity and

smoothness, where there was a gradual reduction in speed as the gripper approached the

center of the hand and a gradual increase as it moved away.



5.3. RESULTS 39

In the Collision route, it was visually verified that in none of the tests occurred collision

with the hand, i.e., the speed of the gripper reached zero, as can be observed in Collision

data in Figure 5.3. In addition, as the hand was fixed, the gripper remained stationary

until the end of the collection of 300 samples, when it was manually returned to its original

position. A recording2 was made using a real hand with the Centroid method in order to

show the system’s collision avoidance capability.

In the 3-Dimensional velocity data showed in 5.3 the repetition of the velocity behav-

iors is observed in the same way as in the velocity data of Square and Round routes, but

for the gripper approaching and moving away from different angles and heights.

The Table B.1 shows the average speed for each test on each route using the Centroid

method, In the column for the Collision route, it is possible to observe a significantly

lower value than for the other trajectories. This is because the average takes into account

the velocity during the 300 samples, and in the Collision route the velocity is zero most of

the time. From the Table B.1 it was possible to obtain the mean average velocity as well

as its standard deviation for each route, being respectively 67.3914 (%) and 0.8052 (%)

for the Square route, 63.9927 (%) and 1.0773 (%) for the Round route, 2.7366 (%) and

0.5383 (%) for the Collision route and 65.4578 (%) and 0.6059 (%) for the 3-Dimensional

route.

Bisector

Similarly to the Centroid method, it can be seen in Figure 5.4 that the velocity variation is

smooth in all the routes. Moreover, the colors vary gradually as well as the velocity, which

increases as the grip moves away from the hand and decreases as the grip approaches.

Just as in the Centroid method no collision occurred between the hand and the gripper,

it can be seen in the Collision data showed in Figure 5.4 that the velocity gradually

decreases to zero, where it remains until the end of the test. The Table B.2 shows the

average speed for each test and route with the Bisector method. From the Table B.2 it

was possible to obtain the mean average velocity as well as its standard deviation for each
2Available in https://youtu.be/6PWfm4QsfzM

https://youtu.be/6PWfm4QsfzM
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Figure 5.4: Bisector: (a) Square’s Velocity Data, (b) Round’s Velocity Data, (c) Collision’s
Velocity Data and (d) 3-Dimension’s Velocity Data.

route, being respectively 66.6369 (%) and 1.0243 (%) for the Square route, 63.4883 (%)

and 0.7241 (%) for the Round route, 2.5766 (%) and 0.2389 (%) for the Collision route

and 62.6914 (%) and 1.2732 (%) for the 3-Dimensional route.

SoM

In the SoM method the differences in speed control are clearer compared to the previous

methods, after viewing the Figure 5.5. It can be seen that the velocity varies sharply at

times. Also, as the claw moves closer to the hand, at certain times there is an increase in

velocity and then a decrease again.
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Figure 5.5: SoM: (a) Square’s Velocity Data, (b) Round’s Velocity Data, (c) Collision’s
Velocity Data and (d) 3-Dimension’s Velocity Data.

As with the previous methods, no collision occurred between the Cobot and the hand.

It can be seen in the velocity data showed in the Figure 5.5, that the velocity eventually

reaches zero. In Table B.3 as possible to see the average speed for each test and route

with the SoM method, where can be seen that, it can be seen that the SoM method

generated the lowest average velocities when comparing the absolute value to the other

methods. From the Table B.3 it was possible to obtain the mean average velocity as well

as its standard deviation for each route, being respectively 55.8296 (%) and 1.9578 (%)

for the Square route, 49.0103 (%) and 0.3779 (%) for the Round route, 1.9341 (%) and

0.3611 (%) for the Collision route and 46.0166 (%) and 3.1719 (%) for the 3-Dimensional
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route.

LoM

Similarly to the SoM method, sharp variations in velocity occur, which can be seen in Fig-

ure 5.6. The difference between these methods is that in LoM the velocity first decreases

and then increases, in contrast to what occurs in SoM.

Figure 5.6: LoM: (a) Square’s Velocity Data, (b) Round’s Velocity Data, (c) Collision’s
Velocity Data and (d) 3-Dimension’s Velocity Data.

In the LoM method there were also no collisions, and in the same way it is possible to

observe in the Collision velocity data the velocity reducing until it reaches zero. In Table

B.4 as possible to see the average speed for each test and route with the LoM method, and
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also it was possible to obtain the mean average velocity as well as its standard deviation for

each route, being respectively 68.8178 (%) and 1.3002 (%) for the Square route, 69.0716

(%) and 1.4994 (%) for the Round route, 2.2192 (%) and 0.4418 (%) for the Collision

route and 63.7896 (%) and 0.6359 (%) for the 3-Dimensional route.

MoM

The MoM method, can be described as the average between the SoM and LoM methods,

and for this reason its results are similar, where sharp variations in velocity also occur, as

can be seen in the Figure 5.7, with the only difference being that in the MoM method the

velocity behaves a little more linearly than in the other two, with no increase in velocity

on approach and no decrease in speed on separation. And as in the other method, no

collisions occur in the Collision route experiments.

The Table B.5 presents the average speed for each test and route with the MoM

method and from it was also possible to obtain the mean average velocity as well as its

standard deviation for each route, being respectively 63.5977 (%) and 1.0286 (%) for the

Square route, 59.8869 (%) and 1.1628 (%) for the Round route, 2.0416 (%) and 0.1189

(%) for the Collision route and 57.6890 (%) and 0.7106 (%) for the 3-Dimensional route.

5.3.2 Student’s T Test and Box Plots

From the set of average speed data contained in annex B it was possible to perform the

t-tests. In Tables 5.1, 5.2, 5.3 and 5.4 the t-test results were gathered. Results where the

P value is greater than alpha are indicated with “Not different” and where the P value

is less as “Different”. Results labeled “Different” indicate that the difference between the

mean velocities has a high probability of not being random, which implies that there is a

significant difference between the mean velocities of the two groups. Results indicated as

“Not different” imply that the probability of the results not being random is higher, that

is, there is a greater error involved, and it is not possible to say that there is a difference

between the two groups.
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Figure 5.7: MoM: (a) Square’s Velocity Data, (b) Round’s Velocity Data, (c) Collision’s
Velocity Data and (d) 3-Dimension’s Velocity Data.

Square Route
Centroid Bisector LoM SoM MoM

Centroid - Not different Different Different Different
Bisector Not different - Different Different Different

LoM Different Different - Different Different
SoM Different Different Different - Different
MoM Different Different Different Different -

Table 5.1: T Test for Square Route.

In addition to the t-test, box diagrams were also made as a visual way to observe the

differences between the two groups. The diagrams are shown in the Figure 5.8.

The analysis of the t-test results and box plots, as well as the visual analysis of the
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Round Route
Centroid Bisector LoM SoM MoM

Centroid - Not different Different Different Different
Bisector Not different - Different Different Different

LoM Different Different - Different Different
SoM Different Different Different - Different
MoM Different Different Different Different -

Table 5.2: T Test for Round Route.

Collision Route
Centroid Bisector LoM SoM MoM

Centroid - Not different Different Different Different
Bisector Not different - Not different Different Different

LoM Different Not different - Different Not different
SoM Different Different Different - Not different
MoM Different Different Not different Not different -

Table 5.3: T Test for Collision Route.

3-Dimension Route
Centroid Bisector LoM SoM MoM

Centroid - Different Different Different Different
Bisector Diferente - Different Different Different

LoM Diferente Different - Different Different
SoM Diferente Different Different - Different
MoM Diferente Different Different Different -

Table 5.4: T Test for 3-Dimension Route.

speed behavior for each method on each route, made it possible to compare each defuzzifi-

cation method. The methods were compared both in terms of average velocity (the higher

the average velocity of one method relative to the other, the better the efficiency, since

a higher average velocity indicates that the method can execute more movements in the

same period of time). In table 5.5 the comparison between each defuzzification method

is displayed.

Through the comparisons it is possible to see that the Centroid method was the most

promising for the 3-Dimensional route, since it has the highest average speed, besides

ensuring a smooth control of the speed. In the Collision route, as mentioned before, during
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Figure 5.8: Box Plot of Average Velocity: (a) Square Route, (b) Round Route, (c) Collision
Route and (d) 3-Dimensional Route.

the experiments no collision occurred, i.e., all methods are sufficient in terms of safety, as

for the highest average speed and smoothest speed control the methods that stood out the

most were the Centroid and Bisector, where both have a high linearity in speed control

and the average speed of both is very similar, not being possible to differentiate precisely

through the t-test. As for the Square and Round routes, the method that guaranteed

the highest efficiency was LoM, being the one with the highest average speed, which is

significantly higher than the other methods, as for smoothness, both the Bisector and the

Centroid methods showed promise, besides both having the second-highest average speed

in these two routes. The SoM and MoM methods proved to be significantly inferior when

compared to the other three methods presented, and did not bring linearity to the speed

control.
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Chapter 6

Conclusion and Future Work

This work presents a speed control method for collaborative robotic arms through fuzzy

logic and hand position, in order to improve HRC. For this, an algorithm was imple-

mented, which collects data from the cobot and the position of the operator’s hand on

the workbench. The experiments in order to validate the method were performed, due

to the low response time the system managed to avoid collisions in all the experiment’s

tests. However, there were limitations due to the use of only one Leap Motion sensor,

since the UR3 can get between the hand and the sensor, interrupting the tracking, thus

not guaranteeing the operator’s total safety. When performing experiments with more

than one hand on the bench, the system was able to identify and track both, and the

algorithm was able to consider only the hand closest to the cobot to perform the fuzzy

speed control, avoiding collisions. Despite the limitations, the system showed promise for

dealing with safety issues.

For the project to keep improving, the following steps can be done:

• Insert more sensors capable of detecting and tracking hands, in order to limit as

much as possible blind spots in the system.

• Compare the control method with other methods in order to verify its efficiency.

• Perform tests with other cobot models in order to verify the flexibility of the system.

49
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• Use the sensors not only to track the hand position, but also to use them for gesture

detection, in order to improve HRC.

• Identify the direction of the hand, to perform preventive speed reduction.
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Appendix B

Average Velocity Data of All Routes

and Defuzzification Methods

Test number Square (%) Round (%) Collision (%) 3-Dimension (%)
0 69,0536 64,7718 2,7294 65,6360
1 68,2764 66,0086 3,3903 64,1774
2 68,0079 64,0312 3,4694 64,9283
3 67,4510 64,4854 2,7091 66,0280
4 66,7962 63,6790 3,5391 65,2812
5 66,1658 63,9541 3,2472 64,9346
6 67,3318 63,6811 2,0523 66,2136
7 67,3122 62,4494 2,7439 65,6344
8 67,5969 64,8678 2,5433 65,1666
9 67,0415 62,5059 2,1261 65,7740

Table B.1: Mean Velocity Centroid Method.
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Test number Square (%) Round (%) Collision (%) 3-Dimension (%)
0 65,2934 63,6188 2,1402 60,6004
1 65,0672 65,2459 2,0940 63,1371
2 65,9162 64,0214 2,5784 60,7183
3 66,1299 64,0732 2,6143 62,2680
4 67,6194 63,3454 2,5749 63,3866
5 67,6579 63,2186 2,6090 62,7139
6 66,6508 62,6853 2,7976 64,3535
7 67,9323 63,4578 2,1973 62,4234
8 66,6231 63,5187 2,4786 64,3157
9 67,4806 62,8688 2,6075 62,6690

Table B.2: Mean Velocity Bisector Method.

Test number Square (%) Round (%) Collision (%) 3-Dimension (%)
0 58,8172 49,5852 2,1431 40,6770
1 57,1813 48,8688 2,2139 46,0585
2 55,6195 49,4074 1,8357 46,0242
3 55,6668 49,5260 2,2943 51,0634
4 55,2245 48,8807 2,0325 46,0090
5 51,8830 49,0116 2,1925 44,9903
6 53,1003 48,8499 1,6876 45,9984
7 56,4232 49,9023 1,7910 42,0585
8 55,9925 49,0090 1,2253 48,8331
9 56,3831 48,9031 1,4056 49,4835

Table B.3: Mean Velocity SoM Method.

Test number Square (%) Round (%) Collision (%) 3-Dimension (%)
0 68,2904 71,4201 2,0655 64,5374
1 70,3614 66,6169 2,0887 63,5978
2 69,6617 67,0168 2,4551 63,8217
3 70,6266 69,2523 1,6673 64,4127
4 69,2054 71,0216 2,4599 63,0094
5 68,4303 69,2958 1,8836 64,3718
6 69,4525 68,8908 2,5336 64,0909
7 66,7756 69,4936 2,2565 63,7576
8 67,4883 68,7693 3,2825 62,7365
9 67,4217 68,5240 2,1818 63,0611

Table B.4: Mean Velocity LoM Method.



60APPENDIX B. AVERAGE VELOCITY DATA OF ALL ROUTES AND DEFUZZIFICATION METHODS

Test number Square (%) Round (%) Collision (%) 3-Dimension (%)
0 64,5899 58,4732 2,1635 59,4009
1 63,1647 60,3414 1,9179 57,5439
2 62,3412 60,8207 1,9167 57,8895
3 62,3287 60,8150 2,0818 57,8235
4 64,5079 60,4232 2,0015 56,9914
5 63,6911 58,7701 2,0859 57,5545
6 65,5874 58,2534 2,0834 58,2130
7 63,0220 59,4325 1,9155 57,2173
8 63,5043 58,7875 2,2499 57,9698
9 63,8467 61,5474 1,9151 56,9806

Table B.5: Mean Velocity MoM Method.
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