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Abstract

A simple mathematical model to estimate the energy stored in a green
roof is developed. Analytical solutions are derived corresponding to extensive
(shallow) and intensive (deep) substrates. Results are presented for the sur-
face temperature and energy stored in both green roofs and concrete during
a typical day. Within the restrictions of the model assumptions the analyt-
ical solution demonstrates that both energy and surface temperature vary
linearly with fractional leaf coverage, albedo and irradiance, while the effect
of evaporation rate and convective heat transfer is non-linear. It is shown
that a typical green roof is significantly cooler and stores less energy than
a concrete one even when the concrete has a high albedo coating. Evapo-
ration of even a few millimetres per day from the soil layer can reduce the
stored energy by a factor of more than three when compared to an equivalent
thickness concrete roof.
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1. Introduction1

With 55% of the world’s population currently living in urban areas the2

transition from rural living to urbanisation is a global issue. Antrop [1]3

1Corresponding author: marc.schwarzwalder@zu.ac.ae
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predicts that by 2030, 85% of Europe’s population will live in urban areas4

whilst two-thirds of the global population will be in urban areas by 2050 [2].5

Increasing levels of urbanisation lead to problems such as poor air and water6

quality, growing demands on water availability, high energy consumption and7

a deterioration of the natural environment. Urban areas are also significantly8

warmer than rural areas, a phenomenon known as the urban heat island9

effect. Heat islands arise in densely populated regions due to several factors.10

The albedo of a surface indicates how well it reflects solar energy. Relative11

to their surroundings, urban areas have high concentrations of dark surfaces12

such as buildings, roofs, paved surfaces and car parks. These have low albedos13

and absorb a high percentage of the incoming solar energy. Paved surfaces are14

typically impermeable, causing rainwater to be directed to drainage systems15

instead of being absorbed by vegetation which could later cool the area by16

evapotranspiration. Buildings have high thermal masses, and thus store heat17

during the day and slowly release it at night whereas natural landscapes such18

as forest and other green areas consist largely of shaded, air filled regions with19

a much lower thermal mass, thus storing less heat. Human activities, such as20

factory and vehicle emissions, heating etc. also impact urban temperatures.21

Early heat island studies include Howard’s report of the London climate22

in the late 1800s [3] and Schmidt’s meteorological descriptions of urban ar-23

eas in the early 1900s [4]. Since then heat islands have been observed and24

examined globally [5, 6]. The resulting higher temperatures are a concern for25

local authorities and residents. Heat islands can have public health implica-26

tions such as high temperature ailments, hospitalisation and mortality [7–9].27

Circumstances become worse with climate change and heat waves. For ex-28

ample, the 2003 European heat wave resulted in thousands of excess deaths29

[10]. From an economic perspective, heat islands lead to an increased demand30

for air conditioning and other cooling equipment, and thus higher electricity31

costs. Higher temperatures may also lead to a reduction in tourism over the32

summer months. Thus, there is pressing need for a clear understanding of33

heat islands, and practical, effective solutions.34

To counteract heat islands, local authorities and government bodies are35

constantly seeking cost-effective, environmentally friendly solutions [11]. One36

option is a green roof which consists of vegetation planted over a waterproofed37

system installed on top of a flat or slightly inclined roof. The two main cate-38

gories of green roofs are extensive and intensive. Extensive green roofs have39

thin soil with little or no irrigation whereas intensive green roofs have deep40

soil, an irrigation system and more favourable growing conditions for vege-41

tation. Intensive green roofs typically require a lot of maintenance, whereas42

extensive green roofs are left to grow naturally with minimal maintenance.43

Green roofs are made up of various layers including an upper vegetation44

2



layer, a growing medium of organic and aggregate materials, a filter mem-45

brane to prevent clogging of drains, a drainage layer to inhibit build-up of46

excess water, a root barrier to stop root penetration and some form of roof47

support. Green roofs have been shown to reduce the heat island effect as48

they provide shade, remove heat from the air, and decrease temperatures of49

roofs and the surrounding air [12–14]. Green roofs have other advantages50

including rainwater management [15–18], and improvement of air and water51

quality [19, 20]. They also greatly enhance an urban area’s aesthetic value52

by increasing the level of urban fauna and wildlife habitat.53

Modelling heat transfer in green roofs is complicated due to the various54

layers involved and the movement of moisture [21]. Consequently researchers55

apply a variety of simplifying hypotheses. Even so the standard approach re-56

sults in a complex system which must be solved numerically. This is further57

complicated by the typically 20 different parameter values, many of which58

are difficult to determine experimentally [22] and therefore require the use59

of multi-parameter fitting techniques (see [23] for a summary of such mod-60

els). An attempt to develop a relatively simple model with an analytical61

solution is contained in the workshop report [24]. In order to produce some62

preliminary conclusions regarding green roof design this focuses primarily on63

the energy stored in different substrates subject to constant ambient bound-64

ary conditions and a semi-infinite layer. Here we deal primarily with more65

realistic conditions, where the solar energy and ambient temperature vary66

during the day, and also a finite thickness substrate. We obtain solutions via67

separation of variables (verified against numerical solutions) to estimate the68

energy stored in both extensive and intensive roofs. The ultimate aim being69

to provide a set of guidelines to aid in the design of green roofs.70

Theoretical models dealing with moisture dynamics and heat transport71

in soil are typically based on those developed by Philip and De Vries in the72

1950s [25]. Examples for models extending these descriptions by accounting73

for energy transport in the soil support and the canopy on top of it include the74

models presented by Palomo del Barrio [26] or Kondo and Saigusa [27]. Sailor75

[28] presented a linearized model for determining the temperature evolution76

at either side of the soil surface, which was later extended by Ouldboukhitine77

et al. [29]. An extensive review of existing models may be found in Quezada-78

Garcia et al. [21]. The majority of models incorporate evaporation as a79

sink term in the soil heat equation, sometimes combined with a term in the80

boundary condition at the soil surface. Since evaporation is known to be81

a surface phenomenon, it is more realistic to include it exclusively in the82

boundary condition.83

A number of studies have shown that plants have some ability to regulate84

their temperature over a wide range of ambient temperatures, see [30–32].85
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Citing these studies, and many others, Michaletz et al. [33] point out that the86

difference between the plant and air temperature is generally small and the87

correspondence is particularly close for ambient temperatures in the range 20-88

30◦C. The correspondence is achieved primarily through evapotranspiration.89

Air has a very low viscosity (approximately 1.8× 10−5 Pa s) and so is easily90

mixed, for example by the motion of air above the canopy, motion of the91

plants or convective currents due to temperature differences between the air92

and the soil. Palomo [26] discusses the turbulent nature of the air both in93

and above the canopy (and states that as a consequence of this the energy94

and mass fluxes cannot be exactly predicted). It is well known from fluid95

mechanics studies that turbulent diffusion is orders of magnitude greater than96

thermal diffusion: as soon as turbulent diffusion occurs the air temperature97

may be assumed approximately constant (and so set to the ambient value).98

Given this dynamic mechanism for maintaining the air and plant tem-99

perature at a similar level as well as the tendency for turbulent mixing of100

the air, when developing a mathematical model the thermal response of the101

canopy may be partially decoupled from that of the soil. Specifically the102

canopy affects the soil in that the canopy air removes or adds heat by con-103

vection while the leaves provide shade. However, any energy that the soil104

gives to the air is rapidly transported away through turbulent diffusion and105

has a negligible effect on the surroundings. Plants also remove water from106

the soil, which affects the thermophysical parameter values. Consequently,107

if the layers are to be decoupled it must be under the assumption that water108

removal is relatively small, which may come through investigating situations109

with a low evapotranspiration rate or for short times.110

As a consequence of the above arguments, in this paper we will focus111

on the development of a simple mathematical model to determine the effect112

of different substrates on energy stored during daylight hours (which here113

we will define as when the solar irradiance is above zero). This energy can114

then go to heating the surface or be released at night, both with detrimental115

effects on the comfort and energy footprint in the local area. The model116

requires a number of assumptions. With regard to evaporation we assume117

that the mass loss is proportional to the (varying) surface temperature. We118

also assume an approximately constant moisture content in the soil. This119

requires studying situations involving the removal of a few millimetres of wa-120

ter per day, which is not a strong restriction, and only carry out calculations121

for a single day. Subsequent days may be dealt with by imposing new initial122

conditions. The resulting mathematical model is simple enough to be solved123

analytically and the thermal performance of the layer can be ultimately de-124

scribed by a single expression. The ultimate goal being to provide a set of125

guidelines to demonstrate the effect of substrate type and physical character-126
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istics (depth, composition etc) on the energy storage and to provide simple127

explicit formulae to compute this energy.128

The paper is organised as follows. In Section 2 we specify the model as-129

sumptions to obtain the governing heat equation in the roof layer as well as130

the surface boundary condition which accounts for heat transfer due to con-131

vection, radiation, solar irradiance and surface evaporation. In Section 3 ex-132

act and approximate analytical solutions are obtained for both intensive and133

extensive green roofs. In Section 4 we analyse different roof configurations134

and discuss the range of validity of the different approximations obtained in135

the previous section. Finally, Section 5 is devoted to the conclusions.136

2. Derivation of governing equations137

The mathematical model will be developed subject to the following as-138

sumptions:139

1. The plant temperature is close to the air temperature [33].140

2. The air forms an infinite sink and is well mixed, so the air temperature141

may be assumed independent of the plant cover and substrate.142

3. The plants have two main effects on the soil, firstly they provide shade143

(so reducing the amount of solar energy available to be absorbed),144

secondly they remove water through transpiration.145

4. The variation in the soil moisture is small such that it does not produce146

any significant variation in the thermal parameters.147

5. The temperature flow is predominantly one-dimensional.148

The first four assumptions were discussed in the introduction. The as-149

sumption on the moisture content obviously imposes restrictions on the cal-150

culation time, which must be sufficiently small that only small quantities of151

water evaporate, or that the substrate is carefully watered at regular inter-152

vals. This is perhaps the most restrictive assumption, as well as the condi-153

tions it imposes on the time the moisture content affects the albedo and the154

thermal properties (such as density and thermal conductivity). Our results155

may therefore be viewed as providing bounds on the energy storage capacity156

for different moisture levels.157

Regarding the final assumption, our aim is to produce a simple model158

capable of predicting and providing insight into a green roof’s performance.159

Given that the main drivers for energy change occur at the top and bottom160

boundaries it seems apparent that the heat flow is predominantly perpendic-161

ular to the surface. Small local changes, for example due to variations in leaf162

coverage, would require a detailed analysis for each individual green roof. By163

dealing with the one-dimensional problem we are effectively considering the164

average temperature over a cross-sectional area.165
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Table 1: Summary of the symbols used in this work.

Symbols

A Albedo (-)
Has Air-soil heat transfer coefficient (W/m2◦C)
ρ Density (kg/m3)
f , g Deviation from average irradiance, temperature (W/m2, ◦C)
z Distance from surface (m)
E Energy absorbed (J/m2)
λn Eigenvalue (-)

ϕn, φn, ψn Eigenfunction (-)

d, ḋ Evaporated amount, Evaporation rate (m, m/s)
α Evaporation proportionality constant (m/◦Cs)
FV C Fractional vegetative coverage (-)
q Heat flux (W/m2)
ε Heat loss parameter (-)
Le Latent heat of evaporation (J/kg)
p period (s)
L Soil thickness (m)

C1, C2 Specific energy terms (W/m2, W/m2◦C)
c Specific heat capacity (J/kg◦C)
Q Sun irradiance (W/m2)
T Temperature (◦C)
k Thermal conductivity (W/m◦C)
D Thermal diffusivity (m2/s)
t Time (s)

Superscripts

0 Constant environmental conditions

Subscripts

s Soil c Concrete a Air
w Water rad Radiation conv Convection

evap Evaporation lap Laplace tot Total
max Maximum value min Minimum value mn Mean value
av Average value num Numerical app Approximate
net Net value
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z = 0

z = L

qevapqradqconv

qs

qsun

Figure 1: Illustration of the green roof model.

2.1. Mathematical model166

The one dimensional model that we will consider is represented in Fig-167

ure 1. Subject to the above restrictions the substrate satisfies the one-168

dimensional heat equation169

ρscs
∂T

∂t
=

∂

∂z

(
ks
∂T

∂z

)
, (1)

where the notation is described in Table 1. The thermal parameters may
depend on the water content (here assumed to be constant) and the substrate
occupies the region z ∈ [0, L], with z = 0 being open to the atmosphere. With
constant coefficients we denote the thermal diffusivity as Ds = ks/ρscs. At
the surface, z = 0, the energy conducted into or out of the substrate must
balance the incoming heat from the sun with that lost through convection,
radiation and evaporation, hence

qs = −ks
∂T

∂z

∣∣∣∣
z=0

= qsun + qconv + qrad + qevap . (2)

As for the lower boundary conditions, we assume the roof has a perfect170

thermal insulation, so there is no heat flowing out of the roof and into the171

house, which can be written in terms of a homogeneous Neumann boundary172

condition like ∂T (L, t)/∂z = 0. However, if the soil is deep enough the173

domain can be assumed to be semi-infinite where the temperature far from174

the surface remains constant, which can be written like ∂T (z, t)/∂z → 0175

as z → ∞. We shall therefore consider one of the two following boundary176

conditions:177

i) lim
z→∞

∂T

∂z
= 0 , ii)

∂T

∂z

∣∣∣∣
z=L

= 0 . (3)

The first applies to thick soil layers, the second to thinner layers. Clearly,178

due to weight considerations, green roofs are far from semi-infinite: later179
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we will discuss what constitutes thick and thin and demonstrate that, at180

least mathematically, roofs greater than 15cm thick may be treated as semi-181

infinite.182

As initial condition we shall take the daily mean temperature value,183

T (z, 0) = Tmn =
Tmax + Tmin

2
. (4)

2.2. Specific energy terms184

The most important part of the above energy balance is the surface185

boundary condition, equation (2) which requires expressions for the con-186

vection, radiation and evaporation terms.187

Convection and radiation. Firstly we note that the convective and radiation
terms are usually combined to make a single effective heat transfer term. The
sum of the convective and radiation terms is

Econv + Erad = −H ′as(T − Ta)− εσ(T 4 − T 4
a ) , (5)

where H ′as is the soil-air heat transfer coefficient, Ta is the ambient air tem-188

perature, ε is an emissivity coefficient and σ is the Stefan–Boltzmann con-189

stant. Assuming the soil surface temperature is not greatly different to the190

air temperature we may write T = Ta + f , where f = (T − Ta)� Ta, then191

(T 4 − T 4
a ) = (T 4

a + 4fT 3
a + 6f 2T 2

a · · · )− T 4
a = 4fT 3

a

(
1 +

3

2

f

Ta
+ · · ·

)
. (6)

Provided f/Ta = (T − Ta)/Ta � 1, then

Econv + Erad ≈ −Has(T − Ta) (7)

where Has = H ′as + 4εσT 3
a is a combined soil-air heat transfer coefficient.192

Energy flux related to the sun irradiance. The solar energy term in (2) may
be written as

qsun = (1− FV C)(1− As)Qnet , (8)

where As is the substrate albedo and Qnet the net irradiance received from193

the sun. The parameter FV C ∈ [0, 1] is the fractional vegetative coverage,194

a dimensionless quantity for whose definition we may use the Leaf Area195

Index (LAI), see [21, 26, 34], which is used to characterise plant canopies.196

The LAI is defined as the one-sided green leaf area per unit ground surface197

area (see for instance [35]). Since dense plant canopies can have several198

layers of leafs, values of LAI > 1 are permissible. Plant leaves very rapidly199

prevent the sun from reaching the soil surface, so a common definition has200

FV C = 1− exp (−LAI).201
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Energy loss due to evaporation. Evaporation is a form of phase change which
occurs below the standard phase change temperature. For fluid molecules to
escape from the liquid surface they require sufficient energy. At low tem-
peratures the fluid molecules have low energy, however they may gain above
average energy through collisions with other molecules. The closer to the
phase change temperature the more likely it is that a molecule will gain suf-
ficient energy to break free from the liquid and join the vapour layer above
the surface. For this reason we will define an evaporation rate proportional to
the surface temperature ḋ = αT (0, t), that is, the evaporation rate increases
with the surface temperature and so

qevap = −ρwLeḋ(t) = −ρwLeαT (0, t) , (9)

where ḋ the rate at which water is evaporated per unit area. The constant of202

proportionality α in fact depends on quantities such as the relative humidity,203

air flow, surface roughness which all influence the evaporation but will here204

be taken as a constant.205

The soil surface boundary condition may now be written as

−ks
∂T

∂z

∣∣∣∣
z=0

=(1− FV C)(1− As)Qnet

−Has(T (0, t)− Ta)− ρwLeαT (0, t) .

(10)

The relation between the boundary condition (10) and the Penman-Monteith206

(PM) equation is discussed in [24]. The PM equation is a widely used formula207

primarily aimed at estimating the amount of evapotranspiration. It includes208

a variety of empirical quantities, some, such as the ‘ground heat flux’, are dif-209

ficult to measure. The ground heat flux is identical to −ksTz(0, t) which here210

will be determined during the solution process. As discussed earlier tran-211

spiration plays a limited role in the substrate energy balance. The surface212

boundary condition depends on the surface evaporation whereas transpira-213

tion acts to remove water from within the soil which is then evaporated in the214

plant layer and the associated energy passed to the air. The effect of tran-215

spiration on the soil is then purely through the amount of water removed.216

Experimentally this may lead to an issue in distinguishing where the water217

has been removed, since this affects the measurement of d. In which case we218

could make an estimate via an empirical formula. However, our goal here219

is to provide a comparative study of different forms and depths of roof so220

we will simply specify a value for d and then see how it affects the different221

substrates.222

Time-dependent environment conditions. Both the solar energy and ambient223

temperature vary throughout the day, typical forms are shown in Figure 2.224
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The solid curve in Figure 2(a) depicts the variation of solar radiation. We225

take the origin of our time axis as the moment when the solar radiation226

first reaches the surface and, in this example, the radiation returns to zero227

at the end time tf = 14 hours (note, the calculations are in SI units so228

in all equations we work in seconds, tf = 14 × 3600s). Consequently we229

approximate the irradiance by230

Qnet(t) = Qmax sin

(
2πt

p1

)
, (11)

where the period is p1 = 2tf s. This holds for t ∈ [0, tf ] s, which is how we231

define our daytime and is the time period over which we will calculate the232

energy absorbed by the substrate. In Figure 2(b) the solid curve represents233

the ambient temperature. This reaches a minimum a short time after the234

solar radiation begins, while the maximum occurs shortly after the peak of235

radiation. If we choose a minimum at t = tmin = 1 hour and a maximum at236

t = tmax = 9 hours then the sine wave representation takes the form237

Ta(t) = Tmn −
∆T

2
cos

(
2π (t− tmin)

p2

)
, (12)

where ∆T = Tmax−Tmin and the period p2 is twice the distance between the238

maximum and minimum, p2 = 2 (tmax − tmin) = 2 × 8 × 3600s. Given that239

neither period p1 or p2 coincide with the day length these functions cannot240

be applied for a full 24 hours. However, our goal is to calculate the energy241

absorbed by the substrate over daylight hours in which case the definitions242

(11, 12) provide a realistic approximation.243

In the following sections we will calculate analytical and numerical solu-244

tions for the temperature and energy in the substrate. Some of the analytical245

approximations employed will require constant values for irradiance and am-246

bient temperature and thus some form of average value must be determined.247

Consequently we write248

Qnet(t) = Qav + f(t) , Ta(t) = Tav + g(t) . (13)

To determine the average solar irradiance we first calculate the daily total249

(i.e., the solar exposure or insolation)250

Qtot = Qmax

∫ tf

0

sin

(
2πt

p1

)
dt =

2

π
Qmaxtf , (14)

where we have used p1 = 2tf . Similarly, the integral of the temperature251
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Figure 2: (a) Evolution of the solar energy (irradiance) and (b) the air temperature
during solar radiation hours. The dashed lines represent the daily averages.

during the time period [0, tf ] is252

Ttot =

∫ tf

0

Ta(t) dt

= Tmntf −
∆Tp2

4π

[
sin

(
2π (tf − tmin)

p2

)
+ sin

(
2πtmin

p2

)]
. (15)

The daily averages are then

Qav =
Qtot

tf
, Tav =

Ttot

tf
. (16)

The daily average temperature, Tav, and the mean temperature, Tmn, are
only equal if tf = p2, this would occur with exactly 12 hours of daylight.
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Substituting for Tav, Qav in equations (13) defines f(t), g(t)

f(t) =Qmax

(
sin

(
2πt

p1

)
− 2

π

)
, (17)

g(t) =
∆T

2

(
p2

2πtf

[
sin

(
2π(tf − tmin)

p2

)
+ sin

(
2πtmin

p2

)]
− cos

(
2π(t− tmin)

p2

))
.

(18)

The final form for the surface boundary condition is then253

−ks
∂T

∂z

∣∣∣∣
z=0

= C1 +G(t)− C2T (0, t) , (19)

where C1, C2 are constant and G(t) incorporates the f(t), g(t) terms:254

C1 = (1− FV C)(1− As)Qav +HasTav, C2 = Has + ρwLeα, (20)

G(t) = (1− FV C)(1− As)f(t) +Hasg(t). (21)

Energy flux due to evaporation. With regard to the evaporation rate we first255

note that the value of the constant α must be consistent with the specified256

daily evaporation rate. If we observe that d metres have evaporated in time257

tf then258

d =

∫ tf

0

ḋ dt = α

∫ tf

0

T (0, t) dt . (22)

In the case where ḋ is constant the above equation states that ḋ = d/tf and α259

is redundant. In the variable case the method to obtain α from this relation260

will be discussed later.261

2.3. Absorbed energy262

To determine the energy absorbed (above the initial energy) in a layer of
thickness L we must evaluate

E(t) =

∫ L

0

ρscs(T (z, t)− Tmn) dz . (23)

We note that the energy is related to the surface boundary condition and, in263

turn, to the evaporation rate. Indeed, integrating (1) with respect to time264

and using (19) one obtains265

dE

dt
= ks

∂T

∂z

∣∣∣∣
z=L

− ks
∂T

∂z

∣∣∣∣
z=0

. (24)
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With an insulated layer ∂T/∂z = 0 at z = L, whereas for a deep layer266

T → T∞ as z → ∞, hence ∂T/∂z → 0. In either case the first temperature267

derivative in (24) may be neglected while the second is simply the energy268

flux at the surface which is defined by the surface boundary condition269

dE

dt
= C1 +G(t)− C2T (0, t) , (25)

and therefore the energy absorbed in the layer is270

E(t) = C1t+

∫ t

0

(G(τ)− C2T (0, τ)) dt . (26)

According to the definition of G(t) given in (21),
∫ tf

0
G(t)dt = 0. Therefore,271

the energy absorbed at the end of the day, and thus available for release272

through the night, is273

E(tf ) = C1 tf − C2

∫ tf

0

T (0, t) dt = C1tf − C2
d

α
(27)

= (1− FV C)(1− As)Qavtf − ρwLed+Has

(
Tavtf −

d

α

)
. (28)

It would appear that we can finish the calculation here given that we have274

an expression for the energy absorbed through the day and hence the en-275

ergy available for release at night. The simplicity of the above expression276

clearly shows how the absorbed energy depends on the problem parameters.277

However, α is a priori unknown and depends on the surface temperature.278

Consequently in the following sections we will investigate the temperature279

flow more carefully to determine the evaporation rate and specifically the280

form of the function d(α). Further, this will determine the surface tem-281

perature which is an important quantity in the comfort of the population.282

Importantly the analysis will show that due to the interplay between evapo-283

ration and surface temperature the absorbed energy does not depend linearly284

on tf as suggested by the above result.285

2.4. Numerical solution286

The mathematical problem defined by the heat equation (1), boundary287

conditions (3i) and 10 and the initial condition (4) can be solved numerically288

by using Matlab’s built-in function pdepe, which performs a discretization of289

the spatial variable to obtain a system of ODEs which is then solved using290

the function ode15s. It is an excellent way to demonstrate the accuracy of291

the analytical solutions but does not provide any insight into the role of the292

model parameters.293
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3. Analytical solutions294

In this section we seek analytical solutions for both infinite and finite295

depth layers. Specifically we will calculate the temperature profile through-296

out the layer and from this determine the surface temperature which is re-297

quired to calculate the energy absorbed throughout the day. We note that298

in the case of a substrate with infinite depth the analytical method requires299

constant average values for the ambient temperature and solar irradiance (as300

studied in [24]).301

3.1. Deep substrate solution for averaged input values302

As discussed above, for thick layers the surface temperature variation may303

not affect the lower boundary z = L. Consequently we may seek an analytical304

solution based on the assumption L → ∞ (and subsequently determine a305

lower bound for this approximation).306

Taking the average values for the ambient temperature and solar radiation
discussed in Section 2.2, that is G = 0, we may use Laplace transforms (see
Appendix A) to obtain

Tlap(z, t) =Tmn +
C1 − C2Tmn

C2

[
erfc

(
z

2
√
Dst

)
− exp

(
C2

ks

(
C2Dst

ks
+ z

))
erfc

(
z

2
√
Dst

+
C2

√
Dst

ks

)]
,

(29)

where erfc(z) is the well known complementary error function,

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt .

In the limit z → ∞ this gives T → Tmn which satisfies ∂T/∂z → 0 so
this applies for both boundary conditions (3) for sufficiently large values of
L. The surface temperature is simply

Tlap(0, t) = Tmn +
C1 − C2Tmn

C2

[
1− exp

(
C2

2Ds

k2
s

t

)
erfc

(
C2

√
Dst

ks

)]
. (30)

Using expression (23) the energy absorbed throughout the layer after time t
is

Elap(t) =
k2
s

DsC2
2

(C1 − C2Tmn)

[
exp

(
C2

2Ds

k2
s

t

)
× erfc

(
C2

ks

√
Dst

)
+

2√
π

C2

ks

√
Dst− 1

]
.

(31)
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We note that Elap(t) is linear in C1 (defined in (20)), this is in keeping
with equation (27) although the time dependence is different. The depen-
dence of the energy on the evaporation rate, which appears in C2, is not
so clear. We can find a simpler expression by considering large time solu-
tions, i.e. approaching the end of the day. For the soils considered in this
work C2

√
Dstf/ks takes values between 2 and 5. Noting that for large y,

ey
2
erfc(y) = 1/(y

√
π) +O(1/y3). For sufficiently large times the energy may

then be approximated by

Elap(t) ∼ k2
s

DsC2
2

(C1 − C2Tmn)

[
ks

C2

√
Dst

+
2√
π

C2

ks

√
Dst− 1

]
. (32)

For t close to tf the second term in the square brackets is dominant indicating

Elap(tf )→2

(
C1

C2

− Tmn

)
ks√
πDs

√
tf (33)

=2

(
(1− FV C)(1− As)Qav +HasTav

Has + ρwLeα

− Tmax + Tmin
2

)√
ρscskstf

π
.

(34)

This simple expression provides an estimate of the energy for a deep substrate307

layer when the average of irradiance and ambient temperature are imposed.308

It clearly indicates the effect of each system parameter. There is a linear309

dependence on the fractional vegetative coverage, albedo and irradiance. The310

theromophysical parameters, ρs, cs, ks appear as a square root.311

3.2. Finite substrate solution312

Here we consider a finite substrate on top of an insulating layer. In
this case we apply the boundary condition (3 ii). The heat equation (1) is
now defined over the finite domain z ∈ [0, L], which suggests a solution by
separation of variables. This leads to an approximate solution of the form

T (z, t) = Tmn +
C1L

ks

∞∑
n=1

cos(λn)

λ2
n + β3 cos2(λn)

cos
(
λn

(
1− z

L

))
ψn(t) . (35)

The derivation is provided in Appendix B. The eigenvalues satisfy313

tan(λn) =
β3

λn
. (36)

and

ψn(t) = β2

[
1− exp

(
−λ

2
nDst

L2

)]
+ λ2

nGn(t) , (37)
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where Gn(t) = β1I1,n(t) + (1− β1)I2,n(t) and

I1,n(t) =
DsL

2p1π

8π2L4 + 2D2
sp

2
1λ

4
n

[
Dsp1λ

2
n

L2
sin

(
2πt

p1

)
− 2π cos

(
2πt

p1

)
+ 2π exp

(
−λ

2
nDst

L2

)]
− 1

λ2
n

[
1− exp

(
−λ

2
nDst

L2

)]
,

(38)

I2,n(t) =
1

λ2
n

(
Tmn

Tav
− 1

)[
1− exp

(
−λ

2
nDst

L2

)]
+

∆TD2
sp

2
2λ

2
n

2Tav (4π2L4 +D2
sp

2
2λ

4
n)

[
exp

(
−λ

2
nDst

L2

)
cos

(
2πtmin

p2

)
− cos

(
2π (t− tmin)

p2

)]
− ∆TDsL

2p2π

Tav (4π2L4 +D2
sp

2
2λ

4
n)

×
[

exp

(
−λ

2
nDst

L2

)
sin

(
2πtmin

p2

)
+ sin

(
2π (t− tmin)

p2

)]
,

(39)

where p1 = 2tf and p2 = 2 (tmax − tmin). These expressions involve three314

non-dimensional parameters315

β1 =
(1− FV C)(1− As)Qav

C1

, β2 = 1− C2Tmn

C1

, β3 =
C2L

ks
. (40)

Setting z = 0 in (36) gives the surface temperature

TN(0, t) = Tmn +
C1L

k

∞∑
n=1

ψn(t)

λ2
n + β2

3 + β3

. (41)

The eigenvalues, λn, are found through the numerical solution of (36). In316

the following we will also employ an approximation to the first eigenvalue317

λ1 ≈ λapp =

(
51/3

6
y − 5

6
− 13 · 52/3

6y

)1/2

(42)

where

y =

(
110 + 162β3 + 9

√
285 + 440β3 + 324β2

3

)1/3

, (43)

see Appendix B.318

In Figure 3 we compare the exact and approximate values of λ1 for varying319

L and parameter values for a typical soil (parameter values used here and in320

the next three figures are discussed in detail in §4). As may be seen, the error321
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Figure 3: (a) Value of λ1 according to the numerical solution of (36) and the
approximation (42). (b) Relative error of the approximation (42), defined by
δλ = 100× |λ1,num − λ1,approx| /λ1,num.

grows with L. When L = 16cm the error is around 10%, beyond this depth322

we should expect solutions using this approximation to exhibit significant323

errors.324

In practice, we can only use a finite amount of terms, hence we call TN
the approximation that uses N terms of the series (35). The energy (to N
terms) absorbed within the layer is found by integrating (35)

EN(t) =
L2C1

Ds

N∑
n=1

β3ψn(t)

λ4
n + λ2

nβ3(1 + β3)
. (44)

Again we may observe a strong dependence on C1, which represents the325
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energy gains. However, both C1 and the energy loss term C2 appear in326

ψn while β3 = C2L/ks, so the dependence is not so clear as for the thick327

substrate.328
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Figure 4: (a) Evolution of the surface temperature using the numerical solution
and equation (41) retaining 10 and 100 terms in the expansion. (b) Evolution of
the stored energy using the numerical solution and expression (44) with N = 1, 2.

In Figure 4 the series solution is compared with a numerical solution ob-329

tained using the Matlab pdepe function (parameter values are given in §4, the330

value α = 10−9m/◦Cs). In the case of the surface temperature the conver-331

gence rate of the series is slow such that only as N → 100 do the numerical332

and analytical results coincide. The integration of the temperature results in333

the energy series being O(1/λ2
n) smaller than that of the temperature, this334

leads to a much more rapid convergence rate: with N = 1 the error is small335
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while with N = 2 the series is almost indistinguishable from the numerical336

result.337

If we define

E1(t) =
L2C1ρscs

ks

β3ψ1(t)

λ4
1 + λ2

1β3(1 + β3)
(45)

and Eapp(t) as the value of E1 after replacing λ1 with λapp and then define338

the relative error339

δ(t) = 100× |Enum(t)− Eapp(t)|
|Enum(t)|

, (46)

we find δ(tf ) ≈ 1%. The error with E1 is even smaller. Hence we conclude340

that either equation (45) or Eapp are sufficiently accurate to describe the341

energy in a shallow substrate (at least for large times, i.e, close to t = tf ).342

All terms of Eapp may be written explicitly so this solution provides a signif-343

icantly more tractable form than the full series which requires the numerical344

calculation of the eigenvalues. We will verify the accuracy further in the345

results section.346

For the case where we choose constant averaged values to represent the
irradiance and ambient temperature, so that G = 0 and hence Gn = 0, then

T 0
N(z, t) =Tmn +

C1Lβ2

k

N∑
n=1

{
cos(λn)

λ2
n + β3 cos2(λn)

× cos
(
λn

(
1− z

L

))(
1− exp

(
−λ

2
nDst

L2

))}
,

(47)

which results in a surface temperature and energy

T 0
N(0, t) =Tmn +

C1Lβ2

k

N∑
n=1

1

λ2
n + β2

3 + β3

(
1− exp

(
−λ

2
nDst

L2

))
, (48)

E0
N(t) =

L2 (C1 − C2Tmn)

Ds

N∑
n=1

{
β3

λ4
n + λ2

nβ3(1 + β3)

×
(

1− exp

(
−λ

2
nDst

L2

))}
.

(49)

This solution will be compared later with the thick substrate solution which347

requires G = 0. It is tempting to permit L → ∞ in the above such that348

the term 1 − exp(−λ2
nDst/L

2) → λ2
nDst/L

2, giving the appearance that349

for thick layers the surface temperature and energy grow proportional to350
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time, so contradicting the previous deep substrate results. However this351

naive expansion does not capture the correct behaviour since β3 → ∞ and352

λn →
√
β3 (independent of n) as L→∞.353

In Figure 5 (a) we show a comparison of the surface temperature pre-354

dicted by the separable solution, (48), with N = 100, L = 10, 15 cm, and355

that obtained for an infinite depth substrate (30). Here it becomes clear that356

as L increases the separable solution approaches the infinite depth solution.357

All solutions in the figure have G(t) = 0, that is the temperature and irradi-358

ance are set to their average values. For this reason the surface temperature359

steadily increases during the day, in contrast to the result presented earlier360

in Figure 4, which has a variable energy input. For L = 15 cm the results361

are virtually identical for the whole day whereas for L = 10 cm they start362

to diverge after around 6 hours (when λ2
nDst/L

2 becomes O(1)). The cor-363

responding energy stored in the layer is presented in Figure 5 (b), but now364

we only take two terms in the series solution. The nonlinear behaviour is365

apparent. Again, as the depth of the substrate increases the series solution366

approaches that of the Laplace solution, with an error of approximately 4%367

at the end of the day when L = 15cm.368

3.3. Method to determine the amount evaporated, d(α)369

Evaporation plays a key role in the absorption and storage of energy. It370

is one of the main reasons why a dark soil surface can remain cooler than a371

lighter concrete one: evaporation requires a lot of energy. Here we have taken372

a standard approximation by setting the evaporation rate proportional to the373

surface temperature, ḋ = αT (0, t). However, the constant of proportionality,374

which determines the energy loss term C2, is a priori unknown and must be375

calculated during the solution process.376

In the case where the evaporation rate is assumed to be constant the377

solution is simple. Writing ḋ = d/tf , where it is assumed that the liquid378

evaporated during the day, d, is a known depth, then α may be removed from379

the problem. The constants C1, C2 take on a slightly different definition380

C1 = (1− FV C)(1− As)Qav +HasTav − ρwLe
d

tf
, C2 = Has . (50)

These different definitions do not affect the previous calculations, so the381

expressions derived in the preceding sections for temperature and energy382

absorbed still hold but with C1, C2 defined by (50).383

In the more physically realistic situation, where evaporation varies through
the day the constants are as defined in (20) and α may be determined by
integrating the derived expression for T (0, t) and employing equation (22) or
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Figure 5: Comparison of separable (48) and Laplace (30) solutions for the surface
temperature and energy when G(t) = 0 for L = 10, 15cm: (a) Surface temperature
taking N = 100 (b) Stored energy taking N = 2.

by equating the energy expression with the result of equation (27). For the
case of a thick layer setting t = tf in (31) and equating the result with (27)
we obtain

d =
α

C2

[
C1tf −

ksρscs
C2

2

(C1 − C2Tmn)

×
(

exp

(
C2

2Ds

k2
s

tf

)
erfc

(
C2

ks

√
Dstf

)
+

2√
π

C2

ks

√
Dstf − 1

)]
,

(51)
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For thinner layers, setting t = tf in (44) and equating with (27) we obtain

d =
αC1

C2

[
tf −

L2ρscs
ks

∞∑
n=1

β3ψn(tf )

λ4
n + λ2

nβ3(1 + β3)

]
, (52)

where λn is obtained by solving (36) and ψn(tf ) given explicitly by (37).384
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Figure 6: Depth evaporated as a function of α, for L = 8cm, obtained by numerical
integration, dnum, the solution of (52) using only the first term with the exact
value of λ1, denoted d1, and using the first term with the approximate value of λ1,
denoted dapp, and the solution of (51), denoted dlap

In Figure 6 we show the depth of water evaporated as a function of α
using infinite and finite depth solutions, (51, 52). Having demonstrated that
the energy converges rapidly and that E1(tf ) agrees very well with the full
numerical solution for the finite depth we only use the first term of the finite
depth solution which defines

d1 =
αC1

C2

[
tf −

L2ρscs
ks

β3ψ1(tf )

λ4
1 + λ2

1β3(1 + β3)

]
. (53)

Taking the exact value of λ1, determined by solving λ1 tanλ1 = β3 numeri-385

cally, we obtain the curve labelled d1. Using the approximate expression for386

the first eigenvalue, (42), gives dapp. Also shown is the numerical solution of387

the heat equation. In all cases we take L = 8cm and parameter values spec-388

ified in the following section. Clearly the agreement between the four forms389

is excellent. In each case the depth increases non-linearly with α. Although390

calculated with L = 8cm we found virtually identical results for larger values,391

such that for sufficiently thick layers we may assume that d(α) is independent392

of depth. This may be attributed to the fact that evaporation is a surface393
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effect. Here affecting a maximum of approximately 4.5mm into the soil layer.394

The soil far below this, such that L � 4.5mm will have little influence on395

this process. From the deep substrate result (51) we know that d depends396

linearly on C1. From Fig. 6 it is clear that the computed value of d is almost397

identical for both shallow and deep layers. As a consequence the energy ab-398

sorbed, expressed by (27), is linear in C1 for any depth of substrate (greater399

than a few millimetres). This means that the energy decreases linearly with400

fractional leaf coverage FV C , albedo, As, and increases linearly with irradi-401

ance Qnet and average daily temperature. The nonlinear dependence of both402

expressions on C2 shows that E(tf ) depends nonlinearly on the evaporation403

rate and heat transfer coefficient. This will be demonstrated in §4.3.404

4. Results405

After developing a set of solutions appropriate for thick and thin sub-406

strates the goal is now to see how they behave under realistic conditions and407

in doing so determine guidelines or advice concerning the design of green408

roofs.409

The thermophysical properties of soils vary significantly depending on the410

composition and moisture content. Coma et al. [36] analysed the properties411

of five different dried soils for extensive green roofs, changing the percentage412

of compost, coco peat, crushed building wastes, coarse grained sand and413

pozzolana, to obtain ks ∈ [0.1, 0.19] W/m◦C, cs ∈ [724, 873] J/kg◦C, ρs ∈414

[375, 1360] kg/m3. In [37] the soil layer has the following properties: ks =415

0.27 W/m◦C, cs = 1307 J/kg◦C, ρs = 1210 kg/m3, the layer thickness was416

L = 8 cm and the albedo As = 0.26. We will use this latter soil as a reference417

case and choose a fractional vegetative cover of FV C = 0.5.418

The typical properties of concrete used in construction may also vary419

with composition. For example, the density of regular concrete is around420

2400 kg/m3 while lightweight concrete has ρc ≈ 1750 kg/m3 [38]. In our421

subsequent analysis, we will use parameter values consistent with HSC con-422

crete as presented in Table 2 [39, 40]. With regard to the ambient conditions,423

unless otherwise specified, we will use the parameter values given in Table424

3, which are consistent with a roof in a city with warm but not extreme425

temperatures and with a medium irradiance.426

4.1. Temperature and energy profiles427

In this section we focus on a green roof using the data provided in Tables 2,428

3 and As = 0.26, L = 8cm unless specified otherwise. The numerical solution429

of the heat equation (1) subject to (19) is used to determine the temperature430

at the soil-air interface and the energy stored as a function of time in Figure431
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Table 2: Representative values for the thermophysical properties of soil and con-
crete [37, 38, 40, 41].

Material ρi (kg/m3) ci (J/kg◦C) ki (W/m◦C)
soil (i=s) 1210 1307 0.27

concrete (i=c) 2300 1000 1.5

Table 3: Parameters used to represent ambient conditions, values for Has and
Qmax are taken from [42], [43] respectively.

Maximum temperature Tmax 30 ◦C
Minimum temperature Tmin 20 ◦C
Maximum irradiance Qmax 800 W/m2

Density of water ρw 1000 kg/m3

Soil-air heat transfer coefficient Has 5 W/m2◦C
Latent heat of evaporation Le 2.26× 106 J/kg

7. The left panel shows the evolution of the surface temperature for different432

thicknesses while the right one corresponds to the evolution of the absorbed433

energy. The surface temperature is always highest with the thinnest layer,434

reaching a maximum of approximately 52◦C soon after midday (which occurs435

at t = 7 hours). As the layer thickness increases the surface temperature436

decreases, since the heat can diffuse further into the layer. The two plots for437

L = 13, 15cm are difficult to distinguish, suggesting that for L > 15cm the438

surface temperature is independent of depth (and hence the infinite depth439

solution will be accurate). The higher surface temperature results in a higher440

evaporation rate and convective cooling and for this reason less energy is441

retained in the thinner soil layer. Consequently, in contrast to the surface442

temperature, the energy stored is greater in the thicker layers, attaining a443

maximum of around 2.4 MJ/m2 when L = 15cm while for the 5cm layer the444

maximum is close to 2 MJ/m2. Thicker layers clearly have the ability to445

store more energy whilst maintaining a lower surface temperature.446

4.2. Effect of evaporation447

In Figure 8 we plot the energy at the end of the day as a function of448

the evaporated depth as predicted by integrating the numerical solution for449

the full problem via equation (23) with G 6= 0, denoted Enum(tf ), and with450

the average values (hence G = 0), E0
num(tf ). Also shown are the analytical451

solutions, the Laplace solution, (31), Elap(tf ), which has G = 0 and the452

approximate separable solution Eapp, which has N = 1 and λ1 = λapp. As453

discussed earlier the energy decreases linearly with d, due to the increasing454
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Figure 7: Numerical solutions for (a) Evolution of the temperature at the air-soil
surface for different soil thicknesses, (b) Evolution of the energy for different soil
thicknesses. In both cases α = 1 nm/◦Cs.

energy removed by evaporation. In Figure 8(a) the Laplace solution provides455

a poor approximation, indicating that this substrate is too shallow for the456

infinite layer analysis. The approximate solution Eapp shows good agreement457

with the full numerical solution, demonstrating that the behaviour is well458

captured by this simple explicit representation. The numerical solution with459

G = 0 shows an error of approximately 3% which results from neglecting the460

variation in ambient temperature and irradiance. Increasing the substrate461

depth to 15cm on Figure 8(b) it may be seen that the Laplace solution now462

becomes accurate, within the assumption of G = 0: the agreement with463

E0
num is excellent. Surprisingly Eapp also appears to closely match these464
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Figure 8: Energy absorbed at the end of the day using the numerical solution of
the heat equation and expression (23) with G 6= 0, denoted Enum(tf ), and with
G = 0, denoted E0

num(tf ), also shown are (45) for Eapp and (31) for Elap(tf ): (a)
Soil thickness of L = 8cm. (b) Soil thickness of L = 15cm.

two solutions. The distance from the full numerical solution is a result of465

the approximation to λ1 which becomes worse with increasing depth, for466

L = 15cm the error in λ1 is of the order 9% but this only results in an error467

for the energy prediction of approximately 5%.468

4.3. Albedo and vegetative cover effects469

The albedo and the fractional vegetative cover are properties which di-470

rectly affect the amount of solar irradiance reaching the surface and conse-471

quently must play a strong role in the energy storage. As discussed in §3.3472

for a thick layer the energy absorbed varies linearly with C1 and so must473
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decrease linearly with increasing FV C and As. For a thin layer the depen-474

dence is not clear from the analytical solution but the fact that the deep and475

shallow results coincide for the depth d(α) suggests a linear decrease with C1.476

In Figure 9 we show the dependence of the total energy as a function of the477

fractional vegetative cover FV C when L = 8cm and with various evaporation478

rates. The linear decrease is apparent in all cases, even though the layer is479

not sufficiently thick to warrant applying the infinite thickness solution. As480

we increase the vegetative cover to unity, with α = 0 (that is no evaporation),481

the stored energy becomes very small. This is to be expected, there is no in-482

coming irradiance so energy only passes to the substrate through convective483

heat transfer which is much less efficient. Increasing the amount evaporated484

the energy at the end of the day can become negative, that is there is less485

energy in the substrate than at the beginning of the day. This demonstrates486

the strong effect evaporation can have on the process. Since the incoming487

energy depends on (1−FV C)(1−As)Qnet exactly the same behaviour can be488

expected by fixing FV C and varying the albedo. Consequently Figure 9 also489

holds for varying As ∈ [0, 1] with fixed FV C .490
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Figure 9: Total energy stored as a function of FVC or As using direct numerical
simulation and the approximate expression (45) for different values of α.

4.4. Surface temperature and energy stored in concrete layers491

The model is easily applied to a concrete or other man-made surface by492

setting FV C = d = 0 in all expressions. Thermophysical parameters are493

shown in Table 2 and typical values for the albedo are shown in Table 4:494

unpainted concrete has values between 0.2 and 0.45. In Figure 10(a) we495

show the surface temperature with Ac = 0.3 for three different concrete496

layer thicknesses. As before the thinner layers show a higher value. In497
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Table 4: Typical albedo values for different types of surfaces.

Material Albedo Reference
concrete 0.2-0.45 [44–46]
asphalt 0.05-0.20 [45, 46]
brick, stone 0.20–0.40 [46]
sandy soil 0.25-0.45 [47]
bare fields 0.1-0.25 [47]
grass, bushes 0.16-0.27 [37, 43, 47]
trees 0.15-0.18 [46]
white paint 0.5-0.9 [46]
black paint 0.05 [48]

order to compare with a green roof, we also show the equivalent result taken498

from Figure 7(a). For the 6cm layer the maximum difference in surface499

temperatures between green and concrete roofs is close to 40◦C. Even for500

the 12cm layer the difference is of the order 30◦C. This clearly demonstrates501

how green roofs can affect comfort levels. Figure 10(b) shows the energy502

stored in a concrete roof for L ∈ [6, 16]cm when Ac = 0.3, we also present a503

second result corresponding to using a reflective paint, with Ac = 0.7. The504

corresponding green roof result is shown as a solid line. With the unpainted505

surface the energy stored ranges between four to six times that in a typical506

green roof. Even with the reflective coating the energy stored is typically507

twice that of the green roof. All this extra energy is available for release508

during the night and so will add to the heat island effect.509

4.5. Comparison between intensive and extensive green roofs510

The key difference between intensive and extensive green roofs is the511

depth of the substrate. Extensive roofs typically have a substrate between512

approximately 5-12cm while intensive roofs are deeper.513

The deeper growing medium of an intensive roof permits a wide range of514

plant types, ranging from grasses to shrubs or even trees. These large plants515

provide a lot of shade on the soil, so their mean leaf area index (LAI) ranges516

from 1 to 6 or even 7 (see [49]), and they have been found to have albedo517

values ranging from 0.16 to 0.28 (see [50]).518

Extensive green roofs typically allow for hardy plants which require min-519

imum maintenance. Since these plants are typically smaller, so are their520

leaves and they usually require little watering. Extensive roofs are usually521

“browner”, so their albedo is low. Since plants of extensive green roofs are522

typically grass or have small leaves, their LAI is also small, ranging from 0.8523

to 2.524

28



(a)

0 2 4 6 8 10 12 14

20

30

40

50

60

70

80

90

100

(b)

6 8 10 12 14 16

0

2

4

6

8

10

12

14

Figure 10: (a) Surface temperature for a concrete and green roofs using direct
numerical simulation. Albedo value for concrete used here is Ac = 0.3. Curves
relative to green roofs are plotted for comparative purposes, we suggest observing
Figure 7(a) for a better reference. (b) Total energy stored at the end of the
day. The different albedo values correspond to unpainted (Ac = 0.3) and painted
(Ac = 0.7) concrete.

These two types of green roofs are dramatically different in terms of525

maintenance, leading to the natural question whether it is worth investing526

in a more sophisticated “rooftop garden” rather than simply providing a527

shallow layer of soil with small vegetation. We therefore now use our model528

and consider two different set of values for the albedo and the vegetative529

coverage and compare the total energy stored in the two cases as a function530

of the soil thickness. We will consider a range of values in the two cases.531
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Table 5 shows the values used in the numerical simulations. The rest of the532

parameters are kept the same as in the previous sections.533

Table 5: Representative values for intensive and extensive green roofs [49, 50].

Type of roof A LAI FV C L (cm)
Intensive 0.26 2.5 0.92 12-20
Extensive 0.20 1 0.63 5-12

Figure 11 shows the evolution of E(t) over the day for the two roof types.534

We recall that our models are valid for small evapotranspiration rates and535

root uptake. The predictions should therefore be treated with caution when536

dealing with large plants, for this reason we use a moderate value for the LAI537

in the intensive case. The curves were obtained by numerically computing the538

evolution of the energy absorbed during the day for a range of soil thicknesses539

and then calculating the mean energy for each range. For extensive roofs we540

used 5-10.5cm, whereas for the intensive ones we used 12-20cm (as shown in541

Fig. 10b) the energy shows only a weak depth dependence in these ranges).542

In this case the total stored energy at the end of the day for extensive green543

roofs is around 1.5 MJ/m2. For the intensive green roof a negative value,544

around -0.4 MJ/m2, is obtained. The negative value indicates that energy545

has been lost during the day, so highlighting the significant advantage of546

intensive over extensive roofs.547
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Figure 11: Time evolution of the absorbed energy for intensive and extensive
green roofs.

4.6. Non-insulated soil bottom548

In the original model, the boundary conditions at the bottom of the soil549

represent two possible scenarios: either the temperature there remains at the550
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initial temperature during the whole day or there is no heat transfer from the551

soil to the building. In practice, we may wish to extend the second case and552

assume that a certain amount of heat is lost into the building. This requires553

modifying the boundary condition at z = L to554

−ks
∂T

∂z

∣∣∣∣
z=L

= εC1, ε > 0 . (54)

This form indicates that the heat lost at the base is proportional to that
input at the surface, represented by C1. The constant of proportionality,
ε > 0, is expected to be small and in the limit ε→ 0 the insulated boundary
condition is retrieved. Imposing (54) the temperature can be expressed in
the form of equation (35), although now the expression for ψn is

ψn(t; ε) =

(
β2 −

ε

cos(λn)

)[
1− exp

(
−λ

2
nDst

L2

)]
+ λ2

nGn(t) , (55)

see Appendix A for the detailed procedure. In particular, we note that555

equation (55) reduces to (37) in the limit ε→ 0.556

In Fig. 12 we show the effect of the parameter ε on the surface temper-557

ature and the amount of energy stored during the day for a green roof with558

L = 8cm. The temperature is truncated after 100 terms, the energy after559

2 terms (these results are almost identical to the numerical solution). From560

Fig. 12a) it is apparent that the substrate heat loss has little impact on the561

surface temperature, which is dominated by surface effects. Since energy is562

now being lost at the bottom of the substrate ε has a much stronger influence563

on the absorbed energy, which decreases by around 15% at the end of the564

day as ε increases from 0 to 10, as shown in Fig. 12b).565

To estimate a typical value for ε we consider a situation where there is a566

room with temperature Troom = 25 oC located at z = L, i.e. directly below567

the green roof. The right hand side of Eq. (54) represents the heat flux568

flowing into the room through the ceiling, which can be expressed as qroom =569

Hcr(Tceiling−Troom) where Hcr is the ceiling-room heat transfer coefficient and570

Tceiling is the temperature of the ceiling. Heat transfer coefficients between571

indoor air and ceilings in regular buildings have values around 5 W/m2 oC572

or smaller [51, 52]. To obtain an upper bound for ε we assume that the573

temperature of the ceiling takes a very high value Tceiling = max [T (z = 0, t)]574

where T (z = 0, t) is the temperature at the roof surface for the insulated575

case (in practice Tceiling would be much lower than the surface temperature).576

Combining the expression for qroom with the right hand side of Eq. (54)577

shows ε = Hcr(Tceiling − Troom)/C1. Using the results for both green and578

concrete roofs with L = 6 cm as shown in Fig. 10, we have TGRceiling = 50.65 oC,579
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Figure 12: Evolution of (a) surface temperature and (b) stored energy for different
values of the heat loss parameter ε. In both cases L = 8cm, α = 1nm/◦Cs.

CGR
1 = 315.9 and T concreteceiling = 92.03 oC, Cconcrete

1 = 483.97. These values lead580

to εGR = 0.41 and εconcrete = 0.69, respectively. So, even in the L = 6 cm581

case which has the highest temperature of our calculations and with no heat582

loss through the layer, the upper bound has ε < 1. Referring to Fig. 12583

which shows negligible differences between the ε = 0 and ε = 1 cases we may584

conclude that the insulating boundary condition is sufficient for all practical585

purposes.586
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5. Conclusions587

The primary aims of this paper were to develop a mathematical model588

for heat flow in a green roof, to develop analytical solutions and to use these589

to gain a better understanding of the process and finally, to evaluate the590

differences in energy storage between green and concrete or man-made roofs.591

The intention being that such a model could provide simple guidelines with592

regard to the design of green roofs.593

Various analytical solutions were presented, which explicitly define the594

role of system parameters. A numerical solution was also developed this per-595

mitted verification of the analytical solutions but could not clarify the role of596

individual parameters. For an infinitely thick substrate an analytical expres-597

sion was presented, provided that the daily variation of ambient temperature598

and irradiance is averaged. For large time, close to the end of the day, this599

solution demonstrated a simple linear dependence of the energy on many of600

the ambient conditions, while the energy varied with the square root of time601

and thermophysical properties of the substrate. For finite thickness layers a602

separable solution was found. The energy expression converged rapidly at603

large times and so could be written in an explicit form, involving only the604

first term, which again permits the role of ambient conditions to be clearly605

understood.606

Comparison between the analytical solutions and the numerical solution607

demonstrated that:608

1. The separable solution for the energy rapidly converges such that by the609

end of the day only a single term is required. The surface temperature610

converges much more slowly.611

2. The infinite depth solution holds for substrates deeper than approxi-612

mately 15cm.613

3. The averaging of the ambient temperature and irradiance results in614

slightly higher predictions for energy absorption, but the trend is the615

same as the numerical solution of the full, time-dependent system.616

Given that the majority of green roofs have a depth greater than 15cm this617

final point suggests that the Laplace solution provides a simple way to quan-618

tify the energy storage.619

Significant conclusions from the model include:620

1. Subject to identical conditions, e.g. the same albedo, solar radiation,621

vegetative coverage etc, an extensive (thin layer) green roof will ex-622

hibit higher surface temperatures than an intensive (thick) roof but623

will absorb less energy. However, in practice an intensive roof typically624

has the higher vegetative coverage and albedo. In which case intensive625
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roofs absorb significantly less energy and so, whenever possible, are626

preferable to extensive roofs.627

2. Concrete roofs are significantly hotter and store significantly more en-628

ergy than a standard green roof. Our example showed a maximum629

surface temperature almost 40◦C higher and a factor three more en-630

ergy stored between concrete and green roofs.631

If the energy stored in a green roof is a factor x less than that in an equivalent632

concrete layer then we may easily deduce that a 10% increase in an area’s633

green coverage corresponds to a 10(x−1)/x % decrease in stored energy. For634

the present example x ≈ 3 which corresponds to a 6.7% decrease in energy635

stored for every extra 10% of green area.636

With regards to guidelines to aid in the design of green roofs, within the637

restrictions of the present model, the results show that the energy absorbed:638

1. Decreases linearly with: depth of water evaporated; fractional vegeta-639

tive coverage; albedo.640

2. Increases linearly with average ambient temperature.641

3. Varies non-linearly with surface temperature (related to the evapora-642

tion rate) and the surface heat transfer coefficient.643

4. Increases with the square root of the thermophysical properties such as644

density of the soil, thermal conductivity and specific heat capacity.645

Obviously not all of these may be controlled but ensuring good leaf coverage,646

a lighter coloured surface and a wet surface layer are possible. These are the647

most important factors. Choosing a substrate with a low density, conduc-648

tivity and heat capacity will, to a lesser extent, reduce the energy storage649

capacity.650

While there exist many more complex descriptions of heat flow in urban651

landscapes, including detailed descriptions of air flow and energy input from652

human activity it is imperative that these models are founded on the correct653

building block. The current model is designed to achieve this. It may be654

adapted to incorporate empirical modifications, such as those employed in655

the Penman-Monteith equation where, for example, the surface heat transfer656

accounts for the air speed some distance above the ground, or the evaporation657

is split into evaporation and transpiration. However, swapping the heat658

transfer coefficient for an air speed expression or removing liquid from inside659

the soil layer as well as at the surface will not change the basic conclusions.660

Other modifications, which can add to the generality of the model include661

permitting heat transfer between the green roof and the building surface, so662

paving the way to study the effect inside the building, and also permitting663

moisture movement within the soil.664

34



Author Statement665

The work has not been published previously and it is not under consider-666

ation for publication elsewhere. Its publication is approved by all authors. If667

accepted, it will not be published elsewhere in the same form, in English or668

in any other language, including electronically without the written consent669

of the copyright-holder.670

Declaration of Competing Interest671

All authors have participated in (a) conception and design, or analysis672

and interpretation of the data; (b) drafting the article or revising it criti-673

cally for important intellectual content; and (c) approval of the final version.674

This manuscript has not been submitted to, nor is under review at, another675

journal or other publishing venue. The authors have no affiliation with any676

organization with a direct or indirect financial interest in the subject matter677

discussed in the manuscript.678

CRediT authorship contribution statement679

Maria Aguareles: Conceptualization, Methodology, Formal analysis,680

Writing - original draft, Software. Marc Calvo-Schwarzwalder: Formal681

analysis, Writing - review & editing. Francesc Font: Conceptualization,682

Methodology, Formal analysis, Writing - original draft, Software. Timothy683

G. Myers: Supervision, Conceptualization, Writing - review & editing.684

Acknowledgements685

M. Aguareles acknowledges grant no. MTM2017-84214-C2-2-P. M.Calvo-686

Schwarzwalder acknowledges financial support from Zayed University through687

the grant no. R21033 and the Policy Research Incentive Program 2022. F.688

Font acknowledges the support of the Serra-Hunter Programme of the Gen-689

eralitat de Catalunya. T.G. Myers thanks the CERCA Programme of the690

Generalitat de Catalunya. All authors acknowledge the support of Ministerio691

de Ciencia e Innovación Grant No. PID2020-115023RB-I00.692

Appendix A. Temperature profile for infinite depth substrate693

The model presented in this work can be solved analytically if we assume694

that695

1. the air temperature and sun irradiation remain constant along the day;696
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2. the thickness of the soil can be assumed to be infinite.697

Under these conditions, the governing equations are

∂T

∂t
= Ds

∂2T

∂z2
, T (z, 0) = Tmn , (A.1a)

−ks
∂T

∂z

∣∣∣∣
z=0

= C1 − C2T (0, t) ,
∂T

∂z

∣∣∣∣
z→∞

= 0 . (A.1b)

To simplify notation and to understand the contributions and relative698

importance of the different terms in the equations, it is helpful to formulate699

the problem first in terms of scaled variables. The arising dimensionless700

numbers can then yield some interesting behaviour of the solutions.701

Appendix A.1. Non-dimensional formulation702

For the problem defined by (A.1) there is a clearly defined time scale tf .703

The length and temperature scales can be determined by writing z = Lẑ,704

t = tf t̂ and T = Tmn + T T̂ , which leads to705

∂T̂

∂t̂
=
∂2T̂

∂ẑ2
, T̂ (ẑ, 0) = 0 ,

∂T̂

∂ẑ

∣∣∣∣
ẑ→∞

= 0 , (A.2)

provided we choose L =
√
tf/Ds. The boundary condition at the surface706

reads707

−ksT
L

∂T̂

∂ẑ

∣∣∣∣
ẑ=0

= C1 − C2Tmn − C2T T̂ (0, t̂) . (A.3)

Upon choosing the temperature scale T = C1L/ks, this condition reduces to708

−∂T̂
∂ẑ

∣∣∣∣
ẑ=0

= β2 − β3T̂ (0, t̂) , (A.4)

where709

β2 = 1− C2Tmn

C1

, β3 =
C2L
ks

. (A.5)

Appendix A.2. Analytical solution710

Taking the Laplace transform of the system defined by Eqs. (A.2) and
(A.4) we obtain

ŝû =
∂2û

∂ẑ2
, û (ẑ, 0) = 0 , (A.6a)

− ∂û

∂ẑ

∣∣∣∣
ẑ=0

=
β2

s
− β3û (0, ŝ)

∂û

∂ẑ

∣∣∣∣
ẑ→∞

= 0, (A.6b)
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where û (ẑ, ŝ) is the Laplace transform of T̂
(
ẑ, t̂
)
. The solution to the ordi-711

nary differential equation is712

û (ẑ, ŝ) = A exp
(
−
√
ŝẑ
)
, (A.7)

where the positive branch has been neglected to satisfy the far-field condition.
Applying the boundary condition at ẑ = 0 determines

A =
β2

ŝ(β3 +
√
ŝ)
, (A.8)

and hence we can transform back to obtain

T̂
(
ẑ, t̂
)

=
β2

β3

[
erfc

(
ẑ

2
√
t̂

)
− exp

(
β3

(
β3t̂+ ẑ

))
erfc

(
β3

√
t̂+

ẑ

2
√
t̂

)]
,

(A.9)

where erfc(z) is the complementary error function,

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt .

In the original variables, the temperature reads

T (z, t) =Tmn +
C1 − C2Tmn

C2

[
erfc

(
z

2
√
Dst

)
− exp

(
C2

ks

(
C2Dst

ks
+ z

))
erfc

(
z

2
√
Dst

+
C2

√
Dst

ks

)]
.

(A.10)

Appendix A.3. Total energy absorbed713

We can rewrite the energy in terms of the non-dimensional variables,714

E(t) = ρscsLT
∫ ∞

0

T̂ (ẑ, t/tf ) dẑ , (A.11)

which requires the results∫ ∞
0

erfc
(z
a

)
dz =a

[
z · erfc

(z
a

)
− 1√

π
exp

(
−z

2

a2

)]∞
0

=
a√
π
, (A.12)∫ ∞

0

exp(bz)erfc

(
ab

2
+
z

a

)
dz =

1

b

[
exp(bz)erfc

(
ab

2
+
z

a

)
+ exp

(
− a2

4b2

)
erf
(z
a

)]∞
0

=
1

b

[
exp

(
− a2

4b2

)
− erfc

(
ab

2

)]
, (A.13)
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where a = 2
√
Dst and b = C2/ks. In the original dimensional variables, the

absorbed energy is

E(t) =
k2
s

DsC2
2

(C1 − C2Tmn)

[
exp

(
C2

2Ds

k2
s

t

)
erfc

(
C2

ks

√
Dst

)
+

2√
π

C2

ks

√
Dst− 1

]
.

(A.14)

Appendix B. Derivation of the temperature for a finite substrate715

with varying Qnet and Ta716

In the case where the environmental conditions are not assumed con-717

stant, the problem is impossible to solve analytically and numerical and718

approximate solutions are required. Whereas numerical solutions are useful719

to rapidly visualise the solution to specific problems, explicit solutions allow720

a better understanding of the role of the different parameters of the problem.721

Here we derive a solution based on a generalised eigenfunction expansion,722

which is always a valid method when the equations are linear.723

In a soil with a finite length L and with varying environmental conditions,
the governing equations are

∂T

∂t
= Ds

∂2T

∂z2
, T (z, 0) = Tmn , (B.1a)

−ks
∂T

∂z

∣∣∣∣
z=0

= C1 +G(t)− C2T (0, t) ,
∂T

∂z

∣∣∣∣
z=L

= 0 , (B.1b)

where C1 = (1− FV C)(1− As)Qav + HasTav, C2 = Has + ρwLeα and G(t) is724

defined by725

G(t) = (1− FV C)(1− As)Qnet(t) +HasTa(t) . (B.2)

Similarly to the case of infinite depth solved in Appendix A, we will first726

reformulate the problem in terms of scaled variables. Additionally to the727

non-dimensional numbers arising in the case of the infinitely deep soil, in this728

case we have an additional parameter relative to the varying environmental729

conditions.730

Appendix B.1. Non-dimensional formulation731

The thickness of the soil L provides the length scale to this problem, which
has an associated diffusion time scale L2/Ds. We introduce the rescaled
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variables defined by z = Lz̄, t = L2t̄/Ds and T = Tmn + T T̄ , so that heat
equation and initial condition become

∂T̄

∂t̄
=
∂2T̄

∂z̄2
, (B.3)

T̄ (z̄, 0) = 0 . (B.4)

The value of T will be determined by the boundary condition at the soil
surface. Firstly, let us define the variable quantities Qnet and Ta in terms of
the relative changes with respect to the average values rather than absolute
changes, i.e., we write

Qnet(t) = Qav

(
1 + f̄(t)

)
,

Ta(t) = Tav (1 + ḡ(t)) .

Using the same approach as for obtaining f(t) and g(t) in section 2, obtaining732

f̄(t) =
π

2
sin

(
2πt

p1

)
− 1 , (B.5)

ḡ(t) =
Tmn

Tav

− ∆T

2Tav

cos

(
2π (t− tmin)

p2

)
− 1 , (B.6)

The definition of G in (B.2) can be rearranged to be expressed in terms of a733

non-dimensional function Ḡ734

G(t) = (1− FV C)(1− As)Qnet(t) +HasTa(t)

= C1 + (1− FV C)(1− As)Qavf̄(t) +HasTavḡ(t)

= C1

(
1 + β1f̄(t) + (1− β1)ḡ(t)

)
= C1

(
1 + Ḡ (t̄)

)
, (B.7)

where we have introduced the non-dimensional parameter735

β1 =
(1− FV C)(1− As)Qav

C1

. (B.8)

Upon using the non-dimensional quantities, the boundary condition at736

the surface becomes737

− ksT
C1L

∂T̄

∂z̄

∣∣∣∣
z̄=0

= 1 + Ḡ (t̄)− C2

C1

(Tmn + T T̄ (0, t̄)) . (B.9)

Thus, if one takes T = LC1/ks, then738

− ∂T̄

∂z̄

∣∣∣∣
z̄=0

= β2 + Ḡ(t̄)− β3T̄ (0, t̄) . (B.10)
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where we have introduced the dimensionless parameters739

β2 = 1− C2Tmn

C1

, β3 =
C2T
C1

, (B.11)

As for the boundary condition at the end of the soil, it simply reads740

∂T̄

∂z̄

∣∣∣∣
z̄=1

= 0. (B.12)

Appendix B.2. Eigenfunction Expansion741

The problem to be solved is defined by the heat equation (B.3) subject to742

the boundary conditions (B.10) and (B.12) and the initial condition (B.4).743

Upon writing744

u (x, t̄) = T̄ (1− x, t̄)− β2 + Ḡ (t̄)

β3

, (B.13)

one has the following system

∂u

∂t̄
+
Ḡ′

β3

=
∂2u

∂x2
,

∂u

∂x

∣∣∣∣
x=1

+ β3u (1, t̄) =
∂u

∂x

∣∣∣∣
x=0

= 0 ,

u (x, 0) = −β2 + Ḡ(0)

β3

,

(B.14)

whose solution can be written in terms of the following generalised Fourier
series:

u (x, t̄) =
∞∑
n=1

ϕn (t̄) cos (λnx) , (B.15)

where λn are the positive solutions of

tan (λn) =
β3

λn
. (B.16)

In what follows we shall use that 1 may be expressed as this same generalised745

Fourier series like:746

1 =
∞∑
n=1

bn cos(λnx) , (B.17)

where747

bn =
2 sin(λn)

λn + sin(λn) cos(λn)
=

2β3 cos(λn)

λ2
n + β3 cos2(λn)

(B.18)
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where we have used (B.16). Therefore, the initial condition is now

u(x, 0) = −β2 + Ḡ(0)

β3

∞∑
n=1

bn cos(λnx) , (B.19)

and so ϕn(t̄) are the solutions of

ϕ′n +
Ḡ′(t̄)

β3

bn = −λ2
nϕ ,

ϕ(0) = −β2 + Ḡ(0)

β3

bn .

(B.20)

Therefore,

ϕn(t̄) =
2 cos(λn)

λ2
n + β3 cos2(λn)

[
λ2
n

∫ t̄

0

exp
(
−λ2

n (t̄− τ)
)
Ḡ(τ) dτ

− Ḡ(t̄)− β2 exp
(
−λ2

nt̄
) ]

.

(B.21)

Finally, due to the expression of Ḡ, we can write the integral as∫ t̄

0

exp
(
−λ2

n (t̄− τ)
)
Ḡ(τ) dτ =β1

∫ t̄

0

exp
(
−λ2

n (t̄− τ)
)
f̄(τ) dτ

+ (1− β1)

∫ t̄

0

exp
(
−λ2

n (t̄− τ)
)
ḡ(τ) dτ

=β1Ī1,n(t̄) + (1− β1)Ī2,n(t̄) , (B.22)

where Ī1,n, Ī2,n are easily obtained integrating by parts:

Ī1,n (t̄) =
p̄1π

8π2 + 2p̄2
1λ

4
n

[
p̄1λ

2
n sin

(
2πt̄

p̄1

)
− 2π cos

(
2πt̄

p̄1

)
+ 2π exp

(
−λ2

nt̄
) ]
− 1

λ2
n

(
1− exp

(
−λ2

nt̄
))
,

(B.23)

Ī2,n (t̄) =
1

λ2
n

(
Tmn

Tav

− 1

)(
1− exp

(
−λ2

nt̄
))

+
∆T p̄2

2λ
2
n

2Tav (4π2 + p̄2
2λ

4
n)

×
[
exp

(
−λ2

nt̄
)

cos

(
2πt̄min

p̄2

)
− cos

(
2π (t̄− t̄min)

p̄2

)]
− ∆T p̄2π

Tav (4π2 + p̄2
2λ

4
n)

[
exp

(
−λ2

nt̄
)

sin

(
2πt̄min

p̄2

)
+ sin

(
2π (t̄− t̄min)

p̄2

)]
.

(B.24)
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Then, the solution for the non-dimensional temperature in terms of (z̄, t̄)
is given by

T̄ (z̄, t̄) =
∞∑
n=1

2 cos(λn) cos(λn(1− z̄))

λ2
n + β3 cos2(λn)

[
β2

(
1− exp

(
−λ2

nt̄
))

+ λ2
n

(
β1Ī1,n(t̄) + (1− β1)Ī2,n(t̄)

) ]
,

(B.25)

with λn as the set of positive solutions of748

tan(λn) =
β3

λn
. (B.26)

Appendix B.2.1. Non perfect insulation749

In this section we consider the case where the thermal insulation of the750

roof is not perfect and therefore some heat loss takes places at the lower751

boundary. We will write this as752

−ks
∂T

∂z

∣∣∣∣
z=L

= C1ε > 0 , (B.27)

which relates the heat loss in the bottom of the soil to the heat gain occurring753

at its surface. In the non-dimensional formulation, this boundary condition754

corresponds to755

−∂T̄
∂z̄

∣∣∣∣
z̄=1

= ε . (B.28)

In this case we start by writing756

v (x, t̄) = T̄ (1− x, t̄)− β2 + Ḡ (t̄)

β3

+ ε

(
β3 + 1

β3

− x
)
, (B.29)

which yields757

∂v

∂x

∣∣∣∣
x=0

= −∂T̄
∂z̄

∣∣∣∣
z̄=1

− ε = 0 , (B.30)

and

∂v

∂x

∣∣∣∣
x=1

= −∂T̄
∂z̄

∣∣∣∣
z̄=0

− ε

= β2 + Ḡ(t̄)− β3T̄ (0, t̄)− ε

= β2 + Ḡ(t̄)− β3

[
v(1, t̄) +

β2 + Ḡ (t̄)

β3

− ε

β3

]
− ε

= −β3v(1, t̄) ,

(B.31)
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and therefore the original system can now be written as

∂v

∂t̄
+
Ḡ′

β3

=
∂2v

∂x2
,

∂v

∂x

∣∣∣∣
x=1

+ β3v (1, t̄) =
∂v

∂x

∣∣∣∣
x=0

= 0 ,

v (x, 0) = −β2 + Ḡ(0)

β3

+ ε

(
β3 + 1

β3

− x
)
.

(B.32)

Similarly as before, we obtain

v (x, t̄) =
∞∑
n=1

φn (t̄) cos (λnx) , (B.33)

where λn are again the positive solutions of equation (B.16).758

The procedure is now the same as before except for the fact that now

v(x, 0) = −β2 + Ḡ(0)

β3

∞∑
n=1

bn cos(λnx) + ε
∞∑
n=1

cn cos(λnx) , (B.34)

where bn is provided in (B.18) and759

cn =
2

λ2
n + β3 cos2(λn)

. (B.35)

Therefore, φn(t̄) are the solutions of

φ′n +
Ḡ′(t̄)

β3

bn = −λ2
nφn ,

φn(0) = −β2 + Ḡ(0)

β3

bn + εcn .

(B.36)

Therefore,

φn(t̄) =φn(0) exp(−λ2t̄)− bn
β3

∫ t̄

0

exp
(
−λ2(t̄− τ)

)
Ḡ′(τ)dτ

= −
(
β2

β3

bn − εcn
)

exp(−λ2t̄)− bn
β3

[
Ḡ(t̄)

+ λ2
n

∫ t̄

0

exp
(
−λ2(t̄− τ)

)
Ḡ(τ)dτ

]
.

(B.37)
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Then, the solution for the non-dimensional temperature in terms of (z̄, t̄)
when the roof transfers energy to the house is given by

T̄ (z̄, t̄) =
∞∑
n=1

bn
β3

[(
β2 − ε

β3cn
bn

)(
1− exp(−λ2

nt̄)
)

+ λ2
n

(
β1Ī1,n(t̄) + (1− β1)Ī2,n(t̄)

) ]
cos (λn(1− z̄))

=
∞∑
n=1

bn
β3

[(
β2 −

ε

cos(λn)

)(
1− exp(−λ2

nt̄)
)

+ λ2
n

(
β1Ī1,n(t̄) + (1− β1)Ī2,n(t̄)

) ]
cos (λn(1− z̄)) ,

(B.38)

with λn is given in (B.26) and I1,n, I2,n are provided in (B.23) and (B.24).760

From equation (B.26) we also find cos(λn) ∼ (−1)n for large values of n. In761

particular, note how the solution (B.38) reduces to (B.25) when we set ε = 0.762

Appendix B.3. Total energy absorbed763

To compute the expression for the energy absorbed we shall use expres-
sions (23):

E(t) =

∫ L

0

ρscs (T (z, t)− Tmn) dz =
L2C1ρscs

ks

∫ 1

0

T̄

(
z̄,
L2t

Ds

)
dz̄

=
L2C1ρscs

ks

∞∑
n=1

{
2 cos(λn) sin(λn)

λ3
n + β3λn cos2(λn)

[
β2

(
1− exp

(
−λ2

n

L2t

Ds

))
+ λ2

n (β1I1,n (t) + (1− β1)I2,n (t))

]}
,

where Ii,n(t) = Īi,n (L2t/Ds). We note that764

cos(λn) sin(λn)

λ3
n + β3λn cos2(λn)

=
β3

λ4
n + λ2

nβ3(1 + β3)
, (B.39)

where we recall that β3 = C2L/ks. To compute the energy absorbed at
the end of the day we must simply evaluate this expression at tf . We note
that the above expression converges very fast. Indeed, one can even use the
expression obtained by just retaining the first term:

E (tf ) ∼
2L2C1ρscsβ3

ks (λ4
1 + λ2

1β3 (1 + β3))

[
β2

(
1− exp

(
−λ2

n

L2t

Ds

))
+ λ2

1

(
β1I1,1

(
L2tf
Ds

)
+ (1− β1) I2,1

(
L2tf
Ds

))]
,

(B.40)

where λ1 ∈
(
0, π

2

)
is the unique solution of (B.26) for n = 1.765
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Appendix B.3.1. Non perfect insulation766

In the case where heat is transferred to the building, we combine (23)
and (B.38) and obtain

E(t) =
L2C1ρscs

ks

∞∑
n=1

2β3

λ4
n + λ2

nβ3(1 + β3)

[(
β2 −

ε

cos(λn)

)(
1− exp

(
−λ2

n

L2t

Ds

))
+ λ2

n

(
β1I1,n

(
L2t

Ds

)
+ (1− β1) I2,n

(
L2t

Ds

))]
.

Therefore, the corresponding approximate expression for the total energy
stored at the end of the day reads:

E(tf ) ∼
L2C1ρscs

ks

2β3

λ4
1 + λ2

1β3(1 + β3)

[(
β2 −

ε

cos(λ1)

)(
1− exp

(
−λ2

1

L2t

Ds

))
+ λ2

1

(
β1I1,1

(
L2tf
Ds

)
+ (1− β1) I2,1

(
L2tf
Ds

))]
.

Appendix B.4. Approximate expression for λ1767

We now focus on (B.26) and we shall derive an approximate explicit768

expression for the first eigenvalue, λ1. Since the first eigenvalue has a value769

lower than π/2, we define z = 2/πλ1 and so z is expected to be small.770

Therefore, Taylor expanding the tangent one reaches771

π

2
z

(
π

2
z +

π3

24
z3 +

π5

240
z5 +O(z7)

)
= β3 , (B.41)

whose only positive real solution is772

λ1 ≈
(

51/3

6
y − 5

6
− 13 · 52/3

6y

)1/2

, (B.42)

where773

y =

(
110 + 162β3 + 9

√
285 + 440β3 + 324β2

3

)1/3

. (B.43)
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