
Specification and implementation of metadata
for secure image provenance information

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Nikolaos Fotos

In partial fulfillment
of the requirements for the master in

Cybersecurity

Advisor: Jaime M. Delgado
Barcelona, 7th of July 2022

Contents

List of Figures 4

List of Tables 5

1 Introduction 8
1.1 Background . 8
1.2 Problem . 9
1.3 Solution . 9
1.4 Objective . 9
1.5 Planning . 10
1.6 Organization of the document . 10

2 State-of-the-art tools and standards 12
2.1 JPEG Universal Metadata Box Format (JUMBF) 12
2.2 Coalition for Content Provenance and Authenticity (C2PA) 15
2.3 JPEG Fake Media Requirements . 16

3 JUMBF Reference Software 18
3.1 JUMBF Core Library . 18

3.1.1 Box structure . 19
3.1.2 Content Type class hierarchy . 21
3.1.3 Embedding JUMBF metadata to a JPEG image 22
3.1.4 Example: Generating a JUMBF file 23

3.2 JUMBF Privacy & Security (privsec) Library 24
3.2.1 Protection box . 24
3.2.2 Replacement box . 25

4 Specification of JPEG Fake Media 28
4.1 Data model . 30

4.1.1 Assertion . 30
4.1.1.1 Content Binding. 31
4.1.1.2 Actions. 31
4.1.1.3 Thumbnail. 32
4.1.1.4 Ingredient. 33
4.1.1.5 EXIF metadata. 33

4.1.2 Assertion Store . 34
4.1.3 Claim . 34
4.1.4 Claim Signature . 35
4.1.5 Credential Store . 35
4.1.6 Manifest . 36
4.1.7 Manifest Store . 36

4.2 Trust model . 37
4.3 Operations . 38

4.3.1 Consume provenance metadata . 39

2

4.3.2 Produce provenance metadata . 41
4.4 Fulfillment of JPEG Fake Media Requirements 42

5 Provenance Reference Software 44

6 Application 47
6.1 Practical demo for JUMBF metadata . 47
6.2 Provenance metadata manager . 51

6.2.1 Introduction . 51
6.2.2 Generating producer key pair and digital certificate 53
6.2.3 Producing provenance history for digital assets 54
6.2.4 Consuming provenance history . 64

7 MIPAMS Environment 68

8 Future Work 73
8.1 Enriching provenance manager application 73
8.2 The Content Binding problem . 74
8.3 Extension of Privacy policy implementation 75
8.4 Storing provenance information on the cloud 76

9 Conclusions 80

References 82

3

List of Figures

1 JUMBF Box structure . 13
2 Entity class hierarchy in mipams-jumbf project 20
3 Service class hierarchy in mipams-jumbf project 21
4 Content Type class hierarchy in jumbf-core-2.0 22
5 Embedded File Content type JUMBF box stored in a JUMBF file 23
6 Replacement Description box parameter handling class inheritance 26
7 Replacement Data box handling class inheritance 26
8 Assertion JUMBF Boxes . 30
9 Component hierarchy (From Manifest Store to Assertion) 37
10 Trust relationship between provenance actors and entities 38
11 Extended Content Type class hierarchy containing the Provenance module 44
12 Producer services dependency graph . 45
13 Consumer services dependency graph . 45
14 Assertions class hierarchy . 46
15 Practical Demo service architecture . 48
16 Main page of the application . 48
17 Generating a JSON Content type JUMBF box 49
18 Parsing a JUMBF file . 50
19 Provenance Manager service architecture 52
20 Parse RSA private key context using openssl 53
21 Parse X.509 Certificate context using openssl 54
22 Producer ”nickft” logs in to application . 54
23 Left screen: Producer is logged in, Right screen: JSON Web Token ”to-

kenId” is stored in a browser cookie . 55
24 A digital asset loaded in the provenance image editor 55
25 The uploaded digital asset upon modifications 56
26 GPS information in EXIF metadata of the uploaded digital asset 56
27 Producer reviews the assertions that shall be included and names the pro-

duced asset as ”provenance history unencrypted.jpg” 57
28 Producer reviews the assertions that shall be included and names the sec-

ond produced asset as ”provenance history protected.jpg” 58
29 Producer reviews the assertions that shall be included and names the third

produced asset as ”provenance history protected ar.jpg” 58
30 Producer can view and download the produced digital assets 59
31 Manifest Store content type JUMBF box structure embedded in prove-

nance history unencrypted.jpg . 60
32 Manifest Store content type JUMBF box structure embedded in prove-

nance history protected.jpg . 61
33 Manifest Store content type JUMBF box structure embedded in prove-

nance history protected ar.jpg . 62
34 XML box contents are stored in a separate file 63
35 XACML policy describing that only users with Role ”PRODUCER” can

access the resource . 63
36 User consumes provenance information without being authenticated 64

4

37 User has access to the EXIF metadata inside the Claim 65
38 Unauthenticated user cannot access protected EXIF metadata 66
39 Authenticated consumer user access protected EXIF metadata successfully 66
40 MIPAMS architecture enhanced with Provenance Service 68
41 Including protected EXIF metadata in MIPAMS Environment 70
42 Consuming protected EXIF metadata in MIPAMS Environment 72
43 Policy expressed using JSON-based access control language 76
44 Database schema presenting Manifest and Asset Repository tables 77

Listings
1 JUMBF URI reference . 14
2 Assertion URI . 34

List of Tables

1 Description box field definition . 13
2 Supported Content Types for JUMBF Boxes 14
3 JPEG Fake Media Requirements covered by the proposed specification . . 17
4 Provenance JUMBF Box definitions . 28
5 Summary of supported assertions . 30
6 Supported Action Types . 31

5

Revision history and approval record

Revision Date Purpose
0 27/05/2022 Document creation
1 14/06/2022 Document revision
2 20/06/2022 Document revision
3 27/06/2022 Final Document revision

DOCUMENT DISTRIBUTION LIST

Name e-mail
Nikolaos Fotos nikolaos.fotos@estudiantat.upc.edu
Jaime M. Delgado jaime.delgado@upc.edu

Written by: Reviewed and approved by:
Date 28 /06/2022 Date 01/07/2022
Name Nikolaos Fotos Name Jaime M. Delgado
Position Project Author Position Project Supervisor

6

Abstract

The booming of AI tools capable of modifying images has equipped fake media producers
with strong tools in their arsenal. Complementary to the efforts of implementing fake
media detectors, research organizations are designing a standardized way of describing the
modification history of digital media in a cryptographically secure way, ensuring that this
information cannot be tampered with. This thesis proposes a specification which focuses
on JPEG images and specifies a data model based on the JPEG Universal Metadata
Box Format (JUMBF) standard. Furthermore, it proposes the encryption of a subset of
provenance metadata that could pose privacy-related risks to the users. Along with the
specification, a library has been developed to manage provenance information of JPEG
images. To that extent, a set of libraries that handle JUMBF information is required to
be implemented. These libraries have been submitted as a proposed reference software
contributing to the JUMBF standard.

7

1 Introduction

With the digital transformation of information sharing, the world has become connected
more than ever. With the proliferation of smart devices and the improvement of Internet
connections media sharing and consumption has become a relatively cheap task. On top
of that, the abundant use of social media has changed the way people share experiences,
educate and keep up with the latest news. All these actions pose various challenges to the
users and solutions need to be proposed.

First and foremost, recent advances in media creation and modification allow the pro-
duction of near realistic (e.g. deepfakes) media assets that are almost indistinguishable
from original assets to the human eye. Fake media along with the emerging phenomenon
of deepfakes can proliferate the problems of disinformation and misinformation. If used
accurately, it could guide public opinion towards a specific side or lead to social unrest.
To address this problem, [1] discusses a set of state-of-the-art tools that try to detect such
media.

At the same time, social media users have the tendency to disclose their personal moments
with their social media followers. They capture a picture of a scene using their mobile
phone and upload it to social media platforms without taking into consideration the
privacy risks that this might cause. Metadata about GPS coordinates or information
about the capturing device could be leveraged by adversarial users. Users depend solely
on the devices and social media platforms to protect (e.g. strip) these pieces of metadata
from their media before sharing; otherwise they are at risk of disclosing information that
they didn’t intend to.

The aforementioned challenges could be mitigated in a proactive manner. Specifically, it
would make sense to annotate media creation and modifications in a clear and transparent
way. This could be considered a crucial element in many usage scenarios bringing trust
to the users. To ensure trust, these annotations should be related to the media in a
cryptographically secure way to prevent them from being compromised. With this solution
it is possible to keep track of the provenance history of a media asset.

Provenance refers to the basic, trustworthy facts about the origins of a piece of digital
content (image, video, audio recording, document). It may include information such as
who created it and how, when, and where it was created or edited. The content author
always has control over whether provenance data is included as well as what data is
included. Included information can be removed in later edits.

1.1 Background

Regarding the privacy concerns for media sharing, [2] has worked on developing mecha-
nisms for protecting regions of interest of a JPEG image as well its metadata. In addition,
[3] has provided a mechanism to protect JPEG images using privacy policies that could
be either embedded in the image or completely managed by an external service.

In parallel, the annotation challenge has already triggered various organizations to develop
a wide range of mechanisms that can detect and/or annotate modified media assets when

8

they are shared. These annotations should be attached to the media in a secure way to
deter them from being altered. Apart from JPEG [4], Coalition for Content Provenance
& Authenticity [5] have launched initiatives to design standards focusing towards this
directive.

1.2 Problem

Although there is a set of standards and specifications focusing on securely annotating
digital assets, there hasn’t been yet the effort to specify those use cases where end-to-
end encryption and selective access of provenance metadata is required. These use cases
describe situations where specific metadata shall be protected as they might disclose
Personal Identifiable Information (PII), geo-location or device information.

In fact, C2PA Technical Specification [6] introduces the ability of a user to remove a set
of provenance information that could pose privacy concerns. As per C2PA, this action is
defined as redaction. However, there is no provision about protecting sensitive metadata.
Our proposed specification takes into consideration these use cases and extends the C2PA
capabilities by allowing the users to control their privacy-related metadata.

1.3 Solution

Based on all the above, this project focuses on designing a technical specification that
defines the model to express provenance information for JPEG images while allowing the
possibility to protect a set of metadata that could pose privacy risks for the user producing
it. This proposed technical specification is based on the work introduced by C2PA.

In scope of this project, a library has been developed showcasing the capabilities of the
specification. Additional libraries need to be implemented that focus on expressing and
handling information using the JPEG Universal Multimedia Box Format since the prove-
nance data model is based upon it. These libraries are submitted as proposed reference
software to the JUMBF standard. Eventually, the aim of this project is to submit the
specification to the JPEG Call For Proposals [7] that requests for contributors who shall
support the creation of a new standard addressing the Fake Media problem.

1.4 Objective

The list of objectives, that this project aims to accomplish, is listed below:

1. Design a specification that proposes a data model to express provenance information
for JPEG images. This data model is based on the JPEG Universal Media Box
Format (JUMBF). In addition, this specification describes the functionalities to
produce and verify the integrity of the provenance structure.

2. In contrast with the existing work in the research, the proposed specification allows
for protection - through encryption - of a set of assertions that could disclose personal
information.

9

3. Implement a library with the functionality proposed in the specification

4. Implement a set of libraries to model and handle metadata in JPEG Universal Box
Format (JUMBF). These libraries shall be used by the software in step 3 and they
can be also used for any other project interested in handling JUMBF metadata.

5. Contribute to a set of JPEG standards. Specifically, the JUMBF-related libraries
that are implemented in this project are proposed as a reference software to the
JPEG standards related to JUMBF. In addition, the proposed provenance specifi-
cation along with its library shall be submitted as a contribution to the JPEG Call
for Proposals regarding a new standard targeting Fake Media.

1.5 Planning

The planning of the work of this project is depicted in the following Gantt diagram.
Initially, effort was put to develop the libraries that model and handle JUMBF metadata
inside a JPEG image. In parallel, the investigation and composition of the proposed
specification for Fake Media was taking place.

Once the aforementioned tasks had finished on late April, it was time for the implementa-
tion of the library that models and operates on the proposed provenance data model and,
subsequently, the effort was shifted towards the demonstrator application that showcases
the functionalities that were developed throughout the project.

End of Project

Phases of the Project
2022

Feb. Mar. Apr. May Jun. Jul.
Reference Sw

100% completeJUMBF v1
100% completeJUMBF v2

100% completePrivacy & Security
100% completePractical Example

Provenance

100% completeSpecification
100% completeSoftware

100% completeDemonstrator

1.6 Organization of the document

The remaining parts of this document is structured as follows: In Chapter 2, the state-of-
the-art standards and specifications related to embedding provenance - as well as other
metadata - information in JPEG images are presented. Next, Chapter 3 focuses on the
implementation of a proposed reference software for the JPEG Universal Metadata Box
Format standard. On top of that, an application of this software is presented handling

10

the structures defined in JPEG Privacy & Security standard. Chapter 4 describes the
proposed specification to express provenance information of a JPEG image while Chapter
5 presents the library that implements it. Chapter 6 showcases two demonstration appli-
cations related to the libraries implemented in the previous sections. Subsequently, the
integration of this specification with the MIPAMS Environment is presented in Chapter
7. Chapter 8 discusses the future steps of this work. Finally, in Chapter 9 a short conclu-
sion is presented focusing on the contributions that this work has provided in the JPEG
standardization procedures.

11

2 State-of-the-art tools and standards

This work is based on JPEG Systems [8], a multi-part specification focusing on consolidat-
ing image formats, functionalities, and code stream syntax into one uniform system.This
standard is published by ISO/IEC and is being developed by ISO/IEC JTC 1/SC 29/WG
1 (JPEG Coding of digital representations of images) [4], a joint working group of the
International Standardization Organization (ISO) and the International Electrotechni-
cal Commission (IEC). In addition, work produced from Coalition for Content Prove-
nance and Authenticity [5] organization is studied as well. These specifications provide
the mechanisms to embed metadata to an image, protect the metadata content and build
provenance information that describes the modification history of an image. Finally, this
thesis project takes into consideration the recent explorations of the JPEG Committee
regarding the design of a new standard, namely JPEG Fake Media [9], that can facilitate
a secure and reliable annotation of media modifications.

2.1 JPEG Universal Metadata Box Format (JUMBF)

One of the main focuses of JPEG Systems specification is the standardization of a universal
way to embed metadata in an image. In fact, JPEG Systems Part 5 specifies the JPEG
Universal Metadata Box Format (JUMBF) which provides the means to express, embed
and request different types of metadata in a JPEG image. Related to this part, one
International Standard has been published [10] and an updated version [11] supporting
additional structures is currently under Draft International Standard (DIS) ballot status.

A JPEG image could contain metadata that is textual, image content or binary. According
to JUMBF standard, to embed metadata in a JPEG image it is required that it is wrapped
inside a container called box. Each of these boxes is wrapped again with a set of header
values following the ISO Base Media File Format (BMFF) specification. These header
values describe the length and type of the specific box. Before embedding a box to the
JPEG image, these boxes are wrapped with APP 11 Marker Segments in order to follow
the encoding of the entire JPEG code stream. There are different types of boxes depending
on the type of metadata that needs to be expressed. The most general definition of a box
in this standard is a JUMBF Box the structure of which varies according to the content
of that Box.

12

Field Explanation
TYPE 16-byte UUID

TOGGLES An integer that signals which of the following fields are present
LABEL A String that can be used to reference the JUMBF box

ID An assigned 4-byte Id
SHA256HASH A SHA-256 Digest
PRIVATE An ISOBMFF box structure instide the Description box

Table 1: Description box field definition

Figure 1: JUMBF Box structure

As depicted in figure 1, the structure of a JUMBF Box consists of one Description box,
one ore more Content Boxes and at most one Padding box. A JUMBF Box can have
another JUMBF Box as a content Box allowing for a hierarchical structure. In that case
the parent JUMBF Box is also called a superbox.

A JUMBF Description box provides additional information about the behaviour and
content of the JUMBF Box in which it is contained. The fields are listed in table 1.

In order to express different types of metadata, [11] has specified a set of content boxes
for the JUMBF Box structure:

• XML box

• JSON box

13

Content Type UUID

XML Content type JUMBF box
0x786D6C20-
0011-0010-8000-
00AA00389B71

JSON Content type JUMBF box
0x6A736F6E-
0011-0010-8000-
00AA00389B71

Codestream Content type JUMBF box
0x6579D6FB-
DBA2-446B-B2AC-
1B82FEEB89D1

UUID Content type JUMBF box
0x75756964-
0011-0010-8000-
00AA00389B71

Embedded File Content type JUMBF box
0x40CB0C32-
BB8A-489D-A70B-
2AD6F47F4369

CBOR Content type JUMBF box
0x63626F72-
0011-0010-8000-
00AA00389B71

Table 2: Supported Content Types for JUMBF Boxes

• Contiguous Codestream box (i.e. for Image codestream)

• UUID box (i.e. for vendor specific data format)

• Embedded File Description box (i.e. description box for arbitrary binary data)

• Binary Data box (i.e. for arbitrary binary data)

• CBOR box

The Content Type of a JUMBF Box describes the type and number of content boxes.
Specifically, the Content Type is specified in a field inside the Description box and is
expressed as a 16-byte UUID. [11] has specified 6 Content Types for a JUMBF Box but
it is possible for other standards to define their own Content Type UUID and structure.
The 6 basic Content Types are listed in table 2:

Except from Embedded File Content type JUMBF box, the remaining Content Types
describe JUMBF Box structures that contain exactly one Content Box. For instance, a
XML Content type JUMBF box contains one Description box, one XML box and at most
one Padding box.

Last but not least, [11] specifies the mechanism that can be used to reference or request
the content of JUMBF Boxes. In fact, a URI format has been specified to mention the
contents of a specific JUMBF Box using the label field of its Description box. An example
of such URI reference is shown below:

14

1 https://jpeg.org/image.jpg#jumbf=parentlabel/childlabel

Listing 1: JUMBF URI reference

There are additional standards that use JUMB Format in their applications. In particular,
JPEG Systems Part 4: Privacy & Security standard [12], specifies a set of new JUMBF
structures called Protection and Replacement Content type JUMBF boxes. With these
two boxes a set of mechanisms is specified supporting various privacy and security fea-
tures. For example, content protection could be achieved using a Protection Content type
JUMBF box. Specifically, part of an image could be encrypted and placed inside a Pro-
tection Content type JUMBF box before embedded to the image. Access rules are also
supported and can be embedded in a separate JUMBF Box. That way, only authorized
users shall have access to the protected content.

There are more JPEG projects working around JUMBF standard (e.g. JLINK, JPEG
360, JPEG Snack). However, there is not yet a reference software showcasing JUMBF
functionality or any of its applications. Working towards that direction, JPEG has recently
released a new JPEG Systems part (i.e. Part 10) focusing on the implementation of such
software.

2.2 Coalition for Content Provenance and Authenticity (C2PA)

The C2PA [5] is a Joint Development Foundation project to collectively build an end-to-
end open technical standard to provide publishers, creators, and consumers with opt-in,
flexible ways to understand the authenticity and provenance of different types of media.
C2PA merges two separate initiatives, namely Adobe-led Content Authenticity Initiative
(CAI) [13] and Microsoft-led Project Origin [14].

C2PA has recently produced a new technical specification [6] that describes the technical
aspects of the C2PA architecture. Specifically, it defines a model for storing and accessing
provenance information about various formats of digital media (i.e. digital asset). This
provenance information consists of statements made by an actor which are called As-
sertions. Assertions are wrapped with additional information forming a claim. Then this
claim is digitally signed in order to ensure tamper-evident provenance information. The
aforementioned pieces of information form a C2PA Manifest. A C2PA Manifest consti-
tutes a point in the provenance history of a digital asset. All these points related to a
specific digital asset can be gathered into a C2PA Manifest Store.

Since a C2PA Manifest Store can be embedded inside the referenced digital asset, it is
defined as a JUMBF superbox. In fact, all the internal structures of a C2PAManifest Store
(e.g. C2PA Manifest, Assertions, Claim, Claim Signature) constitute a specific JUMBF
Box with its own Content Type. Furthermore, [6] defines the mechanisms to generate and
consume provenance information. These mechanisms ensure that provenance metadata
has not been tampered with. In addition, they ensure accountability in the sense that any
assertion made about a digital asset is eventually related to a specific actor.

15

2.3 JPEG Fake Media Requirements

Working to this direction, JPEG has recently launched a new initiative for discovering
use cases and requirements for addressing Fake Media [15]. The goal is to to create a new
standard that can facilitate a secure and reliable annotation of media asset creation and
modifications. This standard aims to cover use cases that refer to scenarios of malicious
intent (e.g. Misinformation and disinformation) as well as those of good faith (e.g. Media
creation and modification).

Based on the use cases identified, a set of requirements for the new standard has been
released and organized in the following categories:

• Media creation and modification descriptions.

• Metadata embedding and referencing.

• Authenticity, integrity, and trust model.

Recently, a call for proposals document has been issued from JPEG requesting contribu-
tors to provide tools and information regarding the proposed use cases and requirements.
For a contribution to be considered valid, it must cover a set of the requirements defined
in [15].

The work proposed in this project is planned to be submitted as a contribution to this
call for proposals as it covers a set of the defined requirements. In table 3, the set of
requirements covered by the proposed specification in section 4 is listed. The enumeration
of the requirements in table 3 is in line with the enumeration presented in [15].

In section 4.4 a more detailed discussion is provided about how these requirements are
met by the proposed specification.

16

Ref. No. Requirement

1.1
The standard shall provide means to describe how, by whom, where
and/or when the media asset was created and/or modified.

1.8
The standard shall provide means to keep track of the provenance
of media assets and/or of specific modifications.

2.3 The standard shall consider privacy of individuals and locations.

2.5
The standard shall provide means to explicitly denote anonymous,
obscured, or redacted information. If the information is not pro-
vided, then it is considered anonymized.

2.7 The standard shall be viable as a self-contained structure.

2.8
The standard shall provide means to verify the integrity of the
media asset by various hash (2.8.1) and signing (2.8.2) methods.

2.10
The standard shall be compliant with JPEG Privacy and Security
to provide means to secure media asset metadata, including prove-
nance information.

3.3
The standard shall provide means to verify the authenticity of me-
dia assets.

3.5
The standard shall provide meanest to verify the integrity of media
assets.

Table 3: JPEG Fake Media Requirements covered by the proposed specification

17

3 JUMBF Reference Software

The main goal of this section is to present the development of a project that showcases
the ability to model, generate and parse information expressed according to the JPEG
Universal Multimedia Box Format standard [11]. The libraries presented in this section
are part of the mipams-jumbf project. The entire codebase of the project is located at the
following github repository URL: https://github.com/nickft/mipams-jumbf.

The modular architecture of the proposed software allows for easier and wider support
of JUMBF Boxes defined in other standards. Currently, there are two libraries: the first
one is called jumbf-core and contains all the definitions related to the JUMBF standard
(i.e. ISO/IEC 19566-5) while the second one - which is called jumbf-privsec - contains the
JUMBF Boxes defined in scope of Privacy and Security standard (i.e. ISO/IEC 19566-4).

The libraries presented below are written in Java and specifically using Spring Boot
framework [16]. The main concept is to separate the data model definition with the classes
responsible for handling (i.e. parsing/generating) JUMBF Boxes. Regarding the latter
group of classes, they are implemented as Java Beans facilitating the dependency injection
between these services. Furthermore, depending on the application scenario, the developer
has the ability to explicitly define - in a fine-grain manner - the services (i.e. Java Beans)
that are important for her specific use case. This makes the library both lightweight and
robust.

The development of these two libraries have leaded to the submission of two input doc-
uments to the JPEG Systems specification. Specifically, the first input document [17]
presents the jumbf-core library while the second document [18] showcases how jumbf-
privsec could extend the functionality of the first library in order to support the JUMBF
Boxes defined in Privacy & Security standard. These two input documents has contributed
to the decision of JPEG Systems committee to issue a new part for the JPEG Systems
specification, focusing on the implementation of a reference software. The aim of the ref-
erence software is to - initially - showcase the applicability of the JUMBF standard and
eventually cover the JPEG Systems specification in its entirety (i.e. all the standards
under JPEG Systems).

Finally, it is worth mentioning that in order to verify the correctness of our software
a set of integration tests were executed against a parsing tool implemented by Content
Authenticity Initiative (CAI) [13]. Basically, this codestream parser by CAI (the github
repository of the tool is available here) receives a JPEG image as input and generates
a report with all its contents including the parsed JUMBF metadata. Consequently, the
tests consist of generating a set of images with JUMBF metadata using our software and
verified that they are parsed successfully by the CAI tool.

3.1 JUMBF Core Library

The jumbf-core library provides the means to generate and parse information that is stored
in JUMB Format. Furthermore, it defines an interface so that developers can extend its

18

https://github.com/nickft/mipams-jumbf
https://github.com/content-authenticity-initiative/codestream-parser

functionality and support additional JUMBF Box structures as specified in other JPEG
standards (e.g. Protection Box definition in ISO/IEC 19566-4).

In the first version of the library (i.e. jumbf-core-1.0), the JUMBF structure is stored
to a separate file using the ISO Base Media File Format (ISOBMFF). Thus, a new file
extension ”.jumbf” was introduced, containing a list (i.e. concatenation) of ISOBMFF
boxes. Each box corresponds to one JUMBF Box. This allows us to store the metadata
information separately from the media asset itself. However, in the revised version of
the library (i.e. jumbf-core-2.0), the embedding of JUMBF structure into the referenced
JPEG image codestream is supported as well. This is achieved by encapsulating JUMBF
metadata with APP11 segments as described in ISO/IEC 19566-5 standard. Version 2.0
of the jumbf-core library is in line with the second version of ISO/IEC 19566-5 which is
currently in Draft International Standard (DIS) under ballot status.

3.1.1 Box structure

In this section the classes that have been designed in order to support the data model
presented in ISO/IEC 19566-5 standard are specified. The core concept in this data model
is a Box.

To describe a Box structure in jumbf-core library two classes need to be specified: an Entity
class and a Service class. An Entity class contains the information regarding the fields
that are defined in the specific Box. In addition, all the functionality which is required to
parse/generate a particular box is included in its respective Service class. This allows for
a better separation of concerns in our software.

Furthermore, it is important that the different Content Types of a JUMBF Box are
defined. The number as well as the type of the Content Boxes inside a JUMBF Box
are specified from the Content Type UUID which is located in its Description box fields.
Consequently, an additional Content Type class hierarchy is designed. Each Content Type
class provides the means to parse and generate the necessary Content Boxes inside a
JUMBF Box.

As mentioned previously, a Box structure is wrapped with the ISOBMFF header. Specif-
ically, before writing the contents of a Box structure to a file, a set of bytes need to be
reserved in order to write the ISOBMFF header which consist of the following values

• The Length of the box (LBox): 4 Bytes

• The Type of the box (TBox): 4 Bytes

• The box length extension (XLBox): 8 Bytes

In figure 2, the entire Entity class hierarchy is depicted, as defined in jumbf-core-2.0.

19

Figure 2: Entity class hierarchy in mipams-jumbf project

The core of the Entity class hierarchy is the BoxInterface interface which defines two
methods, namely “Get the Box Type Id” and “Get the size of the Box”. In the next level
there is a BmffBox abstract class that defines the fields which correspond to the ISOBMFF
header fields. Subsequently, the Description box definition (e.g. DescriptionBox class) is
presented along with the fields that are updated in scope of the second edition of ISO/IEC
19566-5. With these definitions, the JumbfBox class can be implemented as a set of fields
consisting of exactly one DescriptionBox field, a list of BmffBox fields corresponding to the
Content Boxes according to the Content Type specified in DescriptionBox’s uuid field and
one PaddingBox field. Finally, in Figure 1, all the Content Box definitions are listed along
with their respective fields. The core module level consists of the box structures defined in
1st and 2nd edition of ISO/IEC 19566-5 while the Privacy and Security module contains
the box structures defined in scope of ISO/IEC 19566-4 standard (the latter boxes shall
be examined in a subsequent section).

It is worth mentioning that the validity of the content of the content boxes is out of scope
of the mipams-jumbf-2.0. It is up to the application that uses this library to evaluate
the content of a Content Box. Based on that, an abstract class is defined, namely Sin-
gleFormatBox, that contains a single “fileUrl” field which contains the URL to the file
containing the contents that should be included in a Content Box. As depicted in Fig-
ure 2, this abstract class is extended by the following Content Box classes: JSON, XML,
Contiguous Codestream (JP2C), CBOR and Binary Data Content boxes.

20

Apart from the Entity classes defined above, the respective Service class for each Box
need to be specified. Each Service should implement the methods to parse and generate
only the fields that are defined in its corresponding Box. In figure 3 the entire Service
class hierarchy is depicted.

Figure 3: Service class hierarchy in mipams-jumbf project

The structure seems similar to the Entity class hierarchy. Specifically, at the top level an
Interface exists, called BoxService, which specifies two methods: one for writing a Box
Entity to a file and one for instantiating a Box Entity by parsing a JUMBF structure
from a file. Next, the BmffBoxService abstract class contains the functionality to write
an ISOBMFF structure to a file. It is evident that at this level the BmffBoxService class
knows only how to handle the ISOBMFF headers of an Entity class. The way to handle the
ISOBMFF payload shall be specified by the corresponding BoxService class that extends
this BmffBoxService class. This is the reason BmffBoxService class marks the methods
“Write ISOBMFF Box Payload” and “Populate BMFF Box Payload” as abstract classes.
The remaining levels of the Core Module consist of the Services which specify how to
handle each Box defined in the Entity class hierarchy.

3.1.2 Content Type class hierarchy

As mentioned in section 3.1.1, a JumbfBoxService class provides the means to handle the
fields of a JUMBF Box. Notice that the DescriptionBoxService is always invoked when
implementing a JumbfBoxService. However, the set of BoxService classes that are needed
for the Content Box(es) depends on the Content Type of the JUMBF Box which is located
in the Description Box Entity “uuid” field. For instance, for a JSON Content type JUMBF
box the JumbfBoxService class will invoke - apart from the DescriptionBoxService - the
JsonBoxService class. However, this is not the case for an Embedded File Content type
JUMBF box which consists of two Content Boxes, namely an Embedded File Descrip-

21

tion Box and a Binary Data Box. In this example, the JumbfBoxService class will call
the EmbeddedFileDescriptionBoxService class as well as the BinaryDataBoxService class.
Consequently, in addition to the presented classes, it is required to define a family of
Content Type classes that provide the means to handle the set of Content Boxes that are
required according to the Content Type UUID. The Content Type hierarchy is depicted
in figure 4.

Figure 4: Content Type class hierarchy in jumbf-core-2.0

At the top level of figure 4, there is the core ContentTypeService interface which defines
three important functionalities that each Content Type class shall implement: “Get the
Content Type UUID”, “Parse the JUMBF Content Boxes from the JUMBF file” and
“write the JUMBF Content Boxes to a JUMBF file”.

At the second level, all the Content Types supported in jumbf-core-2.0 are displayed. In
each of the ContentType services the respective BoxService classe(s) required to handle
the necessary Content Boxes are specified. It is worth mentioning that in scope of ISO/IEC
19566-5 standard the Embedded File Content type JUMBF box is the only Box definition
that requires more than one Content Box.

3.1.3 Embedding JUMBF metadata to a JPEG image

In scope of jumbf-core-1.0 the generated JUMBF boxes were able to be stored in a separate
file with .jumbf extension. However, since this is not yet standardized, it has been decided
that from jumbf-core-2.0 JUMBF metadata need to be embedded in a digital asset as
well. Thus, two additional services have been defined in the second version of jumbf core,
namely JpegCodestreamGenerator and JpegCodestreamParser. With these two services
it is possible to parse and embed JUMBF metadata inside a JPEG XT and JPEG 1
encoded images. For the scope of this project it is necessary to handle only JUMBF

22

metadata inside the image; the implemented parser and generation services skip do not
handle the rest of the information inside the image codestream.

3.1.4 Example: Generating a JUMBF file

This section illustrates an example where an Embedded File Content type JUMBF box
is generated and stored into a separate ”.jumbf” file. Specifically, focus will be given on
the invocations made by the reference software (i.e. jumbf-core-2.0 library) during the
generation of a JUMBF file. Initially, it is assumed that there is already an instance of a
JumbfBox Entity class that describes the Embedded File Content type JUMBF box. The
output byte stream is logically grouped in figure 5.

Before the method invocations are listed, it is worth noting that in figure 5 it is evident
which are the bytes that correspond to the ISOBMFF header and payload. Moreover, each
orange box corresponds to a set of 4 bytes while the blue boxes are of variable length.
The label of each box contains the Box Type that the grouped bytes are referring to
as well as the exact content of each box. For example, the first box corresponds to the
ISOBMFF LBox header of the generated JUMBF box (i.e. the JUMBF box type is ‘jumb’
or 0x6A756D62).

Figure 5: Embedded File Content type JUMBF box stored in a JUMBF file

The algorithm to generate a JUMBF file begins from the JUMBFBoxService class:

1. First, JumbfBoxService writes the ISOBMFF header bytes (JUMB LBox and
TBox) through the functionality extended by the BmffBoxService class.

2. JumbfBoxService calls the DescriptionBoxService to proceed with its box byte
generation.

3. DescriptionBoxService writes the ISOBMFF header bytes (JUMD LBox and
TBox) through the functionality extended by the BmffBoxService class.

4. DescriptionBoxService writes its fields (e.g. Content Type UUID, Toggle and
other optional fields). The operation returns back to the JumbfBoxService.

5. JumbfBoxService reads the Content Type UUID from the Description Box and
chooses the corresponding BoxService to proceed with the JUMBF Content Box byte
generation. In this example the correct service is the EmbeddedFileContentType.

6. EmbeddedFileContentType calls the EmbeddedFileDescriptionBoxService to

23

proceed with its box byte generation.

7. EmbeddedFileDescriptionBoxService writes the ISOBMFF header bytes (i.e.
BFDB LBox and TBox) through the functionality extended by the BmffBoxService
class.

8. EmbeddedFileDescriptionBoxService writes its fields, namely Content Type
UUID, Toggle along with other optional fields. The operation returns back to the
EmbeddedFileContentType.

9. EmbeddedFileContentType calls the BinaryDataBoxService to proceed with its
box byte generation.

10. BinaryDataBoxService writes the ISOBMFF header bytes (BFDB LBox and
TBox) through the functionality extended by the BmffBoxService class.

11. BinaryDataBoxService writes the bytes specified in the Binary Data Box struc-
ture. The operation returns back to EmbeddedFileContentType.

12. EmbeddedFileContentType finishes its operation which returns back to Jumbf-
BoxService.

13. JumbfBoxService finishes its operation and the final .jumbf file has been generated
successfully.

3.2 JUMBF Privacy & Security (privsec) Library

The primary goal of this section is to describe the JUMBF Box structures that are de-
fined in the ISO/IEC 19566-4 standard. In addition, this section consists a proof of work
that the structure defined in section 3.1 is extensible allowing Box definitions from other
standards to be specified on top of the JUMBF Core library. The following sections focus
on the implementation of the two Box structures defined in ISO/IEC 19566-4, namely the
Protection and the Replacement boxes.

The extension of the jumbf-core library is implemented in a separate library called jumbf-
privsec-1.0. This happens because the goal of jumbf-core library is to provide the foun-
dations for other standards to implement their own JUMBF Box structures in a separate
jumbf library. This allows the user (i.e. developer) to select only those jumbf libraries that
define the Box structures that are necessary for her application. This is crucial both for
performance reasons (i.e. less services instantiated) as well as for providing a lightweight
library containing only the necessary dependencies.

3.2.1 Protection box

As per ISO/IEC 19566-4, a Protection box is defined as a JUMBF box with a new Content
Type UUID consisting of two Content Boxes, namely a Protection Description box and
a Binary Data box. Consequently, jumbf-core library needs to be extended in order to
support the new Protection Description box Entity and Service classes and define the
new Protection ContentType class.

24

Regarding the Protection Description box, first, it is required that its Entity class is
defined by specifying the necessary fields. Since each Box structure is wrapped with the
ISOBMFF headers the newly defined ProtectionDescriptionBox class needs to extend the
BmffBox class as illustrated in the ”Privacy & Security module” in figure 2.

Subsequently, the Service class needs to be defined. It provides the methods to parser and
generates the fields that reside in a Protection Description box. Specifically, as shown in
figure 3, the ProtectionDescriptionService class extends the functionality of BmffBoxSer-
vice class.

Finally, all the necessary boxes are specified in order to define the new Protection Content
Type. As explained in section 3.1, a ContentType class provides the means to parse/gen-
erate the content boxes of a JUMBF box. Depending on the Content Type UUID that
resides in the Description box, the JumbfBoxService class decides the proper ContentType
class to handle the JUMBF Box Content Boxes. The definition of the ProtectionContent-
Type class is depicted in the ”Privacy & Security module” in figure 4. As in the case of
EmbeddedFileContentType class, the ProtectionContentType class contains two services
corresponding to two Content Boxes: one for handling the Protection Description box and
one for the Binary Data box.

3.2.2 Replacement box

This section focuses on the Replacement Content type JUMBF box definition supporting
all the different types of replacement defined in ISO/IEC 19566-4. In general, the Content
Box set of a Replacement Content type JUMBF box contains one Replacement Description
Box and one or more Replacement Data Boxes, depending on the type of replacement.
Specifically, there are four different types of replacement:

• Box Replacement : Replacing a box referenced by either an offset or a label with a
list of one or more boxes specified in the Replacement Data Box section.

• APP Replacement : Replacing an APP marker segment that is referenced using the
offset in the file with the contents (i.e. one or more app segments) of exactly one
Replacement Data box which is a Binary Data Box.

• ROI Replacement : Replacing a region of interest (ROI) - as specified by the corre-
sponding offset - in the parent image with the content of exactly one Replacement
Data box which is a Contiguous Codestream box.

• File Replacement : Replacing the entire file where this Replacement box resides with
the content of exactly one Replacement Data box which is a Contiguous Codestream
box.

First of all, a new box is specified, namely the Replacement Description Box. Hence, a
new class ReplacementDescriptionBox is created extending the BmffBox class as shown in
the ”Privacy & Security module” in figure 2. Each replacement type defines a different set
of parameters. However, since the resulting Replacement Content type is the same for all
replacement types (i.e. single Content Type UUID), a single ReplacementDescriptionBox
class is specified and different parameter handler classes are defined, handling the param-

25

eters of each replacement type. Specifically, as shown at the bottom of figure 2, a field of
type ParamHandlerInterface is included in the Replacement Description Box Entity class.
These ParamHandlerInterface classes - apart from specifying the exact parameters of each
replacement type - provide the functionality to parse and generate the specific parameter
fields to bytes in order to be later included in the Replacement Description Box JUMBF
structure. The class inheritance of the parameter handling classes is depicted in figure 6.

Figure 6: Replacement Description box parameter handling class inheritance

Subsequently, it is required to specify the methods that parse and generate a Replacement
Description box to a JUMBF structure, namely the ReplacementDescriptionBoxService
class (figure 3). Now that all the necessary boxes are implemented, the Replacement Con-
tent type can be specified as depicted in figure 4. It is worth mentioning that there are
two services residing in the ReplacementContentType class. The first one is responsible
for handling the Replacement Description box while the other one, namely DataBoxHan-
dlerFactory class, provides the means to write the corresponding Replacement Data Boxes
according to the replacement type.

Specifically, the DataBoxHandler interface, as described in figure 7, provides the means to
parse/generate the Replacement Data Boxes of each replacement type. For the selection
of the correct DataBoxHandler, a new DataBoxHandlerFactory class is defined that acts
based on the replacementTypeId field provided by the Replacement Description Box.

Figure 7: Replacement Data box handling class inheritance

26

Finally, in each DataBoxHandler class there is a service field assigned while the supported
Replacement Data Boxes consist of boxes that are already defined in scope of the ISO/IEC
19566-5. Thus, the services to parse/generate the Replacement Data Boxes have already
been defined in scope of the jumbf-core library.

27

4 Specification of JPEG Fake Media

This section presents the formalisation of the specification proposed in this project in
scope of answering to the JPEG Fake Media call for proposals [7]. This specification
is merely based on the technical specification introduced by C2PA [6]. By focusing the
annotation of provenance metadata solely on JPEG images, our specification allows for
simplified data model and operations. But more importantly, the added value that this
specification suggests on top of C2PA architecture, is the provision of the use cases that
require the protection of a set of metadata that might threaten the privacy of an actor.
This can be achieved by including the Protection Content Type JUMBF Box as a sup-
ported Content Type to express an assertion (i.e. in C2PA, assertions are represented as
one of the following Content Types: JSON, CBOR, Embedded File).

In scope of this specification, new JUMBF Box Content Types shall be defined in order to
express provenance information to a digital asset. These new Content Types are defined
in a library called mipams-fake-media-1.0 and depend on Box structures defined in both
jumbf-core-2.0 and jumbf-privsec-1.0 libraries. The set of Content Type JUMBF Boxes
are presented in table 4. In the following sections each of these structures is explained
thoroughly.

Table 4: Provenance JUMBF Box definitions

Box
Name

Label JUMBF Type Explanation

Manifest
Store

mpms.
provenance

0x6D707374-
C65D-11EC-9D64-
0242AC120002

The Manifest Store box
shall contain at least one
Manifest box.

Standard
Manifest

[Manifest UUID]
0x6D70736D-
C65D-11EC-9D64-
0242AC120002

The Standard Manifest box
shall contain one Claim,
one Claim Signature and
one Assertion Store and
optionally a Credentials
Store.

As for the Assertion Store,
a Standard Manifest box
shall contain at least one
content binding assertion.

28

Update
Manifest

[Manifest UUID]
0x6D70756D-
C65D-11EC-9D64-
0242AC120002

The Update Manifest box
shall contain one Claim,
one Claim Signature and
one Assertion Store and
optionally a Credentials
Store.

As for the Assertion
Store, an Update Manifest
box shall contain exactly
one ingredient assertion
that:
a includes a reference to
that existing C2PA Mani-
fest that is being updated
and

b has the value ”parentOf”
for the relationship field.

Claim
mpms.
prov.
claim

0x6D70636C-
0011-0010-8000-
00AA00389B71

The Claim box contains
only one CBOR Content
type box corresponding to
the claim structure as de-
scribed in section .

Claim
Signature

mpms.
prov.
signature

0x6D706373-
0011-0010-8000-
00AA00389B71

The Claim Signature box
contains only one CBOR
Content type box to the
claim signature structure as
described in section .

Assertion
Store

mpms.
prov.
assertions

0x6D706173-
C65D-11EC-9D64-

The Assertion Store box
contains a list of JUMBF
super boxes corresponding
to the assertion boxes as
specified in section .

Credentials
Store

mpms.
prov.
credentials

0x6D707663-
0011-0010-8000-
00AA00389B71

The Credentials Store box
contains only one JSON
Content Type box corre-
sponding to the W3C cre-
dential of a user (section).

29

4.1 Data model

4.1.1 Assertion

An assertion is any provenance statement that an actor wants to securely include in
the metadata of the JPEG image. An assertion is represented by a JUMBF Box, whose
Content Type can be:

• CBOR [19],

• JSON,

• Embedded File for the case of a thumbnail assertion, or

• Protection in case an actor decides to encrypt the content of an assertion

The supported assertions needs to cover most of the provenance metadata that an actor
might want to embed. These assertions range from direct modifications to a digital asset,
to location metadata and digital rights. In table 5, a list of the supported assertion types
is presented, originating from different standards like: C2PA, XMP, EXIF.

Table 5: Summary of supported assertions

Assertion Type Assertion Label Origin
Content Binding mpms.prov.binding C2PA
Actions mpms.prov.actions C2PA, XMP

Thumbnail
mpms.prov.thumbnail.auto
or
mpms.prov.thumbnail.manual

C2PA

Ingredient mpms.prov.ingredient C2PA
EXIF stds.exif EXIF

Subsequently, a graphical design of how an Assertion JUMBF Box should look like is
depicted in figure 8.

Figure 8: Assertion JUMBF Boxes

30

As observed in the above figure, TOGGLE is set to 00010011. According to ISO/IEC
19466-5, it means that a Private Field is present (3rd Most Significant Bit), the JUMBF
Box can be requested and the label field exists in the Description box. Specifically, the
label field is a string corresponding to the ”Assertion Label” column presented in table
5. This label shall help the application understand the type of assertion that the Content
Box contains.

Additionally, to add entropy to the hashing process a Description box’s Private field is
included that acts like a salt (i.e. a random 16 byte number). As defined in the subsequent
subsections it is important that the hash of the Assertion JUMBF Boxes is calculated in
order to verify their integrity. Thus, by using the Private field, it is likely that two assertion
instances describing an identical modification in a digital asset won’t have the same hash
digest.

Regarding the Protection Box, it can be applied in the use cases where the producer wants
to protect (i.e. encrypt) a subset of the provenance metadata before sharing a digital asset.
Depending on the use case, access rules can be also applied accompanying the Protection
Box.

In the following subsections all the types of assertions are described in detail.

4.1.1.1 Content Binding. This assertion describes the binding between a digital
asset and its manifests. Specifically, this assertion should contain:

• A description of the hash algorithm (e.g. “sha256”)

• A padding string (if needed)

• The hash of the digital asset

• A description string (e.g. “Hashing the content of the image by stripping its prove-
nance metadata”).

4.1.1.2 Actions. An actions assertion shall contain a list (e.g. a CBOR list) of the
different actions that directly affect the digital asset. Each element of the list shall have
a label specifying the type of the action. In table 6, all the supported action types are
listed.

Table 6: Supported Action Types

Action Type Label Origin Explanation
Convert mpms.prov.converted XMP
Copy mpms.prov.copied XMP
Create mpms.prov.created XMP
Crop mpms.prov.cropped XMP
Edit mpms.prov.edited XMP
Filter mpms.prov.filtered XMP
Format mpms.prov.formatted XMP

31

Version update mpms.prov.version updated XMP
Print mpms.prov.printed XMP
Publish mpms.prov.published XMP
Manage mpms.prov.managed XMP
Produce mpms.prov.produced XMP
Resize mpms.prov.resized XMP
Save mpms.prov.saved XMP

Place Ingredient mpms.prov.placed ingredient C2PA
Added/Placed an in-
gredient into the asset.

Transcode mpms.prov.transcoded C2PA

A direct conversion of
one encoding to an-
other, including reso-
lution scaling, bitrate
adjustment and en-
coding format change.

Repackage mpms.prov.repackaged C2PA
A conversion of one
packaging or container
format to another.

Unknown mpms.prov.unknown C2PA

Something hap-
pened, but the
claim generator can-
not specify what.

Note: If any of the mp.placed, mp.transcoded, mp.repackaged, mp.unknown actions is
used, it is compulsory that there exists a reference to a mp.ingredient assertion specifying
which is the parent digital asset. The contents of an action assertion shall be serialized
with CBOR format and are described below:

• Action: The type of the action as described in ”Action Type” column in table

• Date: the time when the assertion was made. It might be different from the date
where the claim is made.

• Metadata: A string providing additional information related to the action.

• Software Agent: A string descriptor related to the application that performed this
type of action

4.1.1.3 Thumbnail. A thumbnail assertion provides an approximate visual repre-
sentation of the asset at a specific event in the life cycle of an asset. This assertion is
expressed as an Embedded File Content type JUMBF box. The information that need to
be specified for this assertion is the filename of the thumbnail, the media type and the file
itself which shall be embedded in the Provenance Metadata. The label of this assertion -
which corresponds to the label of the Description box of the Embedded File Content type
JUMBF box - is ”mpms.thumbnail”.

32

4.1.1.4 Ingredient. In many scenarios, an actor does not create a new asset from
scratch; instead, she includes other existing assets to create her work - either as a derived
asset, a composed asset or an asset rendition (i.e. rendering the digital asset in a different
format or quality). These existing assets are called ingredients and they could carry their
own provenance history as well.

An ingredient assertion should contain:

• A title for the ingredient. For instance it could be the name of the ingredient asset.

• The format of the ingredient (Media Type)

• A uniqueID that unambiguously identifies the ingredient digital asset.

• The relationship that the ingredient has with the examined digital asset. The sup-
ported relationship types are: ”parentOf” and ”componentOf”.

• (Optional) A URI reference to the manifest of the ingredient digital asset

• (Optional) A thumbnail URI Reference to the thumbnail of the ingredient

• (Optional) Metadata regarding the ingredient itself.

4.1.1.5 EXIF metadata. The Exchangeable image file format (EXIF) is a common
International standard format for storing metadata as part of an image. EXIF specification
defines a set of tags related to various metadata related to assets (e.g. images, audio
files). EXIF metadata categories range from image data characteristics (e.g. Color space
transformation matrix coefficients) to image data structure (e.g. Artist, Copyright holder)
and copyright information.

EXIF metadata can be found embedded in a digital asset. However, they can be easily
stripped our modified without the permission of the image owner or even without knowing
that such a modification has ever taken place. By defining an assertion type for EXIF
metadata, it is possible for the provenance producers to specify the changes and ensure
that some of this metadata won’t be tampered with.

In addition, EXIF metadata might contain information that could raise privacy concerns.
For instance, it is quite common that users of social media upload a picture, taken from
their mobile phone, containing the GPS location information. Thus, the proposed spec-
ification should allow the possibility to redact or control the access of such information
to the users that consume the provenance information of the shared digital asset. EXIF
metadata constitutes the first assertion type introduced in the specification where both
redaction and encryption functionality is supported.

EXIF metadata can be modeled as list of key-value pairs (e.g. ”Exif.TagName”: ”Ex-
ampleTagValue”). Consequently, a JSON Content type JUMBF box could contain the
EXIF metadata that the provenance producer chooses to assert in a provenance claim.
In fact, it is highly recommended that the provenance producer application stores the
EXIF metadata using the JSON-LD schema following the recommendations from XMP
[20]. This would allow for a common structure of EXIF representation which would result
in wider adoption of the proposed specification.

33

4.1.2 Assertion Store

Assertion Store is the JUMBF box with label ‘mpms.prov.assertions’ and Content Type
UUID: 0x6D706173-0011-0010-8000-00AA00389B71. It should contain a list of all the
Assertion JUMBF Boxes that shall be included in the claim.

In addition, a Manifest Producer has the ability to apply access rules in some Assertions.
Hence, each of these Assertion JUMBF Boxes should be replaced by a Protection Box
along with a JUMBF Box containing the exact access rules that shall be enforced. For in-
stance, this external JUMBF Box should be a XML Content type JUMBF box containing
the access rules using XACML [21].

Note: It is not allowed to encrypting Assertions that describe a major change in the asset.
In other words, Protection Box representation is not applicable for assertions of type
Action (see Section 4.1.1.2); it is applicable for EXIF metadata assertion.

4.1.3 Claim

Before defining the structure of a Claim, it is necessary that a new structure is defined. In
Claim and Assertions (e.g. Ingredient Assertions) JUMBF Boxes there might be the need
to reference another JUMBF box. This reference is achieved using the request definitions
specified in ISO/IEC 19466-5. Specifically, the format is a URI composed of the following
parts:

• A prefix stating that the URI is pointing at a JUMBF Box inside the same Manifest
Store.

• The manifest unique Id number of the Manifest Content type JUMBF box that the
referenced JUMBF Box resides.

• The label of each JUMBF box that wraps the referenced JUMBF box

An example of such a URI is depicted in listing 2. In this example, a reference is made to
an Action assertion JUMBF Box located inside the Manifest Content type JUMBF box
with label f977d216-ca0b-4e29-9298-89c8368e5cb9.

1 self#jumbf=mpms/urn:uuid:f977d216 -ca0b -4e29 -9298 -89 c8368e5cb9/mpms.

assertions/mpms.prov.converted

Listing 2: Assertion URI

To ensure integrity - in the sense that the referenced JUMBF Box has not be tampered
with after the point of the referencing action - a hash of the JUMBF bytestream needs
to be computed. From now on, the set of the URI along with the hash of the referenced
JUMBF Box and the hash algorithm used is called URI Reference.

A claim contains the following entities:

• a list of URI references of the assertions residing inside the Assertion Store,

• the URI reference pointing to the Claim Signature (see section 4.1.4),

34

• list of redacted assertions: a list of URIs mentioning the label of the Description box
of those assertion JUMBF Boxes that were redacted from the provenance history of
the digital asset,

• list of URIs mentioning the label of the Description Box of those assertion JUMBF
Boxes that are protected (i.e. encrypted) inside the assertion store,

• Claim Generator description: a string that specifies the MIPAMS module along with
the specific version where this claim is generated

A claim is represented by a JUMBF box with label ‘mpms.prov.claim’, Content Type
UUID: 0x6D70636C-0011-0010-8000-00AA00389B71 and contains one JUMBF box of
type (cbor).

4.1.4 Claim Signature

The actor (i.e. the producer), who produces a Claim, needs to digitally sign the Claim
Content type JUMBF box bytestream and include the digital signature inside the Claim
Signature. In addition a Claim Signature shall also include the public key that a consumer
shall use in order to validate the signature.

Finally, it is of paramount importance to correspond the identity of a creator with the
signature that has been generated. This can be achieved through the generation of a
digital certificate for each Producer actor. This certificate should be generated using the
key pair - specifically the private key - that is used by the Provenance Producer to sign
the Claim. The generation of such certificates implies the need for establishment of trust
anchors around the application.

In scope of RFC 8152 [22], there has been developed a standard way to structure the
aforementioned information using CBOR serialization. This scheme is called CBOR Ob-
ject Signing and Encryption (COSE) and this should be the standard way to express a
Claim Signature content. A claim signature is represented by a JUMBF box with label
‘mpms.prov.signature’, Content Type UUID: 0x6D706373-0011-0010-8000-00AA00389B71
and contains one JUMBF box of type (cbor).

4.1.5 Credential Store

An application might want to correspond a specific actor with the assertions that are being
registered in the provenance history of a digital asset. This doesn’t mean that this actor
is necessarily the one that generates the claim or owns the asset. It is a way to provide
additional information for the actor that is related to the statements that are being
asserted. The way to express this information is through W3C Verifiable Credentials [23]
which provide the ability to specify information (i.e. statements/claims) about an actor
and can be verified by a provenance consumer.

For this purpose a new JUMBF Box is introduced. A Credential Store (VCStore) is a
JUMBF box that shall contain one or more JSON Content Type boxes (ISO 19566-5,
Annex B.4). It shall not contain any other type of JUMBF box or superbox. It shall have

35

a label of ‘mpms.prov.credentials’ and a Content Type UUID: 0x6D707663-0011-0010-
8000-00AA00389B71.

When storing W3C Verifiable Credentials in a VCStore, each one shall be labelled with
the value of the id field of the credentialSubject of the VC itself. Since the id is guaranteed
to be unique, this ensures that the URI to that credential will be unique.

4.1.6 Manifest

A manifest contains all the information fully describing a single point of the provenance
history of an asset. It contains the following information

• Assertion Store: A JUMBF superbox containing all the assertion JUMBF boxes

• Claim: A JUMBF of CBOR Content type.

• Claim Signature: COSE Structure containing the signature of the actor (Timestamp
is also provided)

• Optionally, the Actor’s Credentials to bind its identity with the the asset changes
metadata

There are two types of Manifest entities: Standard and Update Manifests.

Standard Manifest means that the actor is modifying the asset. However, there are cases
where an actor doesn’t modify the asset but simply wants to include additional metadata
(e.g. EXIF metadata). In that case an Update Manifest is used. Active Manifest is defined
as the latest (i.e. most recent) manifest that describes the current version of an asset.

Since there are two different types of Manifest Entities two different Content types shall
be defined. The Standard Manifest shall be a JUMBF box with Content Type UUID:
0x6D70736D-0011-0010-8000-00AA00389B71. Similarly, for the case of Update Manifest,
the respective JUMBF box shall have a Content Type UUID: 0x6D70756D-0011-0010-
8000-00AA00389B71. In both cases, the label shall be a uuid uniquely identifying the
digital asset. Its format shall be ”urn:uuid:¡uuid string¿”.

4.1.7 Manifest Store

Manifest Store is defined as the JUMBF superbox that contains a list of all the Manifest
entities of a specific asset. It shall have a label ‘mpms.prov and Content Type UUID:
0x6D707374-0011-0010-8000-00AA00389B71.

A Manifest can reference other Manifest JUMBF boxes in the Manifest Store. The final
structure of a Manifest Store can be depicted in the two following figure (figure 9):

36

Figure 9: Component hierarchy (From Manifest Store to Assertion)

In the “Multiple manifests” example it is apparent how to express a chain of references
describing the entire provenance history of an asset, where older manifests constitute
ingredients of the active manifest.

4.2 Trust model

The definition of the trust signals that this specification requires are of outermost im-
portance. In fact, none of the integrity and non-repudiation characteristics of a Manifest
Content type JUMBF box have a meaning, if the identity of the signer is not assured. As
specified in section 4.1.4, a digital certificate needs to be issued in order for an actor to
generate provenance information. By digitally signing the claim using the same private
key related to the certificate, a consumer can validate the identity of the actor who gen-
erates the assertions. This implies that as part of the operations described in the section
4.3 it is imperative to include the validity of the embedded certificates.

Thus, for any provenance application that follows this specification it is important to
define the entities that are responsible for controlling/authorizing the ability to produce
provenance information. These entities are called trust anchors. In this case, the trust
anchors can be conceived as the Certification Authorities (CA) that provide the means
to generate certificates for provenance producers as well as the interface which allows
applications to query and validate the correctness of a certificate.

As clearly stated in C2PA technical specification, all the trust signals have as final desti-
nation the ”Signer” which is the provenance producer. This trust relationship is depicted
in figure 10

37

Figure 10: Trust relationship between provenance actors and entities

A simplified example of such a trust model could be applied in the case of journalism. A
set of big journalist organizations around the world could play the role of trust anchors.
All the international and national news agencies should be registered in at least one of
them. A relationship of trust is established between them. News agencies could play the
role of intermediate CAs that are authorized by the root CA to issue certificates for their
entities. Eventually, this builds an entire chain of trust at the bottom of which there are
the journalists.

To sum up, with these certifications chains it is possible to correspond the provenance
claims with specific actors. The implementation of the specification presented in section
5 does not handle the validity check of certificates (e.g. check certificate’s signature, ex-
piration status, revocation status). It is assumed that the validation of the producers’
certificates is handled by the application that uses the mipams-fake-media library.

4.3 Operations

This section describes the logic of the two core operations that a user can perform with
provenance metadata. Specifically, two algorithms shall be presented, one related to con-
suming and one to producing provenance metadata. It is worth mentioning that in both
algorithms the provenance information is provided separately to the digital asset. The
goal is to support use cases and applications that embed provenance information into
the digital asset as well as those that store this metadata outside of the digital asset.
Regarding the first case, the specification assumes that the application shall handle the
extraction and stripping of the provenance metadata from the digital asset before using

38

the following algorithms.

4.3.1 Consume provenance metadata

The first operation defines how to consume provenance metadata related to a digital asset.
Provenance metadata is stored in the form of a Manifest Store Content type JUMBF box
as defined in section 4.1. Depending on the use case the consumer application might select
to consume the entire provenance history that is stored in the asset (i.e. all the Manifest
Content type JUMBF boxes inside the Manifest Store) or simply the Active Manifest
Content type JUMBF box assuming that the rest of the provenance chain is already
validated. In general, validating a Manifest consists of validating its Claim Signature
as well as the integrity of the assertions through the assertion references located in the
Claim. In the case of a Standard Manifest, validation includes also the validation of
the content binding assertion that verifies the connection between the Manifest and the
digital asset. As explained in section 4.1.1.1, in the case where the Active Manifest is
an Update Manifest then the content binding assertion shall be retrieved from the first
parent Standard Manifest.

Throughout this operation, the term ”digital asset” refers to the image codestream with-
out the Manifest Content type JUMBF box. It is of paramount importance that every
time the digest of an asset is calculated, the provenance metadata bytestream is not taken
into consideration. Consequently, the application that uses this algorithm shall strip the
provenance metadata beforehand. With this approach it is possible to avoid the circular
dependency where the digest of the asset assumes that the provenance information is
finalized and embedded into the asset. However, for this to happen, the digest must have
been already computed.

Supposing that the consumer selects to fully inspect the provenance history of an asset, it
is implied that the Active Manifest contains Ingredient assertions referencing Ingredient
Manifests. These manifests need to be inspected as well and this procedure is performed
recursively until all the provenance chain is validated. The algorithm summarizing the
aforementioned steps is depicted in algorithm 1.

39

Algorithm 1 Consume Provenance Metadata

1: procedure Inspect-Provenance(manifest store, asset, is full inspection)
2: active manifest← locateActiveManifest(manifest store)
3: is standard← isStandardManifest(active manifest)
4: if is standard then
5: verifyManifestIntegrity(active manifest)
6: verifyContentBinding(active manifest, asset)
7: else
8: while not is standard do
9: manifest← locateParentManifest(active manifest,manifest store)

10: is standard← isStandardManifest(manifest)
11: verifyManifestIntegrity(manifest)

12: verifyContentBinding(manifest, asset)

13: to be checked← []
14: if is full inspection then
15: to be checked← addComponentIngredients(active manifest)
16: while isEmpty(to be checked) do
17: manifest reference← to be checked.next()
18: manifest← locateManifest(manifest reference,manifest store)
19: verifyManifestIntegrity(manifest)
20: to be checked← addComponentIngredients(manifest)

21: result← active manifest
22: return result
23: procedure Verify-Manifest-Integrity(manifest)
24: validateClaimSignature(manifest)
25: validateAssertionIntegrity(manifest)

40

4.3.2 Produce provenance metadata

Producing provenance metadata corresponds to any addition of provenance point in the
history of a digital asset. This means that there are multiple use cases that need to be
taken into consideration. First of all, the algorithm starts by providing the current state
of an asset along with its provenance history that has been recorded so far. On top of
that, the producer application that calls the algorithm, needs to provide the asset after
the new modifications have taken place as well as the assertions that describe them.
These assertions could be any assertion out of the ones defined in section 4.1.1. The
assertions must be provided as a list of JUMBF Boxes ready to be embedded in the
Assertion Store. This allows the producer applications to perform any encryption and
apply any access rules policy they fit proper for their use case. Regarding the redaction
process, the producer application shall provide a set of URIs referencing the assertions
that shall be redacted. These references point to assertions located in ingredient manifests
inside the asset’s manifest store. Not all assertion types can be redacted. Specifically, the
assertions that are able to be redacted are the ones that do not directly affect the content
of the image. For instance, an action assertion is not allowed to be redacted while an
EXIF assertion is. Finally, in case the producer application wants to provide Verifiable
Credentials corresponding the assertions to an entity, the Credential Store Content type
JUMBF box must be provided to the algorithm in advance.

Now that all the possible input parameters have been described, the algorithm starts by
checking whether there is provenance history registered to the digital asset describing its
modifications so far. In this case, before the new manifest is produced it is crucial that
at least the current active manifest of the digital asset is verified to ensure that the new
manifest is not added on top of a corrupted or malformed provenance chain. In addition,
it is also important to verify that the assertions that compose the new claim contain
the proper parent ingredient assertion referencing (i.e. URI reference) the current active
manifest.

Next, the new manifest shall be produced. Depending on the type of the manifest (i.e.
depending on the assertions provided), a content binding assertion might be needed in
order to relate the new manifest to the revised digital asset. Since all the assertions are
provided in the form of JUMBF Boxes, they need to be wrapped with an Assertion Store
Content type JUMBF box. Then the Claim Content type JUMBF box shall be constructed
consisting of all the fields described in section 4.1.3. Subsequently, the producer application
shall be able to digitally sign the constructed Claim using the private key that is used
to generate the digital certificate corresponding to the producer actor who builds this
provenance point. All these boxes - along with the Credentials Store box, provided that
the producer wants to include one - are wrapped inside a new Manifest Content type
JUMBF box which constitutes now the latest provenance point in the digital asset’s
provenance chain.

Moreover, the algorithm needs to take into consideration the use cases where the producer
includes a set of ingredients assets that have their own provenance history. In that case,
the active manifest of these ingredient manifest stores are validated and included in the
digital asset’s manifest store.

41

Finally, now that the manifest store is updated, the algorithm needs to handle the ”Redact
assertions” request. This request is related to the ”redactable” assertions of the ingredient
manifests that reside inside the Manifest Store Content type JUMBF box. The redacted
assertions, that are already included in the new active manifest’s claim, need to be removed
from the ingredient assertions of the entire provenance history of the digital asset. The
manifest store is, eventually, complete and the summarized algorithm of producing it is
depicted in algorithm 2.

Algorithm 2 Produce Provenance Metadata

1: procedure Produce-Provenance(CA,NA,MS,AL,RL, IM, signer, CS)
2: // CA: Current Asset, NA: New Asset,
3: // MS: Manifest Store, AL: Assertion List,
4: // RL: Redaction List, IM: Ingredient Manifest List,
5: // CS: Credentials Store
6: if MS exists then
7: Provenance− Consume(CA,False) ▷ See Algorithm 1
8: active manifest← locateActiveManifest(MS)
9: checkParentIngredientAssertion(AL, active manifest)

10: else
11: MS ← createEmptyManifestStore()

12: new active manifest← Produce−Manifest(NA,AL,RL, signer, CS)
13: if IM exists then
14: validateUriReferences(AL, IM)
15: MS ←MS + IM

16: if RL exists then
17: MS ← performRedaction(MS,RL)

18: MS ←MS + active manifest
19: return MS
20: procedure Produce-Manifest(asset, AL,RL, signer, CS)
21: manifest id← issueNewUuid()
22: manifest type← discoverManifestType(AL)
23: if manifest typeis′StandardManifest′ then
24: ABox← buildAssertionStoreWithContentBindingAssertion(asset, AL)
25: else
26: ABox← buildAssertionStore(AL)

27: CBox← buildClaim(manifest id, ABox,RL)
28: CSBox← buildClaimSignature(signer, CBox)
29: manifest← buildManifest(ABox,CBox,CSBox,CS)
30: return manifest

4.4 Fulfillment of JPEG Fake Media Requirements

This section explains how the proposed specification covers the set of JPEG Fake Media
requirements listed in Table 3.

42

First and foremost, with the definition of various assertions and the ability to specify
additional metadata around them (e.g. date, metadata, software agent fields), the pro-
posed specification meets requirement R1.1 related to providing description about the
modifications that are taking place in a digital asset.

Secondly, it offers the ability to keep track of the provenance history of a digital asset
either by embedding the Manifest Store Content type JUMBF box in the digital asset
itself or by storing it in a Manifest Repository on the cloud (R1.8).

Next, the fact that jumbf-core library supports the extraction of JUMBF metadata in
a separate .jumbf file, it allows for Provenance information to be stored separately as a
self-contained structure (R2.7).

By allowing Protection Content Type JUMBF Boxes to describe a protected (e.g. en-
crypted) Assertion, the proposed specification is compliant with ISO/IEC 19566-4: Pri-
vacy & Security standard (R2.10). Moreover, it takes into consideration the privacy of
both individuals and locations by allowing assertions related to EXIF metadata to be
protected (R2.3).

Subsequently, the proposed specification offers the choice to a provenance producer to
redact a subset of assertions (e.g. EXIF metadata) (R2.5).

When the need of a cryptographic tool is required - e.g. computing digital signatures or
calculating the hash of a JUMBF box - the algorithm that is used is also recorded. This
is done in order to allow for the adoption of more than one hashing and signing methods
(R.2.8.1 and R.2.8.2).

Finally, related to the proposed provenance operations for producing and consuming
provenance information, it is part of the specification to verify the integrity and au-
thenticity of the referenced digital asset through the content binding assertion which is
required in every standard manifest (R3.3 and R3.5).

43

5 Provenance Reference Software

In section 4, a new specification has been introduced focusing on the JPEG Fake Me-
dia initiative. In this section, a reference software called mipams-fake-media is presented
showcasing how jumbf-core proposed reference software can be extended in order to sup-
port the new proposed specification. Both the specification and the library shall be part
of our contribution to the JPEG Call for Proposals [7] related to the exploration a new
standard addressing the problem of Fake Media. The mipams-fake-media library can be
found in the following URL: https://github.com/nickft/mipams-fake-media

Based on the definitions proposed in section 4 it is evident that a set of Provenace Content
Type JUMBF Boxes need to be defined. The components required to define those JUMBF
Boxes (i.e. Description and Content Boxes) are already supported in jumbf-core-2.0 and
jumbf-privsec-1.0 libraries. Consequently, what needs to be implemented is the Content
Type classes as illustrated in the ”Provenance Module” in figure 11.

Figure 11: Extended Content Type class hierarchy containing the Provenance module

At the bottom level of figure 11, the Provenance Content Types are defined. It’s worth
noting that each Content Type uses a Box service that is already defined in the jumbf-
core-2.0. Specifically, in the cases of ClaimContentType, ClaimSignatureContentType and
CredentialStoreContentType classes only one specific box service is required. However,
this is not the case for the remaining Provenance Boxes. As explained in section 4.1,
the content of an Assertion Store Content type JUMBF box is a list of JUMBF Boxes
that is of type CBOR, JSON, Embedded File or Protection. This is the reason why a

44

https://github.com/nickft/mipams-fake-media

JumbfBoxService field is assigned for the AssertionStoreContentType class. Regarding
the Manifest Content type JUMBF box, it contains a set of JUMBF Boxes (i.e. Claim,
Claim Signature, Assertion Store and - optionally - one Credential Store). Thus, the only
Box Service that is required is the JumbfBoxService. Last but not least, the same applies
for a Manifest Store Box which contain a list of Manifest Content type JUMBF boxes.

In addition to the new JUMBF Box definitions, the provenance operations specified in
4.3 are implemented as well. Different service classes are implemented for each part of
the ”Consume” and ”Produce” provenance operations. As in the case of Content Type
classes, they are implemented as Java Beans facilitating the dependency injection for
each of these classes. The dependency graph of the service classes for each of the two
provenance operations is depicted in figures 12 and 13.

Figure 12: Producer services dependency graph

Figure 13: Consumer services dependency graph

Both ”Consume” and ”Produce” provenance operations require a set of cryptographic
tools in order to handle digital signatures, encrypted assertions etc. As a result, a new
library called ”crypto” is introduced in mipams-jumbf project that performs a set of

45

cryptographic operations (encrypt, decrypt, sign, validate signature, parse keys from files).
It has been decided to implement these operations in a different submodule in order
for additional projects to use these functionalities. These cryptographic operations are
implemented using the Java Cryptography Architecture (JCA) [24]. Currently in jumbf-
crypto-1.0 the following cryptographic operations are supported:

• Generating and Validating digital signatures: SHA1 with RSA

• Encrypting/Decrypting a byte stream: AES-256

• Calculating the Hash of a byte stream: SHA256

Finally, in mipams-fake-media library the set of assertions is specified according to section
4.1.1. Although the provenance operations are implemented handling the assertions as
JUMBF Boxes, it is imperative that this library defines the structure of the content of
each Assertion JUMBF Box. Moreover, all the serialization and deserialization operations
(i.e. extracting information from the JUMBF Box Content Boxes or storing Assertion
information into a JUMBF Box) are implemented as well. The class hierarchy of the
Assertion classes is depicted in figure 14. Notice that there are two interfaces, namely
RedactableAssertion and NonRedactableAssertion that assist with the definition of each
assertion class. As of mipams-fake-media-1.0 only ExifMetadata assertion is considered to
be redactable.

Figure 14: Assertions class hierarchy

46

6 Application

This section presents two demonstrator applications. The first one - ”Practical demo for
JUMBF metadata” - focuses on assisting developers getting familiar with the structure
and the concepts behind JUMBF metadata. The second application focuses on providing
a scenario where users can produce and consume provenance information following the
specification presented in section 5.

6.1 Practical demo for JUMBF metadata

This demonstrator application provides a graphical user interface for parsing and gener-
ating JUMBF metadata. On the one hand, the application generates JUMBF metadata
in separate files with .jumbf extension. On the other hand, it supports parsing JUMBF
metadata from both .jumbf files and JPEG images.

This demo application consists of two services: the RESTful API server that uses the
jumbf-core-2.0 library and the client application that provides the GUI implemented us-
ing React JS [25]. For this application two services are launched using docker [26] con-
tainers. As shown in figure 15 the one docker container launches the Practical Demo GUI
while the other container is managing the demo server. The demo-server implements the
RESTful controller for communicating with the front-end and contains the services that
are responsible for integrating the two mipams-jumbf libraries (i.e. jumbf-core-2.0 and
jumbf-privsec-1.0) as well as the module that parses the JSON syntax responsible for
generating JUMBF Boxes. For more information on how to run the demo application
visit the Github repository attached in the Introduction section.

47

Figure 15: Practical Demo service architecture

Once both services are up and running a user can open a browser and connect to the GUI
as shown in figure 16.

Figure 16: Main page of the application

The GUI is divided into two main components: One the left side, the user interacts to
Generate a JUMBF file while on the right side, the user uploads a JUMBF File to inspect
its contents.

48

Firstly, the generation of a JUMBF file is explained. For the scope of this demo application,
a simple syntax format has been defined in order for the user to express a JUMBF structure
in JSON. An example is shown in figure 17.

Figure 17: Generating a JSON Content type JUMBF box

Notice that the user has initially specified the file that needs to be uploaded to the
application containing the metadata in JSON format (i.e. test.json). Subsequently, the
she uses the application’s supported syntax to express a JUMBF box with Content Type
UUID corresponding to the JSON Content Type and an example label. According to the
“content” attribute, the content box of this JUMBF Box is a JSON box that contains
the information located in the uploaded file. Finally, the user specifies the name of the
target JUMBF file and clicks on the “GENERATE JUMBF FILE”. The process has been

49

performed successfully and a green “DOWNLOAD FILE” button appears, allowing the
user to download the generated JUMBF file.

Now this JUMBF file can be provided as an input to the parser functionality. From figure
16, it is observed that there is a button at the right panel that says “UPLOAD JUMBF
FILE”. By clicking on that button, the user is asked to select a JUMBF file to upload.
Upon selection of the JUMBF file, the application parses its structure and provides a
hierarchical structure explaining the ISOBMFF header as well as the fields included in
each box. In this example the result of the parsing is depicted in figure 18.

Figure 18: Parsing a JUMBF file

The first level of information that can be extracted is the ISOBMFF type of each box along
with its size (expressed in bytes) and an information logo providing a short description
for the box. In the case of a JUMBF box this description explains the Content Type of
the JUMBF Box while in any other case the description of the ISOBMFF TBox field is

50

provided. Finally, the supported fields of each Box structure are depicted as well.

6.2 Provenance metadata manager

6.2.1 Introduction

This section illustrates an example application that allows authorized users (i.e. producers)
to create provenance information for a specific digital asset. This provenance information
shall be embedded as a Manifest Store Content type JUMBF box inside the digital asset
which can be then shared across multiple users that shall try to view (i.e. consume) it. The
goal of this application is to focus on the use cases where a producer wants to protect/con-
trol the access to a set of metadata that could disclose personal information such as GPS
Location. For this reason, a set of roles have been defined for the authenticated users of
this application: Consumers and Producers. Based on that, three workflows are examined
in the application: first, the producer is not interested in protecting EXIF metadata that
contain GPS and device specific information. In the second use case, the producer selects
to encrypt the existing EXIF metadata and make it accessible only to the authenticated
consumers. In this case, access rules are implemented at software level in the sense that
the application shall decide whether a user has access to a protected resource. Finally,
the producer wants to apply access rules in order to control the access to this piece of
metadata such that only fellow Producers can access this information. This application is
implemented under the project called mipams-fake-media-demonstrator and it provides a
demonstration of the functionalities of the mipams-fake-media library. Through the anal-
ysis of these use cases a detailed explanation of the software design will be provided as
well. The entire provenance demonstrator application can be inspected by visiting the
following URL: https://github.com/nickft/mipams-fake-media-demonstrator

This provenance metadata manager application is developed using Java and Spring boot
framework [16] for the RESTfull API, while the front-end application is written using
React JS [25]. These services are configured and initialized as docker [26] containers. The
interconnection between those services is implemented using a tool called docker-compose.
In figure 19 the two service, for the front-end application and the back-end application
are depicted. The server service consists of a RESTfull Controller which provides the
endpoints that the GUI can access. In addition, it implements those service classes that
integrate the four core library dependencies, namely the mipams-fake-media-1.0 library to
access the provenance data model and operations, the jumbf-crypto-1.0 library to access
the cryptographic operations as well as the two JUMBF-related libraries jumbf-core-2.0
and jumbf-privsec-1.0.

51

https://github.com/nickft/mipams-fake-media-demonstrator

Figure 19: Provenance Manager service architecture

An additional service is also executed that runs along with the aforementioned ones.
Specifically, this service is called ”authorization-service” and it is responsible for validat-
ing whether a user (i.e. a Consumer) is authorized to access the EXIF metadata of the
digital asset under inspection. As explained below, this authorization service performs
this validation using XACML [21], a standard developed by OASIS, that defines a declar-
ative fine-grained, attribute-based access control policy language expressed in XML. All
the cryptographic operations - i.e. encryption/decryption of a bytestream, creation/vali-
dation of digital signatures - including the XACML policy creation and enforcement are
implemented in a separate library called jumbf-crypto-1.0. This library is part of the
mipams-jumbf project.

This demonstration software simulates an application related to the journalism field where
producers are members of journalist associations. Upon registration to the application,
journalists (i.e. producers) have received a key pair and a digital certificate. As explained
in section 4.2, the digital certificate is crucial for the producer in order to generate - i.e.
digitally sign - provenance information.

52

6.2.2 Generating producer key pair and digital certificate

When the application is launched a set of users is initialized. Specifically, in this exam-
ple two producer users have been created and each one of them belongs to a different
journalist organisation: user ”nickft” is a journalist from CNN while user ”reporter1” is a
journalist from BBC. Finally, a user ”user” is created having only consumer capabilities
in the application. These users are created and stored in-memory using Spring Boot Se-
curity framework class ”InMemoryUserDetailsManager”. This configuration takes place
in org.mipams.fake media.demo.config.WebSecurityConfig.java class.

During the creation of the producers, a script called ”generateCredentials.sh” is generated
that is responsible to generate the key pair for each producer along with its digital cer-
tificate. For the scope of this demonstration the validity of the certificates is not covered;
digital certificates are assumed to be valid. For each producer, two files are stored. The
first one has the format [username].priv.key and corresponds to the generated RSA [27]
private key in Distinguished Encoding Rules (DER) encoded format [29]. The contents of
an example RSA private key destined for user ”nickft” are depicted in figure 20. Notice
that the as depicted in the figure, the length of the key is set to 4096 bits and the file itself
contains all the parameters that are required for RSA to work properly (e.g. modulus,
private/public exponents). As for the second file, it has the format [username].crt and
corresponds to the X.509 Certificate issued for a particular producer. This certificate has
been issued using the private key included in the [username].priv.key file. An example of
the certificate corresponding to ”nickft” producer is depicted in figure 21. Notice that in
both ”Issuer” and ”Subject” field the value ”OU=CNN” is set. These attributes show the
entity that issued the certificate as well as the entity to whom this certificate is issued
for. In a real-case scenario these entities wouldn’t be the same. According to the trust
model in section 4.2 the Issuer could be a Journalist Association and the Subject would
be the organization - in our case CNN - that this certificate is issued for. However, in
scope of this example there is no Certification Authority issuing certificates for the news
organizations meaning that the generated certificates need to be self-signed.

Figure 20: Parse RSA private key context using openssl

53

Figure 21: Parse X.509 Certificate context using openssl

6.2.3 Producing provenance history for digital assets

In order for a producer to add provenance information to a digital asset, she must first
authenticate herself. Once authenticated, the producer shall receive a JSON Web Token
(JWT) [30] that she can use in order to access the protected resources accessible only by
producers. Specifically, inside the JWT claims a custom claim ”role” is added containing
the list of the roles that the authenticated user has. Then, during a REST request to a
protected resource the JWT must be included in the Authorization header of the HTTP
request. The login page of this application is depicted in figure 22. Upon successful au-
thentication the JWT is received and stored in a browser cookie - as shown in figure 23.
Now the producer has access to the ”Mipams for Producers” functionalities.

Figure 22: Producer ”nickft” logs in to application

54

Figure 23: Left screen: Producer is logged in, Right screen: JSON Web Token ”tokenId”
is stored in a browser cookie

Subsequently, the producer clicks on the ”Upload Asset” button to start the provenance
generation workflow. For this example, a JPEG Image taken from a camera device is
selected. Once uploaded, an Image Editor is presented and the image is loaded as shown
in figure 24. The image editor is part of the Toast UI ImageEditor project [31].

Figure 24: A digital asset loaded in the provenance image editor

The producer ”nickft” has selected to perform the following set of modifications: Filter
the image (adding Sepia filter and reducing the brightness), crop the image and change
its size. The resulted image is depicted in figure 25. The producer advances to the next
step by clicking on the ”Next” button at the bottom right of the screen.

55

Figure 25: The uploaded digital asset upon modifications

At this stage, the application displays the EXIF metadata that are included in the image.
This metadata has been extracted from the original uploaded image using a tool called
ExifTool 12.42 [32]. This tool is already installed in the container that launches this
application and it is invoked by a Java Bean class called ”ExifToolService”. As shown
in figure 26, this metadata contains information that the producer might select not to
disclose to all the users who want to view this asset. As depicted in the figure below, the
producer has three options: (i) include EXIF metadata unprotected in the Assertion Store
Content type JUMBF box, (ii) encrypt them as a Protection box that shall be accessible
only by authenticated users of this application or (iii) apply access rules so that only
”Producer” users have access to this metadata. In this first example the plan is to leave
EXIF metadata disclosed to anyone who consumes the image. Thus, the producer clicks
”Next”.

Figure 26: GPS information in EXIF metadata of the uploaded digital asset

56

Finally, the producer reviews the set of assertions that is going to be included in the new
Manifest Content type JUMBF box (figure 27). Once the producer clicks the ”Generate
Provenance” Button, a REST call will be sent to the controller of this application in order
to produce and embed Manifest Store Content type JUMBF box to the newly created
digital asset. Basically, all this functionality is implemented in the mipams-fake-media
library explained in sections 4 and 5.

Before calling these services it is important to extract all provenance information from
the uploaded digital asset. Provided that there is already an Active Manifest, it needs to
be validated as well. All these preparation steps along with the invocations to produce
the new manifest store are implemented in the service called FakeMediaProducerService
inside the mipams-fake-media-demonstrator software.

Figure 27: Producer reviews the assertions that shall be included and names the
produced asset as ”provenance history unencrypted.jpg”

The producer creates the provenance history of two additional images. In the first one,
called ”provenance history protected.jpg” the producer selects to allow only authenticated
users to view the EXIF metadata of the asset (figure 28). In this case, the application
doesn’t define any access rule for accessing this EXIF metadata. Instead, this authoriza-
tion check is implemented inside the software. However, in the final image - i.e. ”prove-
nance history protected ar.jpg” - the producer selects to include access rules so that only
fellow producers have access to the asset’s EXIF metadata (figure 29). With these two
additional images, it is possible to simulate two different ways of managing access rules: in
the first case the whole access rule policy is implemented at a software level while in the
second case the policies are appended to the desired digital asset and the authorization
is achieved through an external authorization service.

57

Figure 28: Producer reviews the assertions that shall be included and names the second
produced asset as ”provenance history protected.jpg”

Figure 29: Producer reviews the assertions that shall be included and names the third
produced asset as ”provenance history protected ar.jpg”

Finally, the producer can review the generated digital assets along with their embedded
provenance information as shown in figure 30. Now ”nickft” can start distributing her
digital assets via social media or in her articles.

58

Figure 30: Producer can view and download the produced digital assets

For debugging purposes, a developer could inspect the structure of the generated mani-
fests using the application presented in section 6.1. Specifically, a user could take the first
produced digital asset (i.e. the one called ”provenance history unencrypted.jpg”) and up-
load it to the first application. As depicted in figure 31, the application parses a JUMBF
Box structure embedded in the JPEG image. As seen in the descriptive message the first
JUMBF Box that is encountered is a Manifest Store Content type JUMBF box. Apart
from a description box (i.e. box with type jumd), it contains only one content box that
has total size of 7994 bytes. It is another JUMBF box (i.e. type jumb) that corresponds to
the single Manifest Content type JUMBF box that was just created by producer ”nickft”.
Inside the Manifest a set of JUMBF Boxes is placed as its Content Boxes, namely a Claim,
a Claim Signature and an Assertion Store Content type JUMBF box. Finally, the content
of the Assertion Store is a set of five JUMBF Boxes. The first three JUMBF Boxes corre-
spond to the three actions (i.e. Crop, Filter and Resize) that the producer applied via the
Image Editor. The forth assertion is a JSON Content type JUMBF box and corresponds
to the EXIF metadata that was included unencrypted. Finally, as depicted in the figure,
the final assertion is a Content Binding assertion. It has been added automatically by
the mipams-fake-media library and it is required in order to bind the manifest with the
specific digital asset as explained in section 4.1.1.1.

59

Figure 31: Manifest Store content type JUMBF box structure embedded in
provenance history unencrypted.jpg

However, if a user would upload the remaining two images she would see a slightly different
behaviour. Specifically, by uploading the second asset the user would still see a Manifest
Store with only one Manifest Content type JUMBF box. This time the Assertion Store
Content type JUMBF box contains the two Assertions corresponding to the two actions
performed via the Image Editor, the Content Binding assertion (it is not visible in the
figure; it is below the last visible assertion) and the protected EXIF metadata located in-
side a Protection Content type JUMBF box. As per section 3.2, a Protection JUMBF box
contains a Description box, a Protection Description box (pspd) containing information
related to the encryption process and a Binary Data box (bidb) containing the ciphertext
(i.e. protected exif metadata). Notice that in the Protection Description box the arLabel
field is set to null. This means that no JUMBF Box is referenced containing access rules

60

for this protected content. This encryption has been carried out using AES-256 Cipher
Block Chaining (CBC) mode with a nonce. The secret (i.e. the symmetric encryption key)
is generated and configured through an application variable defined in application.yml file.

Figure 32: Manifest Store content type JUMBF box structure embedded in
provenance history protected.jpg

The final inspection is related to the third digital asset produced by ”nickft” user. In
this asset the EXIF metadata have been protected with access rules as well. As shown in
figure 33 inside the Assertion Content type JUMBF box there is the Protection Content
type JUMBF box related to the EXIF metadata. In this case, the arLabel field in the
Protection Description box is set to a string. This string corresponds to the label of the
XML Content type JUMBF box which is the JUMBF Box containing the access rules
that should be applied in case a user wants to access the protected content.

61

Figure 33: Manifest Store content type JUMBF box structure embedded in
provenance history protected ar.jpg

As shown in figure 34, upon parsing the embedded provenance history, the contents of
each JUMBF Box are extracted and stored in separate files inside the container that
runs the ”Practical demo for JUMBF” application. Thus, it is possible to view the con-
tents of the XML box that contains the access rules. In figure 35 a XACML policy is
specified describing the rule under which a user can access the referenced exif metadata.
Specifically, the user shall have access to the protected resource provided that she has the
”PRODUCER” role.

62

Figure 34: XML box contents are stored in a separate file

Figure 35: XACML policy describing that only users with Role ”PRODUCER” can
access the resource

63

6.2.4 Consuming provenance history

In this section focus is given on the different cases of consuming the provenance informa-
tion of a digital asset. The consumption functionality could be an independent application,
separate from the producer’s functionality. For instance, it could be a browser extension
that, upon the display of an image, it could also display an icon providing all its prove-
nance information. Consequently, the first case that shall be examined is the provenance
consumption by a user that is not authenticated with our application. In theory, any
user can access, consume and validate the integrity of provenance information. Figure 36
shows the use case where an unauthenticated user consumes the first digital asset which
discloses the EXIF metadata. At the right-side of the screen a short description of the Ac-
tive Manifest’s contents is displayed. Firstly, the consumer has access to the modifications
that producer made. Next to some assertions, an ”Info” icon contains the metadata that
accompany each action. Regarding the EXIF metadata, by clicking ”LEARN MORE”
the consumer has access to the entire set of EXIF metadata (figure 37). Moreover, the
date and the entity who signed this Claim are available too. Notice that entity’s informa-
tion (i.e. CNN) is extracted from the certificate Subject field. No information about the
producer user is available.

Figure 36: User consumes provenance information without being authenticated

64

Figure 37: User has access to the EXIF metadata inside the Claim

It is worth mentioning that once a user wants to consume the provenance history of a
digital asset, the application needs to extract all the JUMBF boxes that are contained
in it. The Manifest Store shall be a unique JUMBF Box in the list of the extracted
JUMBF Boxes. Then this can be fed to the mipams-fake-media library for inspection. The
aforementioned preparation step is implemented in the mipams-fake-media-demonstrator
project in a service called FakeMediaConsumerService.

Furthermore, in figure 36 right below the active manifest’s information a button ”Full
Inspection” is depicted. As explained in section 4.3 there are two types of provenance
inspection: the first one locates only the active manifest and validates its integrity, while
the second one performs a full inspection on the entire provenance history of the asset.
With this button, the user has the ability to check the entire history; however, it has no
effect in our examples since each of the digital images contain a single manifest.

Advancing to the second example, the unauthenticated user tries to consume the prove-
nance information of the second digital asset which contains the protected EXIF meta-
data. In figure 38 it is apparent that the unauthenticated user cannot fully consume the
embedded provenance information. Although she can validate the integrity and validate
the digital signature of the producer, she cannot access the EXIF metadata. Thus, the
inspection status is set to ”Partially validated”.

65

Figure 38: Unauthenticated user cannot access protected EXIF metadata

Now, if the simple consumer user ”user” logs in to the application and tries to consume
the provenance information of the same digital asset, she will successfully validate and
access all the provenance information as shown in figure 39.

Figure 39: Authenticated consumer user access protected EXIF metadata successfully

Finally, if the simple consumer user tries to access the final provenance information pro-
duced by ”nickft”, she shall experience a similar ”Partially validated” message since she
does not have the proper access rules (i.e. she is not a Producer user). In the case where
an assertion is protected based on a XACML policy, the application needs to decide
whether the authenticated consumer user has the correct access rules. For this reason,
the authorization service developed in scope of the work related to Genomic Information

66

Protection And Management System (GIPAMS) [33] is used. This authorization service
implements a REST endpoint called ”authorize request” that returns a XACML response
”Permit” or ”Deny” depending on the XACML request and XACML policy provided. In
XACML term, this authorization service plays the role of a Policy Decision Point (PDP).
So, in case the FakeMediaConsumerService class encounters a Protection Box with access
rules reference enabled, it extracts the XACML policy from the respective JUMBF Box,
builds the XACML request based on the JWT claim ”role” that contains the roles of the
authenticated user and performs a Rest call to the authorization service.

67

7 MIPAMS Environment

The application presented in section 6.2 mainly illustrates the workflows of users who want
to produce and consume provenance history for digital assets. Since this software is a proof
of concept application explaining the provenance operations, it does not specify the way
to manage the producers’ digital certificates used for signing the claims nor does it provide
an external service which creates the XACML policies and requests for the inclusion of
privacy rules that protect the EXIF metadata of a digital asset. These aforementioned
required services are already implemented in the Multimedia Information Protection And
Management System (MIPAMS) [3]. This section focuses on defining the interconnections
that need to be implemented in order for a Provenance application to operate inside the
MIPAMS environment. The schema of the updated MIPAMS environment integrating
the provenance application is depicted in figure 40. This schema describes the updated
MIPAMS architecture supporting the provenance application.

Figure 40: MIPAMS architecture enhanced with Provenance Service

First and foremost, to generate a secure environment it is of paramount importance to
ensure the proper management of encryption and signing keys. The creation and storage of
users credentials (e.g. keys, certificates) is handled by the MIPAMS Protection Service, a
module that only authenticated and authorized services should have access. In addition, all
the cryptographic operations described so far need to be implemented in a specific service
that is authorized to access the specific producer private key and certificate. Moreover,
this service should properly handle as well as destroy these credentials to avoid any leakage
of cryptographic material that would compromise the entire security of the solution. In
MIPAMS Environment this module is called Content service. In the mipams-fake-media

68

library all these cryptographic operations are performed by the jumbf-crypto-1.0 library.
This ”outsourcing” of such critical operations was decided specifically to demonstrate the
ability of the mipams-fake-media library to support this communication with a protected
service such as the Content Service.

Subsequently, regarding the generation and validation of privacy rules, MIPAMS Envi-
ronment already provides a set of services that can be used by the provenance manager
application. Specifically, there is a Policy Service (PoS) that is responsible for creating
a XACML policy according to a set of provided parameters. In parallel, this service is
responsible for creating a XACML request according to the authenticated user informa-
tion. With these two pieces of information the Provenance application manager could
validate whether a consumer user has the correct access rules by communicating with
the already implemented MIPAMS Authorization Service. Similar to the cryptographic
operations, the creation of XACML policies as well as the preparation for communicat-
ing with the Authorization Service for a XACML request is outsourced and implemented
inside the jumbf-crypto-1.0 library, outside of the provenance manager application. The
purpose behind this decision is, again, based on the preparation of provenance manager
to be integrated with the MIPAMS Environment in a future release.

Figure 41 shows the sequence diagram inside the MIPAMS Environment for creating
provenance information about an asset, applying access rules and protecting the content
of sensitive metadata. The steps are briefly described as follows:

1. Producer uploads an image to the Provenance Manager application (e.g. Provenance
Service) which is registered in the application.

2. A new identifier shall be issued through the Object Registration Service (ORS) for
the newly registered image.

3. The producer performs a set of modification using the text editor. Once she has
finished, the modified image is uploaded to the application.

4. During step 3, all actions are being recorded and converted into provenance asser-
tions.

5. She selects a piece of metadata to be protected (e.g. EXIF metadata)

6. The Assertion Store is constructed including a content binding assertion and without
assertion that needs to be protected. The Claim Content type JUMBF box is also
partially constructed.

7. The assertion that needs to be protected is sent to the Content Service for encryp-
tion.

8. Content Service queries the Protection Service in order to get the producer’s sym-
metric key used for protecting assertions.

9. The protection box is created and sent to the Provenance Service

10. The privacy policy is constructed via the Policy Service (PoS) and a new JUMBF
Box is generated containing the proper XACML policy. The label of this JUMBF

69

Box is stored in the Protection Content type JUMBF box and specifically in its
Protection Description box. The Assertion Store and the Claim are updated properly
to contain the newly created JUMBF Boxes.

11. The Claim is sent to the Content Service in order to be digitally signed by the
producer’s credentials.

12. Content Service queries Protection Service in order to retrieve the producer’s private
key used for signing claims.

13. The digital signature is retrieved and the Claim Signature is constructed. Now the
new Manifest Content type JUMBF box can be assembled.

14. The new Manifest is appended to the Manifest Store which can be now embedded
in the image (i.e. digital asset).

15. The newly created image (along with its provenance history) is registered using the
Object Registration Service.

16. Eventually the updated digital asset is returned to the producer who can now dis-
tribute it.

Figure 41: Including protected EXIF metadata in MIPAMS Environment

Once this digital asset is distributed through the Internet, it is ensured that the sensitive
metadata is protected against unauthorized access while allowing the users to consume
the rest of the provenance information of that particular digital asset. Figure 42 describes
the steps that are followed inside the MIPAMS Environment, in order for a consumer to
view the provenance information.

1. Consumer uploads a digital asset to the Provenance Manager application. She is
interested in inspecting the provenance information of the uploaded digital asset.

70

2. Provenance information - and specifically the Manifest Store Content type JUMBF
box - is extracted from the digital asset. The active Manifest Content type JUMBF
box is located too.

3. The Claim and the Claim Signature are sent to the Content Service in order to
validate the digital signature. Specifically, inside the Content Service the digest of
the Claim Content JUMBF box is calculated.

4. In parallel, Content Service extracts the public key from the certificate inside the
Claim Signature Content type JUMBF box. The module applied the public key to
the digital signature and compare the output with the calculated digest. The result
of this verification is then returned to the application.

5. Subsequently, the application verifies the integrity of the assertions inside the As-
sertion Store Content type JUMBF box with the URI references located inside the
Claim.

6. Next, the application locates the Protection Content type JUMBF box correspond-
ing to the protected metadata. Inside the Protection Description box the access
rules label is referencing a JUMBF Box that is also located in the Assertion Store.
This access rules JUMBF Box is located as well.

7. Based on the consumer information, the application communicates with the Policy
Service module in order to build the XACML request.

8. The XACML policy is extracted from the referenced JUMBF Box. A XACML re-
quest is created from the Policy Service.

9. The Authorization Service answers whether the user is authorized to access this
protected metadata.

10. Provided that the user is authorized, it sends the Protection Content type JUMBF
box to the Content Service in order to be decrypted.

11. Content Service requests from Protection Service the symmetric key that the pro-
ducer used to encrypt the protected metadata.

12. Content Service module sends the decrypted content to the application.

13. Eventually, the application displays the digital asset along with the provenance
information to the consumer.

71

Figure 42: Consuming protected EXIF metadata in MIPAMS Environment

72

8 Future Work

This section focuses on defining some key future steps that could be followed based on the
work that has been produced in scope of this project. These future steps are related to how
the product manager application could be extended to fully showcase the functionalities
of the mipams-fake-media library. In addition, this chapter discusses the possibility of
integrating on-going work of the Distributed Multimedia Applications Group (DMAG)
[34], part of the Information Modeling and Processing Research Group (IMP) [35] of the
UPC. On top of that, it is also worth investigating how the specification could be more
resilient to disassociation of digital assets with their provenance information. Finally, a
possible extension of the application is examined where provenance information is stored
and processed outside of the digital asset.

The following subsections provide some technical directions related to a set of future
work projects related to this thesis work. Specifically, in section 8.1 a set of improvements
regarding the existing demonstrator application is provided. Secondly, section 8.2 intro-
duces the challenge of maintaining the association of a digital asset with its provenance
information and provides some possible solutions. Subsequently, in 8.3 focus is given on
the support of additional techniques for providing access control to the privacy-related
assertions of provenance claims. Finally, 8.4 explores - discovers the challenges of - a dif-
ferent architecture than the one presented in the demo application where the provenance
information is not embedded inside the digital asset.

8.1 Enriching provenance manager application

In section 6.2 the provenance manager application illustrated most of the main func-
tionalities introduced in the mipams-fake-media library that implemented the provenance
specification proposed in section 4. However, as recent future work, it is imperative that
the provenance manager application demonstrates the entirety of the mipams-fake-media
functionalities. In other words, there are still functionalities supported in mipams-fake-
media library that are not possible to be performed via the demonstrator application.

First and foremost, the demonstrator application should provide a graphical interface to
the producer in order to redact existing metadata. For instance, consider the scenario
where a producer creates some provenance metadata for a particular digital asset. This
provenance metadata contains GPS information unprotected. At a later point in time, the
producer decides that she prefers to hide (i.e. redact) this information. A Redaction service
has already been implemented in mipams-fake-media software, though, a user interface
needs to be implemented in the mipams-fake-media-demonstrator application in order for
a producer to have access to this functionality.

Secondly, with this demonstrator application only a subset of the assertions defined in
table 5 is available to be stated in a claim. Specifically, a producer has the ability to
perform only a subset of action assertions (i.e. filter, crop, resize) even though there
are many more on table 6. Moreover, thumbnail assertions need to be supported as well.
Thumbnail assertions could be included either manually by the producer or automatically
by the demonstrator application.

73

Next, according to the specification, a user might produce a digital asset as the combi-
nation of multiple component pictures. These ingredient pictures might have their own
provenance history so the producer might select to include their Manifest Content type
JUMBF boxes inside the final digital asset’s manifest store. This scenario is addressed dur-
ing the design of the provenance operations in section 4.3. What needs to be implemented
is the integration of this functionality with the demonstrator application. The producer
workflow needs to be enriched by allowing the producer to add ingredient pictures when
modifying a digital asset.

Regarding the specification itself, it is imperative that subsequent versions cover more
metadata structures. These additional families of metadata are proposed in scope of the
technical specification developed by C2PA. As of the first version of MIPAMS Fake Media
specification, only EXIF metadata assertion is supported. In future versions EXIF meta-
data assertion shall be stored according to the JSON-LD schema defined by XMP [20] in
order for wider adoption of the specification. In addition, other standardized metadata
formats need to be included in order to cover more use cases. For instance, The Inter-
national Press Telecommunications Council (IPTC) defines a standard set of descriptive,
administrative and rights metadata typically used by photographers, distributors, news
organizations, archivists, and developers. In fact, they have also defined their own stan-
dardized Information Interchange Model (IPTC-IIM) [36], a binary format which allows
to describe this kind of metadata. The IPTC Photo Metadata assertion can be used to
ensure that IPTC Photo Metadata - for example describing ownership, rights and de-
scriptive metadata about an image - is added to the asset in a way that can be validated
cryptographically. Another assertion type that could be integrated in the specification is
focusing on ”fact checking” entities that review the assertions made about a digital asset
and provide a statement evaluating their truthfulness. This new assertion type could be
named after the name of the respective schema ”Claim Review” [37]. ClaimReview is
a source label attached to website content, or images that provides search engines with
some information about the referenced content. This can include a tag stating that as-
serted statements are fact-checked by verified sources and organizations with the aim of
providing accurate information to users.

8.2 The Content Binding problem

When distributing a digital asset through the Internet it is likely that Internet Service
Providers and/or end-user applications perform compression techniques to the digital as-
set or change its quality in order to increase both their performance and the quality of
experience (QoE). The industry as well as research and standardization organisations
have shifted their interest towards dynamic content delivery. Specifically, adaptive bitrate
streaming techniques - like the Dynamic Adaptive Streaming over HTTP (DASH) stan-
dardized by MPEG [38]- consist of expressing a digital asset in various qualities, split in
multiple chunks. The most suitable quality chunk shall be sent to the end-user according
to the network and end-user’s device conditions.

Unfortunately, this situation poses plenty of challenges in the field of associating prove-
nance information to a specific digital asset. Both in our proposed specification as well as

74

in the case of C2PA technical specification, the single supported content binding method
consists of computing the hash (i.e. SHA-256) of the digital asset and including the digest
as a separate assertion inside the assertion store. However, when an entity stores a digital
asset in various qualities, it creates versions of the digital asset with completely differ-
ent hashes. Thus, the proposed specification is vulnerable to disassociation of provenance
metadata. This is the main reason that this kind of content binding is considered as ”hard
binding”. Consequently, it is of paramount importance to investigate different techniques
for binding a digital asset with its provenance history.

There is a number of directions that can be followed. First of all, there is some research ac-
tivity related to the design and implementation of perceptual hash functions that generate
a watermark and embed it inside the host digital asset during compression or rendition
procedures [39]. According to C2PA these techniques are considered as soft binding al-
gorithms and are more resilient regarding the rendition of digital assets. In fact, C2PA
investigates and evaluates the inclusion of global unique identifiers like the International
Standard Content Code (ISCC) [40]. The ISCC Code is a unique, hierarchically struc-
tured, composite identifier. It is built from a generic and balanced mix of content-derived,
locality-sensitive and similarity-preserving hashes generated from metadata and content.

8.3 Extension of Privacy policy implementation

The implementation of the MIPAMS Fake Media specification is agnostic to the privacy
policy management. The application that uses the mipams-fake-media library is responsi-
ble for handling the privacy policies related to one ore more protected assertions. To that
extent, the provenance manager application presented in section 6.2 extracts the JUMBF
Box referenced by the ”arLabel” field which is located inside the Protection Content type
JUMBF box. This JUMBF Box is then sent to the crypto library for further processing.
Up to this point, the Content Type of the JUMBF Box is not taken into consideration
meaning that the access rules could be stored in any of the supported Content Type
JUMBF Boxes. This creates the context to support multiple access control solutions that
handle privacy policies differently. In MIPAMS Environment the implemented Policy Ser-
vice (PoS) expresses policies and authorizes requests using XACML where all the rules are
written in XML. Thus, privacy policies are stored in XML Content type JUMBF boxes.

However, in parallel to the progress of this project, there is a work at the DMAG group
that focuses on designing a simplified access control language based on XACML using
JSON. Thus, the XACML policy rule presented in figure 35 could be also expressed using
this new JSON-based access control language. An example of expressing the MIPAMS
Provenance policy in JSON is presented in figure 43.

Consequently, a future step concerning the provenance manager application would be to
integrate this additional way of expressing and enforcing privacy rules. To achieve that,
a developer would need to update the crypto library and specifically the methods that
generate the privacy policy and execute the authorization query. Both methods are located
in the CryptoService class.

75

Figure 43: Policy expressed using JSON-based access control language

8.4 Storing provenance information on the cloud

Among the JPEG Fake Media requirements that the proposed specification is addressing,
is the ability of the provenance structure to be self-contained in the sense that it can also
live outside of its digital asset. Thus, in some cases where the size of the Manifest Store is
comparable or even larger than the digital asset itself, it could be advisable to store the
provenance information outside of the asset. The database that stores the provenance in-
formation of digital assets is called Manifest Repository. This section presents a complete

76

provenance solution that could be built using the services presented in MIPAMS Envi-
ronment while supporting a Manifest Repository for storing and requesting provenance
information.

First and foremost, a new database service will be required that shall be responsible
for storing the Manifest Repository table. This Manifest Repository table shall contain
entries that correspond to the generated Manifest structures. Specifically, each entry shall
have as primary key the label of the Manifest Content type JUMBF box which is a
unique string issued for each particular Manifest (e.g. ”urn:uuid:7f4d23...”). An additional
value should contain the entire structure of the stored manifest in JSON format. The
proposed reference software jumbf-core-2.0 supports the expression of a JUMBF structure
in JSON. However, it is worth mentioning that, jumbf-core-2.0, the JSON representation
of a JUMBF box contains links to a set of files pointing to its contents. For instance,
to avoid loading all the contents of a XML file to the memory, they are stored in a file
with ”.xml” extension and the XML Content type JUMBF Box contains the location of
that particular file. That being said, it is important that when an application requests a
specific Manifest Content type JUMBF box from the Manifest Repository via an HTTP
request, the complete JUMBF bytestream should be sent to the application (i.e. and not
the JSON representation with the file references).

Secondly, since the Manifests are stored outside of the digital assets that they describe, it
is imperative that the proposed solution keeps track of at least the active manifest of each
digital asset. Thus, a new database table should be created containing the correlation
between a digital asset and its active manifest. Only by knowing the active manifest, it is
possible to navigate through the entire provenance chain of the digital asset by following
the ingredient manifest references. As presented in section 7, upon upload of a new modi-
fied digital asset a new identification number is issued via the Object Registration Service
(ORS). This number called instanceID shall be the primary key that unambiguously ref-
erences the digital asset. Thus, this new database table, called Asset Repository, shall
consist of entries whose primary key is the instanceID field. The values of each entry shall
be the hash of the referenced digital asset as well as the id that corresponds to asset’s
active manifest. This active manifest id shall point to an existing Manifest Repository
entry. The relationship between the two database tables is depicted in figure 44.

Figure 44: Database schema presenting Manifest and Asset Repository tables

Since the active manifest is not embedded inside the digital asset, there should be a ref-
erence string embedded in the image that an application could use in order to request

77

the manifest from the Manifest Repository. One solution would be to embed an iden-
tifier using the Extensible Metadata Platform (XMP) serialization format. XMP [20] -
initially designed by Adobe but then adopted as an ISO standard - standardizes a data
model, a serialization format and core properties for the definition and processing of ex-
tensible metadata. Among other formats, it also provides guidelines for embedding XMP
information into JPEG images.

As proposed by C2PA’s technical specification, our provenance solution could use XMP
to store the active manifest id using a custom XMP metadata field (e.g. XMP field ”dc-
terms:provenance”). That way, it would be straightforward to access the active manifest
of a digital asset by simply requesting it from the Manifest Repository using its manifest
id. Another approach would be to store the generated instance id number that uniquely
characterises the digital asset in the Asset Repository. Specifically, the XMP:instanceID
metadata field could be used in order to embed this unique id to the digital asset. Con-
sequently, an application, that wants to access the active manifest of a digital asset, has
to request it from the Asset Repository. Finally, provided that no XMP metadata is em-
bedded in the digital asset, our provenance solution could try to recover the instance id
of the digital asset through its hash. As described in figure 44 apart from the instance id,
the SHA-256 digest of a digital asset is stored in the Asset Repository. Thus, the instance
id of the digital asset could be retrieved even if there is no information embedded in the
digital asset. This is crucial as it makes our solution resilient to disassociation attacks
where an adversary wants to strip any metadata and break the reference between the
digital asset and its provenance history.

With the Asset Repository our proposed provenance application would keep tracks of
the association between digital assets and their active manifests. This could provide the
means to address the content binding problem described in section 8.2 without the need
of new binding techniques (i.e. soft binding algorithms). Specifically, when an application
uploads and registers a new digital asset through the MIPAMS Provenance Service, a set
of renditions could be automatically computed. This means that each of the digital asset
renditions would have its own instanceID in the Asset Repository. In order to track this
new modification (i.e. the rendition of a digital asset in a specific quality) a new Manifest
should be included by the MIPAMS Provenance ecosystem. That way, our ecosystem
wouldn’t rely on ISPs and end-user applications to update the provenance history of the
distributed digital asset. However, this approach wouldn’t be transparent in the sense
that a new Manifest should be added by MIPAMS Provenance Service on top of the
producer’s Manifest. As an alternative approach would be to issue a new ID for a digital
asset called documentID following the approach of XMP. This documentID - as opposed to
the instanceID - would be a unique identifier that describes all the renditions and different
expressions of a specific digital asset. That way, the association between the digital asset
and its active manifest in the Asset Repository would be through the documentID field.

Up until now, it is assumed that digital certificates included in the Claim Signatures were
valid. However, MIPAMS architecture should provide the corresponding service that, given
a configurable set of trusted certification authorities, it responds to requests related to the
validity of producer’s digital certificates. In Public Key Infrastructure (PKI) the status of
a X.509 certificate is checked using the Online Certificate Status Protocol (OCSP) [41].

78

The service that is responsible for replying in such requests is called OCSP responder and
there are multiple open source implementations (for instance an OCSP responder could
be launched using openssl tool) that would allow the inclusion of such a service in our
ecosystem.

To conclude, a widened MIPAMS architecture could be developed in order to provide
complete provenance functionalities. On top of that, by storing the provenance information
in a database, it allows for additional analytics and query capabilities on the provenance
history of digital assets. Furthermore, this design would support various producer and
consumer applications to be developed independently in different projects depending on
the use case. For instance, a provenance consumer application could be developed to run
as a standalone application, a browser extension or an additional service for a social media
application. As long as the developed application is aware of the end points in order to
query the OCSP Responder and the Manifest and Asset Repositories, it can be able to
perform all the provenance operations successfully. Cryptographic material (e.g. private
keys) is not accessible to the developed applications as all the operations are taking place
internally, inside the MIPAMS Environment. Finally, as a way to ensure proper use of
the MIPAMS environment from the developed applications, the access to the MIPAMS
services should be accessible by authorized applications only.

79

9 Conclusions

The surge in the number of fake news flooding the Internet along with the development
of sophisticated techniques that modify the content of a digital media have created the
urgent need for countermeasures. At the same time, social media users lack of proper
education regarding the security and privacy risks lurked when distributing an image of
their personal moments. Both these problems could be addressed by annotating the prove-
nance history of the modifications that a specific digital asset has been subjected to while
allowing the redaction or protection of privacy-related information. This annotations is
required to be securely stored in order to ensure that the expressed statements have not
been tampered with after the time of generation. Consequently, this project focuses on
defining a specification that expresses the data model of provenance information as well
as the operations that need to be followed in order to ensure that this structure cannot
be modified in the future. This specification is based on the technical specification issued
by the Coalition for Content Provenance and Authenticity (C2PA) and extends its func-
tionality in order to support the protection (i.e. encryption) of privacy-related metadata.
Since it should be possible to embed provenance metadata inside the corresponding digital
asset, the defined structure shall be based on the JPEG Universal Metadata Box Format
(JUMBF).

In scope of the proposed specification, a set of software libraries have been developed. First
of all, since the data model is expressed in JUMB format, a project called mipams-jumbf
has been implemented which focuses on developing the data model as well as the means to
parse and generate such metadata to a JPEG image. In addition, a library called mipams-
fake-media is implemented using the functionalities defined in mipams-jumbf project. The
goal of the new library is to define the provenance metadata structure and provide all the
tools in order to generate and verify the validity of such metadata. All the libraries are
written in Java.

Finally, in order to demonstrate the applicability of securely annotating provenance his-
tory to digital assets, an application has been developed simulating the scenario where
journalists annotate the modifications that they perform on a digital asset before dis-
tributing it. This application showcases the ability of a journalist to protect a subset of
metadata that could disclose privacy-related information like the location of the captured
image.

The output of this work is related to the JPEG Systems multi-part specification [8]. One
of the core parts of JPEG Systems specification is the JUMBF standard (ISO/IEC 19566-
5 [11]). The rest of the JPEG Systems parts defining their own JUMBF Boxes addressing
their specific application. Although there are plenty of JPEG System standards using
JUMBF notation, there is not yet a reference software that showcases the applicability of
the JUMBF data model.

To that extent, part of mipams-jumbf project has been submitted as proposed reference
software to the JPEG Systems committee. Specifically, an input document [17] has been
submitted describing the jumbf-core-2.0 library that implements the JUMBF data model
standardized in [11]. In addition, the submission of a second document [18] focuses on
presenting a reference software for the JUMBF Boxes proposed in scope of ISO/IEC

80

19566-4 standard [12]. The submission of the two aforementioned input documents has led
the JPEG Systems Committee to issue a new Part - Part 10 - focusing on the development
of a reference software for the various parts of JPEG Systems.

During the development of the contribution related to the JUMBF standard, the JPEG
Systems committee had been working on finalizing the second edition of the ISO/IEC
19566-5. During this activity, a set of modifications, both editorial and technical, where
proposed from our side to the committee. Specifically, these modifications were focusing
on the definitions of the Content Boxes that were supposed to be included in the second
edition of the standard. After discussion with the group, the proposed modifications were
accepted and included in the new edition of the standard which is currently in Draft
International Standard (DIS) under ballot status.

Apart from the contributions concerning the ISO/IEC 19566-5 standard, it has been
decided to participate in the JPEG ”Call for Proposals” procedure which searches for
contributors to a JPEG standard tackling the Fake Media problem. Our proposed spec-
ification addresses a subset of the requirements proposed by JPEG Fake Media call for
proposals. Thus, the plan is to contribute the standardization process by presenting a spec-
ification - based on top of the C2PA specification - that focuses on JPEG digital media
and aims to support the encryption of privacy-related metadata to include those use-cases
where disclosure of private information is not tolerated. The mipams-fake-media library
shall accompany our submission in order to showcase the applicability of our proposal.

81

References

[1] Luisa Verdoliva. Media forensics and deepfakes: An overview. IEEE Journal of
Selected Topics in Signal Processing, 14(5):910–932, 2020.

[2] Temmermans et al. JPEG Privacy and Security framework for social networking and
GLAM services. EURASIP Journal on Image and Video Processing, 2017, 2017.

[3] Delgado J, Llorente S. Improving Privacy in JPEG images. in Proceedings of the
IEEE International Conference on Multimedia & Expo Workshops (ICME), Seattle,
CA, 2016.

[4] JPEG. https://www.jpeg.org/.

[5] C2PA. Coalition for Content Provenance and Authenticity. https://c2pa.org.

[6] C2PA. C2PA Technical Specification v1.0. https://c2pa.org/specifications/

specifications/1.0/specs/C2PA_Specification.html.

[7] ISO/IEC. ISO/IEC JTC1SC29/WG1 N100157, Call for Proposals for
JPEG Fake Media. https://ds.jpeg.org/documents/jpegfakemedia/

wg1n100157-095-REQ-Final_Call_for_Proposals_for_JPEG_Fake_Media.zip,
2022.

[8] JPEG. JPEG Systems. https://jpeg.org/jpegsystems/index.html.

[9] JPEG. JPEG Fake Media. https://jpeg.org/jpegfakemedia/index.html.

[10] ISO/IEC. ISO/IEC IS 19566-5:2019, Information Technologies - JPEG Systems -
Part 5: JPEG Universal Metadata Box Format (JUMBF), 2019.

[11] ISO/IEC. ISO/IEC DIS 19566-5:2022, Information Technologies - JPEG Systems -
Part 5: JPEG Universal Metadata Box Format (JUMBF), 2022.

[12] ISO/IEC. ISO/IEC IS 19566-4:2020, Information Technologies - JPEG Systems -
Part 4: Privacy and security, 2020.

[13] CAI. Content Authenticity Initiative. https://contentauthenticity.org.

[14] Microsoft. Project Origin. https://innovation.microsoft.com/en-us/

project-origin.

[15] ISO/IEC. ISO/IEC JTC1SC29/WG1 N100156, Use Cases and Requirements
for JPEG Fake Media. https://ds.jpeg.org/documents/jpegfakemedia/

wg1n100156-095-REQ-Use_Cases_and_Requirements_for_JPEG_Fake_Media.pdf,
2022.

[16] Spring Boot framework. https://spring.io/projects/spring-boot.

[17] Fotos N., Delgado J. ISO/IEC JTC1SC29/WG1 M96014, UPC Pro-
posal for JUMBF (ISO/IEC 19566-5) Ed2 Reference Software. https:

//github.com/nickft/mipams-jumbf/blob/main/docs/UPC%20proposal%20for%

20JPEG%20Systems%20JUMBF%20Ed2%20RefSW.pdf, 2022.

82

https://www.jpeg.org/
https://c2pa.org
https://c2pa.org/specifications/specifications/1.0/specs/C2PA_Specification.html
https://c2pa.org/specifications/specifications/1.0/specs/C2PA_Specification.html
https://ds.jpeg.org/documents/jpegfakemedia/wg1n100157-095-REQ-Final_Call_for_Proposals_for_JPEG_Fake_Media.zip
https://ds.jpeg.org/documents/jpegfakemedia/wg1n100157-095-REQ-Final_Call_for_Proposals_for_JPEG_Fake_Media.zip
https://jpeg.org/jpegsystems/index.html
https://jpeg.org/jpegfakemedia/index.html
https://contentauthenticity.org
https://innovation.microsoft.com/en-us/project-origin
https://innovation.microsoft.com/en-us/project-origin
https://ds.jpeg.org/documents/jpegfakemedia/wg1n100156-095-REQ-Use_Cases_and_Requirements_for_JPEG_Fake_Media.pdf
https://ds.jpeg.org/documents/jpegfakemedia/wg1n100156-095-REQ-Use_Cases_and_Requirements_for_JPEG_Fake_Media.pdf
https://spring.io/projects/spring-boot
https://github.com/nickft/mipams-jumbf/blob/main/docs/UPC%20proposal%20for%20JPEG%20Systems%20JUMBF%20Ed2%20RefSW.pdf
https://github.com/nickft/mipams-jumbf/blob/main/docs/UPC%20proposal%20for%20JPEG%20Systems%20JUMBF%20Ed2%20RefSW.pdf
https://github.com/nickft/mipams-jumbf/blob/main/docs/UPC%20proposal%20for%20JPEG%20Systems%20JUMBF%20Ed2%20RefSW.pdf

[18] Fotos N., Delgado J. ISO/IEC JTC1SC29/WG1 M96015, UPC Proposal for
JPEG Systems’ Privacy and Security (ISO/IEC 19566-4) Reference Software v2.
https://github.com/nickft/mipams-jumbf/blob/main/docs/UPC%20proposal%

20for%20JPEG%20Systems%20Privacy%20and%20Security%20RefSW%20v2.pdf,
2022.

[19] IETF. RFC 8949: Concise Binary Object Representation (CBOR). https://www.

rfc-editor.org/rfc/rfc8949.html, 2020.

[20] ISO 16684-1. Graphic technology — Extensible metadata platform (XMP) specifi-
cation — Part 1: Data model, serialization and core properties, 2012.

[21] OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0. https:
//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html, 2017.

[22] IETF. RFC 8152: CBOR Object Signing and Encryption (COSE). https://

datatracker.ietf.org/doc/html/rfc8152, 2017.

[23] W3C. Verifiable Credentials Data Model v1.1. https://www.w3.org/TR/

vc-data-model/, 2022.

[24] Oracle. Java Cryptography Architecture (JCA) Reference Guide.

[25] React. A JavaScript library for building user interfaces. https://reactjs.org/.

[26] Docker. https://www.docker.com/.

[27] RSA (cryptosystem). https://en.wikipedia.org/wiki/RSA_(cryptosystem).

[28] X.509 Certificate. https://en.wikipedia.org/wiki/X.509".

[29] OpenSSL. DER format. https://wiki.openssl.org/index.php/DER.

[30] JSON Web Tokens (JWT). https://jwt.io/.

[31] Toast UI ImageEditor. https://github.com/nhn/tui.image-editor.

[32] ExifTool by Phil Harvey. https://www.exiftool.org/.

[33] Delgado J, Llorente S, Reig G. Implementation of privacy and security for a genomic
information system. pHealth, 2021.

[34] Distributed Multimedia Applications Group (DMAG). https://dmag.ac.upc.edu/.

[35] Information Modeling and Processing Research Group (IMP). https://imp.upc.

edu/en.

[36] IPTC - NAA. Information Interchange Model Version No. 4.2. http://www.iptc.

org/std/IIM/4.2/specification/IIMV4.2.pdf, 2014.

[37] Schema.org. ClaimReview: A Schema.org Type. https://schema.org/

ClaimReview, 2015.

[38] ISO/IEC 23009-1:2012. Information technology – Dynamic adaptive streaming over
HTTP (DASH) - Part 1: Media presentation description and segment formats, 2012.

83

https://github.com/nickft/mipams-jumbf/blob/main/docs/UPC%20proposal%20for%20JPEG%20Systems%20Privacy%20and%20Security%20RefSW%20v2.pdf
https://github.com/nickft/mipams-jumbf/blob/main/docs/UPC%20proposal%20for%20JPEG%20Systems%20Privacy%20and%20Security%20RefSW%20v2.pdf
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://reactjs.org/
https://www.docker.com/
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/X.509"
https://wiki.openssl.org/index.php/DER
https://jwt.io/
https://github.com/nhn/tui.image-editor
https://www.exiftool.org/
https://dmag.ac.upc.edu/
https://imp.upc.edu/en
https://imp.upc.edu/en
http://www.iptc.org/std/IIM/4.2/specification/IIMV4.2.pdf
http://www.iptc.org/std/IIM/4.2/specification/IIMV4.2.pdf
https://schema.org/ClaimReview
https://schema.org/ClaimReview

[39] Rhayma, H., Makhloufi, A., Hamam, H. et al. Semi-fragile watermarking scheme
based on perceptual hash function (PHF) for image tampering detection. Multimed
Tools Appl, 80(17):26813–26832, 2021.

[40] ISO/AWI 24138. ISCC - Specification v1.x. https://iscc.codes/specification/,
2022.

[41] IETF. RFC 6960: X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol - OCSP. https://www.rfc-editor.org/rfc/rfc6960, 2013.

84

https://iscc.codes/specification/
https://www.rfc-editor.org/rfc/rfc6960

	List of Figures
	List of Tables
	Introduction
	Background
	Problem
	Solution
	Objective
	Planning
	Organization of the document

	State-of-the-art tools and standards
	JPEG Universal Metadata Box Format (JUMBF)
	Coalition for Content Provenance and Authenticity (C2PA)
	JPEG Fake Media Requirements

	JUMBF Reference Software
	JUMBF Core Library
	Box structure
	Content Type class hierarchy
	Embedding JUMBF metadata to a JPEG image
	Example: Generating a JUMBF file

	JUMBF Privacy & Security (privsec) Library
	Protection box
	Replacement box

	Specification of JPEG Fake Media
	Data model
	Assertion
	Content Binding.
	Actions.
	Thumbnail.
	Ingredient.
	EXIF metadata.

	Assertion Store
	Claim
	Claim Signature
	Credential Store
	Manifest
	Manifest Store

	Trust model
	Operations
	Consume provenance metadata
	Produce provenance metadata

	Fulfillment of JPEG Fake Media Requirements

	Provenance Reference Software
	Application
	Practical demo for JUMBF metadata
	Provenance metadata manager
	Introduction
	Generating producer key pair and digital certificate
	Producing provenance history for digital assets
	Consuming provenance history

	MIPAMS Environment
	Future Work
	Enriching provenance manager application
	The Content Binding problem
	Extension of Privacy policy implementation
	Storing provenance information on the cloud

	Conclusions
	References

