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P-TEFb is a transcriptional factor that speci)cally regulates the elongation step of RNA polymerase II-dependent transcription and
its activity strictly required for Human Immunode)ciency Virus (HIV) infection and during cardiac di*erentiation. P-TEFb role
has emerged as a crucial regulator of transcription elongation and its activity found )nely tuned in vivo at transcriptional level
as well as posttranscriptionally by dynamic association with di*erent multisubunit molecular particles. Both physiological and
pathological cellular signals rapidly converge on P-TEFb regulation by modifying expression and activity of the complex to allow
cells to properly respond to di*erent stimuli. In this review we will give a panoramic view on P-TEFb regulation by noncoding
RNAs in both physiological and pathological conditions.

1. Introduction

(e core P-TEFb complex is a hetero-dimer composed of a
kinase, (CDK9), and a cyclin subunit of the Cyclin T family
(i.e., T1, T2a, and T2b) [1–3].

P-TEFb activity was initially described as essential for
transcriptional activation of the Human Immunode)ciency
Virus, HIV-1, viral genes as well as for the expression of some
cellular genes such as c-myc, hsp70, and c-foswhose transcrip-
tional expression levels are regulated at the elongation phase
[4–7]. Genome-wide studies have demonstrated that most of
RNAPII-dependent genes are regulated at the elongation step
[8–14]. Soon a,er pre-mRNA transcripts reach the length of
about 30 nucleotides, transcription is halted by the negative
action of DSIF and NELF complexes [15, 16]. Paused RNAPII
is released by the activity of P-TEFb, which phosphorylates
the SPT5 subunit of DSIF and the E subunit of NELF as well
as the serine residue at position 2 of the RNAPII-Rpb1-CTD
(see [15–17] and references therein).

P-TEFb activity is speci)cally required to allow viral
HIV-1 genes to be actively transcribed during infection [2,
6, 18–22]. In addition, it has been shown to be necessary,
as part of the p300/GATA4 complex, for transcription of
cardiac speci)c genes such as Nkx2.5, Anf, and !-Myh [23,
24]. Nevertheless, the list of genes that speci)cally require
P-TEFb activity to be promptly expressed is continuously
growing and includes developmental, cellular stress- and
cancer-associated genes [25–32].

(e P-TEFb role in gene expression is achieved by a )ne
tuning of its activity in living cells at transcriptional level as
well as by its dynamic association with snRNP particles (see
[33–35] and references therein).(e enzymatic activity of the
complex relies on the presence of the 7SK noncoding RNA
that binds toHexim, LARP7, andMePCE and inhibits P-TEFb
kinase activity (see [36–39] and references therein). More-
over, recent )ndings revealed that P-TEFb synthesis is )nely
regulated by a number of noncoding RNAs (microRNA).
(us, P-TEFb availability and enzymatic activity are largely
controlled by several di*erent noncoding RNAs.
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2. Regulation of P-TEFb Enzymatic Activity by
7SK-Containing snRNP Particles:
Dynamic Equilibrium between SC and LC
P-TEFb Complexes

In cells, P-TEFb exists in two major forms that are in
dynamic equilibrium [31, 37, 40, 41], the core active het-
erodimer CDK9/Cyclin T (also named small complex, SC)
and the inactive 7SK snRNP-bound complex (large complex,
LC). In the inactive 7SK snRNP-bound P-TEFb form, the
sequestration into the snRNP particle is su/cient to inhibit
CDK9 kinase activity. (e snRNP contains the noncoding
7SK snRNA and the proteins MePCE (also named BCDIN3),
LARP7, and Hexim1 or 2, which can associate as homo- or
heterodimers. MePCE and LARP7 are stably bound to 7SK
snRNA, while Hexim binding is reversible and is required
to inhibit P-TEFb activity. (e role of MePCE and LARP7
is to stabilize the integrity of 7SK snRNA as well as the
snRNP itself [42–51]. Depending on the cell type, up to
90% of P-TEFb is found in the large inactive complex
and the equilibrium between LC and SC determines the
overall transcriptional potential activity of the cell. Several
di*erent cellular stress signals have been demonstrated to
be able to perturb the equilibrium between small active P-
TEFb and the 7SK snRNP-bound complex: DNA damage
induced by di*erent chemical drugs (camptothecin, dox-
orubicin, etc.), physical agents (UV light and X-rays), heat,
histone deacetylase inhibitors, cardiac hypertrophy, speci)c
intracellular signaling cascades [52–59]. Notably, it has been
suggested independently by two research groups that inhi-
bition of transcription itself may determine P-TEFb/7SK
snRNP disruption. In the presence of aberrant transcrip-
tional arrest Hexim dissociates from 7SK snRNP and free
hnRNPs (viz. hnRNPA1/2, hnRNPQ and hnRNPR) take its
place, supporting the notion that the dynamic equilibrium
between LC and SC is a mechanism of release of P-TEFb
and Hexim from 7SK snRNP [60, 61]. Although precise
molecular mechanisms regulating the sequestration/release
of P-TEFb from LC remain to be fully elucidated, multiple
posttranscriptional modi)cation of 7SK snRNP components
are involved as reported elsewhere [32, 62–65].

3. miRNAs-Dependent Regulation of P-TEFb
Activity in HIV-1 Infection and Latency

Transcription of HIV-1 viral genes requires P-TEFb recruit-
ment on the TAR sequence present on all nascent viral RNAs
via direct association between the viral transactivator Tat
protein and theCyclin T1 subunit of the host P-TEFb complex
[2, 66–69].

(e two major cell types that support productive HIV-
1 infection are activated CD4+ T lymphocytes and di*er-
entiated macrophages, while the main reservoir of HIV-1
latency is represented by resting CD4+ T lymphocytes in
which P-TEFb activity is under stringent control (see [70] and
references therein).

A number of mechanisms have been identi)ed that regu-
late P-TEFb availability and enzymatic function. Speci)cally,

in CD4+ T lymphocytes and macrophages the role of several
microRNAs (miRNAs) capable to regulate the expression of
the Cyclin T1 subunit has been recently elucidated. In resting
CD4+ T lymphocytes Cyclin T1 protein levels are very low
and dramatically increase upon activation. Similarly, during
di*erentiation of monocytes to macrophages an increase of
Cyclin T1 expression is observed. Since levels of Cyclin T1
messenger RNA do not change during CD4+ T lympho-
cytes activation and monocytes di*erentiation, the increase
in Cyclin T1 expression is independent of transcriptional
regulation [71–76]. Recent studies provided evidences that
Cyclin T1 is under the control ofmiR-27b, 29b, 150, and 233 in
resting CD4+ T lymphocytes andmiR-198 in monocytes [75].
Abundance of miR-27b, 29b, 150, and 233 decreases upon
activation of CD4+ T lymphocytes together with an increase
of Cyclin T1 protein levels. Interestingly, overexpression
of these small noncoding RNAs downregulates Cyclin T1
protein levels in transfected HeLa cells. Besides, it has been
shown that in resting CD4+ T lymphocytes their inhibition
leads to an increase of Cyclin T1 protein levels [75]. In the
same study, it has been shown thatmiR-27b directly binds the
Cyclin T1 3!UTR, while no direct interaction has been found
formiR-29b, 150, and 233, thus suggesting that in this case the
e*ect on Cyclin T1 expression could likely be indirect.

miR-198 has been shown to target Cyclin T1 3!UTR and
inhibit Cyclin T1 expression in monocytes. Ectopic expres-
sion of miR-198 in these cells inhibits upregulation of Cyclin
T1 protein induced upon di*erentiation and represses HIV-
1 replication and expression of the HIV-1 proviral plasmid
in a monocytic cell line. miR-198 is expressed at high levels
in primary monocytes and it has been suggested that the
refractoriness of these cells to support HIV-1 replication
might be due to miR-198-dependent inhibition of P-TEFb via
repression of Cyclin T1 expression [74].

Intriguingly, it has been shown that a speci)c miRNA
is produced by the HIV-1 viral TAR element and that this
miRNA, localized to the exosomes of infected cells, represses
apoptosis bymodulating the transcriptional levels ofBIM and
CDK9 promoters [77, 78].

4. miRNAs-Dependent Regulation of
P-TEFb in Cardiac Hypertrophy and
Cardiac Differentiation

Cardiac hypertrophy is characterized by enlargement of
myocytes cell size in response to di*erent stimuli. At molec-
ular level, increase of mRNA synthesis and transcriptional
activation of the fetal gene program are at the basis of this
cardiac injury [79]. It has been shown that P-TEFb is the
limiting factor responsible for a general transcription increase
both in vivo and in vitro [80, 81]. Notably, all hypertrophic
stimuli have been shown to lead to release of P-TEFb from
its inactive state [79–82]. Although the Jak/STAT pathway
has been involved in the release and activation of P-TEFb
in the context of cardiac hypertrophy, a miR-1-dependent
regulation of CDK9 synthesis during cardiac di*erentiation
and hypertrophy has been recently identi)ed [83].



BioMed Research International 3

Similar to cardiac hypertrophy, also normal cardiac devel-
opment relies on increased cell size, mRNA, and protein
synthesis and P-TEFb activity seems to be responsible for
these e*ects. A number of miRNAs have been shown to play
a role during cardiogenesis and among them miR-1 has been
shown to be involved in P-TEFb regulation [84–90]. In fact,
in vivo data showed that the 3!UTR of CDK9messenger RNA
is a miR-1 direct target [85].

miR-1 has been previously identi)ed as a muscle-speci)c
miRNA and then found to have a pivotal role in heart
development being the earlier miRNA downregulated during
cardiac hypertrophy [91, 92].

(e presence of miR-1 in ES cells is barely detectable,
but upon cardiac di*erentiation its expression progressively
increases with a concomitant reduction of CDK9 expression.
(ese studies suggest that miR-1 regulates myocardial di*er-
entiation of ES cells in part by reducing CDK9 availability
[85]. Although CDK9 role during cardiac growth is critical,
it has been shown that miR-1 targets also Hand2 mRNA
during heart development [91]. In linewith its role in promot-
ing cardiac di*erentiation in part reducing the availability
of P-TEFb, miR-1 expression is downregulated in cardiac
hypertrophy. It has been shown that miR-1 down-regulation
is necessary for the upregulation of CDK9, suggesting that
the balance between miR-1 and CDK9 (i.e., P-TEFb) plays
essential role during cardiac hypertrophy.

It is of note that production of oligoribonucleotides
homologous to CDK9 mRNA in miR-1 microinjected one-
cell embryo, as well as of miR-1 itself, determines the hyper-
activation of CDK9 transcription and the establishment of
cardiac hypertrophy in developedmice. For instance, the car-
diac injury is inherited in the progeny, due to a phenomenon
initially discovered in plant and called “paramutation.” In the
case of fertilized eggs, the “paramutation” has been suggested
to be due to epigenetic modi)cations or abnormal forms of
CDK9 transcript. Nevertheless, the molecular nature of these
heritable alterations has to be clari)ed [93, 94].

5. miRNAs-Dependent Regulation of Cyclin T2
Levels in Leukemia and Spermatogenesis

P-TEFb, as component of super elongation complexes (SECs),
has been shown to have a pivotal role in halting hematopoietic
di*erentiation in mixed-lineage leukemia (MLL), a very
aggressive subtype of acute myeloid leukemia. SECs are
multifactor complexes consisting of members of ELL family
proteins, several MLL translocation partners such as mem-
bers of AFF family proteins, ENL, AF9, and P-TEFb [95–100].
When SECs are aberrantly brought to MLL targets they are
able tomisregulateHOX genes as well as other developmental
genes such as Wnt target genes and leukemic stem cell target
genes developing MLL leukemias [101–104].

A functional role of miRNAs during hematopoiesis has
been highlighted only recently. Interestingly, miR-29a and
miR-142-3p have been shown to be severely downregulated
in acute myeloid leukemia (AML), a group of blood cancers
characterized by the blockage ofmyeloid di*erentiation [105–
108]. Moreover, data from a recent work demonstrate that

miR-29a and miR-142-3p expression levels increase during
di*erentiation of several leukemia cell lines and that their
inhibition using speci)c anti-miRNAs determines a blockage
in myeloid di*erentiation and the consequent development
of AML. Furthermore, miR-29a and miR-142-3p are present
at lower levels in PBMNCs (peripheral blood mononuclear
cells) and BM (bone marrow) of AML patients if compared
to normal patients [107, 108]. It has been reported that a key
role of miR-29a and miR-142-3p in myeloid di*erentiation
and AML involves regulation of three target genes Cyclin
T2 (CCNT2), cyclin-dependent kinase 6 (CDK6), and TGF-! activated kinase 1/MAP3K7 binding protein 2 (TAB2).
Notably, while CDK6 is a target of miR-29a and TAB2 is
a target of miR-142-3p, CCNT2 is target of both miRNAs.
Wang and colleagues showed that Cyclin T2 inhibits myeloid
di*erentiation by increasing their proliferation and that miR-
29a and miR-142-3p promote monocytopoiesis in part by
regulating Cyclin T2 expression levels. Moreover, abnormal
increased levels of Cyclin T2 as well as of CDK6 and TAB2
are detected in AML blasts with concomitant reduction of
miR-29a and miR-142-3p which further suggests that the
two miRNAs regulate myeloid di*erentiation via these three
targets [108].

Cyclin T2 mRNA has also been shown to be target of
miR-15a during early spermatogenesis. A microarray study
revealed that miR-15a, one of the 28 miRNAs whose expres-
sion resulted modi)ed during di*erentiation, speci)cally
targets 3!UTR of Cyclin T2 mRNA. Down-regulation of
miR-15a has been initially related to various cancers as well
as to development and di*erentiation. Data reported from
Teng and colleagues showed an inverse relationship between
Cyclin T2 expression and miR-15a, suggesting a regulatory
loop that is crucial in early spermatogenesis [109].

6. Conclusion

Discovery of the noncoding 7SK RNA cellular function
in 2001 opened a door to the comprehension of P-TEFb
regulation by noncoding RNAs. Since then, a number of
studies have clari)ed the composition and mode of action of
the 7SK snRNP regulating P-TEFb equilibrium and activity in
the broad spectrum of biological processes in which P-TEFb
is involved.

More recently, P-TEFb regulation bymiRNAs is emerging
as schematized in Figure 1. Biology of miRNAs is far to be
fully elucidated; nonetheless, despite being considered “tiny
players,” they have key roles in a number of developmental
and pathological conditions. It is not a surprise that also
P-TEFb is an miRNAs target and that several miRNAs are
involved in the regulation of P-TEFb availability in di*erent
physiologic and pathologic cellular models. It is reasonable
to imagine that new players still have to come to light in
the near future and that exploring the emerging )eld of P-
TEFb regulation by miRNAs will give new opportunities to
shed light on cancer, HIV-1 infection, and the number of
pathological conditions in which P-TEFb has a pivotal role.
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Figure 1: Noncoding RNAs that in5uence P-TEFb availability and
activity are schematically represented. Target 3!UTR and involved
biological process are indicated.
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