
39

Triangle Dropping: An Occluded-geometry Predictor for

Energy-efficient Mobile GPUs

DAVID CORBALÁN-NAVARRO and JUAN L. ARAGÓN, Deptartamento de Ingeniería y

Tecnología de Computadores, Universidad de Murcia, Spain

MARTÍ ANGLADA, JOAN-MANUEL PARCERISA, and ANTONIO GONZÁLEZ,
Departament d’Arquitectura de Computadors, Universitat Politécnica de Catalunya, Spain

This article proposes a novel micro-architecture approach for mobile GPUs aimed at early removing the

occluded geometry in a scene by leveraging frame-to-frame coherence, thus reducing the overall energy con-

sumption. Mobile GPUs commonly implement a Tile-Based Rendering (TBR) architecture that differentiates

two main phases: the Geometry Pipeline, where all the geometry of a scene is processed; and the Raster Pipeline,

where primitives are rendered in a framebuffer. After the Geometry Pipeline, only non-culled primitives in-

side the camera’s frustum are stored into the Parameter Buffer, a data structure stored in DRAM. However,

among the non-culled primitives there is a significant amount that are rendered but non-visible at all, result-

ing in useless computations. On average, 60% of those primitives are completely occluded in our benchmarks.

Despite TBR architectures use on-chip caches for the Parameter Buffer, about 46% of the DRAM traffic still

comes from accesses to such buffer. The proposed Triangle Dropping technique leverages the visibility in-

formation computed along the Raster Pipeline to predict the primitives’ visibility in the next frame to early

discard those that will be totally occluded, drastically reducing Parameter Buffer accesses. On average, our

approach achieves overall 14.5% energy savings, 28.2% energy-delay product savings, and a speedup of 20.2%.

CCS Concepts: • Hardware→ Power estimation and optimization; • Computer systems organization

→Multicore architectures; Special purpose systems;

The final publication is available at ACM via http://dx.doi.org/10.1145/3527861

https://orcid.org/0000-0002-7079-6687
https://orcid.org/0000-0002-4955-7235

D. Corbalán-Navarro et al.

1 INTRODUCTION

In the past years, the use of mobile devices such as smartphones, tablets, and smartwatches has
increased exponentially and they have become an essential part of our daily life. This has been
fueled by a plethora of applications that these devices can be employed for, video games being one
of the most common usages. While a few years ago dedicated video-game consoles were the main-
stream devices for playing games, it is nowadays a common activity performed on mobile devices,
thanks to their improved performance, energy efficiency, and advanced graphics capabilities. Mo-
bile Systems on a Chip (SoCs) are heterogeneous architectures that integrate a dedicated GPU
(Graphics Processing Unit) whose energy efficiency has a huge impact on the whole system
autonomy. However, users demand games with more complex graphics, and the more complex
they are, the more battery is drained and the more heat is generated. Therefore, the SoC energy
efficiency is a critical factor in mobile devices to improve the user experience [46, 53].

The vast majority of graphics workloads, especially 3D ones, are rendered by the GPU, whereas
the CPU is mostly in charge of non-graphics tasks such as the main game loop, the user IO con-
trol interface, or calculating object/character trajectories. Apart from executing graphics work-
loads, GPUs have also been used over the past years for executing general-purpose programs and
application-specific codes, a.k.a. GPGPUs, due to their high capabilities to perform massive-parallel
computations [20, 32, 40, 42, 43, 55, 60]. To process the high complexity of graphics scenes, there
are some graphics APIs that allow for a high-level CPU-GPU communication, being OpenGL [54],
Vulkan [52], and DirectX [11] the most widely used APIs. In the particular case of OpenGL, a
user-defined program executed in the CPU sends commands to the GPU. These commands carry
information about the objects to be rendered. These object models are composed of primitives
that in turn are made up of vertices. A vertex contains information not only about its position
but also about its color, normal vector, texture coordinates to be mapped on, and other user-
defined parameters. This huge amount of information, which in modern 3D games comes from
hundreds of thousands of vertices and primitives, is commonly referred to as the geometry of the
game.

At a high level, to render a scene, vertices are first transformed to screen coordinates by exe-
cuting user-defined programs in the GPU (called vertex shaders). Then, all the primitives of each
object are split into triangles that are later discretized (rasterized) into fragments. These fragments
are later processed by executing user-defined programs in the GPU (called fragment shaders) to de-
termine their final color values. A fragment shader accesses the textures to be mapped and applies
a shading and a lighting model to every fragment to render a more realistic image. The result-
ing color value of a fragment is finally blended with other color values previously calculated and
stored in the same position of the color buffer (to properly handle transparencies) leading to the
final output image.

Previous studies have shown that a main contributor to the energy consumed on a mobile SoC
is the GPU [37, 48] due to the huge number of computations and, especially, the DRAM accesses
that are performed to render a frame. Figure 1 shows the power breakdown for a typical mobile
GPU (built in a 22 nm technology process). It can be observed that 73% of the power is dissipated
by accesses to the main memory. Therefore, reducing the number of DRAM accesses is critical to
achieve significant energy savings.

Mobile GPUs commonly implement a Tile-Based Rendering (TBR) pipeline organization (fur-
ther detailed in Section 2) to reduce DRAM accesses. To achieve that, a TBR architecture partitions
the screen into small tiles and renders each tile in sequence onto a small on-chip color buffer, in-
stead of accessing the full-screen framebuffer in main memory. The on-chip tile-sized color buffer
is written into main memory at once, right after the tile is completely rendered. The downside

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

Fig. 1. Power breakdown of a typical mobile Tile-Based Rendering GPU.

of TBR is that it requires processing the scene geometry first, in the so-called Geometry Pipeline
(refer to Figure 4). Then, it sorts all the primitives of the frame into tiles and stores them in a data
structure known as the Parameter Buffer, which is kept in the off-chip DRAM because of its large
size. Next, all the processed geometry data is fetched again, tile by tile, to be processed by both
the Raster Pipeline and the Hidden Surface Removal (HSR) phase. Even though an on-chip Tile
Cache is used to minimize the amount of DRAM accesses to the Parameter Buffer, due to the ac-
cess pattern of the Tiling Engine, which processes tiles one-by-one, it is difficult to achieve a good
reuse rate, and many accesses end up going to DRAM (in our benchmarks, the average miss rate
of the Tile Cache is 80.81% for writes and 26.17% for reads).

However, there are a large fraction of primitives that after being rendered are fully occluded in a
scene and consume a significant amount of computing and hardware resources to finally discard all
the work done. To illustrate the impact of the geometry that is processed but eventually occluded
in a scene, Figure 2 shows a wireframe representation of a portion of a scene (from one of the
evaluated games—Hot Wheels) split into two parts. The left side shows all the triangles that fall
inside the camera frustum view1 and are front-facing, regardless of their visibility (a total of 27,554
triangles in the whole frame). The right side depicts the same scene showing only the triangles
that are visible, either totally or partially (a total of 10,439 in the whole frame). In this example,
61.2% of the triangles that are processed (i.e., rasterized and rendered) are finally occluded. It is
also important to note that, in terms of geometry, the cost of processing a triangle is the same
regardless of its size on the screen or how far/close it is from the camera view.

To provide a more quantitative insight of the amount of visible/hidden geometry, Figure 3 shows
a breakdown of the primitives (triangles) in a frame differentiating those that fall outside the camera
frustum view (which are directly discarded by our baseline GPU) from those that fall inside. For the
latter, the figure also differentiates primitives that are back-face culled (red stack—also discarded on
our baseline GPU) and those primitives that are rasterized and passed to the Fragment Processors
for shading (yellow and orange stacks), which account for 37.7% of the primitives on average. From
those, it can be observed that 60.1% are fully occluded on average (orange stack).

This article proposes Triangle Dropping, a novel micro-architecture approach implemented in
the graphics pipeline of a mobile GPU that is able to discard the fully occluded primitives of a
frame early enough that they are not even written nor fetched to/from the Parameter Buffer,
thus significantly reducing many DRAM accesses that would otherwise waste time and energy.

1Defined as the volume inside the six planes that delimit the visible space of a viewpoint.

D. Corbalán-Navarro et al.

Fig. 2. Wireframe representation of a scene showing
the amount of occluded geometry within the frus-
tum. The left side shows all the front-facing trian-
gles that fall inside the frustum (27,554), regardless
of their final visibility. The right side only shows the
triangles that are totally or partially visible (10,439).

Fig. 3. Breakdown of primitives for the evaluated
benchmarks. Triangle Dropping attacks the upper
stack (orange), corresponding to primitives that fall in-
side the frustum but are eventually occluded.

Furthermore, as a positive side-effect, any further computations and memory accesses associated
with the discarded primitives are also eliminated (rasterization, early-depth test, etc.). By leverag-
ing frame-to-frame coherence [33, 58], our approach uses visibility information from the previous

frame to predict the geometry that will be occluded in the current frame. To the best of our knowl-
edge, Triangle Dropping is the first approach aimed at eliminating useless GPU activity derived
from processing fully occluded primitives at such an early stage in the graphics pipeline.

The main contributions of this work are the following:

• We propose a hardware approach that early removes occluded geometry in a scene, reducing
both the execution time and the energy consumption.
• We show a practical implementation of such a mechanism on top of a Tile-Based Deferred

Rendering (TBDR) architecture, demonstrating that it can eliminate a significant amount
of DRAM writes/reads into the Parameter Buffer.
• We evaluate Triangle Dropping with a set of commercial and popular games. Experimental

results show average global energy savings of 14.5% in addition to an average speedup of
20.2%.

The rest of the article is organized as follows: Section 2 provides some background on Tile-Based
Rendering GPU architectures. Section 3 explains the proposed Triangle Dropping approach, while
Section 4 provides further implementation details. Section 5 describes our evaluation methodology,
including an evaluation of the image and video quality, and Section 6 discusses the experimental
results in terms of energy savings and performance improvement. Section 2.3 reviews the related
work, and finally, Section 7 summarizes the main conclusions of the work.

2 BACKGROUND AND RELATED WORK

2.1 Tile-based Rendering Graphics Pipeline

As mentioned before, Tile-Based Rendering (TBR) architectures are widely used in mobile
GPUs because of their lower power consumption [2]. The key aspect of TBR is the working
set at which it operates. The screen area is divided into small regions of a fixed size called tiles,
which allows to perform many operations on smaller on-chip structures avoiding costly accesses
to off-chip DRAM memory. A tile is just a square chunk of the screen, generally 32 × 32 pixels,
which is small enough to keep all its related data on-chip [5]. Unlike TBR, an Immediate-Mode

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

Fig. 4. Overview of the graphics pipeline of a TBDR GPU.

Rendering (IMR) graphics pipeline operates over the whole frame and it is the common archi-
tecture design for high-end GPUs, in which high performance is the main goal rather than low
energy consumption.

The graphics pipeline of a TBR architecture is split into two main phases, the Geometry Pipeline
and the Raster Pipeline, as depicted in Figure 4, which shows the main stages of the graphics
pipeline. It is worth noting that both phases are serialized, with the Tiling Engine acting as a
mediator in between. This serialization is mandatory, since tile-based processing requires all the
geometry to be processed first to be able to determine which primitives belong to each tile. Only
afterward, the rasterization and rendering of fragments are done on a per-tile basis.

The Geometry Pipeline performs all the geometry-related tasks of the scene to be rendered. The
rendering starts with GPU commands, either state commands or draw calls. The first ones prepare
the GPU by changing the internal OpenGL state machine. They are used for tasks such as CPU-
GPU memory transfers (e.g., loading textures and object models), compiling a shader program, or
setting some rendering parameters. However, if the command is a draw call, then the Vertex Fetcher
is triggered. Vertices are fetched from the Vertex Cache and sent to the Vertex Processors, which
execute user-defined programs called vertex shaders to transform the vertices and map them to
the camera view plane. Once processed, vertices are passed over to the Primitive Assembly, which
generates the corresponding primitives (e.g., triangles). These triangles pass through the Back-
face Culling stage where they may be discarded accordingly. Next, the Clipping stage determines
the triangles that are completely outside the frustum view to be also discarded. However, when a
triangle partially overlaps the frustum, it is split into smaller triangles that entirely fall inside. The
triangles resulting after the Clipping stage are assigned to the tiles they overlap by the Polygon
List Builder. Finally, all the primitives that overlap each tile are stored in the Parameter Buffer
(refer to Section 2.2 for further details).

Once all the draw calls are processed in the Geometry Pipeline, the rasterization and rendering
of the scene are performed in the Raster Pipeline, tile-by-tile. The Tile Fetcher fetches primitives
for a given tile and sends their attributes to a Raster Unit where triangles are discretized into pixel-
sized units called fragments. Fragments pass to the Early Z-Test stage, where their depth values
are tested against those from visible fragments processed so far, and those depths are stored in the
Z-Buffer. A fragment that passes the Z-Test proceeds to the Fragment Processors to be shaded and
textured. Otherwise, the fragment is invisible, and thus, discarded. Fragment Processors execute
user-defined programs called fragment shaders to transform fragments’ attributes into final colors.
These colors are later processed by the Blending Unit, which blends them with those already in the
Color Buffer, according to a blending function. When all the primitives of a tile are processed, the

D. Corbalán-Navarro et al.

Fig. 5. Internal structure of a typical Parameter Buffer.

per-tile Color Buffer is flushed into the main memory in the corresponding render target. Finally,
when all the tiles of the main render target are processed, the frame is ready to be visualized.

2.2 Parameter Buffer and Tiling Engine

The Parameter Buffer is a software structure held in main memory (as depicted in Figure 4) where
all the scene’s transformed geometry is stored on a per-tile basis. Figure 5 shows the internal
structure of a typical implementation of the Parameter Buffer. This structure is split into two areas:
the Tile Lists and the Primitive Attributes. The Tile Lists area stores, for each tile, a list of pointers
to the primitives that overlap that tile. A primitive consists of a set of attributes that defines it
(e.g., vertex coordinates, normal vectors, texture coordinates, and color information), which are
located in the Primitive Attributes area. Note that a single primitive may belong (overlap) to more
than one tile, which requires replicating the attribute pointers on each of those tiles but not the
attributes themselves that are stored only once in the Primitive Attributes area.

Attributes are stored on a triangle basis, so each attribute contains information for three vertices
(v0,v1,v2) plus a phantom vertex (v3) to make the attribute size equal to a cache line (64 Bytes).
Each vertex contains four channels (storing either RGBA or XYZW information) of four Bytes each
one (rightmost part of Figure 5).

The Tiling Engine, during the Polygon List Builder stage, fills up the Parameter Buffer once the
Geometry Pipeline has ended. When a primitive arrives at the Polygon List Builder, its attributes
are written into the Primitive Attributes area. The pointer to this primitive is also written into each
tile that the primitive overlaps, i.e., in the Tile Lists area. When all the geometry has been sorted
into tiles, the Raster Pipeline begins. For that, the Tile Fetcher schedules tiles to be rasterized and
rendered one-by-one. For each tile, the Tile Cache is queried and upon a miss, the Parameter Buffer
is accessed so all the information about the primitives that overlap the tile is read and cached.

2.3 Related Work

A different approach to reduce the number of primitives is followed by mesh simplification algo-
rithms (a.k.a. mesh decimation). Their key idea is to render simplified versions of the 3D models
with different level of detail (LOD) according to problem-specific restrictions. However, due to its
complexity, mesh simplification is applied at the application level (or it is already pre-calculated)
and not as a transparent on-the-fly hardware approach.

A very early proposal in this field w as p resented i n R eference [51], w hose m ain g oal was
to reduce the overall number of triangles in a dense mesh without hurting its topology. A

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

vertex-clustering and view-dependent method is proposed in Reference [50]. Another decimation
approach, which prioritizes the mesh curvatures, is presented in Reference [29]. In Reference [3],
an edge-collapse approach is presented, which tags candidate vertices to be deleted and then clus-
ters them in pairs to collapse their common edges into a single vertex. An out-of-core GPU-based
approach, based on vertex clustering and aimed at processing large polyhedral datasets, is pre-
sented in Reference [39]. An improvement presented in Reference [13] uses octree structures and
relies on probabilistic methods to improve models quality. Another out-of-core GPU-based ap-
proach is presented in Reference [47] that also leverages frame-to-frame coherence. It performs
edge collapse operations to simplify meshes.

A hybrid CPU-GPU implementation is presented in Reference [30]. In Reference [41], geom-
etry shaders that implement pre-computed simplification algorithms are dynamically applied to
meshes to do a tailored simplification. However, this method is view-dependent, which means that
the simplification is performed with regards to the viewer perspective, so topology can be bet-
ter preserved while reducing the same number of primitives. An OpenCL implementation of an
edge-collapse simplification method is presented in Reference [45]. In Reference [31], an energy

function that represents the compaction of a dense mesh is minimized, thus, giving a mesh with a
similar topology but with fewer vertices than the original one. Again, this approach is intrinsically
a non-real-time mechanism due to its complexity. Finally, the work in Reference [9] makes a com-
parison between different mesh simplification algorithms. Another survey on mesh simplification
methods can be found in Reference [44]. Note, however, that all these approaches are software-
based solutions aimed at reducing the overall number of triangles to be processed by the graphics
pipeline and cannot be directly compared with Triangle Dropping.

The use of occlusion queries [1] also allows reducing the number of primitives to be processed by
the graphics pipeline. These queries are explicitly inserted by the programmer before the OpenGL
draw call of any command and tell the programmer whether the entire object is visible or not. This
is achieved by pre-rasterizing the command’s primitives and checking that all fragments fail their
Z-Test, therefore, incurring a high overhead at the application level. A software-based occlusion
culling algorithm is presented in Reference [34]. The process consists of locating occluder objects,
then, a shadow frustum is computed for each one so objects that completely fit inside these volumes
are removed. Another occlusion culling technique is proposed in Reference [15].

It is important to note that Triangle Dropping operates on top of these software-based ap-
proaches, being totally orthogonal to them. Triangle Dropping is fully hardware-based, and hence,
programmer-agnostic. The source code for the vertex and/or fragments shaders is not needed and
it can be implemented without any programmer intervention.

To the best of our knowledge, there are no purely hardware-based mechanisms like Triangle
Dropping aimed at eliminating the occluded geometry of a scene in a programmer-agnostic man-
ner, neither for mobile GPUs nor for high-end desktop GPUs. The most similar approach is the use
of occlusion queries that, while it is true they can be implemented with some hardware support
[59], it is still the programmer’s responsibility to use them properly at the application level.

Nevertheless, as all the evaluated benchmarks are commercial games (whose source code is not
publicly available), we assume that they already exploit all the GPU capabilities, including a poten-
tial implementation of occlusion queries, at the application level to get the best performance. In this
sense, all the benefits of Triangle Dropping reported in this work are on top of any application-level
optimization. Furthermore, an OpenGL recommendation is to issue as few commands as possible.
An example of this can be seen in the Hot Wheels benchmark (hwl), where all the buildings
in the background are grouped into a single command, i.e., a single OpenGL draw call. As such, it
is highly likely that a portion (even if small) of that big single command is visible in the current
frame, making occlusion queries not able to achieve any benefit, as opposed to Triangle Dropping.

D. Corbalán-Navarro et al.

This is due to the much smaller granularity at which Triangle Dropping operates (primitive level),
whereas occlusion queries are coarsely performed at the whole command (object) level. Patents
cited in References [14, 26, 27, 35] also address the occlusion culling problem. Nevertheless, none of
these approaches leverages frame-to-frame coherence to early discard occluded geometry. Patents
cited in References [8, 16, 17, 25] also use Hidden Surface Removal to improve the performance of
the visibility determination.

Finally, other techniques aimed at reducing overdraw have been proposed. Visibility Render-

ing Order (VRO) was presented in Reference [12] and reduces overdraw by re-ordering all the
commands in the scene on-the-fly, so they are rendered in front-to-back order, allowing the Early-Z
Test to eliminate more fragments than the baseline GPU. Differently, Early Visibility Resolution

(EVR) [4] addresses the overdraw problem by avoiding the rendering of tiles that do not change
from one frame to the next. To do that, it generates a per-tile signature based on the attributes of
the primitives that overlap that tile. However, Omega-Test [10] works at a finer granularity, i.e., at
the fragment level. To do so, Omega-Test creates a summarized version of the Z-Buffer from the
previous frame to be used in the current frame as a better starting point, thus allowing the Z-Test
unit to more efficiently discard fragments. Nevertheless, recall that overdraw reduction is not a
key goal of Triangle Dropping, as mentioned in previous sections, and as such, we have evaluated
it on top of a TBDR architecture, which inherently removes all possible overdraw. In any case,
neither VRO, nor EVR nor Omega-Test are intended for reducing the geometry activity itself. In
this sense, Triangle Dropping can eliminate unnecessary work at a much earlier stage than any
of these previous approaches, thus exploiting its unique capability to reduce DRAM accesses to
the Parameter Buffer, a feature that is completely out of the scope of such previous approaches
working at the fragment level.

3 TRIANGLE DROPPING

3.1 Approach Overview

The proposed Triangle Dropping approach reduces the amount of accesses to the Parameter Buffer
by eliminating the occluded geometry of a scene upfront, based on the visibility information cal-
culated on the previous frame. Thus, Triangle Dropping allows discarding the geometry predicted
as occluded early, directly in the Geometry Pipeline, rather than waiting until the middle of the
Raster Pipeline, as it is the common approach for Z-Test-based techniques that work at a fragment
level [1, 4, 12, 28]. One additional positive side effect of Triangle Dropping is that the overdraw2 of
the frame is also reduced if a conventional TBR architecture were used. However, in this work, we
use a more advanced GPU as our baseline, known as Tile-Based Deferred Rendering (TBDR)

[38], that is capable of totally eliminating overdraw by pre-computing the Z-Buffer before starting
the shading of any fragment. Therefore, the benefits from Triangle Dropping reported on this ar-
ticle are due to savings in the Geometry Pipeline and the Tiling Engine and do not include these
potential extra benefits in overdraw.

To achieve such early discard of fully occluded primitives, Triangle Dropping relies on the abun-
dant frame-to-frame coherence present in graphics workloads. The Raster Pipeline produces very
valuable information about the final visibility of a frame after rendering it; information that in-
stead of being thrown away can be used to predict the primitives that will be visible in the next
frame. However, as our approach relies on primitive-level visibility prediction, it must be very
conservative when removing geometry not to introduce visible errors in the final rendered image.

Triangle Dropping operates at a primitive level by keeping track of the occluded primitives in
the current frame to discard them in the next frame. Figure 6 shows a scheme of the proposed

2Amount of fragments that are processed by the Fragment Processors but are finally occluded..

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

Fig. 6. Triangle Dropping implementation in a TBDR architecture. New units and memory structures appear
shadowed.

Triangle Dropping approach implemented on top of a TBDR architecture. A visibility bitmap with
one entry per primitive is associated with each command and it is used to indicate whether the
primitive is visible or not. So before processing a primitive, its visibility information is checked.
If the visibility bit is enabled, then we assume the primitive is visible in the current frame (as it
was in the previous frame) and the primitive is processed in the Geometry Pipeline as normal.
Otherwise, the primitive is dropped from the Geometry Pipeline, avoiding writes in the Parameter
Buffer and any other later rasterization activity. The primitive identifier depends exclusively on
the order it is issued within an OpenGL command, so it is important not to change this order across
frames, otherwise, the visibility information of the primitives would be incorrect. Note, however,
that the issuing order of commands (or objects) themselves does not matter. Commands could
alter the order or shape of their primitives if they execute tessellations or geometry shaders. For
those commands, Triangle Dropping is disabled to avoid visibility mispredictions. To do so, the
graphics driver attaches a flag to the OpenGL command to indicate that it uses a geometry shader
or tessellation, and this flag traverses the graphics pipeline until reaching the Triangle Dropper,
which will check whether the issued command has a geometry shader attached, and if so, all of its
primitives will be directly bypassed to the next stage.

3.2 Identification of Commands across Frames

Conventional GPUs do not implement a hardware-based command identifier across consecutive
frames, as they are treated as totally independent entities. Obviously, at the application level, there
must be command ids but they are not explicitly passed over to the GPU. As Triangle Dropping
relies on frame-to-frame coherence, a mechanism is needed to identify commands across con-
secutive frames to access their visibility bitmap and be able to discard their occluded primitives
accordingly. One simple hardware-software co-design solution could be relying on the OpenGL
driver to provide these command ids that have been previously provided by the application itself.

However, as we cannot assume that the evaluated applications nor the OpenGL driver are pro-
viding these command ids, we have implemented a transparent, fully hardware-based solution for
command identification across frames. Two types of information can be used for such purpose,
either static information obtained from the OpenGL state machine (in the form of a command’s
signature); or dynamic information based on the object’s bounding box (i.e., its screen coordinates
in the current frame).

In the first case, a 64-bit CRC signature is computed when the Command Processor issues a
command, by combining some command’s static information (in the sense that it refers to con-
stant properties along the command’s life). In particular, we have used the following constant

D. Corbalán-Navarro et al.

parameters: the number of vertices and primitives of the command; Z-Test information (enabled
bit, write mask, and depth function); blending information (enabled bit, logical blending operation
function, RGB color, alpha channel, and the color mask); information from the vertex and fragment
shaders (e.g., from the fragment shader, the entry point, and the number of attribute locations are
considered); and finally, the primitive assembling type. The resulting 64-bit signature, combining
all the aforementioned information, is stored in a register named Command Signature. However,
the dynamic information used to identify commands across consecutive frames is a bounding box
computed by the Vertex Processors as they process the command’s vertices, which is stored in a
register named Bounding Box.

All these tasks are managed by a Command Matcher unit that is in charge of determining
whether an object (i.e., a command) in the current frame matches itself but in the previous frame,
to use its last frame’s visibility information. For that to happen, two conditions have to be met. First,
both static signatures must match (bit-wise). And second, both bounding boxes must be “similar”
but not necessarily exact, meaning that we allow for a delta margin on their screen positions as
one object (or the camera) can move from one frame to the next. Further implementation details
of the Command Matcher unit can be found in Section 4.1.

3.3 Visibility Checking

Figure 6 also shows the Primitive Dropper unit right after the Primitive Assembly stage. This unit
accesses the command’s visibility bitmap to check the primitive’s visibility bit and then make the
decision on whether to discard a given primitive or not. When an object from the current frame
matches one in the Command Buffer, the recently used bit of the latter is set and its bitmap pointer
is sent to the Primitive Dropper unit. A command with the recently used bit set cannot be matched
again to avoid aliasing effects. However, if no match is found, then the current command is inserted
into the Command Buffer (if there is space left), also setting its recently used bit to one. This avoids
that two different commands in the same frame might erroneously match. A visibility bitmap is
allocated on the Frame Visibility Buffer for the newly inserted command, with as many bits as it
has primitives. The visibility bitmap is initialized with zeroes, indicating that all the primitives of
the command are occluded, and the actual visibility of each primitive will be updated right after
their rasterization.

Computing the full bounding box of a command would require that all its vertices have been
processed by the Vertex Processors. However, this would incur a delay as the Primitive Dropper
unit would be stalling the Geometry Pipeline while waiting to have all the vertices processed (to
check for the visibility information). Furthermore, a deadlock could happen if the output queue
of the Vertex Processors were full during this waiting period. To avoid such issues, only several
initial vertices of each command are considered and a partial bounding box is calculated instead.
Even though we might lose some potential by doing so, our experimental results show that using
a maximum of 18 quad-vertices suffices for composing a partial bounding box, and results in a
negligible loss of potential (w.r.t. a theoretical case where complete bounding boxes were used). In
this way, we avoid any timing overhead.

The Frame Visibility Buffer i s a g lobal s tructure t hat s tores t he v isibility i nformation f or all
the commands in the previous frame. This table is accessed by the Primitive Dropper through a
straightforward index calculation that uses the command’s bitmap pointer (as a base address) plus
the primitive id (recall that primitive ids inside a command remain the same frame-to-frame, since
primitives are processed in the same order).

Regarding back-face primitives (or those that are outside the frustum view), Triangle Dropping
marks them as visible in the Frame Visibility Buffer, as they are already discarded by the baseline
TBDR GPU and not even written onto the Parameter Buffer. By tagging them as visible, Triangle

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

Dropping is ignoring those primitives that continue down the pipeline until the baseline Culling
stage discards them.

For the case of primitives with the blending attribute enabled (transparent primitives), they
do not update the Tile Visibility Buffer because they cannot completely hide another primitive.
Given that, only opaque geometry can appear on the Tile Visibility Buffer. Whenever a transparent
primitive arrives at the Primitive Dropper, it is bypassed directly to the next stage, and hence, its
visibility is not determined speculatively.

3.4 Visibility Update

The final visibility of primitives is determined during the Raster Pipeline. The Tile Fetcher starts
reading attributes from the Parameter Buffer, reading also the visibility pointer of each primitive,
which is passed to the Rasterizer and attached to every generated quad-fragment (simply as one
more attribute). In the Early Z-Test stage, we include an additional on-chip buffer named Tile
Visibility Buffer. This buffer has the same dimensions as the Z-Buffer and it stores the visibility
pointer of the nearest opaque fragment (the visible one so far) for each quad-fragment of the
tile. The Tile Visibility Buffer is initialized with null pointers, indicating that none of the quad-
fragments are visible. The visibility information of a tile is completely known when the last quad-
fragment is processed by the Early Z-Test. At this point, the Visibility Updater is triggered, which
iterates over non-null positions in the Tile Visibility Buffer and updates the global Frame Visibility
Buffer, setting the bits of the visible primitives as needed. Once the Visibility Updater finishes, the
visibility of the primitives of every command is ready to be used in the next frame. It is important
to note that the Visibility Updater operates in parallel with the rest of the Raster Pipeline (i.e., the
Fragment Processors and the Blending Unit) as it is implemented after the HSR (Hidden Surface

Removal) stages, therefore, not incurring additional time penalties.

3.5 Refreshing Interval

Whenever a primitive is marked as occluded, it will be discarded upfront in the following frames,
not even passing through the rest of the Geometry Pipeline. Therefore, if the primitive becomes
visible in a future frame, the approach should be able to restore its visible status. A simple way to
achieve this consists of disabling Triangle Dropping for one frame (also known as key frame) every
certain number of frames, as a way to fully reset the visibility information. This is controlled with
a refreshing interval parameter. Note that the shorter the refreshing interval, the fewer potential
errors that might appear but also the less benefit for our technique. To provide the best result, our
approach is able to dynamically adjust the refreshing interval, thus avoiding potential errors that
might affect the quality of the video sequence (see Section 4.2 for implementation details).

4 HARDWARE IMPLEMENTATION DETAILS

4.1 The Command Matcher

The Command Matcher unit uses two on-chip memories: the Main Table and the Overflow Buffer.
Both memories together form what we call the Command Buffer. Figure 7 shows the implemen-
tation of the Command Matcher unit along with the Command Buffer. These memories have a
different number of entries that we call sets. A set consists of several ways (called slots) and an
overflow pointer towards the Overflow Buffer. Each slot stores information about a particular com-
mand: Command Signature, Bounding Box, valid bit, recently used bit, and bitmap pointer (as ex-
plained in Section 3). The Main Table is indexed with the Command Signature, which requires
a bit-wise exact match for a hit. Therefore, on a command lookup, if its Command Signature
matches a tag, the bounding boxes of both the searched command and the one stored in the slot are

D. Corbalán-Navarro et al.

Fig. 7. Block diagram showing the Command Matcher logic and the Command Buffer structure.

compared as well. If the bounding boxes match (considering the delta margin), then the bitmap
pointer stored in the matched slot is retrieved and driven to the Primitive Dropper (the bounding
box is also updated with the one from the input). Otherwise, if no matching is found in the Main
Table, the Overflow Buffer is searched. If the searched command is neither found in the Overflow
Buffer, then the command is inserted into the Command Buffer.

The insertion of a command into the Command Buffer works as follows. F irst, i t i s checked
whether there is a free slot in the current set. If so, then both the Command Signature and the
Bounding Box inputs are written into that slot, setting the valid and recently used bits to one.
Whenever a new command is inserted into the Command Buffer, a new visibility bitmap is allocated
for it (with as many bits as input primitives—provided if there is space available in the Frame
Visibility Buffer) and the bitmap p ointer is written into the slot. Otherwise, if all the slots in the
set are occupied, the overflow pointer is used to access the Overflow Buffer where the search of a
free slot continues. If the set in the Overflow Buffer is also full, then the ending overflow pointer
will point to another set, in a linked-list fashion (as illustrated in Figure 7). The search continues
until a free slot is found. Alternatively, if a set is full but the overflow p ointer has a null value, a
new free set is allocated and chained. Finally, if the entire Overflow Buffer is full, the insertion
cannot be done and a null pointer is driven to the Primitive Dropper unit. This indicates that the
command was not found in the Command Buffer and, therefore, i t i s t reated as a conventional
visible command, resulting in some potential loss for Triangle Dropping. At the end of a frame,
the recently used bits are cleared, and the commands that have not been used are deleted from the
Command Buffer to free up space.

To properly dimension the Command Buffer, different experiments have been performed. Out
of the evaluated benchmarks, the one with more commands is bbr, with up to 312 commands in
a frame. That means a size of 12.56 KiB for each table in the Command Buffer. Similarly, to es-
timate the storage needs of the Frame Visibility Buffer, the maximum number of primitives in a
frame were counted. This number was 190,449 primitives in a single frame, which translates into
a Frame Visibility Buffer o f a bout 23.25 K iB. S uch s izes a re very reasonable i n a m odern GPU.
Therefore, for our evaluation, we have rounded up those sizes and used 16+16 KiB for the Com-
mand Buffer and 32 KiB for the Frame Visibility Buffer. Note, however, that if a benchmark exceeds
these sizes in a particular frame, then the only downside for Triangle Dropping is a loss of poten-
tial, that according to our experimental results when smaller sizes were considered, it is almost
negligible.

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

4.2 Handling Intermittent Primitives

There are some commands that, due to the nature of their movements (and/or the environment
around them), have primitives whose visibility varies over a range of frames. It might be the case of
a rotating object where triangles that are partially occluded by another object may become visible
after a few frames because of their rotating movement (e.g., a rotating wheel that is also partially
covered by the chassis of the car). Once Triangle Dropping marks such kind of intermittent prim-
itives as invisible, it will predict a wrong visibility if they later appear, leading to an error in the
image. This visibility artifact could be more noticeable when a key frame arrives, since the correct
visibility is computed and wrongly discarded primitives would become suddenly visible. We refer
to primitives that change their visibility over time as intermittent primitives.

To overcome the potential issues of such intermittent primitives and not to cause perceivable
errors, they must be detected so Triangle Dropping can ignore them. To achieve that, we use a
heuristic that consists of detecting whether the visibility of a primitive changes from invisible
to visible across consecutive frames. Since Triangle Dropping does not update the real visibility
until a key frame arrives, this task is performed by the Visibility Updater whenever a key frame
is processed. Before overwriting the visibility status of a primitive in the Frame Visibility Buffer,
its previous visibility is checked. If a change from invisible to visible is found, then the primitive
is conservatively annotated as intermittent. Such property is tracked in the visibility bitmap with
two extra bits per entry: intermittent bit and previous visibility bit. Therefore, when querying the
visibility of a primitive, the Primitive Dropper checks its intermittent bit. If set, then the primitive
is ignored and treated as any other conventional primitive by the GPU, regardless of its last frame’s
visibility status.

Dynamic refreshing interval. Intermittent primitives need a warming-up period before they
can be marked as intermittent. We introduce a mitigation mechanism aimed at minimizing this
warming-up period by using a dynamic refreshing interval to capture an intermittent pattern in an
early manner. The approach starts with the shortest refreshing interval of 2 (i.e., one key frame

every 2 frames). At each key frame, it is determined if new commands have entered the scene since
the previous key frame. If there are no new commands, then the refreshing interval is increased.
Otherwise, it is reset to the minimum value of 2. The maximum value for the refreshing interval
has been determined experimentally. In particular, we measured that refreshing every 5 frames re-
sults in a negligible loss of potential for Triangle Dropping while keeping a close-to-perfect image
quality (refer to Section 5.3). Although this dynamic approach could result in a loss of potential,
in the long run, the effect is negligible, as commands tend to stay in the scene for a high number
of frames, thus leveraging its intermittent visibility information.

4.3 Limitations of Triangle Dropping

Although Triangle Dropping efficiently solves the Hidden Surface Removal problem, it still has
some limitations with respect to image quality due to its predictive nature. As described above, the
so-called intermittent primitives may lead to wrong visibility predictions if they become occluded
in a given frame (and so they are tagged as invisible by Triangle Dropping) but they become visible
after several frames. In such cases, our technique will generate mispredictions for such intermittent
primitives until the next key frame arrives and the correct visibility status is calculated.

To overcome this issue and to avoid perceivable image artifacts by the user, Triangle Dropping
incorporates two mitigating measures, as explained in Section 4.2. First, a mechanism to detect
intermittent primitives is included so once such a primitive is detected, it will be marked as inter-
mittent and it will not be considered for being dropped anymore. And, second, a dynamic refresh-
ing interval is also implemented to minimize the time needed to detect intermittent primitives.

D. Corbalán-Navarro et al.

In particular, the mechanism starts setting key frames every other frame to quickly capture inter-
mittent patterns. It is worth noting that at a conventional frame rate of 60 frames/second, just 33
milliseconds are needed to detect an intermittent primitive. This short period plus the fact that in-
termittent primitives are not very common result in not perceivable image artifacts by the human
visual system, as it is analyzed and quantified in Section 5.3 by using the MSSIM and VSSIM percep-
tually based quality metrics that calculate the similarity between two images or video sequences,
respectively. Please, refer to Section 5.3 for further details on how image quality is affected by
using Triangle Dropping.

5 EVALUATION METHODOLOGY

5.1 Simulator Infrastructure

To evaluate the performance and energy improvement achieved with the proposed Triangle Drop-
ping approach, we use Teapot [7], a simulation framework that, among other things, models a
Mali T-450 GPU [6], a TBR architecture widely used in mobile devices. Teapot also models a TBDR
architecture [38], which is the baseline GPU architecture we have used for our evaluations, since
it completely removes all overdraw. This way, we can isolate the benefits of Triangle Dropping in
the Geometry Pipeline and the Tiling Engine and report a lower bound of its improvements, since
in this case Triangle Dropping does not benefit f rom a potential reduction in overdraw. Power
models are integrated from other widely used tools: McPAT [36], a tool that calculates the power,
area, and timing of digital designs; and DRAMSim2 [49] for modeling DRAM and the memory
controllers.

Simulator traces have been obtained with GAPID [23], a tool-set for debugging OpenGL [54]
graphics on Android devices. With the gapii tool, we intercept all the OpenGL calls issued by
applications and store them in a trace file. Either a real smartphone or an Android Virtual Device
(AVD) [22] can be used for this purpose. Due to the high overhead of intercepting OpenGL calls,
it is difficult to ob tain tr ace fil es who se fra mes flow suffic iently smooth ly to exh ibi t abundant
frame-to-frame coherence. To overcome this infrastructure issue, we have instrumented gapii to
obtain a modified intercepting mechanism for functions that return the internal clock status of the
device (clock_gettime or gettimeofday) and provide a slower clock tick. With the gapir tool,
we can replay this trace on top of an instrumented Gallium Softpipe Driver [19] to generate a trace
file readable by Teapot. This trace contains information about the GPU pipeline execution, such
as vertices, primitives, shader programs or fragments, and it is consumed by the cycle-accurate
simulator.

Table 1 shows the simulation parameters used to evaluate our benchmarks, as well as the con-
figuration of the logic units and memory structures introduced by Triangle Dropping. The area,
power, and timing of all the new structures have been modeled in the simulator. In particular, the
area overhead introduced by Triangle Dropping has been measured to be 1.1% of the total die, of
which 0.54% corresponds to the Command Buffer, 0.40% corresponds to the Frame Visibility Buffer,
and 0.16% to the Tile Visibility Buffer. With respect to the dissipated power, Triangle Dropping in-
curs a 0.84% power overhead, of which 0.34% corresponds to the Main Table and the Overflow
Buffer i n a lmost e qual p arts, 0 .31% c omes f rom t he F rame V isibility B uffer, an d th e remaining
0.19% corresponds to the Tile Visibility Buffer.

5.2 Benchmarks

To evaluate Triangle Dropping, we have used a set of very popular games (based on their number
of downloads) from the Google Play Store [24]. The evaluated scenes have been carefully selected
to get a representative, common, and realistic use-case scenario for each game. Table 2 enumerates
the evaluated games along with some specific characteristics of each working set.

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

Table 1. Simulation Parameters

Baseline GPU Parameters

Frequency 600 MHz
Voltage 1.0 V
Technology node 22 nm
Screen Resolution 2,160 × 1,080
Tile Size 16 × 16 pixels

Main Memory

Frequency 400 MHz
Voltage 1.5 V
Technology node 32 nm
Latency 50–100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Line Size 64 bytes
Size 1 GiB, 8 banks

Queues

Vertex (Input & Output) 16 entries, 136 bytes/entry
Triangle & Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry
Color 64 entries, 24 bytes/entry

Caches

All of 64 bytes/line, 2-way associativity

Vertex Cache 4 KiB, 1 bank, 1 cycle
Texture Caches (×4) 8 KiB, 1 bank, 2 cycles
Tile Cache 32 KiB, 1 bank, 2 cycles
L2 Cache 256 KiB, 8 banks, 18 cycles
Color Buffer 1 KiB, 1 bank, 1 cycle
Depth Buffer 1 KiB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 vertex/cycle
Rasterizer 1 attribute/cycle
Early Z-Test 8 in-flight quad-fragments

Programmable stages

Vertex Processor 4 vertex processors
Fragment Processor 4 fragment processors

Triangle Dropping hardware

Main Table 16 KiB (32 lines, 16-way associative)
Overflow Buffer 16 KiB (32 lines, 16-way associative)
Frame Visibility Buffer 32 KiB
Tile Visibility Buffer 1 KiB, 1 bank, 1 cycle
Primitive Dropper 1 primitive/cycle
Visibility Updater 2 pointers/cycle, 8 in-flight pointers

Table 2. Evaluated Benchmarks from the Google Play Store

Benchmark Alias Description Downloads (Mill.)
Vertex shader

instr. (Mill.)

Fragment shader

instr. (Mill.)

Execution Time

(Mill. cycles)

Beach Buggy Racing bbr Racing 100–500 96 2,052 749
Derby Destruction Simulator dds Racing & Battle Royale 10–50 165 4,993 1,140
Gravity gra Action 1–5 74 355 144
Hellrider hrd Racing 1–5 112 3,534 868
Hot Wheels hwl Racing 50–100 431 2,073 950
Maze 3D maz Labyrinth 10–50 131 4,420 1,112
Sniper 3D s3d Shooter 100–500 144 1,600 684
Sonic Dash snd Adventure arcade 100–500 87 4,154 1,219

5.3 Image Quality

Image quality has been quantified by comparing a frame when Triangle Dropping is enabled with
the same frame from the baseline GPU by using the MSSIM (Mean Structural Similarity In-

dex Measure) metric [56], a widely adopted, perceptually based quality metric that computes the

D. Corbalán-Navarro et al.

Table 3. Image and Video Quality of the Evaluated Benchmarks Using
Both MSSIM and VSSIM Metrics

Benchmark min. MSSIM avg. MSSIM min. VSSIM VSSIM

bbr 0.99925 0.999944 0.999829 0.999849
dds 0.999447 0.999957 0.999869 0.999919
gra 0.99981 0.999951 0.999593 0.999782
hrd 0.999161 0.999852 0.999618 0.99969
hwl 0.995626 0.999253 0.99863 0.998913
maz 0.999371 0.999979 0.99989 0.999951
s3d 0.992689 0.99894 0.991632 0.995344
snd 0.999849 0.999991 0.999919 0.999937

similarity between two images. The MSSIM performs better than other similarity metrics that just
measure differences in pixel color (such as PSNR or MSE), as it correlates better with the percep-
tion of the human visual system [21]. The MSSIM index is a number in the [0, 1] range, where
a 1 means an exact matching, and the human-perceptible threshold is 0.95 [18]. In a later work,
the same authors extended MSSIM to VSSIM [57], another structural similarity index aimed at
evaluating the quality of video sequences.

To perform a more insightful study of the resulting image quality when Triangle Dropping is
applied, we have used both MSSIM and VSSIM metrics. For each benchmark, Table 3 shows the
minimum and the average MSSIM; and also the minimum and final VSSIM of all i ts frames. As
it can be seen, all of the measured MSSIM values are not only above the 0.95 threshold but the
minimum MSSIM value for each benchmark is always above 0.99 with an average MSSIM of about
1 on each game. Furthermore, when considering the full sequence of frames, the minimum video
quality achieved according to the VSSIM metric is always above 0.99 on all the evaluated games.
Therefore, we can conclude that our technique does not incur any perceivable error.

6 EXPERIMENTAL RESULTS

6.1 Geometry Reduction

Our first set of experiments quantifies the amount of scene geometry that Triangle Dropping is
capable of removing. Figure 8 shows a breakdown of the primitives that are finally written into
the Parameter Buffer. Comparing the baseline (“base” on the x axis) with our approach (“td” on the
x axis), it can be seen that Triangle Dropping can remove an average of 31.38% of the primitives
that are written into the Parameter Buffer. Note that this represents a large fraction of the total
number of the opaque occluded primitives (56.99%).

6.2 Memory Bandwidth Reduction

Since the major goal of Triangle Dropping is reducing accesses to the Parameter Buffer in DRAM,
an interesting parameter to analyze is the impact that Triangle Dropping has on the memory
traffic. Fi gure 9 sh ows th e ac hieved DR AM tr affic redu ction. The bars diffe rentiate acces ses to
the Parameter Buffer (red s tack) f rom o ther accesses (blue s tack). We observe that the reduced
fraction comes from Parameter Buffer accesses, as expected, except for h rd and snd, where the
“other” DRAM accesses are also reduced (they actually correspond to memory accesses for fetching
textures, since the L2 is not polluted by occluded geometry and, hence, more capacity is available
for other data types). Overall, Triangle Dropping achieves an average memory traffic reduction of
16.92%.

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

Fig. 8. Geometry reduction achieved by Triangle
Dropping.

Fig. 9. DRAM traffic reduction when using Triangle
Dropping.

Fig. 10. Parameter Buffer accesses that end up go-
ing to DRAM.

Fig. 11. Speedup achieved by Triangle Dropping
over a TBDR architecture.

For additional details, Figure 10 shows the Parameter Buffer accesses (distinguishing between
reads and writes) that finally reach DRAM. On average, Triangle Dropping is capable of reducing
28.78% of those accesses (10.92% from reads and 17.86% from writes). Note that these accesses
correspond to primitives that are inside the camera frustum volume and are not back-face culled.

6.3 Performance and Energy Efficiency

Because of the dropped primitives, many computations are avoided in addition to the saved mem-
ory accesses, resulting in a positive impact on performance. Figure 11 shows the speedup achieved
by Triangle Dropping over a TBDR architecture, obtaining an average speedup of 20.24%. In the
particular case of hrd, which achieves a speedup of 43.17%, the improvement not only comes from
eliminated Parameter Buffer accesses but also from texture accesses that end up going to DRAM.
The latter happens because the dropped geometry leads to more space in the shared L2 to allocate
texture blocks, thus reducing the DRAM traffic coming from textures.

Figure 12 shows the global energy savings achieved when applying Triangle Dropping on top
of a TBDR GPU. Since the memory accesses are reduced, the energy consumed by the memory
system is reduced accordingly. On average, Triangle Dropping achieves 14.5% energy savings, of
which 11.7% comes from the memory system and 2.8% comes from the GPU activity. The energy
savings in the GPU are mainly due to the activity reduction in the Clipping&Culling stage, the
Polygon List Builder, and the Tile Fetcher. These energy savings can be as high as 21.59% for hrd.
As expected, the overall energy savings of Triangle Dropping correlate well with the memory
bandwidth reductions reported in Figure 9.

D. Corbalán-Navarro et al.

Fig. 12. Energy savings of Triangle Dropping over a
TBDR architecture.

Fig. 13. Energy-Delay Product (EDP) savings of Tri-
angle Dropping over a TBDR architecture.

Regarding the combined energy-performance efficiency of Triangle Dropping, we also report
the Energy-Delay Product (EDP) in Figure 13. On average, our approach achieves EDP savings
of 28.23% and up to 45.23% in the case of hrd.

As mentioned earlier, it is worth noting that Triangle Dropping does not eliminate shad-
ing/rendering activities for eventually occluded fragments (an effect known as overdraw), since
we have implemented it on top of a TBDR architecture, which totally eliminates fragment over-
draw on a scene, thanks to the Hidden Surface Removal stage included in the Raster Pipeline that
operates at a fragment level. Differently, Triangle Dropping operates much earlier, in the Geometry
Pipeline, at a primitive level.

7 CONCLUSIONS

Mobile device game users demand increasingly more complex scenes, with a lot of occluded ge-
ometry that results in a huge waste of GPU and memory resources. To overcome that, we have
proposed Triangle Dropping, a novel micro-architecture approach for mobile GPUs that drastically
reduces the occluded geometry in a scene by leveraging the visibility of the primitives from the
previous frame. We show that this technique removes 31.38% of the primitives for a set of repre-
sentative benchmarks. We have implemented our approach on top of a TBDR GPU pipeline, since
its major goal is to reduce the activity in the Geometry Pipeline and in the Tiling Engine, which
cannot be eliminated by the Hidden Surface Removal stage. Our experimental results for a set of
popular games show that Triangle Dropping achieves an average speedup of 20.2% in addition to
average energy savings of 14.5% and an average energy-delay product (EDP) reduction of 28.2%.

REFERENCES

[1] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. 2019. Real-time Rendering. AK Peters/CRC Press.

[2] Tomas Akenine-Moller and Jacob Strom. 2008. Graphics processing units for handhelds. Proc. IEEE 96, 5 (2008), 779–

789.

[3] Maria-Elena Algorri and Francis Schmitt. 1996. Mesh simplification. In Computer Graphics Forum, Vol. 15. Wiley On-

line Library, 77–86.

[4] Martí Anglada, Enrique de Lucas, Joan-Manuel Parcerisa, Juan L. Aragón, and Antonio González. 2019. Early visibility

resolution for removing ineffectual computations in the graphics pipeline. In Proceedings of the IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE, 635–646.

[5] Iosif Antochi, Ben Juurlink, Stamatis Vassiliadis, and Petri Liuha. 2004. Memory bandwidth requirements of tile-based

rendering. In Proceedings of the International Workshop on Embedded Computer Systems. Springer, 323–332.

[6] Arm. 2021. ARM Mali-450 GPU. (2021). Retrieved from https://developer.arm.com/products/graphics-and-

multimedia/mali-gpus/mali-450-gpu.

[7] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2013. TEAPOT: A toolset for evaluating perfor-

mance, power and image quality on mobile graphics systems. In Proceedings of the 27th International ACM Conference

on Supercomputing. ACM, 37–46.

https://developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-450-gpu

Triangle Dropping: An Occluded-geometry Predictor for Energy-efficient Mobile GPUs

[8] Richard Broadhurst, John Howson, and Robert Theed. 2019. Using tiling depth information in hidden surface removal

in a graphics processing system. (Dec. 17, 2019). US Patent 10,510,182.

[9] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. 1998. A comparison of mesh simplification algorithms. Com-

put. Graph. 22, 1 (1998), 37–54.

[10] David Corbalan-Navarro, Juan L. Aragón, Marti Anglada, Enrique De Lucas, Joan-Manuel Parcerisa, and Antonio

Gonzalez. 2021. Omega-Test: A predictive early-Z culling to improve the graphics pipeline energy-efficiency. IEEE

Trans. Visualiz. Comput. Graph. https://doi.org/10.1145/3527861

[11] Microsoft Corporation. 2003. Microsoft DirectX 9 Programmable Graphics Pipeline. Microsoft Press.

[12] Enrique De Lucas, Pedro Marcuello, Joan-Manuel Parcerisa, and Antonio González. 2018. Visibility rendering order:

Improving energy efficiency on mobile GPUs through frame coherence. IEEE Trans. Parallel Distrib. Syst. 30, 2 (2018),

473–485.

[13] Christopher DeCoro and Natalya Tatarchuk. 2007. Real-time mesh simplification using the GPU. In Proceedings of the

Symposium on Interactive 3D Graphics and Games. 161–166.

[14] Angus Dorbie. 2005. Method and apparatus for early culling of occluded objects. (Aug. 2, 2005). US Patent 6,924,801.

[15] Jihad El-Sana, Neta Sokolovsky, and Cláudio T. Silva. 2001. Integrating occlusion culling with view-dependent ren-

dering. In Proceedings of the Conference on Visualization (VIS’01). IEEE, 371–575.

[16] Andreas Due Engh-Halstvedt, Alexander Eugene Chalfin, and Frode Heggelund. 2021. Hidden surface removal in

graphics processing systems. (June 8, 2021). US Patent 11,030,783.

[17] Robert Farrell. 2009. Graphics processing with hidden surface removal. (Dec. 31, 2009). US Patent App. 12/215,920.

[18] Jeremy R. Flynn, Steve Ward, Julian Abich, and David Poole. 2013. Image quality assessment using the SSIM and

the just noticeable difference paradigm. In Proceedings of the International Conference on Engineering Psychology and

Cognitive Ergonomics. Springer, 23–30.

[19] Freedesktop. 2021. Gallium3D. Retrieved from https://www.freedesktop.org/wiki/Software/gallium.

[20] Yaosheng Fu, Evgeny Bolotin, Niladrish Chatterjee, David Nellans, and Stephen W. Keckler. 2021. GPU domain spe-

cialization via composable on-package architecture. ACM Trans. Archit. Code Optim. 19, 1 (Dec. 2021).

[21] Xinbo Gao, Wen Lu, Dacheng Tao, and Xuelong Li. 2009. Image quality assessment based on multiscale geometric

analysis. IEEE Trans. Image Process. 18, 7 (2009), 1409–1423.

[22] Google. 2021. Android SDK. Retrieved from https://developer.android.com/studio.

[23] Google. 2021. GAPID. Retrieved from https://developers.google.com/vr/develop/unity/gapid.

[24] Google. 2021. Google Play. Retrieved from https://play.google.com.

[25] Nilanjan Goswami, Derek Lentz, Adithya Hrudhayan Krishnamurthy, and David C. Tannenbaum. 2021. Efficient re-

dundant coverage discard mechanism to reduce pixel shader work in a tile-based graphics rendering pipeline. (May 18,

2021). US Patent 11,010,954.

[26] Edward Colton Greene and Patrick Matthew Hanrahan. 2002. Method and apparatus for occlusion culling in graphics

systems. (Nov. 12, 2002). US Patent 6,480,205.

[27] Edward C. Greene, Douglas A. Voorhies, Paolo Sabella, John M. Danskin, and James M. Van Dyke. 2005. Occlusion

culling method and apparatus for graphics systems. (May 17, 2005). US Patent 6,894,689.

[28] Ned Greene, Michael Kass, and Gavin Miller. 1993. Hierarchical Z-buffer visibility. In Proceedings of the 20th Annual

Conference on Computer Graphics and Interactive Techniques. ACM, 231–238.

[29] Bernd Hamann. 1994. A data reduction scheme for triangulated surfaces. Comput.-aid. Geom. Des. 11, 2 (1994), 197–214.

[30] Jon Hjelmervik and Jean-Claude Léon. 2007. GPU-accelerated shape simplification for mechanical-based applications.

In Proceedings of the IEEE International Conference on Shape Modeling and Applications (SMI’07). IEEE, 91–102.

[31] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1993. Mesh optimization. In

Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. 19–26.

[32] Liang Hu, Xilong Che, and Si-Qing Zheng. 2016. A closer look at GPGPU. ACM Comput. Surv. 48, 4 (Mar. 2016).

[33] Harold Hubschman et al. 1982. Frame-to-frame coherence and the hidden surface computation: Constraints for a

convex world. ACM Trans. Graph. 1, 2 (1982), 129–162.

[34] Tom Hudson, Dinesh Manocha, Jonathan Cohen, Ming Lin, Kenneth Hoff, and Hansong Zhang. 1997. Accelerated

occlusion culling using Shadow Frusta. In Proceedings of the 13th Annual Symposium on Computational Geometry.

1–10.

[35] Brian Jacobson. 2011. Method for accelerated determination of occlusion between polygons. (Mar. 8, 2011). US Patent

7,903,108.

[36] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 469–480.

[37] Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar Yalamanchili, and Wonyong Sung.

2014. Power modeling for GPU architectures using McPAT. ACM Trans. Des. Autom. Electron. Syst. 19, 3 (2014), 26.

https://doi.org/10.1145/3527861
https://www.freedesktop.org/wiki/Software/gallium
https://developer.android.com/studio
https://developers.google.com/vr/develop/unity/gapid
https://play.google.com

D. Corbalán-Navarro et al.

[38] Imagination Technologies Limited.. PowerVR Hardware. Architecture Overview for Developers. Retrieved 23 Nov

2018 from http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.

pdf.

[39] Peter Lindstrom. 2000. Out-of-core simplification of large polygonal models. In Proceedings of the 27th Annual Confer-

ence on Computer Graphics and Interactive Techniques. 259–262.

[40] Jun Liu, Wei Ding, Ohyoung Jang, and Mahmut Kandemir. 2013. Data layout optimization for GPGPU architectures.

SIGPLAN Not. 48, 8 (Feb. 2013), 283–284.

[41] Haik Lorenz and Jürgen Döllner. 2008. Dynamic mesh refinement on GPU using geometry shaders. In Proceedings of

the 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision.

[42] Yashuai Lü, Hui Guo, Libo Huang, Qi Yu, Li Shen, Nong Xiao, and Zhiying Wang. 2021. GraphPEG: Accelerating graph

processing on GPUs. ACM Trans. Archit. Code Optim. 18, 3 (May 2021).

[43] David Luebke, Mark Harris, Naga Govindaraju, Aaron Lefohn, Mike Houston, John Owens, Mark Segal, Matthew

Papakipos, and Ian Buck. 2006. GPGPU: General-purpose computation on graphics hardware. In Proceedings of the

ACM/IEEE Conference on Supercomputing. 208–es.

[44] David P. Luebke. 2001. A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Applic. 21,

3 (2001), 24–35.

[45] Alexandros Papageorgiou and Nikos Platis. 2015. Triangular mesh simplification on the GPU. Vis. Comput. 31, 2 (2015),

235–244.

[46] Shruti Patil, Yeseong Kim, Kunal Korgaonkar, Ibrahim Awwal, and Tajana S. Rosing. 2015. Characterization of user’s

behavior variations for design of replayable mobile workloads. In Proceedings of the International Conference on Mobile

Computing, Applications, and Services. Springer, 51–70.

[47] Chao Peng and Yong Cao. 2012. A GPU-based approach for massive model rendering with frame-to-frame coherence.

In Computer Graphics Forum, Vol. 31. Wiley Online Library, 393–402.

[48] Jeff Pool. 2012. Energy-precision Tradeoffs in the Graphics Pipeline. Ph.D. Dissertation. The University of North Carolina

at Chapel Hill.

[49] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator.

IEEE Comput. Archit. Lett. 10, 1 (2011), 16–19.

[50] Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximations for rendering complex scenes. In Modeling

in Computer Graphics. Springer, 455–465.

[51] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. 1992. Decimation of triangle meshes. In Proceedings

of the 19th Annual Conference on Computer Graphics and Interactive Techniques. 65–70.

[52] Graham Sellers and John Kessenich. 2016. Vulkan Programming Guide: The Official Guide to Learning Vulkan. Addison-

Wesley Professional.

[53] M. Shebanow. 2013. An evolution of mobile graphics. Keynote Talk at High Performance Graphics (2013). https://www.

highperformancegraphics.org/wp-content/uploads/2013/Shebanow-Keynote.pdf.

[54] Dave Shreiner, The Khronos OpenGL ARB Working Group. 2009. OpenGL Programming Guide: The Official Guide

to Learning OpenGL, Versions 3.0 and 3.1. Pearson Education 719 https://www.highperformancegraphics.org/wp-

content/uploads/2013/Shebanow-Keynote.pdf.

[55] Pengyu Wang, Jing Wang, Chao Li, Jianzong Wang, Haojin Zhu, and Minyi Guo. 2021. GRUs: Toward unified-memory-

efficient high-performance graph processing on GPU. ACM Trans. Archit. Code Optim. 18, 2 (Feb. 2021).

[56] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image quality assessment: from error

visibility to structural similarity. IEEE Trans. Image Process. 13, 4 (2004), 600–612.

[57] Zhou Wang, Ligang Lu, and Alan C. Bovik. 2004. Video quality assessment based on structural distortion measurement.

Sig. Process.: Image Commun. 19, 2 (2004), 121–132.

[58] Andrew Wilson, Ketan Mayer-Patel, and Dinesh Manocha. 2001. Spatially-encoded far-field representations for inter-

active walkthroughs. In Proceedings of the Ninth ACM International Conference on Multimedia. ACM, 348–357.

[59] Michael Wimmer and Jiří Bittner. 2005. Hardware occlusion queries made useful. In GPU Gems 2: Programming Tech-

niques for High-performance Graphics and General-purpose Computation. Addison-Wesley.

[60] Yu Zhang, Da Peng, Xiaofei Liao, Hai Jin, Haikun Liu, Lin Gu, and Bingsheng He. 2021. LargeGraph: An efficient

dependency-aware GPU-accelerated large-scale graph processing. ACM Trans. Archit. Code Optim. 18, 4 (Sep. 2021).

http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.pdf
https://www.highperformancegraphics.org/wp-content/uploads/2013/Shebanow-Keynote.pdf
https://www.highperformancegraphics.org/wp-content/uploads/2013/Shebanow-Keynote.pdf

