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Abstract. An unstructured conservative level-set method for two-phase flow with variable surface ten-
sion is introduced. Surface tension is a function of temperature or surfactant concentration on the inter-
face. Consequently, the called Marangoni stresses induced by temperature gradients or surfactant concen-
tration gradients on the interface lead to a coupling of momentum transport equation with thermal energy
transport equation or interface surfactant transport equation. The finite-volume method discretizes trans-
port equations on 3D collocated unstructured meshes. The unstructured conservative level-set method
is employed for interface capturing, whereas the multiple marker approach avoids the numerical coa-
lescence of fluid particles. The fractional-step projection method solves the pressure-velocity coupling.
Unstructured flux-limiters are proposed to discretize the convective term of transport equations. A cen-
tral difference scheme discretizes diffusive terms. Gradients are evaluated by the weighted least-squares
method. Verifications and validations are reported.

1 INTRODUCTION

Applications of transport phenomena in two-phase flow are omnipresent in nature and industry. Diverse
engineering systems, from nuclear reactors to internal combustion engines, from unit operations and
chemical reactors in chemical processing plants to sediment and pollutant transport phenomena in aquatic
environments, entail carrier fluids that convey bubbles or droplets of another phase. The design and
optimization of these systems and their operation require a deep understanding of the fundamentals of
momentum, energy and mass transport processes from individual bubbles and droplets, as well as in
swarms of fluid particles.

In this sense, multiple methods have been reported for DNS of two-phase flows, which can be categorized
based on the underlying scheme used for the advection of the fluid interface, such as: level-set (LS)
[30, 39, 23], Volume of Fluid (VoF) [24, 33, 45, 31], coupled VoF-LS [38, 37, 9], conservative level-set
(CLS) [29, 7, 14], and front-tracking (FT) [46, 44]. Although these methods share a similar idea, their
numerical implementations on structured or unstructured meshes are quite different [14, 9, 8, 7].

Some of the aforementioned interface capturing/tracking methods have been extended to deal with two-
phase flows with variable surface tension. For instance, Balcazar et al.[12] reported thermocapillary
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migration of individual and multiple droplets employing a novel multiple marker conservative level-
set method. [28, 27] performed direct numerical simulations of the thermocapillary motion of multiple
deformable droplets employing the front-tracking method. [25, 34] reported direct simulations of thermal
Marangoni effects at deformable interfaces, based on the volume-of-fluid method. [47, 18] reported
simulations of the thermocapillary motion of two- and three-dimensional fluid particles using the level-
set method. [26] introduced a front-tracking method for insoluble and soluble surfactants. Although
previous efforts have reported remarkable numerical and physical findings, many other configurations
and flow conditions are not explored yet. This work is a systematic step toward designing numerical
methods for complex interfacial physics in the framework of the unstructured multiphase level-set solver
proposed by Balcazar et al.[14, 13, 4, 6, 12, 8, 7], for two-phase flow with variable surface tension.

This paper is organized as follows: Section 2 presents the mathematical formulation and the numerical
methodology on collocated unstructured meshes. Verifications, validations and numerical experiments
are presented in Section 3. Finally, conclusions are remarked in Section 4.

2 MATHEMATICAL FORMULATION AND NUMERICAL METHODS

2.1 Incompressible two-phase flow

The Navier-Stokes equations for the dispersed fluid (Ωd) and continuous fluid (Ωc) are presented in the
framework of the one-fluid formulation [45, 31],

∂

∂t
(ρv)+∇ · (ρvv) =−∇p+∇ ·µ(∇v)+∇ ·µ(∇v)T +(ρ−ρ0)g+ fσ, (1)

∇ ·v = 0. (2)

Here, v is the velocity field, p is the pressure, g is the gravitational acceleration, µ is the dynamic vis-
cosity, ρ is the fluid density, fσ is the surface tension force per unit volume acting on the interface Γ,
subscripts d and c denote the continuous phase and dispersed phase respectively. Physical properties are
constant at each fluid phase, with a jump discontinuity across the interface:

ρ = ρcHc +ρdHd , µ = µcHc +µdHd . (3)

Hc denotes the Heaviside step function, equal to one at the fluid c (Ωc) and zero elsewhere. Hd = 1−Hc.
If periodic boundary conditions are applied in the vertical direction (parallel to g), the force −ρ0g with
ρ0 =V−1

Ω

∫
Ω
(ρdHd +ρcHc)dV , is included in Eq.(1) [14, 6, 8].

2.2 Multiple marker UCLS method

Interface capturing is performed by the unstructured conservative level-set (UCLS) method, proposed by
Balcazar et al.[14, 7]. The multiple marker UCLS approach introduced in Balcazar et al.[14, 4, 6, 12, 8]
avoids the numerical coalescence of bubbles. Each marker is represented by a modified level-set function
[14, 12, 7], φi = 0.5(tanh(di/(2ε))+1), where di is a signed distance function [30, 40], ε is a parameter
that sets the thickness of the interface profile. The transport equation for the ith level-set marker is written
in conservative form:

∂φi

∂t
+∇ ·φiv = 0, i = 1,2, ...,Nm, (4)
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where Nm is the number of level-set markers, here equivalent to the number of fluid particles Nm = nd . A
re-initialization equation has to be solved to keep a sharp and constant interface profile [7]:

∂φi

∂τ
+∇ ·φi(1−φi)n0

i = ∇ · ε∇φi, i = 1,2, ...,Nm. (5)

Eq.(5) is advanced in pseudo-time τ up to the steady-state. Here, n0
i denotes the interface normal unit

vector at τ = 0. At the cell ΩP, εP = 0.5(hP)
α, α = 0.9, hP = max{||xF − xP||} is the local grid size

[14, 12, 7], subindex P is the local cell, subindex F = {1, ...,N f } is the neighbor cell, Normal vectors ni

and interface curvatures κi, are evaluated as: ni = ∇φi/||∇φi||, κi =−∇ ·ni [14, 8, 7].

2.3 Variable surface tension

Surface tension force (fσ, Eq.(1)) is computed in the framework of the Continuous Surface Force (CSF)
model [17], extended to the multiple marker UCLS method in Balcazar et al. [8, 12, 21, 6, 14]:

fσ =
Nm

∑
i=1

(f(n)
σ,i + f(t)

σ,i), (6)

where f(n)
σ,i is the normal component of the surface tension force, perpendicular to the interface (Γi):

f(n)
σ,i = σκiniδ

s
Γ,i = σκini||∇φi||= σκi∇φi. (7)

Here, δs
Γ,i =||∇φi|| is the regularized Dirac delta function concentrated at the interface [14, 7, 6]. Fur-

thermore, σ = σ(ϕ) is the surface tension coefficient as a function of ϕ = {T,CΓ}, where T denotes the
temperature and CΓ is the concentration of surfactant on the interface. The second component of Eq.(6),
f(t)
σ,i, is the so-called Marangoni force [20], which is tangential to the interface:

f(t)
σ,i = ∇Γiσ(ϕ)δ

s
Γ,i = (∇σ(ϕ)−ni(ni ·∇σ(ϕ)))δs

Γ,i = (∇σ(ϕ)−ni(ni ·∇σ(ϕ)))||∇φi||, (8)

where ∇Γi = ∇−ni(ni ·∇), is the tangential component of the gradient operator on the interface Γi.

2.4 Thermocapillarity

As the critical temperature for a given fluid is approached, the properties of the liquid and vapor phases
become identical. Consequently, ∂σ(T )/∂T =σT and σT < 0. Moreover, the equation of state for surface
tension is almost linear for most fluids:

σ = σ(T ) = σ0 +σT (T −T0), (9)

with σ0 = σ(T0)> 0. Combination of Eq.(9) and Eq.(8), with ϕ = T , leads to the Marangoni force [12]:

f(t)
σ,i = f(t)

σ,i(T ) = (σT ∇T −σT ni(ni ·∇T ))||∇φi||, (10)

which is valid for thermocapillary migration of fluid particles [12], when σ(T ) is linear. Finally, temper-
ature field T (x, t) evolves according to the energy transport equation [12]:

ρcp

(
∂T
∂t

+∇ · (vT )
)
= ∇ · (λ∇T ), (11)
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where λ = λdHd + λcHc defines the thermal conductivity in the whole domain Ω, and cp = cp,dHd +
cp,cHc is the specific heat capacity.

2.5 Insoluble surfactants on the interface

If σ = σ(CΓ), the Marangoni force is defined by Eq.(8) with ϕ = CΓ. Multiple equations of state σ =
σ(CΓ) are proposed in the literature, e.g., [26]. Insoluble surfactant concentration on the interface evolves
according to the transport equation [36]:

∂CΓ

∂t
+∇Γ · (CΓvΓ)+CΓ(∇Γ ·n)(v ·n) = DΓ∇

2
ΓCΓ (12)

where DΓ is the surfactant diffusivity. An equivalent transport equation was derived by [42, 43], which
is written in the framework of the multiple markers approach:

∂

∂t
(δs

Γ,iCΓ)+∇ · (δs
Γ,iCΓv) = DΓ∇ · (δs

Γ,i∇CΓ), (13)

where δs
Γ,i = ||∇φi|| is the regularized Dirac delta function [14, 6].

2.6 Regularization of physical properties

Following [14, 12, 8], fluid properties (Eq.(3)) are regularized with a global level-set function (φ). If
Hs

c = φ and Hs
d = 1−Hs

c , then: φ = min{φ1, ...,φnd−1,φnd}. Here, 0.5 6 φi 6 1 in Ωc, and 0 6 φi < 0.5
in Ωd . Alternatively, if 0.5 6 φi 6 1 in Ωd , and 0 6 φi < 0.5 in Ωc, then φ = max{φ1, ...,φnd}, whereas
Hs

d = φ and Hs
c = 1−Hs

d [14, 8, 6, 12]. Regularization of physical properties for thermocapillary motion
of droplets can be found in [12].

2.7 Numerical methods

Transport equations are discretized by the finite-volume method on 3D collocated unstructured meshes
[14, 7]. The convective term of momentum equation (Eq.(1)), level-set advection equation (Eq.(4)),
interface surfactant concentration equation (Eq.(13)), and thermal equation (Eq.(11)), is explicitly com-
puted, by approximating the fluxes at cell faces with unstructured flux-limiter schemes, proposed by
Balcazar et al.[14, 7]. Indeed, a general approximation of the convective term in the cell ΩP is writ-
ten as (∇ ·βψv)P = V−1

P ∑ f β f ψ f (v f ·A f ), where VP is the volume of ΩP, subindex f denotes the
cell-faces, A f = ||A f ||e f is the area vector, e f is a unit-vector perpendicular to the face f pointing
outside the cell ΩP. Furthermore, ψ f = ψCp + 0.5L(θ f )(ψDp −ψCp), where L(θ f ) is the flux limiter,
θ f = (ψCp −ψUp)/(ψDp −ψCp), Cp is the upwind point, Up is the far-upwind point, and Dp is the
downwind point, as proposed in the framework of the UCLS method [14]. Some of the flux limiters
implemented on the unstructured multiphase solver [14] have the form [41, 22]:

L(θ f )≡



max{0,min{2θ f ,1},min{2,θ f }} SUPERBEE,
(θ f+|θ f |)/(1+|θ f |) VANLEER,
max{0,min{4θ f ,0.75+0.25θ f ,2}} SMART,
1 CD,

0 UPWIND.

(14)
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Compressive term of the re-initialization equation (Eq. (5)), is discretized at the cell ΩP as follows [14]:
(∇ · φi(1− φi)n0

i )P = 1
VP

∑ f (φi(1− φi)) f n0
i, f ·A f , where n0

i, f and (φi(1− φi)) f are linearly interpolated.
The diffusive term of transport equations are centrally differenced [14]. Gradients are computed at
cell centroids through the weighted least-squares method [14, 16, 13, 7]. The fractional-step projection
method [19, 31, 45] solves the pressure-velocity coupling. First, a predictor velocity (v∗P) is calculated:

ρPv∗P−ρ0
Pv0

P
∆t

= C0
v,P +D0

v,P +(ρP−ρ0)g+ fσ,P, (15)

where the super-index 0 denotes the previous time-step, subindex P denotes the control volume ΩP,
Dv = ∇ ·µ∇v+∇ ·µ(∇v)T , and Cv =−∇ · (ρvv). Imposing (∇ ·v)P = 0 to the corrector step, Eq. (17),
leads to a Poisson equation for the pressure at cell-centroids:(

∇ ·
(

∆t
ρ

∇p
))

P
= (∇ ·v∗)P , e∂Ω ·∇p|∂Ω = 0. (16)

which is solved by means of a preconditioned conjugate gradient method. A Jacobi pre-conditioner is
used in this research. Here ∂Ω denotes the boundary of Ω, excluding regions with periodic boundary
condition, where information of the corresponding periodic nodes is used [14, 8]. In a further step the
updated velocity (vP) is computed at cell-centroids:

ρPvP−ρPv∗P
∆t

=−(∇p)P. (17)

Furthermore, face-cell velocity v f is interpolated [12, 14] to fulfill the incompressibility constraint and
to avoid pressure-velocity decoupling on collocated meshes [32]. Then, the volume flux (v f ·A f ), nor-
mal velocity (v f · e f ) or some equivalent variable is employed to solve the convective term of transport
equations [12]. An example of global algorithm for complex interfacial physics and further details on
the discretization can be found in our recent works [14, 13, 16].

3 NUMERICAL EXPERIMENTS

3.1 Validations and verifications

Multiple validations, verifications and extensions of the unstructured multiphase flow solver [7, 10, 6,
14, 13] have been reported, for instance: buoyancy-driven rising bubbles [7, 8, 6, 2, 1], thermocapillary-
driven motion of droplets on fixed unstructured meshes [12], bubbly flows [11, 6, 14, 15, 16], falling
droplets [5], binary droplet collision with bouncing outcome [11], bouncing collision of a droplet against
a fluid-fluid interface [11], liquid atomization [35], deformation of droplets under shear stresses [9],
interfacial mass transfer in bubbly flows [16, 4, 14, 15], and liquid-vapor phase change [13]. Furthermore,
a comparison of the UCLS method [7, 8, 12] and unstructured coupled VoF-LS method [9] is reported in
[5].

3.2 Convection of insoluble surfactants on a droplet interface

A similar case was proposed by [26]. The unstructured flux-limiters convective schemes proposed by
Balcazar et a.[16, 7] are used on the discretization of the interface surfactant transport equation (Eq.(13)).
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Figure 1: Convection of insoluble surfactants on a droplet interface. (a) Radially expanding interface at t∗ =
{0.01,0.07}. (b) Surfactant concentration of the droplet interface. Analytical solution and numerical results using
unstructured flux-limiters convective schemes proposed by Balcazar et al.[14, 13, 16, 7] for MINMOD, SMART,
VANLEER and SUPERBEE limiters. Flux-limiters are applied to Eq.(4) and Eq.(13).

Ω is a cylinder of radius RΩ = 3.33(d/2) on the plane x− y and thickness Lz = h along the z axis. Here
d is the initial droplet diameter. The mesh consists of 18464 triangles on the plane x− y extruded
along the z-axis a distance h, which leads to triangular prisms control volumes with an average grid size
h = 2RΩ/100. Only UCLS equations and surfactant transport equations are solved (Eq.(13)).

As the initial condition, a cylindrical droplet of diameter d is located on the symmetry axis of Ω, x0 =
(x0,y0). Furthermore, the surfactant concentration CΓ(0) = C0

Γ
is uniformly distributed on the droplet

interface. Then, the cylindrical droplet is expanding with a solenoidal and radial velocity v = (C/r)er,
with r =

√
(x− x0)2 +(y− y0)2. The reference length is Lr = 2RΩ, reference velocity Ur = C/(0.5d),

and reference time tr = Lr/Ur, which will be used for the numerical results. The surfactant concentration
evolves according to the analytical solution: CΓ = C0

Γ
Ai(0)/Ai(t), where Ai(t) is the interface surface.

The numerical results for MINMOD, SMART, VANLEER and SUPERBEE flux limiters are in close
agreement with the analytical result, as shown in Figure 1.

3.3 Thermocapillary migration of a droplet

Thermocapillary migration of droplets is characterized by the following dimensionless numbers:

Ma =
|σT |||∇T∞||d2ρccp,c

4µcλc
, Re =

|σT |||∇T∞||d2ρc

4µ2
c

, Ca =
|σT |||∇T∞||d

2σ0
, ηβ =

βc

βd
. (18)
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Figure 2: Thermocapillary migration of a droplet: g = 0. Re = 5.0, Ma = 20.0, Ca = 0.01666, ηρ = ρc/ρd = 2.0,
ηµ = µc/µd = 2.0, ηλ = λc/λd = 2.0, ηcp = cp,c/cp,d = 2.0. (a) Adaptive mesh refinement around the droplet
interface, with grid size hmax = Lx/60 and hmin = hmax/24. (b) Temperature contours.

Figure 3: Thermocapillary migration of a droplet: g = 0. Re = 5.0, Ma = 20.0, Ca = 0.01666, ηρ = ρc/ρd = 2.0,
ηµ = µc/µd = 2.0, ηλ = λc/λd = 2.0, ηcp = cp,c/cp,d = 2.0. Dimensionless migration velocity V ∗ = ey · vc,i/Ur,
vc,i is the droplet velocity. Dimensionless time t∗ = t/tr. Normalized droplet surface, A∗ = Ai(t)/Ai(0), Ai(t) =∫

VΩ
δs

Γ,idV , δs
Γ,i = ||∇φi|| [7, 11, 12, 9, 6, 14, 13, 16]. Dimensionless vertical position, Y ∗ = ey ·xc,i/Lx, xc,i is the

droplet centroid. Mass conservation error M∗ = (Md(t)−Md(0))/Md(0), with Md(t) =
∫

Ω
Hs

d(t)dV .

where β = {ρ,µ,λ,cp}, Ma is the Marangoni number, Re is the Reynolds number, Ca is the capillary
number, ηβ denotes the physical property ratio, ∇T∞ = ((Th−Tc)/Ly)ey, Th is the temperature at the top
boundary (hot), and Tc is the temperature at the bottom boundary (cold) as shown in Figure 2a. Further-
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Figure 4: Thermocapillary migration of 18 droplets. g = 0. Dimensionless numbers: Re = 80, Ma = 10, Ca =
0.0416, ηρ = ρc/ρd = 2.0,ηµ = µc/µd = 2.0,ηλ = λc/λd = 2.0,ηcp = cp,c/cp,d = 2.0. ηd = d∗/d = 2/3. Here
ωz = ez · (∇×v).

more, the reference velocity is Ur = |σT |||∇T∞||(0.5d)/µc, reference temperature Tr = ||∇T∞||(0.5d), and
reference time tr = 0.5d/Ur, which will be employed to present the numerical results.

This case was reported in [28] and successfully solved in Balcazar et al.[12] through the UCLS method
on fixed unstructured meshes. Here, the UCLS method [14, 12, 7] for two-phase flow with variable
surface tension is proved on the hexahedral Adaptive Mesh Refinement (AMR) strategy of [2]. The
hexahedral AMR technique [3] was further optimized for wobbling-regime rising bubbles by [2] in the
framework of the UCLS two-phase solver of Balcazar et al.[14, 5, 7].

The dimensionless parameters are Re = 5, Ma = 20, Ca = 0.0166̄ and ηρ = ηµ = ηcp = ηλ = 2. Ω a
rectangle extending Lx = 4d in the x direction and Ly = 8d in the y direction, where d is the drop diameter.
The droplet is initially located to the distance d above the bottom wall, on the vertical symmetry axis of
Ω. The top and bottom walls are no-slip boundaries with temperature Th and Tc < Th, respectively. The
lateral boundaries are periodic. Figures 2 and 3 show a close agreement of the present numerical results
against those reported by [28] and [12] on fixed meshes, proving that the UCLS solver is able to deal
with two-phase flows with variable surface tension on adaptive unstructured meshes.

3.4 Thermocapillary migration of a bi-dispersed droplet swarm

DNS of thermocapillary migration of a bi-dispersed droplet swarm is performed. Ω a rectangular channel
with Lx = 6d, Lz = 6d on the plane x− z, and Ly = 12d in the y axis. A uniform cartesian mesh of
240×240×480 grid points, equivalent to the grid size h = d/40, is employed. 18 droplets are randomly
distributed (Fig. 4a). The swarm consists of 9 droplets of diameter d and 9 droplets of diameter d∗. The
diameter ratio is ηd = d∗/d = 2/3. Dimensionless numbers are defined in terms of the droplet diameter
d. The fluids are initially quiescent, and the temperature increases linearly from the bottom wall to the top
wall. No-slip boundary condition is applied to all the boundaries. Lateral walls are adiabatic, whereas
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Figure 5: Thermocapillary migration of 18 droplets. Dimensionless migration velocity V ∗i = ey · vi/Ur, vi is the
velocity of the ith droplet, Dimensionless vertical position, y∗i = ey · xi/Ly,Ω, xi is the centroid of the ith droplet.
Dimensionless time t∗ = t/tr. g = 0. Dimensionless numbers: Re = 80, Ma = 10, Ca = 0.0416, ηρ = ρc/ρd =
2.0,ηµ = µc/µd = 2.0,ηλ = λc/λd = 2.0,ηcp = cp,c/cp,d = 2.0, ηd = d∗/d = 2/3.

the top and bottom boundaries are at the temperature Th and Tc < T h, respectively. Figures 4-5 show
the physical parameters as well as the numerical results, proving the robustness of the UCLS method to
perform complex simulations of thermocapillary-driven motion of droplets.

4 CONCLUSIONS

The UCLS method for two-phase flow with variable surface tension on collocated unstructured meshes
has been introduced. Validations and verifications include the Marangoni stresses in thermocapillary mi-
gration and the convection of surfactants on the interface. Unstructured flux-limiters schemes proposed
by Balcazar et al.[14, 7], to discretize the convective term of transport equations, in the framework of the
UCLS method, avoids numerical oscillations around the interface and minimize the numerical diffusion.
Altogether, numerical schemes have lead to a robust and accurate numerical method for two-phase flows
with variable surface tension on collocated unstructured meshes.
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