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Abstract: In this paper, new suspended-membrane double-ohmic-contact RF-MEMS switch configu-
rations are proposed. Double-diagonal (DDG) beam suspensions, with either two or three anchoring
points, are designed and optimized to minimize membrane deformation due to residual fabrication
stresses, thus exhibiting smaller mechanical deformation and a higher stiffness with more release
force than previously designed single diagonal beam suspensions. The two-anchor DDGs are de-
signed in two different orientations, in-line and 90◦-rotated. The membrane may include a window
to minimize the coupling to the lower electrode. The devices are integrated in a coplanar-waveguide
transmission structure and fabricated using an eight-mask surface-micro-machining process on
high-resistivity silicon, with dielectric-free actuation electrodes, and including glass protective caps.
The RF-MEMS switch behavior is assessed from measurements of the device S parameters in ON
and OFF states. The fabricated devices feature a measured pull-in voltage of 76.5 V/60 V for the
windowed/not-windowed two-anchor DDG membranes, and 54 V/49.5 V for the windowed/not-
windowed three-anchor DDG membranes, with a good agreement with mechanical 3D simulations.
The measured ON-state insertion loss is better than 0.7 dB/0.8 dB and the isolation in the OFF state is
better than 40 dB/31 dB up to 20 GHz for the in-line/90◦-rotated devices, also in good agreement
with 2.5D electromagnetic simulations.

Keywords: RF-MEMS switch; beam suspension; coplanar-waveguide

1. Introduction

The development of microfabrication technologies, and in particular micro-electro-
mechanical systems (MEMS), has a unique potential as a key enabling technology for all
countries to develop the 6th generation of mobile communications and support the current
implantation of the 5th generation (5G), and also to further enhance their space programs [1].
Currently, space programs are focusing on launching nanosatellites, which combine low
cost and weight. Therefore, the miniaturization potential of MEMS devices and their re-
duced size and weight is an advantage for nanosatellites, and also for applications linked
to 5G such as the Internet of Things [2,3], mobile and broadcasting communications [4–6],
and wearable medical devices [7,8]. Researchers are working on the development of
switches [4–6], phase shifters [9,10], switched antennas [11,12], filters [13–15] and ampli-
fiers [16] all based on RF-MEMS switches as an alternative technology to conventional
PIN diodes and transistor-based switches. However, the voltage required to mechanically
actuate the MEMS switch (pull-in voltage, or Vpull-in) is a critical parameter and many
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research efforts have been devoted to optimizing its value [5,6,17]. The pull-in voltage
should be low to minimize complexity in high-voltage generation circuits, but there is a
trade-off with the stability of the switch because lower voltages mean more flexibility of
the suspension and therefore a less robust device.

Intensive research work is also being made to understand and minimize the impact of
residual stresses during the fabrication processes on the switch performance [5,6]. Most
fabrication processes involve the deposition of layers of different materials at different
temperatures which results in the generation of residual stresses due to differences between
the coefficient of thermal expansion of the materials, which in turn modify the initial
topography of the MEMS device. Accurate models of this initial topography are needed
to forecast the real actuation voltages [17–19]. In [18] an isolation test was proposed to
precisely measure the deformations undergone by an Au-cantilever-based RF-MEMS switch.
This method allows for prediction of the RF-MEMS deformation during the different high-
temperature processes. In [17], a finite-element-method (FEM) model was fitted to the
experimentally-measured curvature of thin films to determine their residual stress and
then used to predict the initial curvature of the designs. In [20], a novel design approach
based on the response surface method statistical methodology was proposed and validated
against FEM commercial models.

From a mechanical point of view, work has focused on designing mechanical suspen-
sions and membranes that are more robust to residual stresses. Most RF-MEMS switches
have either straight or meander-type suspensions. These two configurations bend due to
residual stresses during the manufacturing process. In [21], introducing corrugations in
their suspensions was proposed to reduce the influence of the fabrication-induced stress
on the membrane deflection, thus achieving a reasonable pull-in voltage (Vpull-in) of 36 V,
with an isolation of 30 dB and insertion loss of 0.7 dB up to 4 GHz. The corrugation
required multiple layers of materials to be manufactured. On the other hand, in [22], a
change in the suspension itself was proposed, which was partially a semi-circle combined
with a straight-wide beam; in this case, the device was quite robust to stress changes, but
with a high actuation voltage, between 80 and 90 V. In [23], a single material suspension
was also proposed, as in [22], but with a much simpler design consisting in two diagonal
beams supporting the membrane; the thermal expansion on one side was partially com-
pensated for the symmetric expansion on the other side and thus the design improved the
thermal stability.

It has been pointed out that the diagonal-beam suspension [23,24] produced more
reliable switches, even though it increased the spring constant. In a previous authors’
work [24], diagonal (DG)-beams and circular beams were introduced to support either
cantilever or bridge-type RF-MEMS switches embedded in a coplanar waveguide (CPW)
transmission-line structure. These two configurations improved the performance of the RF-
switches, since after release the suspensions minimized their deformation due to residual
stresses. However, the membranes were still bent in some parts, thus reducing the required
effective voltage to actuate the device, and the spring constant was less than 15 N/m in
most cases, thus reducing the switch reliability. In [25], a novel manufacturing process
optimized for RF applications was used in phase-shifter designs, corroborating the idea that
membrane structures are more robust than cantilever-type switches. In [26], a novel design
of RF-MEMs capacitive switches, based on a membrane and 4 zig-zag-type suspensions,
was introduced. These suspensions were designed to compensate residual thermal and
mechanical stresses; however, their suspension size, comparable to that of the switch, may
limit its integration in RF circuits.

This paper will focus on the analysis, design, and characterization of a novel RF-MEMS
switch, which features a double diagonal shaped suspension (DDG) optimized to minimize
the deformation caused by residual fabrication stresses, and therefore it results in more
robust switches with enhanced RF behavior. The design is validated through finite element
analysis and experimental characterization and compared to the single diagonal suspension
(DG) formerly proposed in [24]. The proposed RF-MEMS switch consists of a membrane
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structure embedded in a CPW transmission line which, upon actuation, performs a double
series ohmic contact that bridges the input and output sections of the CPW central strip. The
CPW transmission structure is advantageous because the metal conductors are disposed
on the same plane (planar structure), and thus RF-MEMS switches are easily embedded
providing reconfiguration capabilities by controlling the two propagation modes of a CPW,
the CPW even mode or the CPW odd mode. This control is performed by switching the
RF-MEMS device between its ON and OFF states. In [24], a double ohmic contact shunt
switch was proposed to control the CPW odd mode. In contrast, the double ohmic contact
series switch proposed in this paper is specifically designed to control the propagation of
the more usual CPW even mode, providing very high isolation in the OFF state (much
improved with respect to the ohmic switches reported in [24]) and small insertion loss in
the ON state.

The paper is organized as follows. The RF-MEMS switch concept and behavior are
presented in Section 2. The switch mechanical model, the fabrication process, and the RF
design and electromagnetic (EM) simulations follow in Section 3. In Section 4, different
switches are experimentally characterized, the results are discussed, and the mechanical
numerical results and EM simulation results are validated. The conclusions of this work
are presented in Section 5.

2. RF-MEMS Switches for Controlling the CPW Even Mode

The proposed RF-MEMS switch suspensions are shown in Figure 1. They consist
of an elevated metallic cantilever (movable membrane) anchored to the substrate and
electrically separated from the remaining metal areas. The RF signal propagates along a
CPW transmission line consisting of a central conductor and two side metal planes. The
CPW even mode is defined by a voltage Ve between the central conductor and the two
side metal planes (which are at the same potential) and currents Ie flowing on the central
conductor and side planes in opposite directions (Figure 1a) [24]. The central conductor is
interrupted beneath the MEMS membrane. Thus, when no actuation voltage is applied,
the membrane is in its UP position and the CPW even-mode current flow is interrupted
(switch in the OFF state). When a DC-actuation voltage equal or higher than the pull-
in voltage is applied between the electrode and the movable membrane, the membrane
collapses producing a double ohmic contact between the membrane and the two edges
of the central conductor, thus allowing the CPW even-mode current flow through the
switch (switch in the ON state). As shown in Figure 2, two possible membrane orientations
have been considered, in-line (Figure 2a,b) and 90◦-rotated (Figure 2c,d). While in in-line
devices the double ohmic contact is performed between the narrow edges of the membrane
and the central conductor, in 90◦-rotated devices the double ohmic contact is performed
between the wide edges of the membrane and the central conductor. As will be discussed
in Section 3, the 90◦-rotated device is expected to have a slightly lower ON-state series
resistance than the in-line device, but at the expense of a higher OFF-state series capacitance.
The membrane may have a window in the middle to minimize the unwanted capacitance
between the bridge itself and the bottom electrode. The devices with a window in their
membrane will be identified by the suffix “-W” (DG-W, DDG-W and DDG2-W), and those
without a window will be identified by the suffix “-NW” (DG-NW, DDG-NW and DDG2-
NW). In practice, this window has a negligible effect on the RF performance since the
signal coupling in the OFF state is mainly due to a series capacitance which is a function
of the distance between the two edges of the central conductor, as was observed from
RF/microwave simulations (Section 3) and from experimental results (Section 4); its only
effect was an increase in the pull-in/pull-out voltages.
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Figure 1. RF‐MEMS switch suspension configurations. (a) Single diagonal beam (DG); (b) double 

diagonal beam (DDG); (c) double diagonal beam suspension with three anchoring points (DDG2). 

(d) Schematic device cross‐section showing the membrane in the ON and OFF states. 
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Figure 1. RF-MEMS switch suspension configurations. (a) Single diagonal beam (DG); (b) double
diagonal beam (DDG); (c) double diagonal beam suspension with three anchoring points (DDG2).
(d) Schematic device cross-section showing the membrane in the ON and OFF states.
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Figure 2. RF-MEMS switch membrane configurations and actuation electrodes for the DDG sus-
pension. (a) DDG-W, in-line, (b) DDG-NW, in-line, (c) DDG-W, 90◦-rotated, and (d) DDG-NW,
90◦-rotated.
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During the deposition process of the different layers, residual stress forces are gen-
erated along the beam direction. Figure 3 shows the force direction of each suspension
type. In the device with DG suspension, the forces compensate due to the symmetry of the
device itself. However, this compensation occurs along the width and the length of the
bridge, and small imperfections in the membrane can cause bending in DG devices, while
in the DDG design the compensation along the length of the beam is not required because
the suspension itself is symmetric and therefore the stresses produced in the suspension
are cancelled by the suspension design. At the same time, the stiffness of the structure
increases providing the switch with more release force. A modification of DDG with three
anchoring points instead of two (DDG2) has also been considered; in this case some of
the suspensions self-compensate (the middle ones) and some are compensated due to the
symmetry of the device. It is therefore considered a combination of DG and DDG2 but with
higher stiffness.
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3. Materials and Methods

In this section the fabrication process for the switches proposed in the previous section
is described, the FEM models obtained from ANSYS® Workbench TM (Canonsburg, PA
15317, USA) and the RF design procedure using Keysight MomentumTM 2.5D electro-
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magnetic (EM) simulation (Keysight Technologies, Inc., Santa Rosa, CA 95403 USA) are
discussed, and the fabricated switches are presented.

3.1. Fabrication Process

The technology used for the fabrication of the proposed RF-MEMS switches consists
of an integrated eight-mask surface-micro-machining process, developed by the MEMS
group of the FBK Institute [27,28].

RF signal lines and ground areas are made of thick electroplated gold, to reduce
insertion losses, while electrostatic-actuation electrodes and DC-bias signal lines are made
of high-resistivity polysilicon, to minimize coupling with adjacent RF lines. The gold
movable and suspended structures of the switches are electroplated over a sacrificial
photoresist layer to define the required air gap. Two gold layers are used. A first thinner
“Bridge” layer is used for flexible suspension legs and deformable parts while a second
thicker “CPW” layer is superimposed to obtain the stiffer main body that moves rigidly,
almost without deformations. The signal line under the suspended gold (metal underpass
line) is realized in aluminium. On ohmic-contact switches, the gold-to-gold contact areas
are defined by polysilicon protruding dimples underneath (Figure 4) to ensure a repeatable
contact force and a uniform and reproducible low contact resistance.
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A schematic of the fabrication process is reported on Figure 4. A one µm-thick silicon
oxide isolation layer is obtained by wet oxidation of the 150 mm high-resistivity silicon
wafers. The 630-nm-thick polysilicon layer actuation electrodes and corresponding signal
lines are deposited by low-pressure chemical vapor deposition (LPCVD), lightly doped by
B-ion implantation and defined by lithography and dry etching (Figure 4a). A 300 nm silicon
dioxide insolation layer (TEOS) is deposited by LPCVD and the contact holes are defined
by lithography and dry etched in the TEOS (Figure 4b). The 630 nm metal underpass
lines are deposited by sputtering and patterned (Figure 4c). 100 nm-thick silicon oxide
is deposited by PECVD to be used as metal isolation, as well as dielectric for capacitive
contacts. To realize the vias and to remove the oxide over the dielectric-free actuation
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electrodes a selective dry etching is used. A thin film consisting of a 5 nm Cr adhesion layer
and 150 nm of Au is then deposited by an electron-beam gun and patterned (Figure 4d)
to realize electrically floating electrodes (Flomet) for capacitive contact switches and the
bottom part of the gold-to-gold contacts for ohmic switches. To realize the air gap under
the movable structures and suspended air bridges, a 3 µm-thick Fujifilm OIR305-20HC
sacrificial photoresist (spacer) is deposed and lithographically defined (Figure 4e). The
resist is then baked at 200 ◦C in order to be more stable and avoid deformations and
damages during the next fabrication steps. A 2.5 nm Cr-25 nm Au seed layer is deposited
all over the wafer and a thick AZ 4562 positive resist mold is defined. The 1.8-µm bridge
gold layer is grown by electroplating inside the cavities (Figure 4f) carefully controlling
the process parameters in order to obtain a slightly tensile residual stress [29]. The resist
is removed, and a second AZ 4562 mold is defined for the selective electroplating of the
thicker (3.5 µm) CPW gold layer superimposed to the first one to locally increase the bridge
main-body rigidity. After resist removal, the Cr–Au seed layer is wet etched, and the
electroplated gold is annealed at 190 ◦C to increase adhesion and slowly cooled to reduce
internal stress. To release the movable and suspended structures the sacrificial resist spacer
is then removed by oxygen plasma (Figure 4g). A lower process temperature results in a
lower film stress and consequently lower bridge deformation but a much longer process
time [30], therefore a tradeoff is required. Figure 4g also depicts a schematic cross-section
of a capacitive switch (out-of-scale) showing the different layers and inter-layer contacts.

To mechanically protect the delicate movable parts, glass caps with a polymer sealing
ring can be applied to encapsulate the devices using either a wafer-to-wafer or a cap-to-
die-bonding module [31,32]. The protective caps are realized using 150 mm-diameter,
500 µm-thick borosilicate glass with about the same thermal expansion coefficient as
the silicon substrate [31,32]. A 50 µm-thick photosensitive dry film (ORDYL SY 355) is
laminated at 105 ◦C and 1m/min over the glass wafers and patterned by lithography to
obtain 100 µm-large sealing rings around the switches (Figure 5c). The glass wafers are
then aligned over the silicon MEMS wafers and bonded in a nitrogen atmosphere to reduce
moisture contamination. In the first step, a pressure of 3 MPa is applied at 100 ◦C for 30 min
to allow the polymer to slightly deform, realize an intimate contact with the substrate and
develop the bonding forces. After that, the full polymerization is obtained by increasing
the temperature to 150 ◦C for a further 30 min, to improve adhesion and toughness. The
bonding is not fully hermetic because moisture can slowly diffuse through the polymer,
but it is robust enough to protect the MEMS from cooling water during the dicing process
and from particulate contamination.
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Figure 5. RF-MEMS switch dicing. (a) Dicing process schematic. (b) Picture of the fabricated
wafer showing the RF-MEMS switches with wafer-level encapsulation; a single cap is used for
every two switches. (c) Picture of a DDG-W fabricated device showing detail of CPW access lines,
polysilicon bias lines, sealing ring and quartz cap.

Dicing is performed in two steps. First only the quartz in excess over the pads and
between contiguous dies is removed by a thin diamond blade adjusting the vertical blade
position as shown on Figure 5a. In a second step the MEMS wafer is diced to separate
the chips.

3.2. Mechanical Simulations

The previously described RF-switch manufacturing process induces intrinsic residual
stresses due to the different deposition temperatures and different materials involved.

This fact modifies the initially designed bridge and suspension shape and therefore
changes the effective stiffness and increases the required actuation voltage. The ANSYS®

Workbench TM has been used to define the dimensions of different suspensions (see Table 1)
using a coupled-field 3D FEM analysis to evaluate the design. The model takes into account
the physical properties of the materials that are used during the manufacturing process of
the switch (see Table 2 [24]). After meshing, the following boundary conditions are applied:
the anchors are considered fixed supports. The analysis is run in two steps: initially, the
loads are the residual stresses, which were taken from the measurements reported in [33]:
σ2 = 58 MPa in the gold layer with a thickness t2 = 1.8 µm and σ1 = 62 MPa in the gold
layer with a thickness t1 = 3.5 µm.

Table 1. Dimensions and numerical mechanical parameters.

Parameter DG-W/NW DDG-W/NW DDG2-W/NW

Air gap (µm) 2.7 2.7 2.7
Supporting-beam width (µm) 10 11.2 8.25
Supporting-beam length (µm) 92 75.2 88

Angle (◦) 30◦ 55◦ 45◦

Bridge width (µm) 90 90 90
Bridge length (µm) 265 265 265

Window width 60/– 60/– 60/–
Window length 65/– 65/– 65/–

Bottom-electrodes area (µm2) 18,000/23,850 18,000/23,850 18,000/23,850
Contact area (µm2) 10 × 12.3 10 × 12.3 10 × 12.3

Spring constant (N/m) 39.9 182.35 113.96
Pull-in voltage (V) 38.2/28.5 81.7/70 65.6/56

Resonant frequency (kHz) 27.3 56.4 44.2
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Table 2. Gold material properties Reproduced with permission from Ref. [24]. 2017, Springer Nature.

Symbol Description Value

σ Residual stress (MPa) [33] 58–62
E Young modulus (GPa) [33] 98.5 ± 6
ρ Density (kg/m3) 19,840

The results from this first analysis are used as the initial geometry for a coupled-field
study that uses EMTGEN macro to create an array of nonlinear, coupled, electromechanical
transducer elements (TRANS126). Therefore, the electrode is modelled through this macro
and placed at the corresponding distance. In this simulation, the electrode is considered to
be at 2.7 µm under the bridge, according to the thickness of the spacer in the manufacturing
process (Figure 4). Table 1 lists the geometrical dimensions of the structures presented
in this paper, along with the mechanical parameters obtained from numerical simulation
(actuation voltage (Vpull-in), spring constant, and mechanical resonant frequency). In the
devices without a central window on the membrane, the electrode area is slightly bigger,
and this fact decreases the required Vpull-in, and even though the mass has increased, this
increase is then balanced by the increase in the electrode area and therefore the resonance
frequency is quite similar.

3.3. Switch RF-Design and Simulations

The RF/microwave design of the proposed RF-MEMS structures depicted in
Figures 1 and 2 was conceived as double-ohmic-contact switches able to control the signal
propagation in CPW transmission structures [24]. This configuration was first proposed by
the authors as a parallel switchable air bridge (SAB) with meander suspension to control
the CPW odd mode [34], and it was later applied to microwave reconfigurable filters for
Ku-band (12–18 GHz) [15]. In contrast to [15,34], the double-ohmic-contact switch proposed
here is used in a series configuration and intended to control the CPW even mode instead
of the CPW odd mode, and the membrane is suspended using DDG/DDG2 suspensions
rather than meander ones. It has been designed to operate up to 20 GHz with high isolation
(ISOL) in the OFF state (ISOL = −20 log|S21| with the membrane in the UP position)
and very small insertion loss (IL) in the ON state (IL = −20 log|S21| with membrane
actuated in the DOWN position). The switch membranes (all of them with the same size of
265 µm× 90 µm as shown in Table 1) are embedded in a planar rectangular cavity at a size of
430 µm× 360 µm defined on a CPW structure with dimensions shown in Figure 6, in which
a DDG-W in-line switch and a DDG-NW 90◦-rotated switch (inset) are shown as examples
and fabricated on a 450 µm-thick high-resistivity silicon substrate (Hi-res Si) using the
fabrication procedure discussed in Section 3.1.

The RF/microwave design was performed using Keysight MomentumTM 2.5D electro-
magnetic (EM) simulation with the dimensions given in Table 1. The goal was to obtain the
RF/microwave behavior of the two proposed orientations, in-line and 90◦-rotated. While
both of them have the same mechanical behavior, it is expected that the 90◦-rotated config-
uration shows a slightly lower ON-state series resistance but worse isolation in the OFF
state because the two edges of the central conductor are closer (100 µm) than in the in-line
configuration (270.4 µm), thus allowing stronger signal coupling between the two edges
of the CPW-central conductor. The EM simulation set-up considers the different dielectric
and metal layers defined in Figure 4. The S parameters were simulated by considering the
switch as a two-port device with ports defined for the CPW even-mode propagation as
seen in the EM simulation layout shown in Figure 6.
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C2). P1 and P2 are the 50-Ω CPW even-mode input/output RF ports. A DDG-W
in-line and a DDG-NW 90◦-rotated (inset) configurations are shown as examples. The different layers
are labeled according to Figure 4.

Equivalent circuits of the RF-MEMS switches were also proposed to ease the simulation
of larger circuits in which the RF-MEMS might be embedded and for a better understanding
of signal propagation in both states. Figure 7 shows the proposed equivalent-circuit
topologies in the OFF and ON states. Its element values were obtained ex-post for a good
agreement with the results of EM simulation. The switch basically behaves as a small series
resistance in the ON state (RON) due to the two ohmic-contact resistances (Rc in Figure 7b),
and as a small series capacitance in the OFF state (COFF). From previously designed DG
switches with similar membrane dimensions [24], an ohmic-contact resistance of 1.5 Ω per
contact (Rc = 1.5 Ω) can be anticipated, thus a value RON = 3 Ω can be expected. To the
basic configurations in the ON state (RON) and the OFF state (COFF), CPW transmission-line
sections (same lengths as in Figure 6) were added to the equivalent circuits, as well as to
the small parallel parasitic capacitances (Cp) that model the abrupt change in gap width
between the CPW line and the planar rectangular cavity.

Table 3. Equivalent circuit elements (Figure 8) and layout dimensions (Figure 6).

Parameter In-Line Switch 90◦-Rotated Switch
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expected. To the basic configurations in the ON state (RON) and the OFF state (COFF), CPW 
transmission-line sections (same lengths as in Figure 6) were added to the equivalent cir-
cuits, as well as to the small parallel parasitic capacitances (Cp) that model the abrupt 
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C2).

The EM-simulated transmission parameter (S21) up to 20 GHz of the circuit of Figure 6
in both states is plotted in Figure 8a,b, and compared to the simulation of the equivalent
circuits shown in Figure 7. The two contact resistances Rc = 1.5 Ω were added in series to the
results of Figure 8 in the ON state since the contact resistances are not included in the EM
simulations. Observing the results of Figure 8, the in-line and 90◦-rotated configurations
show very similar behavior in the ON state, featuring a simulated IL < 0.7 dB and a good
agreement with the equivalent circuit of Figure 7b. In the OFF state, the simulated isolation
(ISOL) for in-line orientation (>36 dB) is higher than for the 90◦-rotated orientation (>30 dB)
as expected, and a good agreement with the equivalent circuit of Figure 7a is observed. In
the OFF state, an EM simulation with the membrane removed was also performed and it is
compared to the normal OFF-state simulation (with membrane). When the membrane is
removed, a coupling can still be observed but at a lower level (−5 dB compared to the case
with the membrane), thus showing a higher isolation.

To better understand the OFF-state behavior, the capacitance COFF is split into
two contributions, a contribution due to signal coupling through a guided wave beneath
the elevated membrane in the UP position between the two edges of the CPW-central
conductor (CCP), and a contribution from the two parallel-plate capacitors arising between
the elevated-metal contacts of the membrane in the UP position and the lower central
conductor (CPP). The two contributions are in parallel, so that COFF = CCP + CPP. Con-
sidering a membrane elevated 2.1 µm in the UP position above the TiN + FLOMET metal
contacts (the air-gap height is reduced by 0.63-µm due to the polysilicon bumps in a part
of the overlapping area, as shown in Figure 4) and a metal contact area of 266 µm2, this
results in an approximate capacitance value CPP = 0.64 fF. Regarding the signal coupling
through the membrane in the UP position, modeled by CCP, this can only be predicted
from EM simulation. To assess CCP, a parametric study of the isolation (ISOL) as a function
of the distance (d) between the two edges of the central conductor was performed using
EM simulation, and the results were fitted to a distance-dependent capacitance COFF(d).
The distance d was swept from 100 µm (case of a 90◦-rotated membrane) to 500 µm.
Figure 8c plots four traces, COFF(d), COFF_NOBR(d) (COFF with the membrane removed),
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CCP(d) = COFF(d)-CPP and ∆COFF(d) = COFF(d)-COFF_NOBR(d). It can be observed that COFF
and COFF_NOBR decrease with distance, with them being strongly dependent on d between
100 µm and 350 µm. For values of d greater than 350 µm, the variation is much smoother.
The range of values obtained is 3.09–1.08 fF (COFF) and 2.40–0.47 fF (CCP). The coupling
capacitance CCP(d) is almost the same as the capacitance in the case of membrane removed,
COFF_NOBR(d), as can also be seen by observing that ∆COFF(d) remains mostly constant
with distance to an approximate value of 0.69 fF, which is very close to CPP. For the nominal
distances of the in-line and 90º-rotated devices (d = 270.4 µm/100 µm) the simulated COFF
are: COFF = 1.56 fF (in-line) and COFF = 3.09 fF (90◦–rotated). Table 3 summarizes the values
of the equivalent-circuit elements fitted to the EM simulation. The switch cutoff frequency
(fCUTOFF) is determined by COFF. The cutoff frequency can be defined as the frequency at
which the switch isolation ISOL (dB) is equal to a lower limit, and computed from the S21

parameter magnitude of a series capacitance COFF, |S21| = Z04π f COFF√
1+(Z04π f COFF)

2
, yielding

fCUTOFF =
1

4πZ0COFF

√
10ISOL(dB)/10 − 1

(1)

where Z0 is the reference impedance (Z0 = 50 Ω). The lower COFF is, the higher f CUTOFF
is. Using (1) and taking ISOL = 30 dB, it results in a theoretical upper frequency of
f CUTOFF = 32.2 GHz for the in-line devices and f CUTOFF = 16.3 GHz for 90◦-rotated devices.
However, expression (1) is only an approximation to fCUTOFF since it considers a series
capacitance COFF only, but the equivalent circuit includes CPW line sections which also
decrease the magnitude of S21 due to line loss. Taking all of these into account, the simulated
fCUTOFF values increase to 43.9 GHz and 22.3 GHz, respectively. Table 3 summarizes the
values of the equivalent-circuit elements fitted to the EM simulation.
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4. Experimental Results and Discussion
4.1. RF and Electrical Switch Characterization Methodology

The straightforward characterization technique reported in [24] for both mechanical
and RF/microwave behavior, based on the measurement of S parameters, was used: when
the applied voltage increases and reaches the pull-in value there is an abrupt change in
the magnitude of S21 from a very small value (isolation) to a value very close to 1 (0 dB
insertion-loss), and the opposite occurs when the applied voltage decreases and the pull-out
value is reached. The switch DC behavior (Vpull-in and Vpull-out) was derived from the
measurement of its transmission coefficient (S21 parameter) as a function of the applied
voltage. Figure 9a shows the experimental set-up used for DC and RF characterization.
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An Agilent N6700B power source supplied the DC bias. The S parameters were
measured using an Agilent PNA-X N5245A network analyzer. The contact to RF-MEMS
switches (Figure 9b) was performed using two 250 µm-pitch ground-signal-ground (GSG)
wafer probes as RF ports (P1 and P2), and a third signal-ground (SG) wafer probe (P3)
for DC-bias.

4.2. Numerical Results of Mechanical Simulation and Comparison to Experimental Results

The three suspensions considered for the bridge type RF-MEMS switch are shown in
Figure 1a–c and their dimensions are given in Table 1. The diagonal beam suspension DG
has a Vpull-in of 28.5 V. If a window is added on the membrane, the Vpull-in increases due to a
decrease in the area of actuation and becomes of 38.2 V. Similarly, for DDG-type suspensions
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the pull-in voltage is increased as obtained from mechanical simulation (Table 1). On the
other hand, their stiffness is considerably increased, with it being 113.96 N/m (DDG-2 type)
and 182.35 N/m (DDG type). The DDG2 type suspension interferes with the middle part
of the CPW line, so in some applications this might be a handicap (they cannot be used in
90◦-rotated configuration), but it has a lower Vpull-in compared to the DDG.

The increased stiffness and the symmetry of the design minimizes the deformation due
to residual stresses. DG and DDG have the same actuation area, but since the suspension
of DDG tends to compensate the deformation along the length of the bridge, the contact
point is only deflected due to the bending along the width of the bridge as shown in
Figure 10. Figure 10a shows that suspensions are bended upward due to internal stress
and DG contact point are 0.08 microns higher than the anchor point, while in the DDG case
(Figure 10b), the deformation is smaller and the displacement between the anchor points
and the contact point is only 0.03 µm and is favorable to actuation. DDG and DDG2 show
a similar behavior in terms of residual stress compensation.
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Figure 11 shows the hysteresis measurements (magnitude of the transmission coef-
ficient |S21|(dB) vs. actuation voltage) of the bridge-type switches shown in Figure 1,
from which the actuation voltages (Vpull-in) and the release voltage (Vpull-out) can be easily
inferred. The measurement frequency was 10 GHz. The measured values for Vpull-in are
given in Table 4 and compared to the mechanical simulations in Table 1, and they show
good agreement.
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Figure 11. Hysteresis measurements of the fabricated series switches with two ohmic-contacts
(g0 = 2.7 µm). Red trace: voltage variation from 0 V to ±Vpull-in. Blue trace: voltage variation from
±Vpull-in to 0 V, showing ±Vpull-out. (a) DDG-W-DL, (b) DDG-NW, (c) DDG2-W, (d) DDG2-NW,
(e) DG-W, and (f) DG-NW.
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Table 4. Measured actuation (Vpull-in) and release (Vpull-out) voltages from Figure 11 and simulated
actuation voltages.

Parameter Vpull-in (V) Vpull-out (V) Vpull-in (V)
(Simulated)

DDG-W-DL 76.5 ± 1.5 57.5 ± 2.5 81.7
DDG-NW-DL 60 ± 0.5 46 ± 1.5 70
DDG2-W-DL 54 ± 4 40 ± 0.5 65.6

DDG2-NW-DL 49.5 ± 1.5 36 ± 2 56
DG-W-DL 40 30 38.2

DG-NW-DL 38 30 28.5

4.3. RF Experimental Results and Comparison to Results of EM Simulation

The S-parameters of the different RF-MEMS switch mechanical configurations shown
in Figure 1 were measured up to 20 GHz in both states (ON/OFF), using the set-up of
Figure 9. The measurements are plotted in Figure 12 and compared to the EM simulations.
Since windowed (-W) and not-windowed (-NW) configurations exhibit very similar RF
performance they are not separately plotted. As predicted from simulations in Section 3.3,
the 90◦-rotated configuration shows smaller measured isolation in the OFF state. The
measured isolation in the OFF state is greater than 40 dB for in-line switches (DDG-W/NW,
DDG2-W/NW and DG-W/NW), and greater than 30 dB for 90◦-rotated switches (DDG-90-
W/NW); the measured insertion loss in the ON state is smaller than 0.72 dB (DDG-W/NW),
0.79 dB (DDG-90-W/NW and DDG2-W/NW), and 0.82 dB (DG-W/NW). The values of
the equivalent-circuit elements in the ON and OFF states (Figure 8) were fitted to the
measurements, and the results are listed in Table 5. The performance of switches in the
ON and OFF states is also summarized in Table 5, where the different configurations
are compared. The results show good agreement with simulations, thus validating the
RF/microwave design methodology and circuit models proposed.

Table 5. Summarized measured performance at 20 GHz and equivalent-circuit elements for the
different switch configurations.

Parameter ISOL (dB) IL (dB) COFF (fF) RC (Ω) CP (fF)

DDG 40 0.72 1.06 2.1 5
DDG-90 31 0.78 3.09 2.1 5
DDG2 40 0.79 1.06 2.2 5

DG 42 0.81 0.96 2.2 5
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Table 6 compares the performance of the RF-MEMS switches proposed in this work
with other RF-MEMS switches reported in the literature. Concerning the gap variation to
uncompensated stress, the initial deformation is higher when the structure is a cantilever
and the increase in the gap can achieve up to 9 µm [17]. When the RF-MEMS switch is
double clamped in a membrane, this deformation decreases, with it achieving less than
0.03 µm in the current work. Concerning the RF performance, it can be noted that the
proposed switch configurations feature a better isolation and a very similar (or slightly
better) insertion loss than previous works at comparable frequencies.
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Table 6. Comparison of the RF-MEMS switches proposed in this work with previous RF-MEMS
switches reported in the literature.

Ref.
RF-MEMS

Switch
Structure

Stress (MPa) Vpull-in (V) Gap
(µm)

Frequency
(GHz)

Isolation
(dB)

Insertion
Loss (dB)

[5] Cantilever 50 16 2 12.5 31 1.5
[6] Cantilever – 14.8 2.2 20 20 0.8

[17] Cantilever – 60 3 + 9 * – – –
[19] Membrane 100 60 2.6 40 15 1
[21] Membrane 80 36 5 15 20 2.8
[22] Membrane 100 + 4 90 0.25 40 14 0.8

[24] Cantilever/
Membrane 58–62 10.6/38.2 2.7 + 0.08 * 15/15 10/10 0.9/0.9

This work Membrane 58–62 65.6/56 2.7 + 0.03 * 20 40 (in-line) 0.7

* Increase in gap due to stress.

5. Conclusions

In this paper, new membrane-suspension configurations for double-ohmic-contact
RF-MEMS switches are proposed and analyzed. The suspensions are based on double-
diagonal beams with either two (DDG) or three (DDG2) anchors, and the membranes may
have a window to minimize coupling to the underneath actuation electrode. The two-
anchor (DDG) device membrane has two possible orientations with respect to the signal
propagation, in-line (DDG) or 90◦-rotated (DDG-90). The proposed suspensions have been
demonstrated to be robust to residual fabrication stresses, with them showing smaller me-
chanical deformation and higher stiffness with more release force than previously designed
single diagonal beam (DG) suspensions. The switch membranes are embedded in a planar
rectangular cavity at a size of 430 µm × 360 µm defined on a CPW structure; this way the
CPW even-mode transmission through the series switch is controlled. Circuit models for
the ON and OFF states have been derived to ease the simulation of larger circuits in which
the RF-MEMS may be embedded and for a better understanding of signal propagation in
both states. The OFF-state isolation has been studied in detail by EM simulation show-
ing that the OFF-state series capacitance strongly depends on the distance between the
two ohmic contacts, featuring 3 fF (DDG/DDG2) and 1.56 fF (DDG-90). The DDG, DDG2,
and DDG-90 switches have been fabricated at FBK on high resistivity silicon, together with
DG switches in order to compare performances using a well-proven eight-mask surface
micro-machining process with dielectric-free actuation electrodes, and including glass
protective caps. The simulated mechanical and RF/microwave performances, based on
3D-mechanical and 2.5D-EM simulations, respectively, have been validated through ex-
perimental measurements. Windowed and not-windowed configurations demonstrate
different mechanical actuation voltages (76.5 V/60 V for DDG and 54 V/49.5 V for DDG2),
but the same RF/microwave performance, featuring 0.7 dB/0.8 dB ON-state insertion
loss and 40 dB/31 dB OFF-state isolation, up to 20 GHz, for the in-line-DDG and DDG-90
devices, respectively. The experimental results are in a good agreement with simulations,
thus validating the RF-MEMS design and fabrication procedures.
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