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a b s t r a c t

Network Alignment (NA) is a hard optimization problem with important applications such as, for
example, the identification of orthologous relationships between different proteins and of phylogenetic
relationships between species. Given two (or more) networks, the goal is to find an alignment between
them, that is, a mapping between their respective nodes such that the topological and functional
structure is well preserved. Although the problem has received great interest in recent years, there
is still a need to unify the different trends that have emerged from diverse research areas. In this
paper, we introduce AntNetAlign, an Ant Colony Optimization (ACO) approach for solving the problem.
The proposed approach makes use of similarity information extracted from the input networks to
guide the construction process. Combined with an improvement measure that depends on the current
construction state, it is able to optimize any of the three main topological quality measures. We
provide an extensive experimental evaluation using real-world instances that range from Protein–
Protein Interaction (PPI) networks to Social Networks. Results show that our method outperforms
other state-of-the-art approaches in two out of three of the tested scores within a reasonable amount
of time, specially in the important S3 score. Moreover, it is able to obtain near-optimal results when
aligning networks with themselves. Furthermore, in larger instances, our algorithm was still able to
compete with the best performing method in this regard.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Network Alignment problem requires to find a mapping
etween the nodes of two (or more) given networks such that
certain, application-dependent, quality measure is optimized.
ltimately, the goal of aligning two networks is to transfer knowl-
dge from one network to the other, and one of the main areas
f application is Biology. In biological contexts, for example, this
llows to transfer knowledge about well-studied organisms to
esser known ones. Moreover, aligning two networks can be used
o identify orthologous relationships between different proteins
r phylogenetic relationships between species [1].
Network Alignment also plays a crucial role in various fields

nd applications concerned with social networks [2]. For example,
n the context of users that have accounts in different social
etworks, it is natural to assume that a user behaves similarly
n all networks. One example is what is commonly referred to
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as link prediction [3,4]: if two users are friends in a social net-
work, it is probable that they are also friends in other social
networks. Another example is cross-network recommendation [5],
where holistic user profiles are generated based on their behavior
in a source network and then used to suggest interests to the
users in the target network.

Due to the different contexts of application, there exist many
algorithms to tackle the Network Alignment problem. As a con-
sequence, many of these algorithms are specifically designed for
a certain application area. Not surprisingly, their performance
might decrease when applied to networks from other application
areas. In this work, we introduce an ACO algorithm that aims to
unify the different algorithmic trends.

In the remainder of this section, we introduce some basic
concepts that will help to define the tackled problem. In Section 2,
we give a general view of the state of the art. In Section 3, we
present our approach. In Section 4, the experimental results are
presented. Finally, in Section 5 we conclude our work and present
some ideas for future work.

1.1. Terms and concepts

An undirected graph (or network) G is denoted as G = (V , E),
where V is the non-empty set of vertices (or nodes) and E is the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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et of undirected edges. An edge e = (u, v) ∈ E connects two
ertices u, v ∈ V . It is said that e = (u, v) is incident to u and
, and that these two vertices are the endpoints of e. Moreover,
wo edges are said to be adjacent when are incident to a common
ertex. Similarly, two vertices are called adjacent if there is an
dge connecting them. We denote the set of vertices of a graph
as V (G), and the set of edges as E(G). The order of a graph G

refers to the number of vertices, while the size of a graph refers
to the total number of edges (i.e., |V (G)| and |E(G)|, respectively).
dditionally, let G[V ′

] be the induced subgraph of G with node
et V ′

⊆ V , i.e., the graph G[V ′
] = (V ′, E ′) where E ′

= {(u, v) |

, v ∈ V ′, (u, v) ∈ E}.
Networks are assumed not to have loops (i.e., there are no

dges of the form (u, u)) and then we can distinguish different
eighborhoods. The open neighborhood of a vertex v refers to the
et of vertices adjacent to v i.e. N(v) := {u ∈ V | (v, u) ∈

}. Similarly, we refer to the closed neighborhood as N[v] :=

(v) ∪ {v}. Hence, given two vertices u, v ∈ V , u is called a
eighbor of v if and only if u ∈ N(v). Furthermore, the degree of a
ertex refers to the number of edges incident to it, i.e., deg(v) =

N(v)|. Additionally, we define the D-restricted neighborhood of a
ertex v ∈ V as all the vertices in set D that are in the open
eighborhood of v, i.e., ND(v) := N(v) ∩ D.
One way to measure the importance of a vertex of a given

etwork is to calculate its centrality. Given that the meaning of
he importance of a vertex might vary from context to context,
here exist different definitions of centrality. In this paper, when
e mention the centrality of a vertex, we refer to the betweenness
entrality, i.e., the number of shortest paths between pairs of
ertices that pass through the indicated vertex.
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), where

V1| ≤ |V2|, an alignment is an injective function f : V1 ↦→ V2,
.e., a mapping between their respective nodes. G1 and G2 are
sually referred to as the source and target networks, respectively.
ote that there is no loss of generality by assuming that the
ource network has smaller order than the target network. Two
odes v ∈ V1 and v′

∈ V2 are said to be aligned if and only if
(v) = v′.
Given an alignment f between two networks G1 and G2, an

dge in the target network is said to be induced by the alignment
f, and only if, there exist two (not necessarily connected) nodes
rom the source network that are mapped to the endpoints of the
nduced edge. More formally, an edge e′

= (u′, v′) ∈ E2 is said
o be induced if and only if ∃u, v ∈ V1 such that f (u) = u′ and
(v) = v′. The aforementioned definition can be simplified by
aying that an edge is induced if and only if both of its endpoints
re aligned with a node from the other network. By an abuse of
otation, we can express the set of induced edges from G2 given
mapping over the subset of nodes V ′

⊆ V1 as E(G2[f (V ′)]).
nduced edges are usually only considered on the target network,
s, given a complete mapping, all the edges on the source network
re induced. However, as our algorithm will deal with partially-
efined mappings, we extend the previous definitions to the
ource network. Lastly, an edge (u, v) ∈ E1 is said to be conserved
f and only if (f (u), f (v)) ∈ E2.

.2. Problem formulation

The Network Alignment (NA) problem asks to find an alignment
etween two networks such that the topological and functional
tructure is well preserved. Given the wide range of areas and
ontexts of applications, there exist many different measures to
uantify the quality of an alignment. Some of them are limited
o the functional aspect, while others focus solely on the topo-
ogical or structural facet. Functional scoring methods are usually
ore context-dependent, taking into account the application of
 t

2

he alignment. For instance, one can consider the significance of
he biological function when aligning Protein–Protein Interaction
PPI) networks. However, in other areas, functional information
ay refer to the role of the aligned nodes inside the networks.
n the other hand, structural quality measures are usually based
n the inherent topological similarities of the aligned networks.
Given two networks G1 = (V1, E1) and G2 = (V2, E2), a

iven alignment f between G1 and G2 may be evaluated by the
ollowing structural quality measures:

• Conserved Interactions Under Alignment (CIUA): Number of
edges (interactions) conserved under the given alignment,
i.e.,

CIUA = |f (E1) ∩ E2|

where f (E1) = {(f (u), f (v)) : (u, v) ∈ E1}.
• Edge Correctness (EC)1 [1]. Measures the percentage of edges

from the first network that are mapped to edges from the
second network:

EC =
|f (E1) ∩ E2|

|E1|
× 100

As EC is defined only with respect to the source network, it
fails to penalize alignments that map sparse regions of the
source network to denser ones.

• Induced Conserved Structure (ICS) [7]: Ratio of edges con-
served by the alignment with respect to the number of edges
in the induced subnetwork of G2 formed by the mapped
nodes from G1:

ICS =
|f (E1) ∩ E2|

|E(G2[f (V1)])|
× 100

Since ICS is defined only with respect to the target net-
work, conversely to EC, this measure unsuccessfully penal-
izes alignments mapping denser network regions to sparser
ones.

• Symmetric Substructure Score (S3) [8]: In this case, we con-
sider that the source graph (G1) and the induced subnetwork
of the target graph under the alignment (G2[f (V1)]) are
overlaid into a composite graph, so the score measures the
proportion of conserved edges with respect to the number
of unique edges in this composite graph. More formally:

S3
=

|f (E1) ∩ E2|
|E1| + |E(G2[f (V1)])| − |f (E1) ∩ E2|

× 100

As the S3 score takes into account the composition of the
source and target graphs, it penalizes both alignments that
map denser regions to sparser ones, and vice versa.

• Largest Connected Component (LCC) [1]: Number of edges in
the largest connected conserved subgraph, i.e., the subgraph
obtained when considering only the edges conserved by the
alignment. Note that the maximum size of this connected
subgraph is equal to the smallest of the largest connected
components of both input networks.

• Node Correctness (NC): Fraction of nodes that are correctly
aligned. This measure can only be used in cases when the
correct mapping is known, e.g., when aligning synthetic
networks or a network with itself.

Then, the objective of the NA problem is to find an optimal
alignment, i.e., a maximal one, with respect to a given quality
measure. It is easy to see that the NA problem is NP-hard [9–11]

1 The name Edge Correctness is widely used in the literature. However, as
ointed out in [6], this name may be misleading, since in most alignments there
s no meaningful definition of correctness. Therefore, it would be more suitable
o use the terms Edge Conservation or Edge Coverage.
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y reducing the well-known NP-complete subgraph isomorphism
roblem to the decision version of the NA problem.
The subgraph isomorphism problem consists in finding

hether a graph G contains a subgraph isomorphic to another
raph H . Recall that two graphs G1 = (V1, E1) and G2 = (V2, E2)

are isomorphic if there exists a bijection f : V1 ↦→ V2 such that
(u, v) ∈ E1 implies (f (u), f (v)) ∈ E2. Note that, according to the
provided formulation of the NA problem, an alignment between
two isomorphic networks has EC, ICS and S3 scores equal to
1. Therefore, we can reformulate the subgraph isomorphism
problem as finding an alignment between H and G such that S3

= 1.

2. State of the art

Given the wide range of applications of the NA problem,
different algorithms for tackling it can be found in the literature.
Nonetheless, many of those algorithms are very specific to the
respective areas and problem applications [2,12,13].

The most commonly used methods are heuristic approaches,
which provide a good equilibrium between execution time and
quality of the solutions. Roughly, heuristic methods consist in
constructing a solution in a greedy manner by using (if provided)
some type of node similarity score gathered from the input net-
works. One of the most popular branch of heuristic methods
concerns seed-and-extend approaches. As their name indicates,
these algorithms first align an initial pair of nodes (seed) and
then iteratively try to align their neighbors (extend). Examples
of such heuristic approaches include HubAlign [14], Spinal [11],
Ghost [7] and Netal [15].

One of the most popular family of algorithms is the Graal
family. All the algorithms from this family are based on the idea of
graphlets [16,17]. Graphlets are small connected non-isomorphic
induced subgraphs of a large network (see the Supplementary
Material for more information). More specifically, they usually
use the graphlet signature similarity in order to build an align-
ment. They differ, however, in the construction phase. Some of
the algorithms from this family, in order of their publication, are
Graal [1], h-Graal [18], mi-Graal [19] and l-Graal [20].

Later on, the use of metaheuristics was becoming popular.
Metaheuristics are upper-level frameworks that use heuristics or
other methods to efficiently explore the search space in order to
find an optimal or near-optimal solution. These kind of methods
usually try to directly maximize a given score, without taking
into consideration the underlying topology of the input networks
during the construction phase. This group of methods includes
Genetic Algorithms (GedEvo [21], Magna [8] and Magna++ [22]),
Ant Colony Optimization (ACOgna [23], ACOgna2 [24]), Memetic
Algorithms (OptNetAlign [25]) and Simulated Annealing (Net-
Coffee [26], Sana [6]).

Representation learning methods try to learn an embedding
function that maps each node to a low-dimensional embed-
ding [27]. A mapping function is then learnt in order to associate
both embedding spaces. The most popular methods of this kind
are Regal [28], Pale [29] or Dana [30].

Another large class of techniques is the one of mine-and-
merge methods. In contrast to the previous methods, they usu-
ally produce local-many-to-many alignments by finding small
dense conserved sub-networks and then subsequently compare
the obtained modules. Some of the most well-known mine-and-
merge methods are PathBLAST [31], Phunkee [32], Beams [33],
SSAlign [34] and Pinalog [35].

Finally, some works have considered the use of exact tech-
niques, often by means of Integer Linear Programming (ILP)
formulations. The different ILP models differ in the number of
variables and in the type of constraints. The most well-known
ILP methods are Natalie [9] and Natalie 2.0 [36].
3

3. Ant colony optimization

Most of the existing methods in the literature focus on either
obtaining a good similarity score between the respective nodes
and then aligning them in a greedy fashion, or on optimizing
a given quality measure in a straightforward way without tak-
ing into consideration the underlying topological and structural
information of the input networks. As a reply, we propose AntNe-
tAlign, a new Ant Colony Optimization (ACO) algorithm to solve
the Network Alignment problem that tackles this issue and brings
together the different trends. ACO algorithms are based on the
following general idea. At each iteration, solutions to the tackled
optimization problem are probabilistically generated based both
on the values of a so-called pheromone model and on information
obtained from greedy functions. Some of the best solutions that
were generated in the current or in earlier iterations are then
used to modify the values of the pheromone model. In this way,
the algorithm shifts the probability distribution for the generation
of solutions in such a way that better and better solutions are
generated over time. In our opinion, ACO algorithms are good
candidates for tackling network alignment problems, because
they allow for an easy incorporation of one or more greedy
functions, for example, in the form of similarity scores. In fact,
ACO algorithms are strongly dependent on the choice of well-
working greedy functions for the problem to be solved. This is in
contrast to metaheuristics based on local search – such as sim-
ulated annealing and tabu search – that require a neighborhood
function as their main ingredient, and in which the exploitation
of greedy functions is generally more difficult.

More specifically, we propose a MAX − MIN Ant System
MMAS) in the hybercube framework [37] for tackling the NA
roblem. Together with the Ant Colony System (ACS) [38] variant,
MAS algorithms are among the most popular ACO variants
owadays. The implementation of MMAS in the hypercube frame-
ork is characterized by an automatic scaling of the pheromone
alues such that they can only assume values from [0, 1]. This

allows for a structured way of initializing the pheromone values
and for computing measures such as the convergence factor,
which is an indication for the current state of the search process.

3.1. AntNetAlign

A solution to the NA problem for two given networks G1 =

V1, E1) and G2 = (V2, E2) is represented in AntNetAlign by a
ector π of size |V1|, where πi = j if and only if node vi ∈ V1 is
apped to node vj ∈ V2. Recall that a valid solution has to comply

with the following restrictions from the problem formulation:

1. Each node from the source network has to be aligned to
exactly one node from the target network.

2. Each node from the target network can be aligned to at
most one node from the source network.

ote that, with this solution representation, we avoid mapping a
ode from the source network to different target nodes (restric-
ion 1). Additionally, to satisfy restriction 2, we enforce that all
he elements in the solution vector must be different.

The pheromone model T is composed of pheromone values
ij for each possible alignment of a source node vi ∈ V1 with a
arget node vj ∈ V2. Although the hypercube framework naturally
restricts the pheromone values to be between 0 and 1, further
limits 0 < τmin ≤ τij ≤ τmax < 1 are usually introduced in order to
revent the complete convergence of the algorithm. Typically τmin

is set to 0.001 and τmax to 0.999. Initially, all pheromone values
are set to 0.5.

Additionally, an evaluation function g : π ↦→ R is defined,
which measures the quality of a given solution. In our case,
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Algorithm 1 AntNetAlign

1: input: a problem instance (i.e., two networks G1 = (V1, E1)
and G2 = (V2, E2))

2: πbsf
:= null #Best-so-far solution

3: π rb
:= null #Restart-best solution

4: cf := 0 #Convergence factor
5: gc := false #Global convergence?
6: initializePheromones(T )
7: while stopping criteria do not met do
8: π ib

:= null #Iteration-best solution
9: for it = 1, ..., nants do

10: π := generateSolution(G1, G2, T ) #see Section 3.2
11: if g(π ) > g(π ib) then π ib

:= π end if
2: if g(π ) > g(π rb) then π rb

:= π end if
3: if g(π ) > g(πbsf ) then πbsf

:= π end if
4: end for
5: updatePheromones(T , cf , gc , π ib, π rb, πbsf )
6: cf := computeConvergenceFactor(T )
7: if cf > 0.999 then
8: if gc = true then
9: initializePheromones(T ) #Restart
0: π rb

:= null
1: gc := false
2: cf := 0
3: else
4: gc := true
5: end if
6: end if
7: end while
8: output: πbsf , the best solution found

g can be any of the structural quality measures introduced in
Section 1.2. When the solution is empty (i.e., π = null), then
(π ) := 0. If the solution is incomplete (i.e., not all nodes from
he source network are aligned), then the evaluation function g
nly considers the subset of nodes aligned so far.
The pseudo-code of AntNetAlign is provided in Algorithm

. Basically, at each iteration of the algorithm, nants solutions
re constructed in a probabilistic manner. Subsequently, the
heromones values are updated based on the constructed so-
utions. This process is repeated until the algorithm converges.
hen, the algorithm decides whether to restart the process, in
hich case the pheromone values are re-initialized to 0.5. A more
etailed description is presented hereafter.
One of the characteristics of the MMAS algorithm is that it

aintains the following three solutions during its execution:

• πbsf : The best solution found since the beginning of the
execution (i.e., the best-so-far solution).

• π rb: The best solution generated since the last restart of the
algorithm (i.e., the restart-best solution).

• π ib: The best solution constructed at the current iteration
(i.e., the iteration-best solution).

Furthermore, two control variables are used to keep track of
he current state of the convergence process: gc is a boolean vari-
ble that indicates whether the algorithm has globally converged,
nd cf ∈ {0, 1} is the so-called convergence factor. They are used
o decide whether the algorithm needs to be restarted.

At the beginning of the execution (see lines 2 to 6 of Algorithm
), all solutions are initialized to null, global convergence (gc) is
et to false and cf = 0. Moreover, the pheromone values in T
re all initialized to 0.5 in function initializePheromones(T ).
At each algorithm iteration, nants solutions are probabilis-

ically constructed in function generateSolution(G ,G , T ),
1 2

4

Table 1
Values for weights wib , wrb , and wbsf with respect to the convergence factor cf
and control variable gc.
Source: Extracted from [39].
gc false true

cf <0.4 [0.4, 0.6) [0.6, 0.8) ≥0.8

wib 1 2/3 1/3 0 0
wrb 0 1/3 2/3 1 0
wbsf 0 0 0 0 1

both based on greedy information (which uses pairwise node
similarity) and on the pheromone values. Note that the solution
construction process will be outlined in detail in Section 3.2.
Each generated solution is then evaluated using the evaluation
function g . Then, solutions π ib, π rb and πbsf are properly updated
(see lines 11 to 13).

Next, the pheromone values are updated as in any other
MMAS algorithm implemented in the hypercube framework. This
is done in function updatePheromones(T , cf , gc , π ib, π rb, πbsf ).
ere, each of the three solutions π ib, π rb and πbsf is given a
eight wib, wrb and wbsf , respectively. Note that each weight
epresents the contribution of the corresponding solution to the
heromone update. These weights vary depending on the chang-
ng values of cf and gc (see Table 1). In fact, when the conver-
ence factor value is low – that is, cf < 0.4 – the iteration-best
olution has a more significant impact. As the convergence factor
ncreases, the influence of the iteration-best solution π ib decreases
n favor of the restart-best solution π rb. More specifically, when
.4 ≤ cf < 0.6, the weight of the iteration-best solution de-
reases to 2/3 and the weight of the restart-best solution is set to
/3. Moreover, when 0.6 ≤ cf < 0.8, the weight of the iteration-

best solution decreases further to 1/3, while the weight of the
restart-best solution increases to 2/3. When the convergence
factor surpasses 0.999 for the first time after a pheromone (re-
)initialization – this happens when cf > 0.999 and gc = false
(see lines 17 and 23–25 of Algorithm 1) – the value of gc is set to
true in order to indicate that the algorithm has reached the state
of global convergence. In this case, the weights of the iteration-
best solution and the restart-best solution are set to 0, and the
best-so-far solution πbsf is given the complete weight – that is,
weight 1 – (see Table 1). In case πbsf is different to π rb, this will
cause the value of the convergence factor to decrease for some
iterations, before increasing again until surpassing again the value
0.999 (see lines 17 and 18 of Algorithm 1). If this happens, the
algorithm is re-started (lines 19–22 of Algorithm 1). Note that
wib + wrb + wbsf = 1 at all times. Then, the pheromone update is
conducted as follows:

τij := τij + ρ · (ξij − τij) ∀ τij ∈ T , (1)

here

ij := wib · χ (π ib
i , j) + wrb · χ (π rb

i , j) + wbsf · χ (πbsf
i , j) . (2)

arameter ρ ∈ [0, 1] is the so-called learning rate, which deter-
ines the strength of the pheromone update. Function χ (πi, j)
valuates to 1 if and only if node vi ∈ V1 is aligned to node

vj ∈ V2 in solution π (i.e., πi = j). Otherwise, it evaluates to 0. To
assure that the pheromone values τij are still between the allowed
bounds after the pheromone update, we set

τij = max(τmin,min(τij, τmax)).

Afterwards, the convergence factor cf is computed according
to the updated pheromone values in function computeConver-
genceFactor(T ). The degree of convergence of the algorithm
increases as the pheromone values get closer to the boundaries.
Therefore, cf = 0 only in the extreme case in which all the
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Algorithm 2 Function generateSolution(G1, G2, T ) of Algo-
rithm 1
1: input: two networks G1 = (V1, E1) and G2 = (V2, E2),

pheromone model T
2: U := V1 #Set of unaligned nodes
3: C := V2 #Set of candidate nodes
4: π := null
5: while U ̸= ∅ do #While not all vertices have been aligned
6: vi := selectNextNode(U)
7: vj := selectCandidate(C , i)
8: πi := j
9: U := U \ {vi}

0: C := C \ {vj}

11: end while
12: output: solution π

pheromone values are set to 0.5, and cf = 1 when all pheromones
are either at τmin or at τmax. In general, the convergence factor has
a value ranging between 0 and 1. It is calculated in the following
way:

cf := 2

((∑
τij∈T

max{τmax − τij, τij − τmin}

|T | · (τmax − τmin)

)
− 0.5

)
(3)

Lastly, the global convergence of the algorithm is determined
y the value of the convergence factor. If cf > 0.999, we say that
he algorithm has converged. Hence, binary variable gc is set to
rue. Then, when the algorithm converges again (this time to the
lobal-best solution), it is restarted: gc is again set to false, the
estart-best solution π rb is initialized to null and the pheromone
values are set to 0.5. Consequently, cf is then calculated as 0.

When the stopping criteria are met, the algorithm terminates.
In our case, we used a maximum number of constructed solutions
as the termination criterion. Although other criteria have been
considered, this one balances well the different aspects of the
algorithm. For instance, setting a maximum computation time
requires some prior knowledge of the algorithm’s behavior for
each considered problem instance. Setting a tight time limit will
prevent the algorithm from converging or finding a reasonably
solution, while allowing the algorithm a large computation time
will result in wasted computation time, as the algorithm may not
be capable to increase the quality of the current solution at later
stages of the execution.

3.2. Solution construction

The pseudo code of the solution construction mechanism em-
ployed by function generateSolution(G1, G2, T ) of Algorithm
is presented in Algorithm 2. The solution construction mech-
nism receives as input the two networks G1 = (V1, E1) and
2 = (V2, E2) and the pheromone model T . During a solution
onstruction, we maintain the set of unaligned nodes from the
ource network U ⊆ V1 and the set of candidate nodes from the
target network C ⊆ V2, i.e., C is the set of nodes from the target
network to which no node from the source network has yet been
aligned. Initially, it holds that U = V1 and C = V2. The objective is
then to map each node in U to a node in C . Moreover, A = V1 \U
denotes the set of already aligned nodes from the source network.

The solution construction procedure starts with an empty
solution π = null. At each step, exactly one node vi ∈ U is
selected by applying function selectNextNode(U). The chosen
node vi is the next node of the source network that is to be
aligned. As the greedy information used by our algorithm is based
on the principle that two nodes are similar if and only if their
respective neighborhoods resemble, the choice of node v ∈ U
i c

5

from the source network is based on the assumption that nodes
from the source network with a higher number of already-aligned
neighbors may be better candidates for finding suitable target
candidate nodes. Let NA(vi) = N(vi) ∩ A be the set of neighbors
of node vi that are already aligned. Moreover, let centrality(i) be
node vi’s centrality score, which refers in this context to the so-
called betweenness centrality. Then, a random number r ∈ [0, 1]
is uniformly drawn. If r ≤ dselectrate , node vi with the highest number
of aligned neighbors is chosen (ties are randomly solved), i.e.,

vi = argmax
v∈U

|NA(v)|.

Otherwise, node vi is selected by roulette-wheel-selection, wher-
eby the probability of a node vi to be chosen is proportional
to |NA(vi)| + centrality(i).2 In the specific case where U = V1
(i.e., no node has been aligned yet) or NA(vi) = ∅ for all vi ∈ U
(i.e., no node has an aligned neighbor), the algorithm returns a
node vi ∈ U by roulette-wheel selection based solely on the
respective centrality scores.

Next, a target node vj ∈ C is chosen among all the possible
candidates in C as follows. First, a probability pij is computed for
each vj ∈ C , where

pij =
ηij · τij∑

vk∈C
ηik · τik

. (4)

Hereby,

ηij = sij · ϕij (5)

is the greedy information, which is obtained by a combination of
two aspects:

1. sij, the pairwise similarity score concerning nodes vi and vj;
2. ϕij, an improvement score that estimates how much the

current partial solution would improve if nodes vi and vj
were aligned.

oining these two scores allows us to incorporate different sources
f knowledge into the solution construction process. Note also
hat sij provides global information, while ϕij depends on the state
f the current partial solution. The calculation of both scores is
utlined in detail below.
After calculating probabilities pij, in selectCandidate(C, i)

he chosen node vi from the source network is mapped to a
andidate node vj selected from C . Consequently, πi is set to j.
or the purpose of this choice, a random number r ∈ [0, 1] is
rawn from a uniform distribution. If r ≤ dalignrate (the so-called
eterminism rate), the node vj with the highest probability is

chosen. Otherwise, vj is chosen by roulette-wheel selection based
on the respective probabilities.

3.2.1. Calculation of the pairwise similarity scores
For calculating the similarity between pairs of nodes of both

networks, we used the topological similarity introduced for Ne-
tal [15]. Netal uses a |V1|×|V2| topological score matrix S, where
ach position sij ∈ S indicates the topological similarity between
odes vi ∈ V1 and vj ∈ V2. This similarity is based on the

assumption that two nodes are topologically similar if and only if
their respective neighbors are similar. Note that this score matrix
directly represents inter-network similarity between the nodes.
Each element sij ∈ S is initialized to 1 and iteratively updated
ased on the values of the neighbors of vi and vj at the previous

iteration. Let slij be the similarity value between the two nodes at
iteration l. Then, sl+1

ij is calculated as follows:

2 In roulette-wheel-selection, given a set of candidates with an assigned score
ach, a candidate is selected with a probability proportional to its score. Thus,
andidates with higher scores are more likely to be selected.
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1. A complete weighted bipartite graph Gb = (Vb, Eb) is
generated, where Vb is formed by two disjoint sets of nodes
N(vi) and N(vj) (i.e., the sets of neighbors of vi in G1 and of
vj in G2), and E = {(vi′ , vj′ ) | vi′ ∈ N(vi), vj′ ∈ N(vj)}. The
weight of each edge (vi′ , vj′ ) ∈ Eb is set to the similarity of
its endpoints at the last iteration (i.e., w(vi′ , vj′ ) = sli′j′ ).

2. A matching3 M is assembled by a greedy algorithm as
follows. First, an edge e = (vi∗ , vj∗ ) is chosen so that
w(vi∗ , vj∗ ) ≥ w(vi′ , vj′ ) for every (vi′ , vj′ ) ∈ Eb. Among all
the edges satisfying this condition, one is chosen uniformly
at random. Then, edge e is added to set M , and both vi∗ , vj∗

and their respective incident edges are removed from Gb.
This process is repeated until all edges are removed from
the bipartite graph Gb.

3. Once the previous greedy procedure has ended, sl+1
ij is

calculated as follows:

sl+1
ij =

∑
(i∗,j∗)∈M sli∗j∗

max{deg(vi), deg(vj)}
, (6)

where the numerator is the sum of the similarities con-
cerning the matched neighbors. The denominator not only
helps to normalize the values, but also assigns higher sim-
ilarity scores to nodes with comparable degrees.

The procedure is repeated for a fixed number of iterations.
Fig. 1 shows an example of how the topological similarity ma-

trix S is initialized and updated at each iteration. In Fig. 1(a), we
can see two example networks, G1 and G2, and the corresponding
|V1| × |V2| matrix S in which all positions are initialized to 1.

The values of S after the first iteration are displayed in
Fig. 1(b). Moreover, we can see an example of how this topologi-
cal similarity is calculated between node b ∈ G1 and all the nodes
of network G2. More specifically, it shows the complete weighted
bipartite graph that is constructed for each of the pairs, and how
the subsequent similarity score is calculated for each of them. In
fact, it becomes clear that the topological similarity score at the
first iteration for each pair of nodes vi ∈ V1 and vj ∈ V2, is

s1ij =
min{deg(vi), deg(vj)}
max{deg(vi), deg(vj)}

.

The same information can be found for the second iteration
in Fig. 1(c). For instance, for calculating the updated topological
similarity score for this iteration for nodes b ∈ G1 and a ∈

G2, i.e. s2ba, we create a bipartite weighted graph with all the
eighbors of b in G1 ({a, c, d}) on one side, and all the neighbors
f a in G2 ({d, b}) on the other. The weights of the edges are
he respective topological similarities from the previous iteration,
.g., w(c, d) = s1

cd
= 0.33. Then, in the second step, we assemble

he matching using the previously specified greedy approach.
irst, we can select, for example, edge (c, b), as it has the highest
ossible weight (0.5). Consequently, all the edges adjacent to
ither node c ∈ G1 or node b ∈ G2 are removed. Then, we can

select edge (d, d) with weight 0.33. With this, all the remaining
dges are removed and the greedy matching approach is finished.
inally, the value of the topological similarity score between
odes b ∈ G1 and a ∈ G2 for the next iteration is calculated as
2
ba = 0.5+0.33/max(3,2) ≃ 0.27.

3.2.2. Calculation of the improvement scores
The improvement score ϕij is calculated as follows. Let indG1 (i, j)

nd indG2 (i, j) be the number of edges that would be induced
n the source and target networks, respectively, if node vi was
apped to vj. More formally,

ndG1 (i, j) = |{vk ∈ N(vi) | vk ∈ A}| ,

3 A matching is a set of edges without common vertices.
6

indG2 (i, j) = |{vk ∈ N(vj) | vk ∈ f (A)}| .

Similarly, we define

con(i, j) = |{vk ∈ N(vj) | vk ∈ f (N(vi) ∩ A)}|

as the number of edges that would be conserved. Note that it
happens that con(i, j) ≤ indG(i, j). Then,

ϕij =
con(i, j) + ϵ

indG1 (i, j) + indG2 (i, j) − con(i, j) + ϵ
,

here ϵ is a very small constant to avoid obtaining a value of zero
n the numerator, respectively the denominator. Note that this
mprovement score favors the alignment of nodes within areas of
similar density while constructing the solution. Although some
optimizing measures, such as EC, do not take into account the
induced edges in the target network – respectively, the source
network in the case of ICS– we believe it to be beneficial to
keep the same improvement formula no matter which objective
function is used. For instance, if the improvement score only
considered conserved edges when maximizing EC, the algorithm
might start greedily aligning nodes within sparse areas to denser
ones, as it is easier to conserve edges in this way. However, this
could be counterproductive in the long run, as the remaining
unaligned regions of the respective networks could be of remark-
ably different density, making it harder to conserve edges at later
stages of the construction process.

4. Experimental evaluation

In order to test the behavior and the applicability of our
approach in different scenarios, in this section, we present a pro-
found experimental evaluation. A variety of real-world instances
were selected from different application areas, which are de-
scribed hereafter. In the following subsections, we first describe
the chosen competitors for our algorithm. Subsequently, the ex-
periments and results for different sets of problem instances are
detailed.

The benchmark instances considered in this work contain
neither multi-edges nor isolated nodes (self-loops), as they were
previously removed from the networks. This is done because
many methods for the NA problem from the literature do not
allow these kind of interactions. Moreover, isolated vertices can
be aligned separately based solely on their own information, as
they do not induce or conserve any edge.

4.1. Considered approaches

As the NA problem is relevant in various different application
areas, the proposed algorithms are usually tested on instances
from the targeted application. This makes it impossible to deter-
mine which methods are the current state of the art in general.
Therefore, we compare AntNetAlign with approaches that have
been proven to work very well in their respective area of applica-
tion, while also having some kind of algorithmic relationship with
our approach. Furthermore, we also consider algorithms using
different types of similarity metrics. The following algorithms
were selected:

• HubAlign [14]. We decided to use this method as (1st) it is
a popular seed-and-extend method which has been proven
to be state-of-the-art for the alignment of PPI networks;
and (2nd) it uses a novel centrality measure to determine
the importance of a node. HubAlign has a parameter α
that controls the contribution of sequence similarity (in
their case, the normalized BLAST bitscore for two proteins)
relative to topological similarity. As we do not make use of
sequence similarity, parameter α is set to 1 (only topological
information is used). Other parameters were set to their

default values.
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Fig. 1. Example of how the topological similarity matrix S is calculated. Reproduced (and extended) from [15].
• Netal [15]. Similarly to HubAlign, Netal is a greedy ap-
proach which has obtained good results for aligning PPI
networks. Moreover, AntNetAlign makes use of the topo-
logical score matrix proposed in the context of Netal. Again,
we leave the parameters at their default values and only
consider topological similarities.

• l-Graal [20]. This is the most recent member of the popular
Graal family, which has been widely used in many different
contexts. This method makes use of the graphlet signature
similarity (see Section 2) to construct a sub-instance of
the problem, for which it will optimize seed alignments.
These seed alignments are then heuristically improved by
considering all possible node mappings. All the parameters
are set to default. Thus, the algorithm is given a maxi-
mum number of 1000 iterations and a time limit of 1 h
(as default), which we consider fair given the limit of 1000
solution constructions of our proposals. Again, we do not
make use of sequence information. The graphlet signatures
are computed with the provided software, which considers
graphlets up to a size of four.
7

• Magna++ [8]. This is a popular Memetic Algorithm (MA)
which maximizes an edge-based similarity measure. We set
the fitness measure to S3 to be consistent with the opti-
mization measure of our approach. Moreover, we selected
a maximum of 1000 generations in order for Magna++ to
have all the resources for begin able to work at its best.
The population size and the fraction of elite individuals were
obtained by parameter tuning (see Section 4.2.2). Although
Magna++ accepts existing alignments as input – in addition
to starting with a random initial population – we do not
make use of this feature. This is because we do not want
to bias the results obtained by the algorithm by combining
it with other approaches.

Our algorithm was implemented in ANSI C++, using GCC 7.5.0
for compiling the code. The experimental evaluation was per-
formed on a cluster of computers with ‘‘Intel

®
Xeon

®
CPU 5670’’

CPUs of 12 nuclei of 2933 MHz and (in total) 32 Gigabytes of
RAM [40]. Note that, for the experimental evaluation, we used
the implementations provided by the respective authors.
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Table 2
Summary of benchmark instances: high-quality and low-quality PPI networks in ascending order of the networks.
Scientific name Label Organism V High-quality Low-quality

E ⟨k⟩ E ⟨k⟩ Addl. edges (%)

B.taurus bt Cattle 119 114 1.91 136 2.28 19.30
O.sativa os Rice 181 192 2.12 196 2.16 2.08
R.norvegicus rn Rat 289 236 1.63 474 3.28 100.85
B.subtilis bs Bacterium 334v 775 4.64 883 5.28 13.94
E.coli ec Bacterium 709 692 1.95 1,200 3.38 73.41
S.pombe sp Yeast 1,335 2,176 3.26 2,683 4.02 23.30
M.musculus mm Mouse 1,966 2,704 2.75 7,237 7.36 167.64
C.elegans ce Worm 4,762 11,889 4.99 12,646 5.31 6.37
S.cerevisiae sc Yeast 5,260 22,064 8.39 47,924 16.86 117.20
A.thaliana at Plant 5,686 25,306 8.90 32,123 11.30 26.94
D.melanogaster dm Fly 8,382 31,754 7.58 41,610 9.93 31.04
H.sapiens hs Human 12,466 60,248 9.67 161,277 25.87 167.69
4.2. Experiments on Protein–Protein Interaction networks

Protein–Protein Interaction (PPI) networks represent pairwise
iophysical protein interactions of an organism. Most of the pro-
eins perform their functions via interactions. Hence, finding good
lignments between these networks provide crucial information
or decoding functional and biological roles and improving our
nderstanding of the respective organisms.

.2.1. Benchmark instances
The PPI networks were taken from HINT [41], a database of

igh-quality protein–protein interactomes. HINT compiles infor-
ation extracted from several databases and resources. Low-
uality or erroneous interactions are filtered both systematically
nd manually and removed from the database. Moreover, the
atabase is regularly updated with new interactions.
We chose HINT over other databases from the literature be-

ause it is of utmost importance to ensure that these networks
re of high quality, as results derived from erroneous hypotheses
ould lead to invalid conclusions. HINT assures this with its well-
urated data. Although we do not aim to provide a complex
iological analysis of the results, the use of rigorous real-world
nstances can validate the correctness of our approach.

Table 2 shows a summary of the PPI networks used in this
ork. We obtained PPI networks for a total of 12 different organ-

sms. The scientific name of each organism is displayed alongside
label (which we will henceforth use to identify the networks)
nd the generic name of the organism to which they belong.
oreover, the order and size of each graph is given (number
f proteins and interactions, respectively), alongside the mean
egree ⟨k⟩, i.e., ⟨k⟩ = 2|E(G)|/|V (G)|. Note that there is a high variance

in sizes and densities between the different networks.
Furthermore, we generate noisy versions of all the chosen PPI

networks. For this reason, we use the low-quality PPI networks
from the same database. As these low-quality networks may
contain a larger number of proteins than their high-quality coun-
terparts, we only consider those interactions between proteins
that are included in the latter. The information of the resulting
networks obtained after filtering the interactions of the original
low-quality networks can also be found in Table 2. We addition-
ally include the percentage of extra edges with respect to the
original high-quality networks.

As it can be observed, the increase in the number of interac-
tions considerably depends on the individual networks. There-
fore, we consider the noise proportional to the difference be-
tween the number of interactions of the high-quality networks
and the respective low-quality networks. More specifically, we
start with the high-quality network as the initial state (0% noise)
and increase the noise step-by-step by 10%, adding (at each
step) 10% of those edges that are not present in the initial net-
work, until we obtain the low-quality network as the final state
(100% noise). Note that in the case of 100% noise, all low-quality
interactions are included.
8

Table 3
Summary of the parameters of AntNetAlign with their respective domains and
the tuning results. The parameter nants is the number of solution constructions
per iteration (i.e., number of ants); ρ is the learning rate; dselectrate is the deter-
minism rate for selecting the next node to align; and dalignrate is the determinism
rate for candidate selection.
Parameters Considered domain Tuning results

nants {3, 5, 10, 20} 10
ρ {0.1, 0.2, 0.3, 0.4, 0.5} 0.3
dselectrate {0.0, 0.1, . . . , 0.9.1.0} 0.8
dalignrate {0.0, 0.1, . . . , 0.8, 0.9} 0.9

4.2.2. Algorithm tuning
In order to conduct a scientifically sound experimental evalua-

tion, it is mandatory to find well-working values for the algorithm
parameters. In our case, we use the irace tool [42] in order
to tune the parameters of our algorithm (AntNetAlign) and the
ones of Magna++. The main purpose of irace is to automatically
configure optimization algorithms by finding the most appropri-
ate parameter setting given a test set of problem instances. Note
that AntNetAlign and Magna++ are the two only metaheuris-
tic approaches considered in the comparison, while the other
algorithms are heuristics.

As tuning instances, we selected two pairs of medium-sized
networks. In particular, E. coli is aligned with S.pombe (ec-sp),
and S.pombe with M.musculus (sp-mm).

Tuning of AntNetAlign
Some of the parameter values of AntNetAlgin are fixed by

experimental observation. For instance, we set the maximum
number of solution constructions per run to 1000, as the algo-
rithm is capable to converge (usually more than once) before
this limit is reached. Moreover, the algorithm generally requires a
reasonable amount of time for executing this number of iterations
with respect to the size of the input networks. Furthermore, the
number of iterations for calculating the topological similarities
(sij) is set to 4, which is a small value (as recommended), but
allows for a certain convergence of the values.

Table 3 shows a summary of the parameters chosen for tun-
ing, together with a short description and the considered do-
mains. The tuning budget, i.e., the number of maximum algorithm
runs that the irace tool is allowed to use when optimizing the
parameters, was set to 750.

Table 3 also shows, for each parameter, the best value ob-
tained by the tuning process. As it can be observed, the tuning
tool detected that 10 solution constructions per iteration and a
learning rate of 0.3 work best. Moreover, the degree of determin-
ism when selecting the next node to align should be high, but
still low enough to ensure a certain degree of randomness. This
helps to generate sufficiently different solutions, especially at the
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Table 4
Summary of the parameters of Magna++ with their respective domains and the
uning results. The parameter psize is the size of the population and elite is the
raction of elite individuals.
Parameters Considered domain Tuning results

psize {1, 2, . . . , 1999, 2000} 1824
elite {0.30, 0.31, . . . , 0.69, 0.70} 0.31

beginning of the search process. Finally, a rather deterministic
selection of the candidate node is also required.

Tuning of Magna++
As previously stated, the number of iterations is fixed to

000. Table 4 shows a summary of the tuned parameters and
he considered domains. In this case, given that the number of
arameters involved in the tuning process is lower than in the
ase of AntNetAlign, a maximum of 500 algorithm runs was
iven to the irace tool.
Table 4 also shows the best parameter values obtained. Notice

hat the tuning tool decided that a large population size and a
mall fraction of elite individuals was preferred, which is a rather
xpected result. A large population size allows the algorithm
o explore more solutions, while a rather small ratio of elite
ndividuals allows it to escape from local optima by generat-
ng deviant mutant individuals. Finally, note that – with these
ettings – Magna++ makes use of many more computational
esources than AntNetAlign. Thus, the experimental setting is
not to the disadvantage of Magna++.

4.2.3. Results
In order to test the performance of AntNetAlign, we com-

ared it with the aforementioned methods in different scenarios.
s our approach (and some of the selected ones) are of stochastic
ature, we applied them 10 times to each problem instance.
oreover, note that all algorithms were given a maximum com-
utation time of one hour. Note that AntNetAlign and Magna++,
or example, have their natural stopping criteria of 1000 solution
onstructions (in the case of AntNetAlign) and 1000 iterations
in the case of Magna++). However, if they do not stop due to
heir natural stopping criterion, they are terminated after one
our of computation time. Moreover, for each produced align-
ent, we compute the following scores: the Edge Correctness

EC), the Induced Conserved Structure (ICS) and the Symmetric
ubstructure Score (S3).

airwise alignment of PPI Networks
The first set of experiments consists of aligning all different

airs of the High-Quality PPI networks. Thus, as there are a total
f 12 PPI networks representing different organisms, we have a
otal of (12 × 11)/2 = 66 problem instances. Note that, when
ligning two networks, the source network has to be the one with
maller order. This is why the number of possible combinations is
ivided by two. By considering all the different combinations we
ispose of a diverse data set of problem instances with which we
an test the behavior of the considered approaches in different
cenarios.
Figs. 2–4 show the obtained results regarding the S3, EC and

CS scores, respectively. Row labels specify the problem instances.
ote that they are ordered in increasing order of the source and
arget networks, respectively.4 Different background colors are

4 Note: The l-Graal algorithm requires the source network to have a smaller
ize (number of edges) than the target network, instead of the usual approach to
onsider the source network as the one with smaller order (number of nodes).
hus, when aligning the bs and ec networks, we had to swap their positions
ith respect to the other methods. Therefore, in this case, the presented scores
re not consistent with the other results. We mark this case with an asterisk
∗).
9

sed to partition the group of instances with respect to the source
etworks. For each instance and for each algorithmic method, the
btained mean (point) and standard deviation (vertical line) is
iven. Note that the lines joining the different results are only for
isual clarity, as there exist no real relation between the results.
he exact numerical results are included in the supplementary
aterial to this paper.
Moreover, the results were statistically evaluated by means of

pplying the scmamp tool, which is a package for the comparison
f optimization algorithms in R. First, this tool compares all the
pproaches simultaneously by applying the Friedman test. As a
esult we can reject the hypothesis that all the algorithms per-
orm equally. Furthermore, the tool performs all pairwise com-
arisons using the Nemenyi post-hoc test [43]. Fig. 5 shows the
esulting critical difference (CD) plots [44] for each of the three
cores. These plots show the average algorithm ranks (on the hor-
zontal axis) with respect to the considered set of instances. This
s done for each of the three scores. A bold horizontal bar joining
he markers indicates that the performances of the respective
lgorithms are considered statistically equivalent, i.e., they are
elow a critical difference threshold (with a significance level of
.05).
After examining the obtained results regarding the S3 score,

he following analysis can be made:

• In general, AntNetAlign is the best-performing algorithm.
Moreover, AntNetAlign outperforms the competing ap-
proaches with statistical significance (see the CD plot in
Fig. 5(a)). Furthermore, l-Graal outperforms the remaining
methods (Magna++, Netal and HubAlign). Among the three
worst-performing algorithms, Magna++ obtains better re-
sults than Netal and HubAlign, with no statistical difference
between these two.

• In the context of stochastic algorithms a certain variance of
the results is expected. Nonetheless, the standard deviation
of the results of our approach is generally very low. In par-
ticular, the standard deviation of the results of AntNetAlign
is around 1% for smaller instances. The standard deviation
seems even to decrease as the size of the instances increases.
On the other side, this trend can be expected, as one miss-
alignment in the context of smaller networks has, generally,
a much bigger effect on the solution quality when compared
with one miss-alignment in the context of larger networks.

• l-Graal obtains rather consistent results, regularly being in
second place behind our algorithm. However, the perfor-
mance of l-Graal drops dramatically when aligning certain
networks (e.g. bt-bs or rn-ce). This can especially be ob-
served in bigger instances. One reason behind this decrease
in performance could be that – in the aforementioned cases
– the structures of the two networks to align are so different
that the first filtering by means of the similarity threshold is
not able to generate a good sub-instance. Thus, the obtained
seed alignments are not a good starting point. Recall that,
occasionally, l-Graal is not able to fully converge in the
given time limit, respectively in the maximum number of
iterations. Another aspect to be mentioned is that l-Graal is
characterized by a standard deviation of zero in the results,
which is due to the deterministic nature of this technique.

• Magna++ obtains rather good results for the smaller in-
stances, but they considerably deteriorate as instances be-
come larger. The variation of the results is inversely propor-
tional to the instance size, following a pattern similar to the
one of AntNetAlign. However, a greater variability of the
results is observed (e.g. up to a standard deviation of 4.94
for smaller instances).
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Fig. 2. Results concerning the S3 score for all pairs of high-quality PPI networks.
Fig. 3. Results concerning the EC score for all pairs of high-quality PPI networks.
• HubAlign and Netal exhibit a fairly similar performance,
which makes sense because they are both greedy meth-
ods that iteratively try to align – directly or indirectly –
neighboring nodes. However, both methods are not able to
obtain high-quality alignments with respect to the S3 score,
specially for small instances. On the one hand, Netal seems
to suffer (specially) from random decisions, as the standard
deviation is rather large (up to 6.9) for smaller instances.
Although the general trend is that the standard deviation
decreases with an increasing instance size, some inconsis-
tencies can be observed in this regard. In particular, Netal
sometimes obtains a standard deviation of 0 for smaller
instances such as bt-hs and os-ce). This may be caused
by tie-breaking decisions during the alignment process. On
the other hand, although HubAlign also has to deal with tie
breaking, its implementation appears to deal with them in
a deterministic way.

Concerning the results for the EC score, the following obser-
ations can be made:
10
• HubAlign is the best-performing method, followed by Ne-
tal, l-Graal and AntNetAlign. However, no statistical dif-
ference was detected among HubAlign Netal, and l-Graal,
and between l-Graal and AntNetAlign; see Fig. 5(b). Note
that Magna++ is clearly the worst-performing algorithm
concerning the EC measure.

• AntNetAlign obtains the best results for smaller instances,
along with l-Graal. For medium-size instances, HubAlign
seems to perform best, closely followed (and sometimes
outperformed) by l-Graal and/or Netal. The latter often
performs best in the context of larger instances. As it can
be observed, Netal and HubAlign are both capable of con-
sistently obtaining high-quality EC scores.

• The performance of Magna++ follows a similar trend to
what was already observed concerning the S3 score. That
is, the quality of the solutions decreases as the size of the
instances increases. Moreover, the difference with respect to
the best-performing methods is more notable for the larger
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Fig. 4. Results concerning the ICS score for all pairs of high-quality PPI networks.

Fig. 5. Critical difference plots for the alignment of high-quality PPI networks.

11
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instances, where Magna++ only accomplishes to conserve at
most 10% of the edges of the source networks.

• With respect to the robustness (as seen by means of the
standard deviations) of the approaches, the observations are
very similar to the ones made in the context of the S3 score.

Finally, the following observations can be made regarding the
results for the ICS score:

• AntNetAlign is, as in the case of the S3 score, the method
that shows the best performance (see CD plot in Fig. 5(c)).
In second and in third place are Magna++, respectively l-
Graal. Netal and HubAlign are the worst-performing tech-
niques. The difference between Netal and HubAlign is not
statistically significant.

• Magna++ and l-Graal behave similarly to what was ob-
served previously. The only exception is in the context of
larger instances, where we can observe that Magna++ per-
forms better as the size difference of the networks increases.

• Once more, Netal and HubAlign act alike. However, they
under-perform remarkably concerning this score. One spe-
cial case to note is that their performance decays even more
when aligning any network with network at (e.g. bt-at or
os-at). This holds specially for those cases in which there
is a large difference in the order of the networks. A poor
ICS score indicates that the algorithm aligns sparse regions
of the source network to denser ones of the target network.
Note that the at network is the second most dense network,
with an average node degree of approx. 8.9, only topped by
the hs network with a value of 9.67. This possibly shows
that both methods incorrectly align small sparse source
networks to denser regions of the at network. The same
does not seem to happen in the case of the hs network,
which may indicate that, although having a similar density,
both networks have different inherent structures.

In summary, the following conclusions can be drawn:

• AntNetAlign outperforms the other approaches with re-
spect to the S3 score, which is the most relevant measure,
as it ensures that areas of similar density are aligned, as
opposed to both EC and ICS that unsuccessfully penalize
aligning sparse regions to denser ones and vice-versa. By
minimizing the S3 score, we obtain a balance between both
EC and ICS, which can be observed in the CD plots (Fig. 5). In
addition, our approaches is characterized by robust results,
as the variance in the results is not as large as the one of the
other approaches that employ random elements.

• Magna++, on the other hand, does not manage to obtain
satisfactory results in many cases. Although it is the second
best method concerning the ICS score, it is tied in the last
place in the case of the other two measures, with no statisti-
cal difference. This demonstrates that making use of similar-
ity metrics and dynamically-estimated improvements while
constructing solutions, as it is done by AntNetAlign, can
help to avoid poor regions of the search space, as opposed to
just minimizing the objective function. This can be specially
noted in the context of larger instances.

• Netal and HubAlign exhibit a similar behavior. Although
they stand out regarding the EC score, they fail at align-
ing sparse regions to areas of similar density in the target
networks, thus obtaining a low ICS score. This is more
accentuated as the difference in size between both networks
increase. This may be because these greedy methods are
not aware of the surrounding structure of the vertices when
aligning them, besides using the information incorporated
in the similarity matrix.
12
• l-Graal obtains satisfactory results regarding the differ-
ent scores. However, it struggles when both networks are
so different that the graphlet signature similarity is not
good enough to filter the alignments and construct a well-
delimited sub-instance, from which it can generate good-
quality seed alignments to be heuristically improved.

Finally, we also compare the running times of the five com-
petitors. The initialization of the algorithms is not taken into
account when calculating the total execution time. Here, we
consider the running time of an algorithm as the time at which
the best solution generated by this algorithm in a run is found.
Fig. 6 shows the running time of each algorithm for all instances
ordered according to their increasing size. More specifically, we
consider the size of an instance to be equal to the product of the
number of vertices of both input networks (|V (G1)| × |V (G2)|).
We believe this is appropriate taking into account the nature of
the problem. The running time is given in seconds. Note that the
y-axis is in logarithmic scale.

As we can observe, the running time of all the methods is
linear with respect to the size of the instances, which is quadratic.
The only exception is l-Graal, which already reaches the maxi-
mum running time allowed for each algorithm (1 h) for medium
size instances. This is expected, as the complexity of solving the
relaxed problem is cubic. Generally, Netal is faster than the other
methods. AntNetAlign and HubAlign show a similar running
time, with HubAlign being slightly faster for smaller instances.
Magna++ follows a similar trend to the previous two methods,
but it is slower in all of the cases. This is more notorious in the
context of small and medium instances, where the running time
difference can be of up to one order of magnitude.

Self-alignment of PPI Networks
As the tested PPI networks have diverse sizes and structures,

the experiments described above allowed us to test the perfor-
mance of our algorithm in very different scenarios. However, in
order to gain a better understanding of the algorithms’ behavior,
we also evaluate the performance of all competitors when the
source and target networks are equal.

This particular problem version is similar to the well-known
graph automorphism problem, i.e., an isomorphism from a graph to
itself. In this case, though, the trivial automorphism is allowed. In
contrast to the NA problem, which was proved to be NP-hard, it is
not known whether the graph isomorphism problem belongs to
P or to NP [45], assuming that P ̸= NP . However, if the problem
of graph isomorphism is NP-complete, then the polynomial-time
hierarchy collapses to Σ

p
2 [46].

Note that, when aligning networks with the same number of
nodes, all edges in both networks will be induced. Moreover, as
both networks share the same number of edges, the EC and ICS
scores will be exactly the same. It makes therefore no sense to
make a distinction between them. Table 5 shows the EC (also ICS)
scores obtained by aligning each of the 12 PPI networks to itself,
following the experimental setup as explained above. As the S3

score would not provide any additional information, the results
of this score are not shown. In fact, we are only interested in the
number (or fraction) of conserved edges.

Although the ground truth is known in the context of aligning
networks to themselves, the Node Correctness (NC) score is not
provided, as the tested algorithms have no way of discriminating
between symmetric parts of the graphs. Thus, an alignment which
maps a node to an equivalent one rather than to itself, is not
considered incorrect. In the case of PPI networks, one could make
use of sequence information to avoid this issue, such as the
normalized bit score (e.g. obtained with BLAST [47]), which is
independent of the database size. However, this is not considered
in this work. Moreover, we do not provide CD plots since, in our
opinion, the numerical information in Table 5 is sufficiently clear.
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t

Fig. 6. Running times (in logarithmic scale) for all PPI instances ordered from small (left) to large (right). The definition of the running time is provided in the text.
Table 5
EC (also ICS) scores for aligning PPI networks to themselves.
Networks Netal HubAlign Magna++ l-Graal AntNetAlign

bt-bt 45.96 ± 12.78 100.00 ± 0.00 80.88 ± 3.55 100.00 ± 0.00 100.00 ± 0.00
os-os 42.76 ± 1.08 100.00 ± 0.00 64.11 ± 3.91 100.00 ± 0.00 100.00 ± 0.00
rn-rn 71.44 ± 6.37 100.00 ± 0.00 63.98 ± 2.42 100.00 ± 0.00 100.00 ± 0.00
bs-bs 65.45 ± 18.80 100.00 ± 0.00 73.43 ± 5.23 100.00 ± 0.00 99.99 ± 0.04
ec-ec 72.20 ± 4.72 100.00 ± 0.00 55.66 ± 1.71 100.00 ± 0.00 100.00 ± 0.00
sp-sp 86.53 ± 7.73 100.00 ± 0.00 35.53 ± 1.36 100.00 ± 0.00 99.96 ± 0.05
mm-mm 75.97 ± 4.09 100.00 ± 0.00 27.93 ± 0.45 100.00 ± 0.00 99.93 ± 0.13
ce-ce 92.68 ± 3.11 100.00 ± 0.00 12.79 ± 0.46 100.00 ± 0.00 99.71 ± 0.07
sc-sc 99.76 ± 0.32 100.00 ± 0.00 10.18 ± 0.27 100.00 ± 0.00 99.59 ± 0.07
at-at 99.09 ± 0.12 100.00 ± 0.00 18.18 ± 0.45 100.00 ± 0.00 97.26 ± 0.38
dm-dm 97.55 ± 0.36 100.00 ± 0.00 5.71 ± 0.08 99.99 ± 0.00 99.75 ± 0.03
hs-hs 100.00 ± 0.00 100.00 ± 0.00 5.03 ± 0.08 100.00 ± 0.00 99.08 ± 0.12
After analyzing the obtained results, the following observa-
ions can be made:

• HubAlign and l-Graal are capable of always identifying the
automorphism (except in one particular case when the latter
does not). In the case of l-Graal, this result is expected, as
the true alignments (from a node to itself) will always be
considered in the sub-instance (as their similarity will be 1,
which is greater than any possible threshold). In this way,
the solver is able to find high-quality seed alignments. Thus,
l-Graal is particularly good when both input networks re-
semble each other. In the case of HubAlign, the utilized
importance measure is surely very useful for deciding which
nodes to align. However, we believe that the reason be-
hind the perfect alignments is the following. As we have
previously mentioned, although the algorithm is expected
to yield non-deterministic results given the randomness in
its method for the similarity measure generation, its imple-
mentation deals with it in a deterministic way. In addition,
the algorithms are provided with both networks in an edge-
list format. As the same network file is passed twice for
the self-alignment, the edges in this list will be ordered
equivalently for both the source and the target network.
Thus, HubAlign will calculate the similarity measure in
exactly the same way in both cases, meaning that equal
nodes will have the same importance score. If, on the other
side, the edges would be slightly rearranged in the two lists
(concerning source and target networks) we would expect
the algorithm to compute the scores differently, making it
harder for the algorithm to determine the automorphism.
13
• Surprisingly, the performance of Netal improves with an
increasing network size. In fact, Netal is able to find the
automorphism for the largest network (hs). A reason for
this could be that the topological similarity obtained by the
method works better for larger instances. However, it is
worth noting that miss-aligning one node in the context of
the smaller instances (and consequently its neighbors) can
deteriorate the quality of the solution to a large extent. This
can also be observed in the variance of the results, as the
standard deviation tends to be higher for smaller instances
(e.g. 12.78 for bt-bt or 18.80 for bs-bs) and vice versa.

• On the other side, Magna++ starts with high-quality solu-
tions for rather small networks, but its performance deterio-
rates with an increasing network size. At the same time the
variability of the results decreases. It is worth mentioning
that Magna++ is only able to conserve around 5−6% of the
edges in the two larger instances, while the rest of the
methods are able (or nearly) to detect the automorphism.

• AntNetAlign performs almost optimally, specially for
smaller instances, where it is able to find the automor-
phisms. For larger instances it consistently obtains an EC
(also ICS) score of +99%. In addition, it obtains robust
results as indicated by a low standard deviation. This shows
that adding both a global similarity measure and dynamic
information to the construction process of the solutions is
beneficial, specially when both networks are rather similar.

Alignment of noisy PPI Networks
So far, we have conducted two types of experiments. First,

the alignment of pairs of networks in which the source and the
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arget network are different to each other. And second, the self-
lignment of networks. Remember that some of the considered
ethods behave differently in the two cases: while they obtain
ptimal or near-optimal solutions in the case of self-aligning
etworks, they under-perform when aligning different networks
ith each other.
In a third experiment, we now aim to test the robustness of

he methods in the context of noisy instances. For this purpose we
enerated noisy instances for the problem by aligning the original
igh-quality PPI networks with noisy variants of these networks.
ore specifically, for each of 10 high-quality PPI networks we
enerated a series of noisy instances in which the level of noise
s gradually increased. This will make it possible to study the
volution of algorithm performance as the networks to be aligned
ecome less similar. The D.melanogaster and H.sapiens networks
re not considered in this experiment, as their noisy variants
urpass the network size limit accepted by some of the tested
lgorithms.
Fig. 7 shows the evolution of the S3 score for each of the

0 considered networks as the noise increases. Networks are
rdered in increasing number of nodes from the top-left to the
ottom-right corner. The x-axis indicates the level of noise of
he target network (from 0 to 100%). In summary, the following
bservations can be made:

• Both l-Graal and AntNetAlign seem more resistant to
noise than other methods. Although l-Graal outperforms
AntNetAlign for some of the medium-size instances, the
opposite is the case in the context of the two larger in-
stances.

• HubAlign accomplishes optimal results when both net-
works are equal (0% noise). However, its performance
rapidly decreases with an increasing level of noise. Although
Netal does not perform as well as HubAlign at low levels
of noise, both methods tend to show a similar performance
as the noise increases. This is in line with observations for
previous experiments, where both methods worked simi-
larly when aligning different PPI networks, but HubAlign
outperformed Netal when aligning a network with itself.

• The performance ofMagna++ seems quite invariant to noise.
Nonetheless, while it obtains medium quality results in
the context of smaller instances, it usually is the worst-
performing method otherwise, specially for larger instances.
This difference is much more eminent in some cases, like
when aligning the S.pombe, C.elegans and A.thaliana net-
works to their noisy variants.

Thus, we can conclude that AntNetAlign is able to obtain
high-quality alignments for real-world instances, partially due to
its high resistance to noise.

Component analysis
In a last set of experiments we aim to show the usefulness of

all components of the greedy information used in AntNetAlign,
that is, the global similarity measure and the dynamic informa-
tion. Recall that ηij = sij · ϕij is the greedy information, where
sij is the pairwise similarity score of nodes vi and vj, and ϕij is a
measure (an estimation) of how much the current partial solution
would improve if nodes vi and vj were aligned (see also Eq. (5) in
Section 3.2). Our experiments will test the importance of each of
the two components of ηij. For this purpose, the high-quality PPI
networks are used again.

Fig. 8 shows the obtained results graphically by means of a so-
called heat map. Column labels indicate which of the two greedy
function components is maintained: the similarity (ηij = sij),
he improvement (ηij = ϕij), or none of them (ηij = 1). Row
abels indicate the respective instances. The value of each cell
14
Table 6
Summary of the benchmark instances (mental health disorders) in ascending
order of the networks.
Network V E ⟨k⟩

DSM-IV (Core) 208 1949 18.74
DSM-IV 439 2626 11.96
ICD10 588 6169 20.98

is calculated by dividing the score obtained by the respective
reduced version of AntNetAlign with the score obtained by the
complete method. In fact, removing any component always yields
worse results. Therefore, this ratio oscillates between 0 and 1,
which translates into the gradual lightness of the colors, that is,
the darker the color of a cell, the worse is the respective reduced
algorithm variant with respect to the complete algorithm.

As a general trend, the results obtained when removing com-
ponents from the greedy function are always worse than those
obtained with the complete function (ηij = sij ·ϕij). This difference
is more noticeable as the size of the instances increases. Fur-
thermore, the improvement seems to have the highest influence
on the quality of the algorithm, as sometimes the respective
algorithm variant is able to obtain nearly the same results as
the complete algorithm. The similarity, in comparison, does not
seem as influential as the improvement. One important thing to
note is that the results obtained by only keeping the improvement
are worse when aligning one network with the next one in size,
but improve as the size difference of both networks increases.
The same happens with the similarity, but inversely. Thus, we
can deduce that both greedy function components complement
each other. Additionally, given the observed results for larger
instances, which are considerably worse than the ones of the
complete method, we can conclude that both greedy function
components are necessary.

4.3. Classification of mental health disorders

Nowadays, there exist two major nosological systems for the
diagnostic classification of mental health disorders: the Interna-
tional Classification of Diseases (ICD-10) [48] and the Diagnostic
nd Statistical Manual of Mental Disorders (DSM-IV) [49]. Although
oth manuals categorize similar mental disorders, research has
hown that there still exist some major differences between the
urrent versions with respect to specific operationalization of
any diagnoses [50]. Thus, NA can also be used to find con-
ordance and prevalence of disorders between the two different
lassifications of mental disorders [51].

.3.1. Benchmark instances
In [52], the authors used a network approach to study the

verlapping structure between the diagnostic networks of the
CD-10 and DSM-IV systems. To do so, a network was constructed
or each one by representing symptoms as nodes and connecting
hem by an edge if both symptoms co-occurred as a diagnostic
riterion for at least one disorder. In this work, we make use of
he same instances. Moreover, we also consider the giant con-
ected component of the DSM-IV network (DSM-IV Core) used
n [53] for community detection. Table 6 shows a summary of
he resulting networks.

.3.2. Results
As in the experiments previously described, the stochastic

ompetitors AntNetAlign and Magna++ are applied 10 times to
each considered case. Moreover, the same stopping criteria and
the same parameter settings are used as outlined before. We first
align the core of the DSM-IV network to the full DSM-IV net-
work, to see if the algorithms are capable of fitting the subgraph
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Fig. 7. S3 scores obtained by the five competitors for series of noisy PPI networks.
nto the larger network. The obtained results can be found in
able 7. We can observe that these results are almost identical
o the ones from the Self-Alignment of PPI Networks (Table 5),
here HubAlign and l-Graal are able to identify the subgraph

isomorphism, while AntNetAlign performs near to optimality.
On the other hand, we try to align the DSM-IV network (both

its core and the full network) with the ICD-10 network to see
if the algorithms are capable of identifying similar regions be-
tween them. The S3 score of the obtained results can also be
found in Table 7. In this case, we can see that Magna++ is
the best-performing method, closely followed by AntNetAlign.
15
The l-Graal algorithm is only able to compete while aligning
the DSM-IV Core to the ICD-10 network, but its performance
decreases in the last case. Netal and HubAlign both obtain much
worse results. Although the good performance of Magna++ may
be surprising, this is certainly not in discordance to previous re-
sults, because Magna++ was able to find good quality alignments
in small and medium instances regarding the S3 score (see Fig. 2).
Moreover, in this case, as the target network is denser than both
source networks, it is easier to conserve edges in the source
network (and thus, to obtain good EC scores). AsMagna++ usually
achieves good ICS scores, both aspects together may cause the
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Table 7
S3 scores for aligning mental health disorders networks.
Networks Netal HubAlign Magna++ l-Graal AntNetAlign AntNetAlign-1M

DSM-IV-Core-DSM-IV 57.95 ± 26.51 100.00 ± 0.00 75.17 ± 2.07 100.00 ± 0.00 99.93 ± 0.13 100.00 ± 0.00
DSM-IV-Core-ICD10 28.24 ± 4.38 35.84 ± 0.00 68.37 ± 2.70 59.40 ± 0.00 60.16 ± 1.61 76.65 ± 1.81
DSM-IV-ICD10 31.60 ± 0.34 27.46 ± 0.00 62.36 ± 3.67 40.61 ± 0.00 57.28 ± 2.87 67.49 ± 1.33
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Fig. 8. Comparative results obtained by removing components of the greedy
function.

generation of solutions in which both scores are balanced, thus
obtaining good S3 scores.

However, it is important to note that Magna++ is allowed to
generate many more solutions than our approach during its exe-
cution. More specifically, at each generation Magna++ generates
around 1824 × 0.69 ≈ 1258 solutions, resulting in a total of
about 1,258,000 solutions. Compared to the 1000 solutions gen-
erated by AntNetAlign, this is a huge number. Thus, we repeated
the experiments concerning AntNetAlign with a new stopping
criterion of one million solutions, which is much closer to the
number of solutions generated by Magna++. The corresponding
results can be found in the last column of Table 7 (AntNetAlign-
1M). It can be observed that our algorithm is then capable of
outperforming Magna++ and of increasing its performance by
around 20% to 25%.

4.4. Social networks

As previously mentioned, one of the most important applica-
tion areas NA is the area of social networks. For instance, one
might want to align two social networks in order to discover
similar behaviors between users. Following other papers on this
area, we test the considered approaches therefore on real-world
social networks.
16
Table 8
Summary of the benchmark instances from the application on social networks.
Network V E ⟨k⟩

Douban (Offline) 1118 1511 2.70
Douban (Online) 3906 8164 4.18

Flickr 12974 16149 2.49
Last.fm 15436 16319 2.11

Flickr 6714 7333 2.18
Myspace 10693 10686 1.99

4.4.1. Benchmark instances
For the experimental evaluation we make use of three dif-

ferent pairs of social networks, following the same procedure as
in [2]. Table 8 provides a summary of the benchmark instances,
grouped into pairs. They can be described as follows:

• Douban (Online) vs. Douban (Offline). Douban is an online
social network that provides user reviews and recommen-
dations ranging from music to books and films. Douban
(Online) is a network which shows the relationship between
users [54], while Douban (Offline) is a network where users
are connected by an edge if they attend the same in-person
social event(s) [55].

• Flickr vs. Last.fm. Flickr is an image and video hosting ser-
vice, while Last.fm is a music recommendation website.
Following the same procedures as in [2], both networks
are crawled from Flickr and Last.fm [56] and processed as
in [55].

• Flickr vs. MySpace. Finally, MySpace is a popular social net-
working service. Note that, here, Flickr corresponds to a dif-
ferent part of the Flickr network. Both these final networks
are obtained following the same procedure as described
before.

4.4.2. Results
In this last set of experiments, all the competitors were again

applied with the experimental setup as already described before.
In particular, AntNetAlign and Magna++ were applied 10 times
o each of the three network pairs, with the same parameter
ettings and stopping criteria as utilized before. The obtained
esults can be observed in a way which summarizes over all
hree network pairs in Fig. 9. In particular, results are shown
regarding the S3, EC and ICS scores – by means of critical

ifference plots. Interestingly, we observe a similar trend as in
revious results: l-Graal and AntNetAlign obtain the best re-
ults regarding the S3 score, with a difference between them
hich is not statistically significant. Moreover, Netal is also able
o achieve very good results. On the other side,Magna++ is clearly
orst-performing algorithm. This can be explained by the fact
hat two of the three considered pairs of networks include large
etworks. In fact, these results are in line with the ones obtained
hen aligning PPI Networks, where Magna++ was not able to
chieve good quality results for larger instances. Regarding the
C score, we can see that HubAlign performs now weaker when
ompared to previous experiments, and Netal is able to obtain
he best results. Concerning the results for the ICS score, l-Graal,
ntNetAlign and Magna++ are able to outperform the other two
ethods, with no statistical difference among them.
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Fig. 9. Results for social networks shown in a summarized way by means of critical difference plots.
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. Conclusions and future work

In this work, we have introduced AntNetAlign, a new Ant
olony Optimization algorithm for solving the Network Align-
ent problem. The key novelties of this approach are the fol-

owing. First, the algorithm is able to make use of any pairwise
ode similarity information to guide the solution construction
rocess. As such a similarity measure is not restricted to any
pecific kind, the algorithm allows for a high versatility for being
pplied in different contexts. Second, it combines this similarity
etric with an improvement measure that takes into account the
urrent state of the solution construction. Thus, the algorithm is
rovided with both a global and a local view of the undergoing
onstruction process.
In general, our approach is able to outperform the considered

ompetitors in the context of two out of three of the tested
uality scores. More specifically, it obtains significantly better
esults when using the superior S3 score in a reasonable amount
f time. Additionally, our method obtains near-optimal results
hen aligning networks with themselves. One of the reasons
ehind the good performance of our approach might be its high
esistance to noise. Moreover, in the context of some instances
rom the field of mental health disorders for which Magna++
as able to outperform our approach, AntNetAlign was still able
 o

17
o perform better than Magna++ when given a similar number
f solution constructions as Magna++. For larger instances, our
ethod was always able to compete with the best-performing
pproaches.
Given the generality of our approach, one possible line of

uture research is to apply the ACO algorithm to networks from
ther application areas. For example, one might align linguis-
ic networks to discover syntactic and semantic relationships
etween words of different languages. A second possibility con-
erns the transfer of ageing-related knowledge from well studied
pecies to poorly annotated species [57].
Another task that is of great interest is link prediction. When

tudying alignments obtained by any algorithm, it is common
o notice edge mismatches, i.e., connected nodes in the source
etwork that are mapped to disconnected nodes in the target net-
ork or vice-versa. Sometimes, these mismatches may indicate
hat an edge may be missing, specially when the topological or
unctional contexts of the nodes are similar.

Lastly, we plan to extend/improve AntNetAlign by adding
egative learning, in addition to the usual ACO feature of learn-
ng from positive examples. Recently, a new model for negative
earning was introduced in [39], which makes use of additional
ptimization methods for identifying components of solutions
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hat should receive negative feedback. We believe that such an al-
orithm extension could be very useful in the context of network
lignment.
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