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Multiple imputation in data that grow over time: a comparison of
three strategies

X. M. Kavelaarsa,b , J. R. van Ginkelc , and S. van Buurena,d

aDepartment of Methodology and Statistics, Utrecht University, The Netherlands; bDepartment of Methodology and Statistics,
Tilburg University, The Netherlands; cDepartment of Psychology, Methodology and statistics, Leiden University, The Netherlands;
dThe Netherlands Organization for Applied Scientific Research, The Netherlands

ABSTRACT
Multiple imputation is a recommended technique to deal with missing data. We study the
problem where the investigator has already created imputations before the arrival of the
next wave of data. The newly arriving data contain missing values that need to be imputed.
The standard method (RE-IMPUTE) is to combine the new and old data before imputation,
and re-impute all missing values in the combined data. We study the properties of two
methods that impute the missing data in the new part only, thus preserving the historic
imputations. Method NEST multiply imputes the new data conditional on each filled-in old
data m2 > 1 times. Method APPEND is the special case of NEST with m2 ¼ 1, thus append-
ing each filled-in data by single imputation. We found that NEST and APPEND have the
same validity as RE-IMPUTE for monotone missing data-patterns. NEST and APPEND also
work well when relations within waves are stronger than between waves and for moderate
percentages of missing data. We do not recommend the use of NEST or APPEND when rela-
tions within time points are weak and when associations between time points are strong.

KEYWORDS
Missing data; multiple
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1. Introduction

Missing data are inevitable in empirical studies and
require careful attention. When not appropriately
handled, missing data can seriously affect the validity
of statistical inference. Multiple imputation (Rubin,
1987) is a widely accepted technique to obtain valid
inferences from incomplete data. The procedure repla-
ces each missing value by several plausible values,
thereby creating m > 1 completed datasets. The ana-
lyst estimates the parameters of scientific interest from
each imputed dataset by conventional complete-data
methods, and pools these estimates to their final point
and interval values.

Longitudinal studies collect data on the same per-
sons in multiple waves. While we consider the basic
case with just two waves, wave 1 and wave 2, the prob-
lem and its solutions generalize to multiple waves.
Suppose that the investigator had already imputed the
missing data up to wave 1, and that the dataset for the
new wave 2 becomes available. There are then three
basic possibilities for imputing the latest data:

1. We re-impute the entire dataset m times thus
overwriting any imputations we had in the data
up to wave 1 (RE-IMPUTE);

2. We treat each of the m1 imputed datasets up to
wave 1 as complete and multiply-imputed the lat-
est part m2 times, resulting in m1 �m2 nested
imputed datasets (NEST);

3. The same as option 2, but then setting m2 ¼ 1,
resulting in m ¼ m1 imputed datasets (APPEND).

Method RE-IMPUTE is relatively straightforward
and has known statistical properties. The main down-
side of RE-IMPUTE is that it will create new imputa-
tions each time a new wave arrives. For reasons of
reproducibility, the database manager may need to
store different versions of the imputed data, which
may be challenging. Additionally, two identical statis-
tical analysis models result in non-identical point esti-
mates (and potentially also in non-identical
conclusions) when their imputation models rely on
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different sets of variables. By definition, replicability
of analyses from previous waves under RE-IMPUTE
depend on the inclusion of future variables. Note
however, that it may be defensible to update estimates
when new data arrive.

Methods NEST and APPEND both preserve the exist-
ing imputations of earlier waves. Rubin (2003, p. 6) sug-
gested the NEST method for applications “where some
part of the imputation process is extremely expensive to
implement, and the other part relatively inexpensive.” It
may, for example, be expensive to RE-IMPUTE all histor-
ical data of yearly (large scale) surveys when a new wave
of data becomes available and to store all historical ver-
sions of the imputed data for the sake of reproducibility.
For longitudinal data, both NEST and APPEND bypass
the need for multiple versions of multiply imputed data-
sets. However, NEST leads to an expansion in the num-
ber of imputations. Moreover, NEST requires special
pooling rules because imputations within a nest are cor-
related. Method APPEND solves both problems and has
been used in practice (e.g. Aardoom et al., 2016a, 2016b).
However, it is unknown how useful the imputations are,
and what the effect is on the validity of the inferences.
The objective of the current research is to find out which
methods are safe to use when the data grow over time.

2. Problem illustration

The Project on Preterm and Small for Gestational Age
Infants (POPS) (Veen et al., 1991; Verloove-Vanhorick
et al., 1986) study included about 94% of all children
born in 1983 in the Netherlands with a birth weight
below 1500 g or a gestational age below 32weeks
(n¼ 1338). The study followed these children at vari-
ous ages (e.g. 1, 5, 10, 14, 19, 28 and 35 years) to meas-
ure physical, cognitive and psychosocial outcomes.

Of the n¼ 959 surviving participants, n¼ 596 com-
pleted participation at age 19 and those who dropped
out differed systematically from full responders in
health (Hille, 2005). Van Buuren (2018, chap. 10)
multiply imputed the block of 363 missing children
using data from all previous waves. These imputations
confirmed the suspected existence of selective drop-
out. Of course, there are also missing data in later
waves at 28 and 35 years. If we impute these later
waves, should we re-impute the block of 363 children?
What happens if we preserve these imputations?

In general, repeating previous analyses with newly
imputed data may result in different parameter esti-
mates or conclusions. We demonstrate this with an
adapted example from Van Dommelen et al. (2014).
The researchers used the POPS data to predict the

effect of early catch-up growth (developing toward the
median of the growth charts in the first year of life)
on health and well-being in young adulthood from
the POPS data. Multiple imputation of the data avail-
able at age 14 showed that catch-up growth in weight
did not predict length and weight at age 14.

However, when we ran the same analysis, but now
with data from wave at age 19 included in the imput-
ation model, we found an opposite effect. Catch-up
growth did predict length and weight at age 141. This
example demonstrates that RE-IMPUTE potentially
lacks replicability and may even lead to different con-
clusions. Thus, even when using the same data, the
attentive reader may raise the question which of these
analyses should be trusted.

We will return to the POPS dataset in the five sec-
tion and evaluate the three strategies.

3. Methods

Let Yð1Þ the n� p1 matrix of partially observed data
collected at wave 1. We use multiple imputation to
obtain m imputed data sets Yð1Þ

‘ jYð1Þ
obs for the wave-1

data. Here Yð1Þ
obs are the observed data in Yð1Þ and ‘ ¼

1, :::,m: Matrix Yð2Þ holds the n� p2 incomplete data
collected at wave 2 on the same n subjects. Then, how
should we impute the missing data in Yð2Þ? The sim-
plest method would be to replicate the previous
method, thus yielding m imputed datasets Yð2Þ

‘ jYð2Þ
obs:

This approach treats Yð2Þ in complete isolation of
Yð1Þ: We may defend this approach if we are only
interested in the imputed Yð2Þ data. The rationale for
longitudinal studies is, however, making inferences
across different waves. Simply concatenating the
imputed data ðYð1Þ

‘ jYð1Þ
obs,Y

ð2Þ
‘ jYð2Þ

obsÞ will not work. The
analysis will attenuate any estimates involving both
Yð1Þ and Yð2Þ because we imputed Yð1Þ and Yð2Þ as if
they were unrelated. The imputation model is more
restrictive than the analysis model. This condition,
known as uncongeniality (Meng, 1994), leads to
biased estimates.

From a theoretical point of view, the preferred
alternative is to concatenate Y ¼ ðYð1Þ,Yð2ÞÞ and
obtain imputed data sets Y‘jYobs based on the com-
bined wave-1 and wave-2 data Y. This RE-IMPUTE
method can adequately take account of the relations
across waves, and - when properly done - leads to
unbiased and efficient estimates and correct confi-
dence intervals. RE-IMPUTE creates new imputations

1blength 14 ¼ 0:25, 95% CI ð�0:10� 0:60Þ, bweight 14 ¼ 0:21, 95% CI
ð�0:04� 0:47Þ, blength 19 ¼ 0:32, 95% CI ð0:01� 0:62Þ, bweight19 ¼ 0:33,
95% CI ð0:09� 0:56Þ:
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Yð1Þ
‘ jYobs, which now also incorporates future data

Yð2Þ from wave 2. These future data might provide
important information for imputation of previous
waves, particularly when the previous data are MAR
(Missing at Random) on future information. Models
fitted to Yð1Þ

‘ jYð1Þ
obs differ from models fitted to

Yð1Þ
‘ jYobs, potentially leading to different inferences, as

the example in the Section 2 illustrates.
Re-imputation may not always be desirable.

Reasons for fixing the imputes of Yð1Þ include the
reduction of work, the improvement of reproducibil-
ity, and the evasion to store multiple versions of the
imputed values. In some cases, we may want our
models for Yð1Þ to be blind to any future data. For
example, imputing missing data in an individual risk
prediction model during wave one may use other
wave-1 data, but must ignore the not-yet-available
wave-2 outcomes. In such cases, it makes sense to
constrain the imputation model to the wave-1 infor-
mation only. The NEST and APPEND method fix the
wave-1 imputations.

The NEST imputation method conditions on both
Yð1Þ
‘ jYð1Þ

obs and Yð2Þ
obs: For every ‘ ¼ 1, :::,m1, NEST pro-

duces m2 imputed data sets Yð2Þ
˚ with ˚ ¼ 1, :::,m2,

thus resulting in m1 �m2 imputed data sets. The vari-
ance of parameter estimates must correctly reflect the
extra uncertainty of adopting imputations as data
(Rubin, 1987). The pooling procedure therefore
accommodates differences between imputed datasets,
such that parameter estimates are confidence-valid.
While re-imputation uses regular pooling rules for

multiple imputation, nested multiple imputation
requires specific pooling rules that respect the nested
data structure (Rubin, 2003; Shen, 2000). These pool-
ing rules for two-level nested datasets are more com-
plex than the standard pooling rules for non-nested
data, as shown in Table 1 (Shen, 2000).

The APPEND imputation method is similar to
NEST, but with m2 ¼ 1: The latter setting has several
effects. The number of imputed datasets will remain
constant as we add waves. We may use the conven-
tional pooling rules during analysis. And finally,
APPEND may take less work than RE-IMPUTE or
NEST. On the other hand, APPEND may be unable
to propagate uncertainty correctly, potentially leading
to confidence intervals that are too short.

The relative pros and cons of the NEST and
APPEND methods are not yet well understood. An
essential theoretical result (Rubin, 1987) is that we
can impute variables that have a monotone missing-
data pattern sequentially without the need to iterate.
More in particular, if all subjects with observed wave-
2 data have complete wave-1 data, then the missing-
data pattern is monotone. Monotone missing-data
patterns are not uncommon in longitudinal data, as
they result from panel attrition and drop-out. If the
missing data are monotone, then NEST and APPEND
will be as good as RE-IMPUTE. In that case, we may
generate the imputations very fast with one pass
through the data.

In contrast, under non-monotone missingness,
there are subjects with missing wave-1 data and

Table 1. Pooling rules for multiple imputation with independent datasets (re-imputation and appended
imputation) (Rubin, 1987) and two-level nested datasets (nested imputation) (Rubin, 2003; Shen, 2000).
Parameter Independent datasets Nested datasets

Mean estimate �Q ¼ 1
mi

Xmi

k¼1
Q̂
ðkÞ �Q ¼ 1

m1m2

Xm1

k¼1

Xm2

l¼1
Q̂
ðk, lÞ

Nest mean – �Qk ¼ 1
m2

Xm2

l¼1
Q̂
ðk, lÞ

Sampling variance �U ¼ 1
mi

Xmi

k¼1
�Uk: �U ¼ 1

m1m2

Xm1

k¼1

Xm2

l¼1
�Uðk, lÞ

Within variance – W ¼ 1
m1ðm2 � 1Þ

Xm1

k¼1

Xm2

l¼1
ðQ̂ðk, lÞ � �QkÞ2

Between variance B ¼ 1
mi � 1

Xmi

k¼1
ðQ̂k � �QÞ2: B ¼ m2

m1 � 1

Xm1

k¼1
ð�Qk � �QÞ2

Total variance T ¼ �U þ 1þ 1
mi

� �
B: T ¼ �U þ 1

m2
1þ 1

m1

� �
Bþ 1� 1

m2

� �
W

Degrees of freedom
��1 ¼ 1

mi � 1

ð1þ 1
mi
ÞB

T

2
4

3
5
2 ��1 ¼ 1

m1 � 1

1
m2

ð1þ 1
m1

ÞB
T

2
4

3
5
2

þ

1
m1ðm2 � 1Þ

ð1� 1
m2

ÞW
T

2
4

3
5
2

Note. Q̂
ðk, lÞ

and �Uðk, lÞ represent the complete data estimate and sampling variance for dataset l in nest k, respectively.
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observed wave-2 data. RE-IMPUTE will impute the
missing wave-1 data given the wave-2 information,
possibly leading to sharper inferences for analyses
involving only wave-1 data (Xie & Meng, 2016). On
the other hand, NEST and APPEND will preserve any
previously made imputations, which may attenuate
the later parameter estimates involving wave-1 and
wave-2 data. Attenuation is likely to be more severe if
relations among wave-1 variables are weaker, and
associations across wave-1 and wave-2 are stronger.

In summary, methods NEST and APPEND make
more restrictive assumptions about the missingness
pattern of incomplete data than RE-IMPUTE. Also,
APPEND may underestimate the variance. The simu-
lation study in the following section will highlight the
circumstances in which NEST and APPEND may
become problematic.

4. Simulation study

4.1. Objectives

The simulation studies address the follow-
ing questions:

1. In which situations will NEST and APPEND
affect the validity of statistical inferences?

2. Do the three methods perform similarly under a
monotone missing data mechanism?

3. Does APPEND result in confidence–valid param-
eter estimates?

We evaluated the performance of the imputation
methods with two different models:

1. A relatively simple situation with a linear regres-
sion model based on two timepoints which clari-
fies the influence of the missingness pattern and
the correlation structure within the data on the
validity of each method;

2. A more complex growth model with time-varying
covariate to explore how performance generalizes
to the multilevel context and to more timepoints.

These two models shed light on the potential of
RE-IMPUTE, NEST, and APPEND in a variety of lon-
gitudinal applications.

4.2. Linear regression model

4.2.1. Simulation setup
We evaluated the performance of RE-IMPUTE, NEST
and APPEND in a two-stage setup, resembling a

longitudinal design with two waves. The wave-1 data
consisted of two incomplete covariates: x1 and y1. The
wave-2 data had two incomplete variables x2 and y2.

We manipulated the correlation structure and the
missingness pattern of the data. Since the strength of the
relation between wave-1 and wave-2 data is crucial for
valid inference, we set correlations between variables
within waves (qwithin ¼ qx1y1 , qx2y2 ) and correlations
between variables between waves (qbetween ¼
qx1x2 , qx1y2 , qy1x2 , qy1y2 ). We specified qwithin and qbetween
at four different values: 0:10, 0:30, 0:50, and 0:70,
which resulted in a 4� 4 factorial design of 16 correl-
ation structures presented in Table 2. Note that we
slightly lowered qy1x2 and qx1y2 in condition 16 to ensure
a positive definite covariance matrix.

4.2.1.1. Data generation. For each correlation struc-
ture, we drew 2000 samples from the multivariate
standard normal distribution with a sample size of
n¼ 425. This sample size is the minimum sample size
required to detect the smallest specified population
effect with 80% power at the a ¼ 0:05 level.

4.2.1.2. Missingness and imputation procedure. We
made the data incomplete under monotone and non-
monotone missingness (see Table 3). Since the miss-
ingness mechanism was not the focus of this study,
we created missing data under one missingness mech-
anism only. For simplicity, we implemented a Missing
Completely at Random (MCAR) mechanism and
make use of the theoretical result that validity of mul-
tiple imputation under MCAR and MAR are known
to be similar (e.g. Rubin, 1976). Each combination of
missing values had the same probability. Every sample
had a total of either 20% or 50% incomplete cases.

Table 2. Different correlation structures used in the simula-
tion study.

qwithin qbetween

Scenario qx1y1 qx2y2 qx1x2 qy1y2 qy1x2 qx1y2
1. 0.10 0.10 0.10 0.10 0.10 0.10
2. 0.10 0.10 0.30 0.30 0.30 0.30
3. 0.10 0.10 0.50 0.50 0.50 0.50
4. 0.10 0.10 0.70 0.70 0.70 0.70
5. 0.30 0.30 0.10 0.10 0.10 0.10
6. 0.30 0.30 0.30 0.30 0.30 0.30
7. 0.30 0.30 0.50 0.50 0.50 0.50
8. 0.30 0.30 0.70 0.70 0.70 0.70
9. 0.50 0.50 0.10 0.10 0.10 0.10
10. 0.50 0.50 0.30 0.30 0.30 0.30
11. 0.50 0.50 0.50 0.50 0.50 0.50
12. 0.50 0.50 0.70 0.70 0.70 0.70
13. 0.70 0.70 0.10 0.10 0.10 0.10
14. 0.70 0.70 0.30 0.30 0.30 0.30
15. 0.70 0.70 0.50 0.50 0.50 0.50
16. 0.70 0.70 0.70 0.70 0.66 0.66
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We imputed the 2000 samples with Bayesian normal
linear regression using the RE-IMPUTE, NEST and
APPEND methods. Under RE-IMPUTE, we imputed
datasets with incomplete wave-1 and wave-2 data
m¼ 5 times. For NEST and APPEND, we imputed
each wave-1 dataset m1 ¼ 5 times and then concaten-
ated the incomplete wave-2 data to each completed
wave-1 dataset. We imputed these partially completed
datasets m2 ¼ 5 (NEST) and m2 ¼ 1 (APPEND) times.
Thus, we obtained five imputed datasets after RE-
IMPUTE and APPEND, and 25 datasets after NEST.

After imputation, we fitted a linear regression
model on each completed dataset:

ŷ2 ¼ b0 þ bx1x1 þ by1y1 þ bx2x2

The results were pooled using the method-specific
pooling rules presented in Table 1.

4.2.1.3. Outcomes of interest. Quantities of interest
were variable means and regression coefficients of the
fitted model. True values were population means l

and population regression coefficients derived from
the correlation structure of the data.

We considered imputations as valid if pooled param-
eter estimates were unbiased, and if the coverage of the
confidence intervals was at a nominal 95% level. The rela-
tive efficiency referred to the width of the 95% confidence
interval compared to the other imputation strategies.

We performed the simulation study in R (R Core
Team, 2016). Data amputations and imputations were
performed with mice (Van Buuren & Groothuis-
Oudshoorn, 2011) using method norm() with 25 itera-
tions (Oberman et al., 2020; Van Buuren, 2018).

4.2.2. Results
4.2.2.1. Validity. For 50% missing data, all analyses
under RE-IMPUTE had estimates close to the desired
bias and coverage (bias: � 0:01, coverage:

93:3� 96:0%). As expected, the validity of the NEST
and APPEND methods depended on the missingness
pattern and the correlation structure of the data. The
performance was satisfactory under monotone missing-
ness in all cases (bias: � 0:01, coverage: 93:8� 96:1%).
We identified some issues for non-monotone missing
data. When relations were weaker within than between
time points (i.e. Scenarios 2–4, 7, 8, 12), regression
coefficient estimates were biased (bias: 0:03� 0:52).
Coverage was low (coverage: 2:3� 95:2%). On the
other hand, the bias was small (bias: 0:01� 0:03) and
the coverage was good (coverage: 94:6� 98:3%) when
relations within waves were equivalent to or stronger
than relations between waves (i.e. scenarios 1, 5, 6,
9–11, 13–16). The numerical results for one of the
regression coefficients are shown in Table 4 (monotone
missingness) and Table 5 (non-monotone missingness)
respectively, and are graphically presented in Figure 1.

Table 6 shows that results are similar for 20%
missing data, but bias and undercoverage were much
less pronounced for the scenarios with stronger rela-
tions between timepoints (bias: 0:01� 0:19, coverage:
43:6%� 96:0%). Results for other regression coeffi-
cients are similar and available upon request.

4.2.2.2. Efficiency. The 95% confidence intervals of
variable means had similar relative widths (NEST vs.
RE-IMPUTE: 0:95� 1:05; APPEND vs. RE-IMPUTE:
1:00� 1:10). Due to the larger number of imputed data
sets, NEST was slightly more efficient compared to RE-
IMPUTE (0:90� 0:96) and APPEND (0:89� 0:94).

4.2.2.3. Summary. When taken together, we
found that:

1. All techniques perform similarly under monotone
missingness;

2. NEST and APPEND are on par on all scenarios;
3. NEST and APPEND perform well with respect to

bias and coverage when relations within time
points are strong;

4. NEST and APPEND produce bias estimates and low
coverages when relations between time points are
strong and relations within time points are weak.

5. Biases and low coverages of NEST and APPEND
quickly taper off for smaller amounts of missing data.

4.3. Growth model

4.3.1. Simulation setup
We also evaluated the performances of RE-IMPUTE
and APPEND in an unconditional growth model with

Table 3. Implemented combinations of complete (1) and
incomplete (0) variables for monotone and non-monotone
missing data patterns.

Wave 1 Wave 2 Monotone Non-monotone

x 1 y1 x2 y2
1. 1 1 1 1 � �
2. 1 1 1 0 � �
3. 1 1 0 1 � �
4. 1 1 0 0 � �
5. 1 0 1 1 �
6. 1 0 1 0 �
7. 1 0 0 1 �
8. 1 0 0 0 � �
9. 0 1 1 1 �
10. 0 1 1 0 �
11. 0 1 0 1 �
12. 0 1 0 0 � �
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Table 4. Monotone missingness, 50% missing data. Population regression coefficients (Pop) and regression coefficients of the
95% confidence interval after RE-IMPUTE (R), NEST (N) and APPEND (A) methods. Regression coefficient of the incomplete wave-1
variable (by1 ).

Scenario
Regression coefficients Coverage 95% CI Width 95% CI

qwithin ¼ 0:10 Pop R N A R N A R N A

1. qbetween ¼ 0:10 0.08 0.08 0.08 0.08 95.5 95.1 94.8 0.27 0.25 0.27
2. qbetween ¼ 0:30 0.23 0.23 0.23 0.23 94.5 94.9 94.2 0.26 0.24 0.26
3. qbetween ¼ 0:50 0.42 0.42 0.42 0.42 94.8 94.8 94.6 0.25 0.23 0.25
4. qbetween ¼ 0:70 1.17 1.17 1.17 1.17 93.8 93.8 93.6 0.10 0.09 0.10

qwithin ¼ 0:30 Pop R N A R N A R N A
5. qbetween ¼ 0:10 0.07 0.07 0.07 0.07 95.4 95.5 95.2 0.29 0.26 0.29
6. qbetween ¼ 0:30 0.19 0.19 0.19 0.19 94.8 95.3 94.9 0.27 0.25 0.27
7. qbetween ¼ 0:50 0.31 0.31 0.31 0.31 95.2 94.9 95.0 0.25 0.23 0.25
8. qbetween ¼ 0:70 0.57 0.57 0.57 0.57 95.0 94.7 94.7 0.22 0.20 0.22

qwithin ¼ 0:50 Pop R N A R N A R N A
9. qbetween ¼ 0:10 0.06 0.06 0.06 0.06 94.9 94.4 94.8 0.31 0.29 0.32
10. qbetween ¼ 0:30 0.16 0.16 0.16 0.16 94.5 95.2 94.7 0.30 0.28 0.30
11. qbetween ¼ 0:50 0.25 0.25 0.25 0.25 94.5 95.0 94.8 0.27 0.25 0.27
12. qbetween ¼ 0:70 0.40 0.40 0.40 0.40 95.5 96.1 94.4 0.23 0.21 0.23

qwithin ¼ 0:70 Pop R N A R N A R N A
13. qbetween ¼ 0:10 0.05 0.05 0.05 0.05 95.2 95.8 95.7 0.38 0.35 0.38
14. qbetween ¼ 0:30 0.14 0.14 0.14 0.14 94.6 94.5 94.3 0.36 0.33 0.36
15. qbetween ¼ 0:50 0.21 0.21 0.21 0.21 95.4 95.1 95.0 0.32 0.30 0.33
16. qbetween ¼ 0:70 0.35 0.35 0.35 0.35 94.8 95.2 94.5 0.27 0.25 0.27

Figure 1. Observed patterns of bias and coverage of regression coefficients by correlation structure (qwithin ¼ correlation within time
points; qbetween ¼ correlation between time points), aggregated over conditions with similar results. Left: monotone missingness with
RE-IMPUTE/NEST/APPEND; and nonmonotone missingness with RE-IMPUTE; right: nonmonotone missingness with NEST/APPEND.
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one time-varying covariate xt and outcome variable yt
at timepoint t ¼ ð1, :::,TÞ :

yit ¼ b0i þ b1ixit þ eit (1)

where b0i ¼ c0 þ u0i

b1i ¼ c1 þ u1i

We applied a specialized design of the simulation
study in Section 4 and varied three conditions:

1. Cross-correlation between xt and yt (qcross): Low
(0.10) vs. high (0.50)

2. Lag-1 autocorrelations of xt and yt (qauto): Low
(0.10) vs. high (0.50)

3. Missingness pattern: monotone vs. nonmonotone.

4.3.1.1. Data generation. We generated data of five
timepoints (T¼ 5) with residual variance et � Nð0, 1Þ,
fixed intercept c0 ¼ 1 and random intercept variance
u0 � Nð0, 0:20Þ: Fixed slope c1 followed from cross-
correlation qcross, which had a truncated normal dis-
tribution with untruncated normal mean lq ¼ qcross,
untruncated normal variance Vq and truncation range
ð�1, 1Þ: Variance Vq was chosen such that Varðu1Þ ¼
0:20 and fixed slope effect c1 ¼ E½qcross�: Further, we
assumed independence between random intercept
variance u0 and random slope variance u1.

Table 5. Non-monotone missingness, 50% missing data. Population regression coefficients (Pop) and regression coefficients of
the 95% confidence interval after RE-IMPUTE (R), NEST (N) and APPEND (A) methods. Regression coefficient of the incomplete
wave-1 variable (by1 ).

Scenario
Regression coefficients Coverage 95% CI Width 95% CI

qwithin ¼ 0:10 Pop R N A R N A R N A

1. qbetween ¼ 0:10 0.08 0.08 0.07 0.07 94.6 96.8 96.8 0.26 0.25 0.26
2. qbetween ¼ 0:30 0.23 0.23 0.20 0.20 93.7 95.2 94.0 0.25 0.24 0.26
3. qbetween ¼ 0:50 0.42 0.42 0.33 0.33 94.9 72.3 74.0 0.23 0.25 0.26
4. qbetween ¼ 0:70 1.17 1.17 0.65 0.65 94.7 2.3 4.8 0.10 0.47 0.51

qwithin ¼ 0:30 Pop R N A R N A R N A
5. qbetween ¼ 0:10 0.07 0.07 0.06 0.06 94.7 98.0 97.2 0.28 0.26 0.27
6. qbetween ¼ 0:30 0.19 0.19 0.17 0.17 95.9 97.3 96.2 0.26 0.25 0.26
7. qbetween ¼ 0:50 0.31 0.31 0.26 0.26 95.2 90.8 91.9 0.24 0.24 0.25
8. qbetween ¼ 0:70 0.57 0.57 0.36 0.36 94.2 15.4 24.1 0.20 0.29 0.31

qwithin ¼ 0:50 Pop R N A R N A R N A
9. qbetween ¼ 0:10 0.06 0.06 0.06 0.06 94.2 97.4 97.1 0.31 0.29 0.31
10. qbetween ¼ 0:30 0.16 0.16 0.15 0.15 94.3 97.0 97.2 0.29 0.28 0.29
11. qbetween ¼ 0:50 0.25 0.25 0.22 0.22 94.7 95.2 95.3 0.26 0.26 0.27
12. qbetween ¼ 0:70 0.40 0.40 0.32 0.32 95.4 74.5 76.7 0.22 0.24 0.25

qwithin ¼ 0:70 Pop R N A R N A R N A
13. qbetween ¼ 0:10 0.05 0.05 0.05 0.05 94.8 98.3 98.1 0.39 0.36 0.38
14. qbetween ¼ 0:30 0.14 0.14 0.13 0.13 93.8 97.2 97.4 0.36 0.34 0.36
15. qbetween ¼ 0:50 0.21 0.21 0.19 0.19 94.7 97.7 97.6 0.32 0.31 0.32
16. qbetween ¼ 0:70 0.35 0.35 0.32 0.32 95.7 95.8 94.6 0.26 0.26 0.28

Table 6. Non-monotone missingness, 20% missing data. Population regression coefficients (Pop) and regression coefficients of
the 95% confidence interval after RE-IMPUTE (R), NEST (N) and APPEND (A) methods. Regression coefficient of the incomplete
wave-1 variable (by1 ).

Scenario
Regression coefficients Coverage 95% CI Width 95% CI

qwithin ¼ 0:10 Pop R N A R N A R N A

1. qbetween ¼ 0:10 0.08 0.08 0.08 0.08 94.5 95.4 95.5 0.21 0.21 0.21
2. qbetween ¼ 0:30 0.23 0.23 0.22 0.22 95.0 96.0 95.3 0.20 0.20 0.20
3. qbetween ¼ 0:50 0.42 0.42 0.39 0.39 94.6 92.4 92.0 0.19 0.19 0.20
4. qbetween ¼ 0:70 1.17 1.17 0.98 0.98 94.8 43.6 45.7 0.07 0.34 0.35

qwithin ¼ 0:30 Pop R N A R N A R N A
5. qbetween ¼ 0:10 0.07 0.07 0.07 0.07 95.5 96.4 96.5 0.22 0.22 0.22
6. qbetween ¼ 0:30 0.19 0.19 0.18 0.18 95.5 96.0 95.9 0.21 0.21 0.21
7. qbetween ¼ 0:50 0.31 0.31 0.30 0.30 94.8 94.5 94.5 0.19 0.19 0.20
8. qbetween ¼ 0:70 0.57 0.57 0.50 0.50 94.7 78.3 78.5 0.16 0.20 0.21

qwithin ¼ 0:50 Pop R N A R N A R N A
9. qbetween ¼ 0:10 0.06 0.06 0.06 0.06 95.2 96.7 96.5 0.25 0.24 0.25
10. qbetween ¼ 0:30 0.16 0.16 0.16 0.16 95.5 96.5 96.5 0.23 0.23 0.23
11. qbetween ¼ 0:50 0.25 0.25 0.24 0.24 94.2 95.7 95.3 0.21 0.21 0.21
12. qbetween ¼ 0:70 0.40 0.40 0.37 0.37 95.5 94.2 93.8 0.18 0.19 0.19

qwithin ¼ 0:70 Pop R N A R N A R N A
13. qbetween ¼ 0:10 0.05 0.05 0.05 0.05 95.0 96.7 96.7 0.30 0.29 0.30
14. qbetween ¼ 0:30 0.14 0.14 0.14 0.14 94.7 96.1 96.3 0.28 0.28 0.28
15. qbetween ¼ 0:50 0.21 0.21 0.21 0.21 95.0 96.5 96.5 0.25 0.25 0.25
16. qbetween ¼ 0:70 0.35 0.35 0.34 0.34 95.2 95.8 96.4 0.21 0.21 0.21
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Similar to the simulation in Section 4, we generated
2,000 datasets of n¼ 425 subjects, thereby exceeding
the minimum sample advised size of n¼ 100 for
growth models (Curran et al., 2010).

4.3.1.2. Missingness and imputation procedure. We
created 50% casewise missingness under MCAR (miss-
ing completely at random) according to either a
monotone or a nonmonotone missingness pattern.
Since multilevel imputation with incomplete covariates
is not straightforward, we limited incomplete data to
outcome variable yt (Grund et al., 2018). To obtain an
identifiable imputation model with random effects, we
started imputing at t¼ 3 and ensured that at least two
timepoints were observed for every subject. We
imputed missing data via RE-IMPUTE (m¼ 5 for all
imputations) and APPEND (m1 ¼ 5 and m¼ 1 for all
later imputations). Since NEST and APPEND resulted
in similar performance in the previous simulation, we
omitted NEST in the current simulation. We imputed
missing data via the 2l.pmm() method in the mice

(Van Buuren & Groothuis-Oudshoorn, 2011) and
miceadds (Robitzsch et al., 2020) packages. After
imputation, we estimated fixed and random effects
using the nlme (Pinheiro, 2020) package and pooled
estimates with the mitml (Grund et al.,
2019) package.

4.3.1.3. Outcomes of interest. We evaluated three
outcomes of interest:

1. Bias between pooled parameter estimates after
imputation and true values of both fixed effects
(c0 and c1) and random variances (U0, U1, et).

2. Coverage of the true parameter value in the 95%
confidence interval of the fixed effects.

3. Relative width of the pooled 95% confi-
dence interval.

4.3.2. Results
4.3.2.1. Fixed effects. Both imputation methods esti-
mated fixed effects c0 and c1 without bias under all
conditions at all timepoints (< j:002j). Coverage was
good and exceeded the nominal 95% (97:0� 99:0%).
RE-IMPUTE and APPEND were equally efficient with
a relative efficiency of 0:99� 1:01:

4.3.2.2. Random effects. Random slope variance u1
could be estimated unbiasedly (bias: <.010). However,
RE-IMPUTE and APPEND systematically overesti-
mated random intercept variance U0 (bias:
0:003� 0:213) in autocorrelated data. This bias does
not indicate a difference between RE-IMPUTE and
APPEND, but rather originates from the underlying
imputation procedure that could not deal with auto-
correlations properly.

4.3.2.3. Summary. When taken together, we can con-
clude that

1. Both RE-IMPUTE and APPEND could estimate
almost all parameters unbiasedly and with accur-
ate coverage.

2. Autocorrelations are not handled accurately by
the underlying imputation procedure of both RE-
IMPUTE and APPEND, resulting in bias in the
random intercept variance.

5. Data application

In practice, NEST and APPEND may perform better
in real life than in the simulation. Real datasets often

Table 7. Regression coefficients and (the width of) their 95% confidence intervals of early catch-up growth predicting length at
age 19, after RE-IMPUTE, NEST and APPEND regression coefficients were unadjusted and adjusted for potential confounders.
Unadjusted

RE-IMPUTE NEST APPEND

B 95% CI Width B 95% CI Width b 95% CI Width

Weight 0.47 0.30 – 0.63 0.33 0.46 0.29 – 0.62 0.33 0.47 0.28 – 0.66 0.38
Length 0.58 0.46 – 0.71 0.25 0.57 0.44 – 0.69 0.25 0.56 0.42 – 0.70 0.27
HC 0.29 0.12 – 0.45 0.33 0.26 0.10 – 0.42 0.32 0.26 0.05 – 0.46 0.41
WL –0.45 –0.81 – –0.10 0.71 –0.41 –0.77 – –0.06 0.72 –0.41 –0.78 – –0.04 0.74
Adjusted

RE–IMPUTE NEST APPEND

B 95% CI Width B 95% CI Width b 95% CI Width

Weight 0.27 0.13 – 0.42 0.29 0.26 0.10 – 0.41 0.31 0.27 0.08 – 0.46 0.38
Length 0.42 0.31 – 0.53 0.23 0.40 0.28 – 0.52 0.24 0.39 0.24 – 0.54 0.30
HC 0.12 –0.05 – 0.29 0.34 0.09 –0.06 – 0.23 0.29 0.09 –0.10 – 0.29 0.39
WL –0.40 –0.76 – –0.04 0.73 –0.36 –0.73 – 0.00 0.73 –0.33 –0.72 – 0.05 0.78

Note. HC¼ head circumference, WL¼weight adjusted for length.
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contain auxiliary variables that provide extra informa-
tion that reduces the impact of ignoring future data
(Daniels et al., 2014; Xie & Meng, 2016). Let us revisit
the POPS dataset (Verloove-Vanhorick et al., 1986).

5.1. Method

The analysis models specified by Van Dommelen
et al. (2014) predict five outcomes at age 19 (wave-2
data: length, cognition, health-related quality of life,
internalizing problems, and externalizing problems)
from four types of catch-up growth (wave-1 data:
weight, length, head circumference, and weight–-
length). The model was adjusted for potential con-
founders (also wave-1 data), which includes
gestational age, sex, maternal age at birth, maternal
smoking during pregnancy, maternal diabetes, socioe-
conomic status, parity, ethnicity, and target length.
The researchers selected n¼ 334 cases born small for
gestational age without severe complications (n¼ 228
for weight, n¼ 203 for length, n¼ 178 for head cir-
cumference, and n¼ 64 for weight adjusted for length)
from the incomplete POPS cohort.

We completed the dataset using the three imput-
ation strategies. Similar to the original article, we re-
imputed the incomplete wave-1 and wave-2 data
m¼ 10 times (Van Dommelen et al., 2014). In add-
ition, we imputed the wave-1 data m1 ¼ 10 times, and
imputed the wave-2 data for each completed wave-1
dataset with m2 ¼ 10 (NEST) and m2 ¼ 1 (APPEND).

After multiple imputation we fitted eight linear
regression models per outcome variable. The models
predicted the outcome from catch-up growth in
weight, length, head circumference or weight adjusted
for length, either unadjusted or adjusted for potential
confounders. Quantities of scientific interest were
regression coefficients of catch-up growth predictors
and their 95% confidence intervals. We imputed data
with mice (Van Buuren & Groothuis-Oudshoorn,
2011) using predictive mean matching similar to the
original study.

5.2. Results

5.2.1. Missing data and correlation patterns
None of the data selections followed a strictly mono-
tone missingness pattern, but at least 60% of missing
values in the wave-1 data corresponded to cases with-
out observations in wave-2 data, except for the
weight–length predictor (45:1� 64:7% monotone).

Potential problems arising from non-monotone
missingness may be mitigated by strong correlations

within waves. Each catch-up growth predictor had at
least one correlation with another catch-up growth pre-
dictor (i.e. within wave 1) that exceeded the correlation
with the outcomes (i.e. between wave 1 and wave 2).
Hence, we considered NEST and APPEND methods
appropriate for these data.

5.2.2. Parameter estimates
Table 7 presents the regression coefficients of catch-
up growth predicting length at age 19. The three
imputation strategies produce similar point estimates
and confidence intervals. We found agreement
between conclusions in seven out of eight models
(weight, length, head circumference; either adjusted or
unadjusted, and weight–length unadjusted). The
adjusted model for weight–length produced divergent
estimates: Weight–length predicted length after RE-
IMPUTE (CI: �0:76��0:04), but not after NEST or
APPEND (CI nested: �0:73� 0:00; CI appended:
�0:72� 0:05). Across all models, NEST and RE-
IMPUTE were approximately equally efficient (relative
width 95% CI NEST vs. RE-IMPUTE: 0:85� 1:07)
and more efficient than APPEND. Results for other
outcome variables were qualitatively similar and are
available upon request.

6. Discussion

We studied a multiple imputation problem when the
data grow over time. The newly arriving data contain
missing values that need to be imputed. The standard
method (RE-IMPUTE) is to combine the new and old
data before imputation, and re-impute all missing val-
ues in the combined data. We investigated the proper-
ties of two methods that impute the missing data in
the new part only, thus preserving the historic impu-
tations. Method NEST multiply imputes the new data
conditional on each filled-in old data m2 > 1 times.
Method APPEND is the special case of NEST with
m2 ¼ 1, thus appending each filled-in data by sin-
gle imputation.

An attractive feature of methods NEST and
APPEND is that they keep the old imputations in
place, thereby preserving the results of statistical anal-
yses performed on the earlier waves. Method
APPEND is more convenient than NEST, but less effi-
cient. We found that NEST and APPEND have the
same validity as RE-IMPUTE for monotone missing
data patterns. NEST and APPEND also work well
when the relations within waves are stronger than
between waves and for moderate percentages of miss-
ing data, say up to 25%. We do not recommend the
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use of NEST or APPEND when relations within time
points are weak and when associations between time
points are strong. We found a slight drop in efficiency
of APPEND relative to NEST, so there is a (small)
price to pay for its operational advantages.

The current paper was limited to exploring validity
of RE-IMPUTE, NEST, and APPEND under relatively
simple scenarios, aiming to clarify whether - and if so
when - caution is warranted in the first place. In prac-
tice, more complex situations with larger numbers of
variables and timepoints might be of interest. We did
observe that the underlying imputation procedures do
not handle autocorrelated data well, which remains be
resolved for longitudinal data in general.
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