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Abstract

Cancer is one of the leading causes of death in the world, in particular, breast cancer
is the most frequent in women. Early detection of this disease can significantly increase
the survival rate. However, the diagnosis is difficult and time-consuming. Hence, many
artificial intelligence applications have been deployed to speed up this procedure.

In this MSc thesis, we propose an automatic framework that could help pathologists to
improve and speed up the first step of the diagnosis of cancer.
It will facilitate the cross-slide analysis of different tissue samples extracted from a selected
area where cancer could be present. It will allow either pathologists to easily compare tis-
sue structures to understand the disease’s seriousness or the automatic analysis algorithms
to work with several stains at once. The proposed method tries to align pairs of high-
resolution histological images, curving and stretching part of the tissue by applying a
deformation field to one image of the pair.
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1 Introduction

1.1 Motivation

Cancer is one of the main cause of death throughout the world. There are over 100 different
types of cancers that are categorized on the basis of the affected tissue or organ of the
human body. Although each type has its unique features, the basic processes that produce
cancer are quite similar in all forms of the disease.
Cancer occurs when the cellular reproduction process goes out of control. Usually normal
cells in the body grow and divide as necessary to replace defective or dying cells. Cancer
cells are characterized by uncontrolled, uncoordinated and undesirable cell division, they
continue to grow and divide, replicating into more and more harmful cells. A clump
of cancer cells is known as a tumor and it causes many of the symptoms of cancer by
pressuring, crushing and destroying surrounding non-cancerous cells and tissues.

Breast cancer is the most frequent malignancy in women worldwide and is curable in
70–80% patients with early-stage, non-metastatic disease. Advanced breast cancer with
distant organ metastases is considered incurable with currently available therapies [2].
The sooner this disease is detected, the more efficient the treatment will be and the most
likely the patient will recover. Two important conclusions can be derived from this fact,
the disease must be detected and well-classified, and it must be detected as early as
possible.
Unfortunately, this analysis is an arduous process that is difficult, time-consuming, and
requires in-depth knowledge. For this reason, many artificial intelligence (AI) applications
have been deployed to improve and speed up this procedure.

1.2 Histopathological analysis

Before the actual treatment for breast cancer, the most important steps are the diagnosis
and the prognosis (the expected development of a disease).

The diagnosis of breast cancer utilizes breast imaging techniques, the most adopted ones
are X-ray mammography, echography, magnetic resonance imaging (MRI) and computed
axial tomography (CT). Each imaging technique plays its own role corresponding to the
stage of tumor, and therefore for many cases a complete diagnosis would involve more
than one imaging technique.

For the prognosis, the standard procedure is histopathological tissue analysis which cor-
responds to the detailed analysis of a biopsy tissue sample performed by a pathologist.
Thanks to this last step, it is possible to gather detailed information on the types of cells
and on the characteristic of the tumor.

Before conducting the histopathological analysis, there are some steps that need to be
executed. [5]
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• Tissue extraction: extraction of a tissue sample (specimen) from the area of interest
where the tumor is located.

• Tissue fixation: the specimen is placed in a liquid fixing agent (fixative) such as
formaldehyde solution (formalin). This will slowly penetrate the tissue causing chem-
ical and physical changes that will harden and preserve the tissue and protect it
against subsequent processing steps. [4]

• Specimen transfer to cassettes: specimens are trimmed using a scalpel to enable
them to fit into an appropriately labeled tissue cassette.

• Tissue processing: before cutting the sample, it needs to be dehydrated, cleared and
embed with a specific agent that make the tissue solid.

• Sectioning: the tissue is cut into sections that are placed on a slide.

• Staining: most cells are transparent and appear almost colorless when unstained.
Histochemical stains (typically hematoxylin and eosin) are therefore used to pro-
vide contrast to tissue sections, making tissue structures more visible and easier to
evaluate. Each stain highlights different information regarding the tumor.

Figure 1: WSI of mammary gland

Finally, each stained slice is scanned and the Whole Slide Images (WSI) (i.e. Fig. 1 [1])
are generated. The WSI are high-resolution digital files that can be efficiently stored,
accessed, analyzed, and shared.
Thanks to this process, pathologists can analyze the tissue by navigating through different
parts of the image to explore the tissue and to determinate whether tumor cells are
present or not. If it is confirmed the presence of these type of cells in the sample, then
pathologists need to analyze other slices colored with different stains to obtain more
information relevant to the diagnosis and treatment.
Hence, pathologists need to be able to compare tissue slides colored with different stains in
order to obtain a good diagnosis and prognosis of the cancer stage and to highlight different
structural and/or functional information: they combine visual information obtained from
multiple stains from the same tissue sample.
In the figure 2, there are shown different samples of tissue colored with CK19, KI67 and
HE stain.
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(a) CK19 stain (b) KI67 stain (c) HE stain

Figure 2: Stained images of breast cancer tissues

1.3 Project Objective

The aim of this project is to develop a solution that can perform the alignment of multi-
staining slides extracted from the same tissue, this method is called image registration.
This task is needed because, in the laboratory during the creation of the slices, they are
often stretched, rotated and displaced, causing WSI of the same tissue to be very different
among each other.
The disalignments present on slices makes the cross-slide analysis very difficult: the more
different the slices are, the harder is for pathologists to compare them and to get a quick
diagnosis. As previously mentioned, cross-slide analysis is performed on serial or transverse
sections taken consecutively from a tissue block. Each tissue section is stained to highlight
particular features of interest in the tissue. In this case, immunohistochemical (IHC) stains
are of particular interest, as they indicate the presence and expression of a chosen protein.
Expression profiles of the various different markers can usually be compared directly, as
each section is only a microscopic distance (typically 3–5 microns) from the neighbouring
sections. Thus larger anatomical structures are likely to be present across many sections.
Analysis of the expression profiles of multiple markers in a common region of interest,
such as a tumour region, can potentially reveal important information about the tumour’s
molecular composition [8].

In Figure 3, there is displayed an example of two WSIs of a sample tissue extracted from
a lung before before any registration method is applied.
Image registration will enable automated analysis algorithms to estimate classes by fusing
information from the different stains. Moreover, it will allow pathologists to make more
precise and quicker diagnoses from the collected information. For example, when an area
of interest is found in a reference stain, the same area has to be retrieved and displayed
in the other stain, so the different visual information can be merged and it is possible to
obtain an overall view of the cells in the selected area.
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Figure 3: Example of two WSIs before registration [1]

Image registration refers to the process of aligning images so that comparable character-
istics can be easily related to one another. During this process, points from one image are
mapped to analogous points on another image.

There are two main image registration methods used in fusion biopsy: rigid registration
and non-rigid (or elastic) registration.
Rigid registration does not change the images acquired, it preserves the internal architec-
ture of the tissue. Each image set is limited to rotational and translational transformations.
On the other side, non-rigid (elastic) registration changes the images acquired by stretch-
ing one of the image volumes to match the other.

A rigid registration solution was already developed by another student[7] from the Digi-
Patics project. In this project, we will combine the rigid registration solution with non-
rigid registration approach. The details of the method deployed are going to be explained
in the third chapter.

Overall, the main goals of the project are:

1. Understand the medical motivation behind the task.

2. Develop a solution that is able to perform an automatic non-rigid registration, taking
as input pairs of tiles where the rigid registration is already applied.

3. Test and evaluate the performance of the solution.

4. Create a framework that combines rigid and non-rigid registration.
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1.4 DigiPatics project

This thesis project was done in collaboration with the DigiPatics group at UPC.
DigiPatics is a 4-year project that aims to optimize the anatomopathological diagnosis in
the network of hospitals of the Institut Català de la Salut (ICS) through the digitization
of the images and the use of artificial intelligence.[3]
It works directly in touch with doctors and researchers, it specifically tries to optimize their
resources and improve the quality of the diagnostic process of patients. DigiPatics delivers
solutions to pathologists that will allow them to take measurements, create annotations,
use image processing tools and apply quantification and computer vision algorithms on
images in an easy and fast way.

The Universitat Politècnica de Catalunya, more specifically the Image and Video Pro-
cessing Group (GPI), is involved in the development of these computer vision algorithms.
Other companies are participating in the project such as 3DHistech and Palex.
The overview of the project organization is shown in Figure 4.

Figure 4: DigiPatics organization flow

The DigiPatics project already explored solutions for image registration on sample of
tissues coming from breast cancer only using a rigid approach.
However, in order to improve the results, the requirement of the present project is to
develop a solution that could integrate the rigid registration, and to apply also a non-
rigid one with the use of neural networks.
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1.5 Document Structure

This document is presented in a sequential format and is divided into the following chap-
ters:

• Chapter 2: State of art gives an overview of the previous image registration algo-
rithms deployed in the past with and without the use of deep neural networks. In
addition, it explains the main challenges that are currently being faced.

• Chapter 3: Methodology describes the solution and the methods adopted during the
development of the thesis.

• Chapter 4: Results starts by the stating the hypothesis being tested and presents
the results obtained using different approaches.

• Chapter 6 Conclusions and Future Work states the conclusions drawn from the
experiments and presents the challenges met alongside possible projections on the
research of image registration.
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2 State of art

2.1 Image registration

Image registration, also known as image alignment, is a crucial step in a wide range of
applications, including remote sensing, medical imaging, and multi-sensor fusion-based
target recognition. It’s a fundamental image processing technique that’s effective for com-
bining data from various sensors, detecting changes in photos recorded at different times,
inferring three-dimensional information from stereo images, and recognizing model-based
objects, among other things.

The registration process can be done manually or automatically.
Human operators manually choose corresponding features in the photos to be registered
in the first case. To acquire reasonably registration results, an operator must select a
significant number of feature pairs over the entire image set, which is not only time-
consuming and exhausting, but also prone to inconsistency and restricted precision. As a
result, there is a natural need to develop automated techniques that require little or no
operator supervision. Over the years, a broad range of automated techniques has been
developed for various types of data and problems. Moreover, the growth of neural networks
has affected also this field of study, giving the possibility to create more robust solutions.

An important distinction in image registration is the image modality: the reference and
aligned image can be uni-modal or multi-modal.
There are many different imaging methods, depending on the physical characteristics
needed to study. However, each one of them has also some weaknesses that make image
interpretation based on the single image difficult. Therefore, it can be very useful to
acquire images using different imaging techniques and then to combine the information
gathered from each of them.
Mono-modal registration algorithms are used to register images acquired using the same
modality. Multi-modal registration methods concentrate on aligning images originating
from different modalities. Such images usually have a totally different appearence[16].

Image registration can be applied not only to 2D images, many applications are able to
register 3D images as well. A very interesting multi-modal case is 2D-3D registration: it
is performed by generating 2D projections of the 3D volume which are then compared
to the 2D image the volume is being registered to. It can be very useful in biomedical
applications.

The most relevant distinction is the case of rigid and non-rigid registration.
In the following sections, the main difference between rigid and non-rigid image registra-
tion is described. The main techniques used in the biomedical field are explained, with an
in depth study of the histological image registration case.
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2.2 Rigid vs Non-rigid Registration

Image-registration has traditionally been classified as:

• rigid: where images are assumed to be of objects that can be rotated and translated
with respect to one another to achieve correspondence;

• non-rigid: where correspondence between structures in two images cannot be achieved
without some localized stretching of the images due to structural differences, image
acquisition, or both.

The main difference is that linear transformation functions (rigid registration case) map
any straight line to a straight line, whereas nonlinear transformation functions (non-rigid
case) maps a straight line to a curve.
Today, rigid registration is frequently extended to incorporate affine registration, which
includes scale factors and shears and can partially account for variations in scanner cali-
bration or large scale variances between participants [9].
The main differences between the two types of registration are displayed in figure 5.

Figure 5: Differences between rigid and non-rigid registration [1]

2.2.1 Rigid Registration

A horizontal and/or vertical shift is the most basic linear transformation function. This
shifting transformation is called translation. For picture registration, rotation and scaling
(i.e. zoom up/down) are also common linear geometric changes.
Affinity transformation and perspective transformation are two more general geometric
transformations. Translation, rotation, scaling, shear, and their arbitrary combinations
are all examples of affine transformations. The main property of affine transformation is
that parallel lines are still parallel after applying it.
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Considering the case where we want to apply a rigid registration among two images A
and B, any linear transformation function can be represented as a matrix:(

X
Y

)
=

(
a b
c d

)(
x
y

)
+

(
e
f

)
(1)

or equivalently:

X
Y
1

 =

a b e
c d f
0 0 1

x
y
1

 (2)

where (x, y) are the coordinates of image A and (X, Y) of image B.
Translation is represented by parameters e and f in x and y direction, respectively.
For rotation:

a = d = cosθ (3)

−b = c = sinθ (4)

For affine transformation, all six parameters are arbitrary (this explains that affine trans-
formation includes translation, etc., as noted above.)

In rigid registration, the goal is to estimate the parameters of the linear transformation.
The estimation criterion is typically described as:

∑
x,y

||IA(x, y)− IB(W (x, y|a, b, .., f))|| (5)

which has to be minimize with respect to the parameters a, b, ..,f.
In the formula, IA and IB are the images A and B to register, W() denotes the above
geometric transformation function, or the warping function, and maps (x, y) to (X, Y)
according to the six parameters a, b, .., f.

It should be noted that, despite its simplicity, the geometric transformation function’s
estimation problem is not trivial. In truth, there is no direct or analytical method for
determining the ideal parameters.

Registration techniques are divided into intensity-based and feature-based methods. Prior
to the registration phase, feature-based approaches require the identification or extraction
of some features that can be control points, edges, contours, surfaces, prominent features
or statistical features. On the other hand, the use of intensity-based approaches does
not necessitate the extraction of any features. In this case, raw pixel values are used
directly[11].
In most cases, the image registration procedure is carried out in three steps:
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1. Feature selection/extraction. Features could be control points, edges, contours, sur-
faces, salient features, and statistical features[12].

2. Selection of similarity metrics used to determinate the quality of matching between
images. The most popular metrics include Mutual Information (MI), Cross Corre-
lation (CC), Sum of Squared Difference (SSD) and absolute difference

3. Definition of a spatial transformation model to determine the positions of corre-
sponding points between images. The transformations involve parameters that may
need to be optimized for obtaining the best alignment.

Metric selection is one of the most important decisions in the registration problem. The
metric specifies the goal of the process measuring the quality of matching the Target im-
age with the Reference image after application of a transformation on it. The selection of
Metric depends on the types of images to be registered and the expected miss-alignment.
To obtain the optimum transformation parameters needed to align the images, opti-
mization techniques are used. Good algorithms determine the transformation parameters,
hence they determine the quality of the final registration.

Figure 6: Rigid transformation steps [12]

2.2.2 Non-rigid Registration

Non rigid image registration, realizes more flexible image registration than linear image
registration.
The choice of transformation is very specific to the nature of the registration problem,
and will depend on the modalities of the imaging systems.
Mathematically, the non-rigid registration problem can be defined as finding the optimal
transformation T∗ such that:

T ∗ = argminTC(I, T (J)) (6)
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Unlike rigid image registration, in which T is restricted to a rigid transformation, for
non-rigid image registration there is still no common consensus in the literature regarding
how the transformation T should be modeled.
Some models restrict T to be of low degree of freedom, hence, they constrain the trans-
formation to be smooth or elastic.
However, there are cases where the structure of the two images varies significantly, and
a transformation of low degree of freedom may not have the flexibility to represent these
complex changes. Therefore, any hard constraints on the domain of T should not be
imposed.

In equation 6, we are optimizing C(I, T(J)) without adding restrictions on T, in this way,
it can map any point in J to any point in I. Thus, it’s better to add a penalization function
S(T), to penalize transformations that are not smooth.
λ is added as a positive constant that penalizes non-smooth T, it becomes:

T ∗ = argminTC(I, T (J)) + λS(T ) (7)

A non-rigid registration defines a deformation field that gives a translation or mapping
for every pixel in the image [13]. This is generally described by the following equation:

If ◦ T (x) = If (x− u(x)) = Ir (8)

where If is the image undergoing the deformation, Ir is the reference image. T denotes
the non-rigid transformation which equates to a translation of every pixel x in the floating
image by a certain displacement defined by u(x).
The displacement is u: R2 −→ R2, u = (u1, u2).

A common way to estimate u(x) is through deformation models. They can be roughly
split into two groups: [15]

• Deformations derived from physical models, for example elastic body models, fluid
flow models and diffusion based models. These models are non-parametric in nature,
they allow a per pixel estimation for the deformation.

• Deformation models derived from approximation theory. One popular example can
be free form deformation whereby the deformation field is represented using basis
functions, such as B-splines at fixed integer grid positions. They are capable of de-
scribing a wide range of transformations using a low/limited number of parameters.

In Figure 7, the concept of a displacement field is shown. For every pixel position in the
template image, the displacement field gives the direction and the distance it has to move
in order to match the reference image. At the end, the field is subsampled.

Many different solutions have been deployed and tested in the last years, however, non-
rigid registration continues to be a field of active research and development.
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Figure 7: Example of deformation field [16].

2.3 Image Registration in the biomedical field

The expanding variety of medical imaging techniques provides the medical community an
increasingly detailed view of functionality and structure of our anatomy. The information
provided by the various imaging modalities is often complementary and synergistic (i.e.
the combination of information provides useful extra information).
For example, X-ray computed tomography (CT) and magnetic resonance (MR) imaging
shows brain anatomy but provide little information on the functional aspect of the brain.
Positron emission tomography (PET) and single photon emission computed tomography
(SPECT) scans display aspects of brain function and allow metabolic measurements but
poorly shows its anatomy. [26] Furthermore, CT and MR images describe complementary
morphologic features. For example, bone and calcification are best seen on CT images,
while soft-tissue structures are more visible by MR imaging. Clinical diagnosis and therapy
planning and evaluation are increasingly based on this complementary image information
that can be done using image registration.

That is not the only application in which image registration is adopted: it is utilized in
medical image processing for a variety of purposes. Tumor identification, anatomy seg-
mentation, image subtraction for contrast enhanced images and computational model
building are just some of the fields in which this technology is used.
Moreover, it plays a vital role in treatment planning. For example, registration is used
in the analysis between healthy subjects and ones with brain tumors in order to localize
important brain structures to be taken into consideration for surgical planning.
Registration is important even during the surgery itself as it allows for accurate localiza-
tion of anatomical structures accounting for position shifts induced by surgical operations.
In terms of treatment planning, we should also note the impact that registration has in
radiotherapy by localizing tumorous cells and thus limiting the destruction of healthy
ones. Finally, it has played a crucial role in the analysis of histopathological images.

Image registration, along with image segmentation, is one of the most important problems
in the field of image processing. Despite important advances, registration is still considered
a challenging problem.
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Figure 8: Example of image registration: from left to right – the reference, target, and
the registered CT kidney images

In the figure 8, [17] there is an example of uni modal image registration applied to a CT
scan of kidney.

2.3.1 Registration of histological images

Most of the solutions realized until now, apply registration on MRI or CT scans images of
all our organs, especially brain and lungs. Nowadays, more focus is given to registration
of histological images and it is becoming a popular field of research.

Different methods have been proposed to register histological images. Some techniques
involve intensity variations [27], and some others are based on the shape of the sections.
For some specimens the anatomical structures can be used as landmarks, along with
landmark-based registration methods. [28]

The deep learning-based medical image registration is a relatively new field. It is a powerful
tool and it is starting to be more employed because of the low time required during the
execution, permitting the development of real-time nonrigid registration. This is crucial,
e.g. for registration during surgical interventions.
The deep registration approaches can be divided into three main categories based on the
training scheme:

• Supervised, which requires ground-truth deformation fields or pre-aligned images
that are often impossible to obtain [20].

• Adversarial registration, which is based on generator and discriminator networks,
suffers from similar limitations as the supervised category. Moreover, the training
stage, it is not trivial, but is usually costly and time-consuming [22].

• Unsupervised, that do not require any ground-truth [21]. They are based on min-
imization of a given cost function and the registration accuracy mostly depends
on:

– choice of the similarity measure,
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– a regularization term enforcing plausible deformations (as previously explained
in equation 8),

– the ability to converge during training,

– a generalization ability.

The main challenge with the learning-based registration of histology images is connected
with the high resolution of these images, coupled with large and complex deformations.
WSI are designed to be accessed through different resolution levels in order to avoid
memory problems. They can have different resolution levels, for example, the ones used
in the projects have 11 levels: the highest resolution is at level 0, while at 10 there is the
lowest resolution.
Each level is associated with a downsampled factor, from level 0 to 10, the factors are 2,
4, .., 512, 1024, respectively. Therefore, the size of the images in each of the levels also
varies according to the detail that is required. For example, while the highest resolution
image has size 200.000×90.000 (original), the smallest one has 195 × 90 pixels.
Hence, the size of these images is one of the main problems to face in the deployment
of registration algorithms. On top of this, deep learning methods suffer from large GPU
memory utilization. The higher the image resolution, the larger the necessary receptive
field and the required GPU memory. The simplest solution is to downsample the images,
however, it reduces the registration quality and makes it harder to register fine details.

To summarize, the main problems related to the registration of histological images are
given by: (i) a very high resolution of the images, (ii) complex, large deformations, (iii)
difference in the appearance and partially missing data.
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3 Methodology

3.1 Previous work: rigid registration

As previously mentioned, a rigid registration algorithm was already implemented by an-
other student from the DigiPatics project. This rigid part has to be applied before the
non-rigid registration, it can be seen as a preprocessing step that the input images have
to go through.

The algorithm aligns a selected area given as input from two WSI that can be at any
resolution level. The image used as a reference (the one in which the area is selected) is
called template. The image to be registered called moving image or the aligned image
(when the algorithm has already been applied).
The algorithm must first locate the region of interest with respect to the entire moving
image. In this way, it will be possible to approximately know in which part of the other
staining the region to be registered is.

In particular, the algorithm takes as input two Whole Slide Images from the same patient
with different stains (the available stains are CK19, HE, HER2, KI67, RE and RP) and
the coordinates of the area of interest.
In order to locate the selected area on the moving image, it creates a image pyramid at
different resolutions: from the area of interest, it expands the visual field zooming out so
more and more areas can be seen, at the cost of reducing the level of details. Hence, the
resolution seen is the lowest.
Then, from the lowest resolution to the higher one, it starts the registration and it begins
to aligning all the tissue until it ends up align the region of interest.

The approach can be divided in three stages:

• a prealignment using the shape of all the tissue,

• a global registration using also the shape but of a delimited region,

• a local alignment using internal structure of the tissue.

In each step, a different technique and different evaluation metrics are used.

3.1.1 Prealignment

The objective of the first step is to obtain the binary masks of the tissue pixels of the
template and the image to be registered.
At the lowest resolution, it differentiates the tissue from the background pixel and focus
on aligning the shape obtained through the binarization. It obtains the translation vector
from the center of mass of both masks and the difference between the center point of the
template staining and the one to be aligned is calculated.
The mask of the moving image is then translated according to the translation vector and
the optimal angle of rotation is found maximizing the Intersection Over Union (IOU)
between the two masks.

23



3.1.2 Global alignment

From the binary mask obtained before, the distance transform of the tissue pixels to the
closest background pixel is calculated. From this distance map, the optimal translation
vector is searched, the one that maximize the cross-correlation between the two images is
chosen.
In order to compute this, the FFT (Fast Fourier Transform) is used to find the best value
directly from the time shifting property of the transform.

3.1.3 Local alignment

This last step is applied at the higher resolution. The main problem is that the tissue can
have can have a very different appearance in different stains, both in color and shape in
the highlighted elements in each of them. For this reason, in both images the hematoxylin
channel is extracted. In this way, an attempt is made to extract the nuclei of the cells to
highlight these elements and to make the images as similar as possible.
From the hematoxylin channel, as in the previous cases, the optimal translation is also
obtained from the crosscorrelation using the FFT.

Figure 9: Example of rigid registration of a pair in different region size (500, 1000 and
2000)
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3.2 Dataset

3.2.1 ANHIR dataset

The dataset used to train the neural network employed in the project comes from the
ANHIR challenge [1]. ANHIR was the first open competition of image registration algo-
rithms on microscopy images.
(ANHIR) Automatic Non-rigid Histological Image Registration challenge was organized to
compare the performance of image registration algorithms on several kinds of microscopy
histology images in a fair and independent manner.

ANHIR offers a dataset that contains high-resolution (up to 40× magnification) whole
slide images. They are organized in sets such that any two images within a set could be
meaningfully registered, as they come from spatially close slices. Different stains are used
for each image in a set and the local structure often differs.
It consists of 481 image pairs, there are 8 tissue types: (i) mammary glands, (ii) the colon
adenocarcinomas, (COADs), (iii) gastric mucosa and adenocarcinomas, (iv) breast, (v)
mice kidney, (vi) human kidney, (vii) lung lesions, and (viii) lung lobes. [18]
The consecutive slices were stained by: (i) prosurfactant protein C, (ii) antigen KI-67,
(iii) clara cell 10 protein, (iv) human epidermal growth factor receptor 2, (v) progesterone
receptor, (vi) estrogen receptor, (vii) platelet endothelial cell adhesion molecule, (viii)
cytokeratin, (ix) hematoxylin and eosin, (x) podocin [19]. In total there are 49 sets, each
set has on average 5 slices. Each slide is resampled to approximately 25% of the full
original resolution, resulting in larger size varying from 6k to 17k pixels in one dimension
(from 4369x6930 to 17179x15042). Depending on the image the resolution varies.
The images are provided as .jpg and .png files without the metadata.
This dataset was used for the huge variety of images, belonging to different organs and
colored in different stains. In this way, the network is robust to any changes and it can
be used for more application.
Figure 10, there are shown some images taken from the dataset. It is possible to see
different tissue types stained using various dyes.

3.2.2 DigiPatics images

The images to which the algorithm are applied were provided by the DigiPatics project.
For now, the project is focusing on breast cancer histology images, however, it is starting
to analyze also lung histology images.
All the images come from the Institut Catala de la Salut (ICS), specifically those from
the Vall d’Hebron hospital. The available stains are: CK19, HE, HER2, KI67, RE and
RP.
Some examples are shown in Figure 9 and Figure 2.
The images used are not WSIs but selected areas of WSI where regions of interest are
present. They are called tiles and they were generated by the rigid-registration previously
explained.
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Figure 10: Example of images from the ANHIR dataset[1]

3.3 Project development

In order to decide the most suitable non-rigid registration technology to apply to the
Digipatic dataset, the algorithms published in the most recent years were studied and
compared.
In the state-of-the-art, all the methods proposed are applying non rigid image registration
to WSI images, never to smaller and more detailed tiles. For this reason, the search of a
suited algorithm was very challenging.

Consulting the ANHIR challenge (organized jointly with the IEEE ISBI 2019 confer-
ence, which is the only open comparison of image registration algorithms on microscopic
images), it was seen that almost all of the best scoring methods were based on the clas-
sical, iterative image registration approach resulting in the long time required for the
analysis[18]. Even though the registration accuracy of the proposed methods is close to
the level of the human annotation, the computational time is relatively high, hence, the
usefulness of the solution is lower. Probably the majority of the challenge participants
didn’t adopt a deep learning approach because of the high-resolution of histology images,
making them difficult to register due to the GPU memory constraints (most GPUs have a
maximum of 16-32 GB of RAM). The only method adopting deep learning was proposed
by Tsinghua University [29] and it applies a Structural Feature Guided Convolutional
Neural Network for the non-rigid registration. The network is first trained in an unsuper-
vised manner, maximizing an image correlation coefficient, then finetuned using provided
landmark positions on the training data. However, it performs much better on training
than on testing data, hinting again on possible overfitting.
Other solutions adopting neural network are registering WSI as wholes, while, in this
project, the goal is to register tiles which have higher resolution and they are much
smaller and more detailed.

For these reason, it was chosen a framework proposed outside of the challenge: Deep-
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HistReg: Unsupervised Deep Learning Registration Framework for Differently Stained
Histology Samples [19]. It is an unsupervised deep learning-based registration framework.
The pipeline consists of data loading, transferring to GPU, preprocessing, initial align-
ment, affine registration, and, finally, nonrigid registration.
One of the main benefits of this solution is the fact that it registers the WSI iteratively
at different resolution included the higher one, making it suitable for this project.
Three different neural networks are implemented in the pipeline:

• Tn the preprocessing, tissues are segmented from the background by a UNet-based
[31] network, which is fast, robust, and easily convertible to other histology datasets.

• The affine registration is executed thanks to a ResNet-like convolutional neural net-
work [32]. The output is an affine transformation matrix (2x3) that is then converted
to the transformation grid used in the spatial transform.

• For the non-rigid part it is proposed a pyramid-based, patch-based, groupbased, and
iterative deep registration solution. The architecture of the network is explained in
the next subsection.

As most of the registration methods, it can be divided into two parts: rigid registration
and non-rigid registration. This project is based only on the non-rigid part, however, the
first part is still trained and tested to compare it with the rigid solution implemented by
the DigiPatics project.

Figure 11: Framework pipeline of DeepHistReg

The nonrigid registration is the most challenging step in histology registration. Only
using a simple network, it is almost impossible to achieve accurate registration because
the parameter gradients don’t fit into the GPU memory. Also, even a common patch-
based approach that reduce an image into smaller patches, that are then combined in the
batch dimension, is not enough since the batches would not fit in the GPU memory too.
The method proposed tries to solve these issues adopting a new state of the art network.

3.4 Requirements

All the code is implemented with Python using the following libraries:

• NumPy and Pandas for general purpose data manipulation.

• PyTorch to create and manage the neural networks.

• SimpleITK, PIL and tifffile to read, manage, process and save the images.

• SciPy to apply interpolation to the data.
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On the hardware side, all the code was run on the GPI (Image and video processing group)
servers. GPI offers GNU/Linux servers with the following resources for each experiment
run: 10 GB of RAM, 10 GB of GPU memory and 16-core CPU with a maximum of 15
threads.
Moreover, to open the different image formats present in the framework, these three
specific softwares are used:

• QuPath: to visualize and navigate the WSI [23].

• Matlab, ”Read Medical 3D data” library: to visualize .mha format [24].

• GIMP: to visualize .tiff format; also Photoshop can be used [24].

3.5 Preprocessing

To obtain the input tiles of the non-rigid network, first the rigid part has to be executed.
The WSIs to align are visualized using a software called QuPath which allows to navigate
and visualize the single WSI at different resolutions. The coordinates and the size of the
area of interest are used as input to run the rigid algorithm.
The output of the rigid part is the pair of tiles of the selected area rigid registered. The
images are saved in .png format.

Before entering the network, each image has to go through a phase of preprocessing.
All the pairs are padded and parsed from .png format into a .mha uncompressed format.
MHA files mostly belong to ITK, the graphic data files contain the information regarding
the Insight Segmentation and Registration Toolkit (ITK). This format is mostly used in
3D MRI images, but in this case, it was very useful to speed up the data loading on the
GPU during the training.
There were some problems encountered with this data format, especially for the visual-
ization of the images without any software. At the end, it was possible to visualize the
images using a specific library in Matlab.

Then, all images are converted to greyscale and downsampled. The downsample depends
on the size of the tile During the training set this step was necessary because the images
are much bigger, however, when tiles are processed, it can be skipped.

Then, all the images are transferred to the GPU memory. The image transfer is being
done only if a single GPU is used and both images fit into the memory. If it’s used a
multi-GPU computing cluster the memory transfer is done later.
At the end, before entering the network, images are re-sampled to a predefined number
of levels, building a classical resolution pyramid.

Moreover, it is possible to apply the registration on couples of tiles saved in .png format.
It doesn’t convert them in .mha, however it applies the same preprocessing steps listed
above. The main advantage comes from the fact that a large portion of memory is saved
without having to convert pairs in .mha format. In fact, .mha is an uncompressed format
and it occupies a large amount of memory (at least three times a .png picture). The main
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disadvantage is that the network works a bit slower, however, in this testing stage and
with small tiles, it is not a problem.

3.6 Non-rigid Network

In order to create a flexible and robust network, the solution proposed is structured
according to the following approaches: pyramid-based, patch-based, group based, and
iterative.

• Pyramid-based: the images are registered at different resolutions starting from the
coarsest level. From the first level, a deformation field is computed and subsequently
it is upsampled to the next resolution.

• Patch-based: at the given resolution the images are unfolded into smaller patches
that can be handled by a relatively small deep network.

• Group-based: patches are grouped together and, at once, only a small group of
patches is propagated by the network due to GPU memory constraints and the loss
function is being evaluated and optimized at the group level, not at the image level.

• Iterative: at each pyramid level, images are propagated through the network several
times composing the calculated deformation fields.

It is defined as source, the moving image that has to be aligned to the pair image which
is called target.
In this network, the cost function is given by the negative normalized cross-correlation
(NCC) and by the curvature (CURV) as the displacement field regularization term.
The objective is:

S(F,M, u) = −NCC(M,F ) + αCURV (u) −→ min (9)

where M, F, u are the warped moving patches, target patches and the displacement fields
respectively, α controls the deformation smoothness and it is the regularization parameter
that was explained in equation 7; CURV is the curvature regularization.
Normalized cross correlation (NCC) has been commonly used as a metric to evaluate
the degree of similarity (or dissimilarity) between two images. It was chosen because it
improves the ordinary cross correlation: the main advantage is that it is less sensitive to
linear changes in the amplitude of illumination in the two compared images. [33].

Figure 12 shows a scheme on how the network is structured.
It starts after the resolution pyramids are built for both the source and the target image.
Then, starting at the coarsest resolution, for a given number of iterations the images are
being registered. The deformation field is initialized with the identity transformation and
it is warped to the source image.
The images are then unfolded into overlapping patches in each iteration. Patches have a
stride of half the patch size and this causes a slightly longer registration time, which is
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Figure 12: Structure of the non-rigid network [34]

not a problem. But more importantly, it addresses the issue of deformation field discon-
tinuities at patch boundaries.
Then, a fixed number of patches, based on the GPU limitation, is grouped together. With
the GPI servers, there were no limitations, however, this constraint has to be considered
in case the algorithm is run on other machines.
The current velocity field is calculated by propagating each relevant group via the registra-
tion network. The group is converted and the cost function is calculated during training.

The calculated velocity fields for each group are concatenated together, and after all the
groups are processed, the concatenated velocity fields are folded back into the velocity
field with the same shape as the current deformation field.
The current deformation field is composed of the velocity field and used for the next
iteration where the whole process is repeated.
This makes the interpolation error negligible since the source image is never interpolated
more than once.
After composing, the current level deformation field is upsampled to the next resolution.
The deformation field after the highest resolution becomes the final deformation field
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which is the one applied to the source image.

This structure is used for training the network with WSI. But, depending on the size of
the pair of tiles given as input, the number of pyramid levels can be decreased: if the tiles
is small, it’s possible to just consider one level of the pyramid, if it gets to bigger size it
can be divided into 2, if it is used the whole slide, the image is divided into three levels.
This structure is very robust to any given size of pair of images.

In the following page, there is the pseudocode of the algorithm.
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Algorithm 1 Algorithm summary

Input: M (affinely registered moving image), F (fixed image), N (number of pyramid
levels), M (iterations per level), P (patch size), S (stride), G (group size)

Output: u (deformation field)

1 PM , PF = create pyramids using M, F and N
u = initialize with an identity transform on the coarsest level
for each resolution in N do

2 FC = get current level PF and unfold using P, S
if current resolution 0 then

3 MC = warp current level PM using u

4 end if
5 v = initialize with an identity transform and unfold using P, S

for each inner iteration in M do
6 if current iteration 0 then
7 MC = warp MC with v
8 end if
9 Mg , Tg = divide FC ,MC into G-sized batches

vi = initialize with an empty tensor
for each group do

10 vt = model(Mg, Tg)
if training then

11 Mw = warp Mg with vt
S(Mw, Tg, vt) = use equation (9) and update optimizer (free GPU memory
for the next group)

12 end if
13 vi = concatenate(vi, vt)

14 end for
15 v = v ◦ vi
16 end for
17 v = fold v using P, S

u = u ◦ v
18 end for
19 return u
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3.6.1 Parameters

There are several parameters to set in this network:

1. the patch size,

2. the stride,

3. the group size,

4. number of pyramid leves,

5. number of iterations per level

6. the regularization parameter (α)

Every parameter is important in the functionality and quality of the network. Increas-
ing the number of pyramid levels allows for bigger deformations to be calculated, but at
the cost of increased registration time. The number of iterations per level is critical for
registering fine details, but raising the value, like increasing the number of resolutions,
increases the registration time.
The patch size is linked to the deep network architecture, and its value should be chosen
carefully to make the most of the network’s receptive field.
The stride determines the amount of overlap between the unfolded patches.
Finally, the group size determines how many patches are registered at the same time. The
higher the value, the faster the registration and GPU memory usage will be.
Finally, the regularization parameter is responsible for controlling the deformation smooth-
ness.

3.6.2 Training

As mentioned before, the training was done using the dataset offered by the ANHIR
challenge. There are used 481 image pairs split into 251 evaluation (validation set) and
230 training pairs.
The training of the first two neural network took around a few hours each, however,
it took three days to complete the training of the non-rigid neural network because of
the complicated structure and the big size of the training images. In fact, the bigger the
number of levels, the longer is the time needed to train the network and to register images.
In the model the parameters are set as:

1. 256x256 patch size,

2. 128 stride size,

3. 32 patches per group,

4. 3 pyramid leves,

5. 3 iterations per level

6. 0.001 regularization parameter (α)
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3.7 Interpolation of the original image

One of the main issues of the postprocessing steps was to apply the deformation field
computed by the neural network to the source colored image. In the preprocessing step,
the pair of images is converted to mha format, converted to greyscale, downsampled and
normalized. This steps convert the pixel values in float numbers between 0 and 1. The
deformation field values are float numbers between -1 and 1.
The goal of the project is to apply this deformation to the colored original image, not to
the processed one.
The original input is in ’.png’ format and its pixel values are integer numbers between 0
and 255. Hence, there is the need to apply some invertible transformations to it in order
to make it suitable for the spatial transformation that will apply the final deformation
field to the image.

In the preprocessing stage the images are mirrored with respect to the vertical axis and
rotated by 90°, hence, also the colored image have to go through the same process.
A necessary condition in order to apply the deformation field is to have an image with
just one channel (i.e. greyscale images). The png format, by definition, has 4 channels:
red, green, blue and opacity. The opacity channel doesn’t contain any information in the
dataset used, hence it can be discarded. The other three channels need to be considered
as single greyscale images.
The next step is to normalize the pixel values of each image and to convert them in float.
After applying these operations, it is possible to warp the images with the deformation
field.

The spatial transformation used to apply the deformation is the bilinear interpolation.
Bilinear interpolation is a method for two-dimensional interpolation. To perform a spa-
tial transformation of the input image, a sampler must take the set of sampling points
(deformation field in this case), along with the input image U and produce the sampled
output image V.
Each (xi, yi), coordinates of the deformation field that belongs to the grid G, defines the
spatial location in the input where a sampling kernel is applied to get the value at a
particular pixel in the output image. In this case, the spatial kernel used applied is the
bilinear interpolation.[35].
The transformation can be defined as:

Vi =
H∑
n

W∑
m

Unmk(xi −m,Φx)k(yi − n,Φy) ∀i ∈ [1, .., H,W ] (10)

where Φx and Φx are the parameters of the kernel k() which defines the bilinear interpo-
lation, Umn is the value at location (n, m) of input image U. Vi is the output value for
pixel i at location (xi, yi) of output image. H and W are the height and width of the input
image and of the grid that contains the deformation field (in this case they are the same).

Once the three deformed images are obtained, it is necessary to merge them back together
to return to a RGB image format.
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The main issue is that the pixel values after the transformation are float numbers. The
classical image formats (i.e. png, jpg) are constrained to integer pixel value which, in this
case, can’t be used. In fact, if the floats of each greyscale image are rounded to integer
and then merged together, the resulting image will present areas where the colors don’t
combine and the deformation is not accurate. An example of this effect is shown in Figure
13.

The only image format that supports a three channels, floating pixels image is TIFF
(Tagged Image File Format) which is an high-quality graphics format. Therefore, the
output of the network has to be saved as .tiff. It can only be open by dedicated software
(i.e. Photoshop). In this project it was used GIMP (GNU Image Manipulation Program)
which is free and available for any operating system.

Figure 13: On the left image saved with integer values, on the right same image saved
with float values.
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4 Results

4.1 Evaluation metric: rTRE

Unfortunately, there are no standard way to evaluate the quality of non-rigid registered
pairs of images. Unlike the rigid registration where there are many different metrics avail-
able, it is hard to measure the accuracy of a deformation.
In this project, the method employed by the online challenges of histological image reg-
istration (ANHIR, ACROBAT) was adopted: the target registration error (TRE) which
measures the Euclidean distance between the annotated and transformed landmarks.

In the ANHIR dataset, in each pair of images, the most significant structures are manually
annotated with landmarks. On average, around 80 landmarks per image were positioned
by pathologists, and their coordinates were saved.
In particular, for each pair of images (i, j), the coordinates of corresponding landmarks
xl
i, y

l
i were determined, where l ∈ Li, and Li is a set of landmarks that occurs in both i

and j.
When the deformation is applied to the image, also the landmarks are moved according
to the deformation field. In this way, it is possible to keep track of the exact movement
of each landmark, hence of the deformation of the main structures of the image. The
coordinates of the landmarks on the transformed image are defined as x̂l

i.
The relative Target Registration Error (rTRE) is the Euclidean distance between the
computed coordinates x̂l

j and the manually determined (ground truth) coordinates xl
j

and it is computed as:

rTREij
l =

||x̂l
j − xl

j||
dj

(11)

where dj is the length of the image diagonal.
The main criterion used to evaluate the registration algorithms is the average of median
rTRE:

µi,j(m) = median rTREij
l (m) (12)

Finally, to evaluate the overall performance of the network, average median rTRE (AM-
rTRE) and median of median rTRE (MMrTRE) are computed:

AMrTRE(m) = mean µi,j(m) (13)

MMrTRE(m) = median µi,j(m) (14)

Moreover, to evaluate robustness, individual rTREs for each landmark and the relative
Initial Registration Error (rIRE) before registration are compared:

rIREij
l =

||xl
i − xl

j||
dj

(15)

The registration times tij in minutes for each registration, including loading input images
and writing the output files is also evaluated.

An example of landmarks on the ANHIR dataset is shown in Figure 14.
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Figure 14: Landmarks on ANHIR dataset

4.2 Landmark positioning

In order to evaluate the output of the algorithm on the breast cancer images from the
DigiPatics projects, landmarks were manually positioned as done in other challenges and
the evaluation metrics were computed

To generate the landmarks it was used the library OpenCV. At the same time and with
the same order, points have to be positioned on the same portion of the tissue on both
images. With some particular stains (KI67 for example), it is not possible to identify
structures of the tissue, hence, the contrast of the images was increased. Moreover, a grid
on top of the images is added to facilitate the process.
All the coordinates are then saved in a file with the same order and sent as input to the
code.

Figure 15: Procedure of positioning landmarks
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4.3 Tests and results

The quality of the output of the network depends mainly on:

• the quality of the rigid registration,

• the size of the image given as input and the number of pyramid levels chosen for
that particular size.

The network was tested tuning these values until the best score was obtained.

On the images of ANHIR dataset, the output of the non-rigid registration performs well.
The results presented on the paper [34] show that the DeepHistReg method is comparable
in terms of the rTRE to the best state-of-the-art algorithms. The results are slightly worse
(by about 0.002% of the image diagonal) than the three best state-of-the-art algorithms.
However, the images from the DigiPatics dataset are different, smaller and more detailed,
therefore, the accuracy of the registration decreases.

4.3.1 Case study

To demonstrate the performance of the framework, in this subsection, a case study using
a pair coming from the DigiPatics dataset is presented. The target is stained with KI67
and the source with CK19, they are shown in Figure 17. From a quick view, they look
very similar, however, the cells have different structures.
As explained before, to evaluate the performance of the registration, landmarks on both
images were positioned. In this case, I applied 6 landmarks on well defined contours. (see
Figure 15)

Figure 16: Target and source images from DigiPatics dataset

The network was tested for different values of pyramid levels and iterations. Best results
were obtained when using two levels of the pyramid. In fact, the network was trained
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with whole slide images that have less resolutions and less details. The tiles registered are
4096x4096 pixels, hence they are much smaller than a WSI.
The number of iterations affects the precision of the deformation that is applied to the
tile. In this case, the tiles are very similar and 2 iterations each were applied.
From the result, it can be seen that the tissue was deformed following the structure and
contours of the target tile, however, the network is not able to erase or create new tissue.
The deformation field can just move it a small amount.
This is the main limitation of the network and it decreases the quality of the registration.

Figure 17: Source and deformed source

From the image, changes are not very visible or distinguishable. However, using the eval-
uation metric TRE, the improvement is clear:

Initial Final
median TRE 0.010751 0.001516
pixel error 62.264 8.780

Table 1: evaluation on pair of tiles studied

As indicated by equation 11, the target registration error is divided by the diagonal of the
image. In this case, the two images have size 4096x4096, their diagonal is 5792. It means
that in the original pair, the difference of the landmark coordinates is equal to more than
62 pixels, in the second case is less than 10. This is not an absolute criteria considering
that landmarks where positioned on the contours of the tissue, but it still gives an idea
whether the registration is improving the alignment or not.

The displacement field generated by the network can be divided into the horizontal and
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vertical directions and it is possible to visualize it as a greyscale image of the size of the
source and target images.
For this case study, the displacement has the following shape:

Figure 18: Horizontal and vertical displacement field

Finally, in the following figure, the changes applied by the neural network to the source
image are highlighted. In Figure 19, bright colors underlies the main differences among
the two images.

Figure 19: Difference between source and transformed source

As previously mentioned, the main changes appear on the border of the tissue, also other
internal structures are modified as well in order to match with the target image.
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Another example is given by tiles from another patient, where the KI67 stained is used
as target and CK19 as source:

(a) Target tile (b) Source tile

(c) Transformed source tile (d) Difference

Figure 20: Another example of non-rigid registration

The deformation field succeed in moving the tissue along the correct direction, however,
it doesn’t align perfectly the two images.
It has to be considered that the two stains are very different: in the target, the structures
of the cells are not as defined as the one in the source. Even if the images are processed
in greyscale colors, the differences are still very noticeable.
In Figure 22, the deformation field shrinks the tissue of the source to align it to the target
in the small portion of cells in the right part of the image. While, in the center, it stretches
it.
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(a) Target tissue (b) Source tissue (c) Transformed tissue

Figure 21: Details of non rigid registration

A more visible example on how the deformation field works can be seen in the next
sequence of images taken from another pair. As before, the tile stained with KI67 is the
target and the one stained with CK19 is the source that is transformed.

(a) Target tissue (b) Source tissue (c) Transformed tissue
(d) Transformed tissue
with 3 pyramid levels

Figure 22: Details of non rigid registration

In the third image, it can be seen the good alignment achieved using 1 level of the pyramid:
the white space in the middle is better aligned and the tissue is shrunk. In the fourth
image, there were used 3 levels and it is clear that the deformation is too big and it
changes the structure of the cell.

The most relevant characteristic of the proposed solution is the speed at which it performs
the non-rigid registration. It takes on average 4 seconds to register each pair of 4096x4096
tiles. Moreover, even for bigger images (i.e. WSI used to train the network), it only takes
less than 8 seconds to generate the deformation field making this solution very fast.
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4.3.2 Limitation of the network

The main limitation of the network is that it can only move the tissue but it can’t generate
it when it is not present in one of the two tiles. It moves it along to the correct directions
but, in some cases, it’s not enough to compensate the differences among the pair.
Based on the output of the rigid registration, the non-rigid registration fails or succeeds
to align correctly the two tiles.

(a) Target tissue (b) Source tissue (c) Transformed tissue

Figure 23: Bad results on non rigid registration

In this case, the deformation field generated is to small to compensate the differences in the
pair: only small deformations are applied, but the main dissimilarity remains untouched.

4.3.3 Tables of results

To test the overall performance of the network, landmarks were positioned on 9 pairs of
tiles from the DigiPatics dataset. Initial TRE is compared to the final TRE of each pair
and also the time of execution is evaluated.
The images chosen to test the performance have a defined structure of the tissues in both
stains in order to position correctly landmarks. On average, there are 60 landmarks per
image.
To evaluate the TRE in each pair, it has to be taken into account that the precision of the
landmarks is not perfect, there can be an error of a few pixel. Moreover, most of landmarks
are positioned on the contour of the tissue and not on internal parts (i.e. Figure 15).

The average execution time consists of the time needed to load the image on the GPU
and the time needed to generate and apply the deformation field. On average is around 4
seconds, except for the first pair, which takes a bit longer.
On most cases, the deformation generated by the network improves the target registration
error which ranges from 120 pixels error to 30 pixels error. However, there are two cases
where the registration doesn’t work: on pair 5 and pair 9 there aren’t any improvement.
The pixels error range from 350 to 320, hence the error is still pretty large. Pair 9 is shown
in Figure 23.
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Pair Initial TRE Final TRE Execution Time [min]
1 0.010013 0.0048 0.24994
2 0.010108 0.005796 0.082272
3 0.010751 0.007027 0.082006
4 0.00596 0.003754 0.082009
5 0.0641 0.063653 0.082358
6 0.008305 0.00475 0.082238
7 0.012146 0.00645 0.083008
8 0.02164 0.00547 0.082192
9 0.054184 0.05369 0.082415

Table 2: Landmarks evaluation

Overall, when the initial TRE is already low, so when the pair is already good aligned
from the rigid registration, the non-rigid improves it, successfully deforming the tissue
along the correct direction. But when the disalignment is too big, the network fails to
align the pair.

44



5 Conclusions and future development:

In the state-of-the-art, there are not models that can apply non-rigid registration to high
resolution histological images. At the moment, most of researches are focused on aligning
Whole Slide Images, which are much larger. The DeepHistReg framework was chosen
because of its accuracy in aligning WSI and of its pyramid-level approach, which makes
it scalable to different resolutions.
It is a powerful framework that can be still used on different WSI to apply real-time,
complete and accurate registrations.

In the case analyzed, the proposed solution has some limitations on the quality of the
deformation, especially when the source presents some tissue that doesn’t appear in the
target or viceversa. At this level of resolution, the deformation field generated is not
enough to correct big changes. If the quality of the pairs generated by the rigid registration
is not good enough, the non-rigid registration fails to align correctly the images. On the
other hand, it corrects small deformations, especially on contours points, minimizing the
target registration error.

This limitations might come from the dataset used to train the network: WSIs are mul-
tiresolution images, tiles are low resolution images of WSIs. The model of the network
can’t generate big field to deform correctly some pairs.

Fortunately, this could be improved training the network with pairs of tiles collected by
the DigiPatics project. Once the rigid registration algorithm generates a sufficient number
of pairs belonging to different stains, it will be possible to use them to train the network.
Moreover, based on the size of these images, one, two or three levels of the pyramid can
be generated, increasing the final accuracy. This is an idea for a future implementation
that can improve the quality of the network.

The main issues of big deformations, however, is that they might change too much the
structures of cells, modifying important information needed for doctors to conduct accu-
rate diagnosis. It’s a trade off between the deformation required and the regularization
term that holds the network from applying deformations to all the pixels in an image
and changing its structure [36]. This is another field of research within image registra-
tion algorithms and it has to be taken into consideration, especially when working with
biomedical images.

Another promising method that could improve the network consists in applying style
transfer using the adversarial networks [22] to one image of the pair, to make it more
similar to the other one. It consists in applying a style connected with a particular dye
from a given slice to another consecutive slice. For example, considering to apply style
transfer to two slices stained with HE and CK19. The algorithm will convert HE to the
CK19 without losing information. An example of style transfer is displayed in Figure 24.
This could be useful to create ground-truth alignments for adversarial registration net-
works which may produce even more accurate registration, without the necessity to define
a similarity measure. Or to directly use these transformed pairs as input of the non-rigid
network.
There already exists some state-of-the-art technologies that perform style transfer. More-
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over, it is also a subject of research of the DigiPatics project, they are developing an
algorithm that applies style transfer to the DigiPatics dataset used in this project. Hence,
a future work could be to use those images to train the non-rigid network.

Figure 24: Example of style transfer on histological images[37]
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ing, and Ivana Išgum. A deep learning framework for unsupervised affine and de-
formable image registration. Medical image analysis, 52:128–143, 2019.

[22] Jingfan Fan, Xiaohuan Cao, Qian Wang, Pew-Thian Yap, and Dinggang Shen. Ad-
versarial learning for mono-or multi-modal registration. Medical image analysis,
58:101545, 2019.

[23] Qupath.

[24] Matlab, read 3d medical data.

[25] Gimp.

[26] Calvin R Maurer and J Michael Fitzpatrick. A review of medical image registration.
Interactive image-guided neurosurgery, 1:17–44, 1993.
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Appendices

A Code functions

A.1 Visualize .mha image

Function used to visualize .mha file in matlab using the library ”read medical 3D data”.
Note that the conversion in mha format works only if the depth of the image is 32bit.

A.2 Position landmarks

Run the script twice, opening target and source image at the same time and position
landmarks in the same order for both images.
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B Additional results

B.1 Example 1

(a) Target tail (b) Source tile

(c) Transformed source tile (d) Difference

Figure 25: Example 1 of non-rigid registration

Details:
In Figure 26, there is shown how the deformation field moves the tissue of the source to
align it to the target. The main problem is the fact that the deformation can’t erase the
tissue.

B.2 Example 2
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(a) Target tissue (b) Source tissue (c) Transformed tissue

Figure 26: Details of non rigid registration

(a) Target tile (b) Source tail

(c) Transformed source tile (d) Difference

Figure 27: Example 2 of non-rigid registration
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