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Abstract: This paper presents a model-based prognostics procedure using a zonotopic Kalman
filter in tandem with a zonotopic set-based propagation of degradation, aiding in the quantifi-
cation of uncertainties associated with prognostics. The prognostics procedure is then applied
to the degradation of a wind turbine blade material subjected to a forecasted bounded set
description of wind profile. To facilitate an online condition based implementation, an otherwise
nonlinear based Kalman filter from the nonlinear wind turbine model is presented in a pseudo-
linear form, a polytopic linear parameter varying representation, decreasing computational cost
and easing in the propagation of the positive invariant zonotopic uncertainty sets to a reachable
set that triggers an end of life. Using this information of health, the remaining useful life with

its associated uncertainties can be predicted.
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1. INTRODUCTION

Productive operation of wind turbines requires structural
installation at most often unforgiving environmental con-
ditions which invariably leads to a high rate of component
damage. Due to the inevitability of these occurrences, the
knowledge of the life expectancy of these components sub-
ject to adverse conditions is of importance for the effective
planning of maintenance and operation to minimize the
levelized cost of energy (LCoE); increasing profits and
accelerating wind energy’s contribution to a more envi-
ronmentally sustainable energy mix. Prediction of the life
expectancy of components at a specific time in a plant
operation involves an efficient design of prognostics tools to
establish whether operational goals can be fulfilled, whilst
also considering the possibility of including online decision-
making frameworks such as fault-mitigation, operational
replanning and other prescriptive policies (Sankararaman
and Goebel, 2013).

Some algorithms for wind turbines prognostics have al-
ready been proposed following model-based (Asgarpour
and Sgrensen, 2018; Valeti and Pakzad, 2018) and data-
based (Cao et al., 2018; Zhao et al., 2016) approaches.
Uncertainty in prognostics is inevitable since it involves an
assumed knowledge of future operational conditions and
also present prediction of states and/or parameters which
are uncertain. Therefore, it makes no sense to predict a
RUL without an accompanying uncertainty description.
Quantification of uncertainty in prognostics according to
Sankararaman and Goebel (2013) is categorized into the
classical (frequentist) and Bayesian (subjective) schools of
thought and can be posed as an uncertainty propagation
problem. Quantification can either be an online or offline
procedure. Sikorska et al. (2011) acknowledges the fact

that the main bottleneck of online implementation is the
computational burden that most methodologies present.
Instead of this, it is imperative to propose prognostics
algorithms that are practical for easy deployment.

In this paper, a set-based prognostics of a wind turbine
blade is proposed and is formulated as a reachability
analysis problem. During the estimation step, for lesser
computational burden, a Zonotopic Kalman filter (ZKF) is
formulated taking into account a damage-appended wind
turbine model in a linear parameter varying (LPV) format
such that at each propagation time, with the estimated
state (degradation) and its uncertainty, a propagation of
zonotopic sets can be undertaken.

The structure of the paper is as follows: In Section 2, the
considered degradation model for wind turbine blades is
presented. In Section 3, the wind turbine and degradation
model is expressed in LPV form. In Section 4, the set-based
prognostics approach is presented. Section 5 describes
the RUL approach based on the set-based prognostics
approach. Finally, Section 6 draws the main conclusions.

2. DEGRADATION OF WIND TURBINE BLADES
2.1 Blade stiffness degradation model

This paper will focus of the prognostics of the wind
turbine blades. According to Vassilopoulos et al. (2010),
the modulus decay of most fibre reinforced composite
materials occurs in three stages: Ej is undamaged stiffness,
F is the stiffness at a specific point in the material fatigue
life cycle, N is the total test cycles and Ny is the fatigue
life in cycles. In the first stage, there is a rapid degrading
of stiffness of about 2-5% mostly due to transverse matrix
cracks, at this stage microscopic cracks in the material
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starts. Stage two involves a gradual degradation over
the fatigue lifetime. Damage here is mostly caused by
edge delaminations and additional longitudinal cracks.
Eventually in the final state, degradation occurs in abrupt
steps, culminating in an overall fatigue failure of the
specimen. From Van Paepegem and Degrieck (2002), under
the assumption that the UUT (unit under test), the blade
is a solid beam, the damage model considering compressive
stress can be described as:

dD
W:fi(¢vD)+fp(¢vD)v (1)

where f; is the initial stage function of steep declines in

stiffness and f, is the damage propagation function of the
second and final stages. These two functions are given by

D

3
fi(¢, D) = w)] ; (2a)

C13(, D) exp(—Cy

5(6, D) = G5 D59, D)2 |1 + exp( 22 (5(9, D) — ) .

(2b)
where failure index (¢, D) is a function of the damage

D resulting in material strength reduction and the stress
value ¢
¢

(1-D)X,. 3)
The constant X, is the comprehensive static strength.
The damage growth model from initiation to final fatigue
failure is thus given as :

Z(¢7D) =

3
+

dD

D
IN = |C1Zexp(-Cr—=)

Vv

CsDY? |1+ exp(%(E —Cy)

(4)

where C7 and C5 are the material constants, C3 is the dam-
age propagation rate, Cy is a threshold below which there
is no initiation of fibre fracture. When the threshold CYy is
crossed, the initial fibre fracture occurs on the specimen,
which causes an exponential rapid decrease in strength and
enables the final fatigue failure of the material. As long as
the failure index is below the threshold Cy, the parameter
C5 assumes a large value to ensure a strongly negative
exponential function. When Cj is crossed, it assumes a
large positive for accelerated degradation of the material.
The third power is used for compressive stress as they show
from experiments to have considerably less effect than
tensile stress. From Van Paepegem and Degrieck (2002),
the parameters for a damage model for a fibre-reinforced
composite of which some wind turbine blades are made up
of with the stiffness degradation algorithm is given in Table
1. Even though the UUT is presumed to have reached a
predefined threshold of damage after this test, it is by no
means the indication that the component is not usable.
Ideally, the natural assumption is to run the algorithm
till a 100% deterioration of material strength, but it must
be noted that since most of these predictive or statistical
methods, are thought of as not exact, under conditions of
fluctuating mean stress or pronounced sequence effects, a
value below 1 is normally chosen.

To obtain the effective stress value ¢, which effects a dam-
age event has on the composite material, a cycle counting

Table 1. Parameters for stiffness degradation

model.
Parameter ‘ Value ‘ Unit
C1 0.002 (1/cycle)
Ca 30 -
Cs 4x10% | (1/cycle)
Cy 0.85 -
Cs 93 -
Xc 341.5 Mpa

tool such as the rainflow counting to detect closed loading
reversals or cycles is used.

2.2 Stress in wind turbines

Stress on wind turbine blades results mainly due to flap-
wise or edge-wise loadings. The former is due to aerody-
namic loadings whilst the latter is a product of gravitation
from the blade weight, as well as torque loads. For this
study, only the flap-wise loading is considered. Sanchez
et al. (2015) established a relationship between the flap-
wise root moment, the pitch angle and the exogenous
wind, resulting in a stress function through least-squares,
taking into account different wind conditions from the high
fidelity FAST (Jonkman et al., 2009) like in Fig. 3. With
the stress function equation,

¢(t) = a15(t) + agw(t) (5)

where (1) is included in the wind turbine model for the
prognostics procedure.
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Flapwise blade root moment of a blade.
3. LPV WIND TURBINE AND DEGRADATION
MODEL
3.1 Non-linear model wind turbine

Neglecting torsion angle and friction and with the assump-
tion that the low and high speed shaft, a simple wind
turbine model is used in this paper:
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o1

wp = (T~ NyT,) (6a)
B= (=545 (6b)
Tg = %(_Tg +T,) (6¢)

where w, is the rotor speed, Ty is the generator torque
and [ the pitch angle for capturing wind depending on
wind speeds w. The model parameters J, 7,, 7, are the
rotor inertia, the time constant of the pitch and the time
constant of the generator, respectively. The rotor torque
(T, ) which is dependent on the power coefficient C,,, which
is a function of the pitch angle 8 and blade tip speed A is
given as:

1
T, = §p7rRqu()\, Bw?,

Rw,

A=t (7b)

where (1) must be converted from cycles to time do-
main to be included into the wind turbine model. Since
the rainflow counting algorithm produces a discontinuous
output, from its algorithmic branches and loop policy.
(1) can be thought of as a discontinuous function and
thus problematic for direct online implementation. Luckily
some works have employed the use of Light Detection and
Ranging (LIDAR) devices to circumvent this problem, by
essentially taking advantage of the delay of wind contact
with the blades, with some pre-knowledge of the wind
profile to have a post process stage which enables an
online implementation. Low et al. (2020) applies this tech-
nique in model predictive control, using a Parametric On-
line Rainflow-counting (PORFC). Similarly, the LIDAR is
used to evaluate the change of cycles per sampling time in
measured wind within specific time frame determined by
the delay given as the contact time (t.) between wind and
the structure J

te = —. (8)

U

where d is the measuring distance and v,, the mean flow
velocity. Therefore with the known number of cycles n.
within a time frame t., an estimated cycle per sampling
time T is taken as:

(7a)

o) =" -,
The prognostics model is therefore given as :
1
Wy = j(Ta — NgTy), (9a)
. 1
B=—(=B+5), (9b)
Tp
Ty= (-T, +T,), (9¢)
Ty
D = ©(t)(fi(¢, D) + f,(¢, D)). (94)

3.2 LPV model

The non-linear model is posed as an LPV model by em-
bedding the nonlinearity in scheduling parameters 6(k). In
this way, the resultant nonlinear time varying degradation
model is formulated mathematically into a pseudo-linear
form through embedding. For brevity, the procedure is not

elaborated here. The LPV model in discrete-time with a
sampling time T is therefore:

o(k + 1) = A(O(k))z(k) + Bu(k),

where z = [w,BT,D]" € R" are the states, u =

[Ty, B-]T € R™ the inputs and w(k) € R? the disturbance
from the wind.

(10)

The system matrices are given as follows:

_ N i
ki61(k) 0 ——Z 0
1 J
0 -—— 0 0
AOKk)=1+T, Tp 1 )
0 —-—— 0
Tg
L 0 Oa(k) O 05(k)]
0 0
1
O .
B=T,|; ™|,
— 0
Ty
0 0
where k1 = %,mrli’?, and the scheduling parameters are:

01 (k) = G 0, (k) = O (k) (—pigye ) (a3 B(R)* +
3a3 B (k) (azw(k)) +3ar (azw(k))? + (agw(k))?) and b5 (k) =

O(k)Cs%(k)? [1 +exp(S2(S(k) — 04)] .

4. SET-BASED PROGNOSTICS
4.1 Description

The proposed prognostics approach is primarily based on
the generic model-based prognostics formalism, adapted to
a set-based description of uncertainties. The plant model
is subject to control and exogenous disturbance (wind)
inputs u(k) and w(k), under sensor noise v(k) conditions,
such that w(k) and v(k) are described as unknown but
compact convex sets,

a(k+1) = f(x(k),0(k), u(k), w(k), k), (11)
where v(k) € V and w(k) € W, with the compact sets
Y and W described as zonotopic sets. The output data
y(k) and information from the model, under uncertainty
is used in the ZKF estimation of zonotopic bounded states
including the damage variable.

This compact sets description is subsequently used as
the premise to predict the EOL and RUL at a spe-
cific time instant k, that take their values from resul-
tant feasible compact uncertainty propagated sets that
retain desirable properties for interpretability due to
the initial zonotopic set. Future conditions during pre-
dictions are also considered bounded in sets and in-
fluence the penultimate degradation reachable set and
thus the EOL and RUL, OFOL(Oxz(k,),0(k,)|0y(k,))
and ORUL(Ox(ky), 0(k,)|Oy(ky)), respectively. Consider-
ing Teor, € R™ x R™ as a threshold of failure, Tgor,
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maps to a Boolean domain, such that a failure is 1 and
0, otherwise. Tror : R"™ x R™ — B, the EOL(k)p) is
formalised in (Daigle et al., 2012) as
EOL(ky) =inf{k € N : k > kpA
Tror(z(k),0(k),u(k)) = 1},
The remaining useful life, at &, is thus given as (14) in set
form:

(13)

ORUL(k,) = OEOL(k,) — k,. (14)

4.2 ZKF Implementation

As stated earlier, the stages of prognostics, estimation and
prediction, involve uncertainties, which may arise due to
modelling errors, sensor noise, modelling parameters, state
estimation at prediction time, assumed future knowledge
of conditions or environmental conditions. Due to the
sensitivity of this process, it is important to quantify all
uncertainty sources appropriately. The zonotopic uncer-
tainties in this paper are considered to be additive and
constructed from symmetric interval sets. The quantified
uncertainties are (i) the sensor noise, v(k) € [—Av Av]
(ii) modelling uncertainties which is considered to emanate
from the uncertain measured wind in the nonlinear embed-
ded nonlinearities, from #; and 65, which are calculated
from appropriate interval analysis operation, such that,
61 € [—AH; Aby] and b3 € [—Aby Aby] and (iii) Uncer-
tainty from the exogenous wind input, w(k) € [—Aw Aw].
From the interval sets, the zonotopic sets are formulated
for the Kalman filter procedure.
Considering that the dynamical LPV system can be rep-
resented as
z(k+1) = A(0(k))x(k) + Bu(k) + E,w(k) (15a)
y(k) = Cx(k) + Eyv(k) (15b)
where F,, and F, are set up to represent the resultant
uncertainty bounds from all the uncertainty sources. w and
the noise v are assumed bounded in a unitary hypercube
centered at the origin, w € [-1, 1] = (0, I,,,) and
v e [-1, 1™ = (0, L), I,, € R"™*™ and I, €
R™*™ are identity matrices. Considering the quasi-LPV
model (10), a polytopic LPV model is used to formulate
the estimation, such that the estimated states & (k) with
ng varying parameters is given as:
2me
Bk 4+1) = (m(0(k))) (Ai(0(k))ax(k) + Bu(k)) +
P (16)
+ L (0(k)) (y(k) — 9(k))
The observer gain L (6(k)) € R™*™ takes its solution
from the convex hull of a 2™ vertex polytope.
ome

L(0) = Zﬂi () L:

2m0
Z 1223 (9) =1
=1

where L; are the 2™ observer gains for each of the
polytope’s vertices.

(17)

Assumption 1: The system matrices A(6(k)) and C are
observable for any realization of 6(k).

The gains L; are obtained by solving an LQC duality
problem. Let the observer gain tuning parameters be @ =
QT = H'H > 0 and R = RT > 0 and A; be for each
vertex of the polytope. Thus, with an optimal bound -,
the polytopic observer gains are obtained by solving an
LMI minimization problem to find T and W;.

min (18)
v, YT="T W
subject to
I, I,
[VIn T] >0 (19)
-7 YA, —wrfc yHT Wt
Ay —cTw -T 0 0
" HY 0 L o | <0 (0
w 0 0 —-R!
—rY g + ATy —cTw
¢T +TA; - WC S <0 (2

g = 0 and r = 1 are the center and radius of a unitary
circle, respectively. Eq. (21) is included to guarantee the
stability of the observer. The disturbances (w € R"*) and
measurement noise (v € R™) are unknown but assumed
to be bounded and represented by zonotopes

W = {(c,, Rs) (22a)

V = {cy, Ry) (22b)

where ¢, and ¢, are the centers of the sets with R, €

R"=*"= and R, € R™>™ as their generator matrices

representing the uncertainties. The state is thus estimated
as & = (¢, Ry).

ca(k+1) =cp(k) + L (y(k) — Ccp(k)) (23a)

Ry(k+1)=[(I - LC) Ry(k), —LE,] (23b)
o

cp(k+1) = pi(0(k))As(0(k))x(k) + Bu(k) (24)
i=1

270

A(B(k)) =Y i(O(k) Ai(0(k))  (25)
i=1

Ry(k+1) = [A@)R(E) ]
where L is given as in (17).

(26)

With the estimated c, state and associated uncertainty
R, description as shown in Fig. 2, the prediction stage at
each designated prediction time can start.

5. PREDICTION OF THE RUL

The time prediction distribution of the EOL at prediction
instants k, can be thought of as a reachability analysis
problem based on set propagation considering initial set
conditions from the estimator .i.e 22,% C <cx,€p, Rmkp),
with inputs sourced through random sampling from an
assumed known distribution of inputs. Assuming the ma-
trices A(6(k)) are always stable, then the propagation of
the sets with respect to the system ensures that a set of
positive invariant sets, [((kp),((k, + 1)....{(kgoL)], can
be constructed. Thus, the evolution of the centers of the
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Fig. 2. Estimation of states by ZKF with bounded sets
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Fig. 3. Monotonic degradation function

set is guaranteed to be z(k) C ((k). The propagated
positive invariant sets are just unions of the constituents
convex sets (27) and the uncertainty sets constructed via
Minkowski sums (28):

kgorL

((kpor) € Ry, kpor) (X,

(27)
keor
AX(ky +3) € € WG Satly) 0 4007
BAu(k, +j — 1) @EwAw(kp—l-J —1)).

28

Since the control inputs are dependent on the wind cogldi2

tions and the degradation a function of only the wind,

only a distribution of the wind is considered. Wy, D

[w(k,) + Aw(ky), w(k,+ 1)+ Aw(k, + 1), ... w(kror) +
w(kgor)]

Remark 1 Since the degradation model is strictly
monotonous with respect to the initial state zp € R™ and
inputs w; € RY C W, for all trajectories v(t,zo,w) :
Repg X X X RY —» X, : a3 > xl,U(tg,xg,wz) >>
v(t1, 21, w;). From Althoff et al. (2021), it can be inferred,

= U R (R[o, T](&p)> :
k=k,

Algorithm 1. Prediction of RUL

1: Inputs {(cz, s Ray s Wi, A(0(Kyp)), Ky}
2: Output {RUL, RUL,RUL}
c(k) — coy,s Ra(k) «— Ra, , A(0(K)) «— A(0(kp))
for k =k, kp+1,...do
while TEOL<DIc,,,”n(k’)) =0do
Deen (k) «— D(c(k)) > Propagation of damage
center
8: Dyin (k) <— D(c(k) — rs(R.(k))) >
Propagation of damage lower bound
9: Dinaz (k) <— D(c(k) + rs(R.(k))) >
Propagation of damage upper bound

10: c(k+1) = (A(0(k))c(k) + Bu(k)> Propagation
of states

11: R.(k+1)=[(A0(k))R.(k) Eu] >
Propagation of uncertainty bounds

12:

13: if Tror (chm (k)) =1

14: then k.., «— k

15: if TEOL(kam(k)) =1

16: then k,,,;, +— k

17: if TEOL(kaM (k‘)) =1

18: then k,,,. +— &k

19: end while

20: RUL <— keen, — kp
21: RUL <— kpin — kp
22: RUL < kmaz — kp
23: end for

that Vzg < T,w < w, each state trajectory can be con-
structively, bounded as in Vi € N*,t > 0,v;(t, 2,0, w) <
v (t, T, w) and v;(t, zi0,w) > v;(t, T, w) .

The reachable zonotopic convex sets (k) are therefore over
approximated with hypercubes. Hypercubes are them-
selves zonotopes, so the process involves a mapping of
a zonotope to another zonotope that invariably increases
conservativeness but for the purposes of interpretability.
The RUL prediction can be summarized in Algorithm 1.

Degradation(-)

Degradation(-)

-7 L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000
Time(s)

Fig. 4. Propagation of degradation uncertainty set to EOL.

To show the efficacy of the proposed methodology an accel-
erated degradation experiment is undertaken by amplify-
ing the otherwise small degradation events. A degradation
threshold of 0.7 is chosen and the degradation is assumed
to start from 0.2. Fig. 5 and Fig. 6 mainly show desirable
results of a more certain EOL and thus remaining useful
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Fig. 5. PDFs of degradation at the EOL.

life when the degradation of the material is close to the
threshold, conversely, the uncertainty is more distributed
when prediction time is far from the threshold. It must be
noted that the prediction times are selected set of instants
during online operation of the plant with the estimator.

4
14219

RUL prediction

e

‘Aéf RUL prediction with interval error ‘

2 3 4 5 6 7 8 9 10 11 12
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Fig. 6. Remaining useful life Predictions .

6. CONCLUSION

This paper has proposed a model-based prognostics proce-
dure using a zonotopic Kalman filter that is able to provide
a set-based propagation of degradation, aiding in the quan-
tification of uncertainties associated with prognostics. The
prognostics procedure is then applied to the degradation
of a wind turbine blade material subject to a forecasted
bounded set description of wind profile. To facilitate an
online condition based implementation, a nonlinear based
Kalman filter from the nonlinear wind turbine model is
presented in a pseudo-linear form, a polytopic linear pa-
rameter varying representation, decreasing computational
cost and easing in the propagation of the positive invariant
zonotopic uncertainty sets to a reachable set that triggers
an end of life. Using this information of health, the re-
maining useful life with its associated uncertainties can
be predicted. The proposed approach has been tested in a
benchmark wind turbine using a high-fidelity simulator.
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