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Abstract—HPC clusters are cost-effective, well understood, and
scalable, but the rigid boundaries between compute nodes may
lead to poor utilization of compute and memory resources. HPC
jobs may vary, by orders of magnitude, in memory consumption
per core. Thus, even when the system is provisioned to accom-
modate normal and large capacity nodes, a mismatch between
the system and the memory demands of the scheduled jobs can
lead to inefficient usage of both memory and compute resources.

Disaggregated memory has recently been proposed as a way
to mitigate this problem by flexibly allocating memory capacity
across cluster nodes. This paper presents a simulation approach
for at-scale evaluation of job schedulers with disaggregated
memories and it introduces a new disaggregated-aware job
allocation policy for the Slurm resource manager. Our results
show that using disaggregated memories, depending on the
imbalance between the system and the submitted jobs, a similar
throughput and job response time can be achieved on a system
with up to 33% less total memory provisioning.

Index Terms—Disaggregation, Performance degradation,
Performance prediction, Resource scheduling, Slurm

I. INTRODUCTION

Over 90% of the High Performance Computing (HPC)
systems in the TOP500 list are built using a cluster archi-
tecture. HPC clusters are cost-effective, well understood and
scalable to thousands of nodes. In a cluster architecture, the
coordination of all hardware and software falls under the
control of the resource management software. It is a key
component for the distribution of computing power within
the cluster infrastructure. The management goal is to satisfy
users demands for computation and achieve a acceptable per-
formance in overall system’s utilization by efficiently matching
requests to resources.

In existing HPC systems, the rigid boundaries between
compute nodes limits compute and memory resource utiliza-
tion. HPC applications are rarely co-located on a compute
node [1], so they have exclusive access to self-contained
servers, and any of the node resources that are not used by
the running application cannot be made available to other
applications. This problem of stranded resources is especially
critical for memory [2] because HPC application memory
demands vary dramatically, by orders of magnitude, due to
application characteristics and strong scaling [3], [4].

Fig. 1 shows an example timeline of total system memory
and Central Processing Unit (CPU) utilization. In Fig. 1a, the

mix of jobs matches the memory provisioning (system has
25% large capacity nodes and 25% of job CPU hours need
large capacity nodes),1 and average CPU utilization is high,
at 81%. Fig. 1b shows the same system, but this time 50% of
the jobs need large capacity nodes. In this case, both CPU and
memory have low utilization (both averages less than 48%).
The system clearly has abundant unused CPU and memory
resources, but they are not available for use by the applications.

0
25
50
75

100

U
til

iz
at

io
n 

(%
)

Memory CPU
(a) System matches job mix

0
25
50
75

100

Memory CPU
(b) System mismatches job mix

Fig. 1. Resource utilization when the system matches jobs demands and when
there is a mismatch.

Disaggregated memory has recently been proposed to allow
a flexible and fine-grained allocation of memory capacity to
compute jobs [5], [6], [1]. In this direction, this paper proposes
an extension to the Slurm job manager to allocate memory
capacity to jobs in a disaggregated memory system. Research
in job scheduling cannot easily be done using a production
system, and in any case, disaggregated memory prototypes
are still at research level and system software is immature.
We therefore extend an existing simulation approach using
Slurm to account for memory/network bandwidth contention
in disaggregated memory leveraging an extension of a slow-
down based method [7]. We then use the extended Slurm
simulator to determine overall system throughput, job queuing
and execution time of a large-scale HPC system.

In summary, we make the following contributions:
1) Slowdown-based method to predict performance degra-

dation due to sharing of disaggregated memory across
multiple nodes in a cluster;

2) Extended job scheduler simulator to support disaggre-
gated memory in the most-used workload manager, Slurm;

3) Disaggregation-aware allocation policy implemented in
the Slurm workload manager;

1Details of the experimental evaluation are in Section V.



4) At-scale evaluation of our slowdown methodology and
allocation policy for disaggregated memories using the
Slurm simulator.

Our results show that our multi-node slowdown methodol-
ogy is a good approximation for predicting the performance
with a maximum error of 14%. Using a disaggregated memory
approach, similar overall system throughput and job response
time (waiting time plus execution time) can be achieved when
compared to an existing HPC system, while using up to 33%
less memory, depending on the imbalance between the system
and the memory demands of the submitted jobs. The Slurm
simulator extension and allocation policy are released open
source [8].

II. BACKGROUND

A. Disaggregated memory

Disaggregated memory has been proposed, and is under
investigation in both academic and commercial research, so
as to address two main problems. Firstly, current HPC sys-
tems provide little flexibility in provisioning memory, because
DIMMs should be installed in a balanced way across a small
number of memory controller channels, leading to coarse-
grained rules of thumb like the common 2 GB per core [3].
Secondly, HPC clusters suffer from stranded resources because
memory that is not used by one job cannot be used by another
on a different node.

In the disaggregated design, individual components such
as processor, memory and storage are interconnected over a
network to share memory but without cache coherent data
sharing [9], [10], [11]. The EUROSERVER [10], ExaN-
oDe [12] and EuroEXA [13] family of projects has pioneered
a disaggregated system architecture, which provides a global
physical address space and the ability for cores to access re-
mote memory via Remote Direct Memory Access (RDMA) or
direct load–store instructions. By appropriately configuring the
cache policy, remote memory accesses can be cached locally.

In our work we use the model disaggregated architecture
inspired by the UNIMEM approach [10]. In this design, com-
puting units execute their own Operating System (OS), and can
access memory attached to it (local memory access) as well as
memory attached to another computing unit through a global
interconnect (remote memory access). The remote memory
access is performed through a common Global Address Space,
either using ordinary load–store instructions or RDMA. The
design supports caching locally at the unit that requested the
access or remotely at the unit attached to the memory. For
disaggregated memory, the data should be cached locally.

B. Slurm Resource Manager

Slurm [14] is a widely used open-source HPC resource and
job management system. It has a multi-threaded core and a
plug-in module architecture, which makes it configurable with
a variety of extensions for workload, queueing, scheduling, etc.
It also has a centralized manager responsible for allocating
resources, monitoring job execution and mediating contention
to resources through a queue of pending jobs. The default node

allocation of Slurm is the exclusive mode, so even if not all
resources within the node are utilized by a specific job, no
other job is allowed to share the resource. Even though Slurm
allows fine-grained cluster management, requests exceeding
the available memory per node cannot execute and nodes with
free memory but no cores will not be used on the scheduling.

C. Slurm Simulator

Optimizing the job scheduler and its policies for HPC
system performance and user experience is a complex, multi-
dimensional problem. It is impractical to perform large-scale
experiments on a real production machine, since doing so will
likely negatively impact the service delivered to users. The
Slurm simulator proposed by [15], [16] enables a precise and
deterministic evaluation of the job scheduler by running it in
a simulation environment. It is based on the original Slurm
source code so, unlike theoretical models, it is able to capture
all parameters and behavior that occurs in a real environment.

The simulator receives as input a standard Slurm config-
uration file and a trace capturing the HPC job submissions
and actual execution times. The configuration file specifies the
number of nodes and queues, selection and scheduling poli-
cies, and so on. The trace binary input used for the simulation
is based on the Standard Workload Format (SWF) [17], [18],
which is a standardized way to describe the submission of jobs
to a system. The simulator can therefore use existing real logs
or traces from synthetic workload generators that are publicly
available in on-line repositories.

III. RELATED WORK

Memory Disaggregation — Gu et al. [5] implement a
scalable and decentralized remote memory paging solution
to enable memory disaggregation. It divides the swap space
of each machine and distributes the pages across many
remote machines using RDMA operations for all remote
I/O operations. Shan et al. [19] propose a split kernel OS
architecture to manage disaggregated systems. It breaks the
OS into pieces with different functionalities, each running
on and managing a hardware component. Peng et al. [1]
implement a user-space remote paging library to allow
exploration of applications using disaggregated memory.
Their architecture contemplates nodes with fast but small
local memories and large but slow remote memories, and it
is aided by the library, which evicts local pages and fetches
remote pages when the local memory is exhausted.

Amaral et al. [20] develop a dynamic loop-based controller
to manage resources and a flow-network algorithm to deter-
mine the optimal placement of workloads on virtualized data-
centers. Their approach disaggregates Graphics Processing
Unit (GPU) using middleware that intercepts GPU calls and
offloads its data via the network. Amaro et al. [21] present
a swapping mechanism that uses remote memory through
RDMA and a remote memory-aware cluster scheduler to split
job’s memory demand between local and remote memory.
Then, they examine the scenarios where remote memory can
increase job throughput.



Slowdown based methods — De Blanche et al. [22], [23]
propose a slowdown based characterization method to estimate
application slowdown when sharing the memory bus. Band-
width Bandit [24] proposes a quantitative profiling method
for analyzing the performance impact of contention for shared
memory resources to determine the application’s sensitivity to
latency and bandwidth. Zacarias et al. [7] propose a slowdown
based methodology to predict the performance degradation
from remote memory contention. They characterize a single
node application sensitivity curve based on the contentious
pressure from remote access and the ratio of read and write
of the memory access.

While prior works [25], [22], [24] use application working
set size or local bandwidth as their measure of pressure to
create the sensitivity curve, our approach targets performance
prediction due to sharing of disaggregated memory. Cache
contention characterization method is misleading for predict-
ing the performance of applications using separated cache
hierarchies, since the remote access do not create cache con-
tention in the local node. In spite of being proved successful
for multithreaded single node applications, the methodology
presented in [7] does not account for distributed applications
and contention from multiple sources.

IV. EXTENDING SLURM FOR DISAGGREGATED MEMORY

A. Integration into Slurm Simulator

The Slurm simulator previously assumed no contention
among jobs, in terms of network, CPU and memory. This
is a reasonable assumption for non-disaggregated memory
systems, due, firstly, to the independent nature of the compute
nodes and, secondly, to the common use of non-blocking
networks in HPC systems. This assumption simplifies the sim-
ulator because the execution time of each job is independent
of the scheduling and allocation policies and is known in
advance. The actual execution time of each job is recorded
as one of the fields in the SWF trace file.

We modified the trace format to provide also the infor-
mation needed by the memory access contention model (see
Section IV-B). In fact, since many of the jobs were for similar
applications, we use a unique identifier for each simulated
application type. The trace file specifies the baseline execution
time without contention and the application type identifier.

We modified the simulator to invoke the contention model
each time any job starts or finishes. The contention model
calculates the estimated performance of every job that poten-
tially has contention with the starting or finishing job. The
output of the contention model is the estimated performance
of the job, Pest, where for example Pest < 1 whenever the
job suffers slowdown and a value of Pest equal to 1 means
that the job runs without contention with other jobs. The
estimated performance is interpreted as the speed at which the
original baseline runtime is executed. After each time period,
the remaining runtime is updated based on the elapsed time
and the speed during this interval, as given in Equation 1.
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Fig. 2. Multi-node slowdown methodology.

runtime left′ = runtime left− delta time× Pest (1)

B. Memory Access Contention Model

Our contention model is an extension of the model by
Zacarias et al. [7], extended to support contention among
multi-node applications. The overall approach and the model
inputs and output are shown in Fig. 2.

In common with all slowdown-based models, the single-
node model quantifies application performance using a sen-
sitivity curve, which measures performance on the y-axis,
normalized to the performance running alone, as a function
of the contentiousness of the other application(s) on the x-
axis. The contentiousness is a single variable, which for a
single node is the total memory bandwidth. In our model
of disaggregated memories, remote memory accesses do not
create cache contention in the local node as their cache
hierarchies are separate. Moving from single-node to multi-
node greatly increases the complexity, because in the multi-
node case, there is a separate interfering memory bandwidth
per node, which is impractical to model in detail.

Most HPC applications have similar behavior on each node,
and overall performance is constrained by the slowest node.
For this reason it is reasonable to set the contentiousness to be
the largest, i.e. worst interfering bandwidth across all nodes.
However, we found that the actual level of memory bandwidth
interference is subject to a reasonable amount of noise, and
performance degrades as the number of interfering nodes is
increased. We therefore count the number of nodes that have
interference close to the maximum across all nodes, and use a
family of sensitivity curves indexed by this number of nodes.

To extend the contention model, we first execute the syn-
thetic benchmark [26] to create the sensitivity curve in parallel
across a configurable number of interfering nodes (Step 1
of Figure 2). Then, we measure the sensitivity curve for
50% reads and 100% reads and use linear interpolation for
intermediate R/W ratios. Prior work has shown that linear
interpolation exhibits better performance than additional in-
terfering data points [7], and that the accuracy was similar to



polynomial interpolation. Following a similar concept, so as
to decrease the cost of collecting the sensitivity curve data,
the number of interfering nodes was sampled between 1 and
the maximum target number of nodes.

In the second part, the contentiousness of an application ,
bwapp, is collected using performance counters when running
alone (Step 2). We calculate the read and write memory
bandwidths using the numbers of read and write Column
Access Strobe (CAS) commands [27], averaged over all nodes
on which the application is executed. In the last part (Step 3)
the model predicts the performance of an application “A”
using its interpolated sensitivity curve, fa, based on the
read/write percentage, number of interfering nodes and the
largest contentiousness, max(bwa, bwb, bwc), among the in-
terfering applications.

C. Resource Selection

In Slurm, jobs ready for scheduling are selected from the
global queue of pending jobs. All available nodes having
enough resources, such as cores and memory capacity, are
selected for further evaluation. At this point, memory is only
a constraint if the requested memory is greater than the node’s
physical memory. Then, the resource manager’s Selection
plugin determines the nodes that best satisfy the request.

A major characteristic that prevents Slurm using disaggrega-
tion is that it has a processing and server-based architecture.
Memory management is tightly coupled with availability of
CPU cores, despite being configured as a controlled resource.
This means that nodes without idle cores are excluded from
allocations, even if there is unused memory capacity. To
improve utilization and throughput of the system, we adjust the
scheduling and resource selection to support the use of remote
memory capacity across the cluster to create the disaggregated
infrastructure for the resource manager.

Since the usage of remote memory across the cluster
impacts applications, our validation through simulating the
platform requires some degree of consideration for appli-
cation’s performance running in such configuration. To this
end, we integrated the developed multi-node slowdown based
method described in Section IV to characterize the slowdown
experienced by the applications sharing memory resources.

D. Supporting Memory Disaggregation

After our analysis of the job scheduling process described
in Section IV-C, we modified the verification performed by the
job scheduling process to build the list of nodes available to
the job. While the default allocation (baseline) used by Slurm
returns an error when no nodes can satisfy the request or
removes nodes with less free memory than is required by the
job, our allocation approach differs substantially. We separate
into distinct lists the nodes with available cores and memory.
From this point forward, we can adopt several strategies to
allocate memory that will impact application performance.

For explanatory reasons, Fig. 3 shows a schematic simple
case to exemplify the best allocation strategy explored in this
work. The simulated HPC systems used to present the results

are described in Section V-C. The schematic figure shows a
small heterogeneous system with 10 nodes, equally divided
into normal and large nodes. A, B, C and D represent the
order of jobs submitted to this system with different node and
memory requirements.

To mitigate the issues experienced with previous strategies,
we use the baseline allocation method that increases the local
to remote memory ratio, and we employ the disaggregated
strategy when there are insufficient nodes to satisfy the current
request or a resource-hungry job is scheduled. The baseline
strategy selects all nodes that have enough local memory to
satisfy the job’s requirement of memory per node to avoid
unnecessary remote memory access. In Fig. 3, jobs A, B, and
D use only local memory, since the approach is able to find the
best node that satisfies the job’s memory-per-node request. On
the other hand, job C requires more memory than any node in
the system. To schedule this request we use our disaggregated
approach employing remote memory access.

We do not use the CPU cores of nodes that have already
lent memory to another node. This means that such a node
effectively becomes a memory node for other jobs. We ex-
perimented with relaxing this condition, and found that there
was no improvement in the results. It is always preferable to
use local memory when it is available. Our approach, then,
to increase the local to remote ratio, favors nodes with higher
memory available applying a weight to each node based on
their free memory. Then, nodes with higher local memory
available are selected, consequently decreasing the influence
of remote memory access. As an example, instead of using
normal nodes to satisfy job’s C request, the approach uses
large nodes, thus increasing the local memory usage. For a
new submitted job, node N9 will be a memory node since it
has some memory lent.

V. EXPERIMENTAL METHODOLOGY

A. Environment Setup

Hardware resource — We carried out the experiments on
a cluster which has servers equipped with two Intel Xeon
SandyBridge-EP E5-2670 that together comprise 16 cores
operating at 2.6GHz. Each socket has 20MB L3 cache (LLC)
shared among all cores, single memory controller, and two
Quick Path Interconnect (QPI) links version 1.1 operating at
8.0GT/s. It implements the home snoop cache coherence with
MESIF protocol [27]. The node has 64GB of DDR3-1600
DIMMs, theoretical bandwidth of 51GB/s (37GB/s sus-
tained) for local access and 38GB/s (20GB/s sustained) for
remote memory access. The memory access latency is 81 ns
and 133 ns for local and remote accesses respectively [28].
Benchmarks — We used nine distributed applications from
several known benchmark suites. For the simulation, we
incorporated the detailed profile from a total of 44 single-
node applications from PARSEC (8 applications) [29], Rodinia
(5) [30], NAS Parallel Benchmarks (NPB) (8) [31], Splash
(5) [32] and another 15 diverse publicly available applications.
We selected applications to cover a variety of computational
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Fig. 3. Graphical scheme of the memory allocation explored in this work for a simple case considering a small system with half of its nodes having 32 GB (5
nodes on the left) and 64 GB of memory (5 nodes on the right). The system configurations used in the evaluation are much larger and presented in Section V-C.

patterns found in multithreaded and high performance codes.
The single node applications were compiled with GNU/Linux
GCC 7.2 and multithreading enabled, while the distributed
applications were compiled using OpenMPI 1.8.1. We used
numactl to apply affinity settings for threads and memory
placement, and Perf tool to collect the performance counters.

B. Emulating Disaggregated Memory

Due to the absence of an available prototype of remote
memory decoupled from processor [33], we follow the em-
ulation approach proposed by Zacarias et al. [7]. This way,
we could emulate a disaggregated shared memory architecture,
without the need for real hardware, using conventional multi-
socket servers. This approach takes advantage of a two-socket
server and its separate LLC to create pressure only in the
desired shared resource. According to Molka et al. [28],
cache coherence traffic is not a significant bottleneck in a
two-socket system. Thus, in our approach the processor and
cache resources are isolated from interference while the effects
of memory bandwidth contention can be observed on the
shared memory resource. In addition, the latency of cross-
socket memory access for our experiments is similar to those
presented in disaggregated works such as [6], [34].

All threads of an interfering application (B) execute on
socket 2 while issuing memory requests exclusively to the
memory bank attached to socket 1 (remote access). On the
other hand, all threads of a target application (A) use only
its memory bank (local access), thus contending for memory
controller and memory bandwidth. Thus, the impact of ap-
plication B on application A can be modeled based in B’s
bandwidth interference. For distributed applications running
across different nodes, a target application issues memory
requests to the local memory bank on every node, while
other applications may cause interference by issuing remote
memory requests given by a particular contentiousness level
and number of nodes. In this scenario, our model can predict
the slowdown experienced by a given target application in the
face of diverse remote bandwidth requirements.

C. System and Workload Configurations

We set up different configurations to explore heterogeneity
in job requirements and node capacities. In our experiments,
the HPC system is separated into normal nodes, which have
typical memory capacity, and large nodes with twice the

memory capacity of the normal nodes. To evaluate different
scenarios and heterogeneous systems, we experiment with
multiple ratios between large and normal nodes, varying from
0% (all normal nodes) to 100% (all large nodes). The systems
have a total of 1024 nodes each having 32 cores and 32GB
(normal node) or 64GB (large node) of memory, Slurm is
configured to use the baseline or disaggregated select resource
policy. The parameters for job scheduling are the same for all
experiments.

We generated synthetic workloads using the CIRNE Com-
prehensive Model [35]. This model is based on an analysis of
workload traces generated by real environments. It includes
arrival pattern, requested time, job sizes, system load, status
and start and finish times. In our work, we need information
about the memory capacity requested by each job. Thus, we
augmented the set of generated traces with memory informa-
tion from the applications profiled in our real environment.

First, we generate the synthetic trace using the CIRNE
Model for the required system size (Step 1). Alternatively,
we use a pool of executed applications for which we have a
profile regarding size, runtime, memory bandwidth, read/write
ratio, local/remote access memory ratio and memory capacity
requested (Step 2). Using the trace and app lists, we calculate
Euclidean distances to map each real application to a similar
synthetic job based on its size and runtime (Step 3). Finally,
we generate the new augmented trace by the assigned arrival
time (Step 4), converting it to a binary readable by the
simulator (Step 5). At the end, we have a new input trace
preserving the synthetic trace info that includes a memory
capacity required and an identifier for the job application.
The memory capacity will be used for resource scheduling,
while the application identifier will be used in our multi-node
slowdown based method to calculate the slowdown suffered
by this particular job due to resource sharing.

We generated additional input trace files, each targeting one
of the specific heterogeneous system ratios.We ensure that all
traces have total node–hours (#nodes × runtime) of large and
small jobs in the indicated ratio. The characteristics of the
large and small jobs are given in Table I. All normal jobs
have memory demand less than the capacity of a normal node,
whereas all large jobs have memory demand greater than a
normal node. In terms of baseline node–hours, the normal
jobs are typically larger than the large memory jobs. We
generate the input traces for the simulator by sampling without



replacement, in the appropriate proportions, from these two
distributions.

TABLE I
LARGE AND SMALL JOB CHARACTERISTICS

Normal Jobs Large Jobs

Metric Memory (GB) Node–hours Memory (GB) Node–hours

Min 0.12 0.0 33.0 0.0
1st Qu. 1.7 0.85 48.2 0.0
Avg 6.2 52.6 48.5 24.9
3rd Qu. 3.8 15.0 49.8 2.1
Max 27.6 6412 49.8 3659.0

VI. EXPERIMENTAL RESULTS

A. Prediction of Multi-node Slowdown

We evaluate the effectiveness of our multi-node slowdown
methodology that predicts the degradation of a target ap-
plication when it experiences different levels of interference
while running on different nodes. We measure the prediction
error, which is the absolute percentage difference between the
predicted and real performance under resource contention.

In our experiments, we start both target and interfering
applications at the same time on every node. Since we are
dealing with distributed applications, the interfering applica-
tions may differ in terms of interference levels and number of
nodes. During the experiments, if any interfering application
on any node finishes, we restart it to keep the target application
under contention throughout its entire execution. We continue
the experiments until the target executes at least seven times.
Once the target application ends, its performance degradation
(delayed execution time) is recorded to be compared with
the predicted performance under a resembling scenario. The
degradation for an application is calculated using its normal-
ized execution time alone in the system without interference.

Fig. 4 presents the results for a mix of interfering applica-
tions that vary in contentiousness (see Section IV-B), nodes,
and read/write ratio. It presents the maximum error for several
combinations of profiled applications when the target applica-
tion runs locally. We notice that the max errors are lower than
10% for most of the applications. Even though we notice an
increase in the prediction error when we move from 4 to 31
nodes for some applications (e.g. stream, streamcluster, hpccg
and hydro), it is also noticeable that the maximum prediction
error does not increase at the same rate as the number of nodes.
Increasing the number of nodes from 4 to 31 (∼8× increase),
the maximum error for any application increased at most 3×.
Demonstrating that we do not compromise the accuracy of the
model when increasing the number of nodes up to 31 nodes.

B. System Throughput

Leveraging the multi-node slowdown based model and the
Slurm simulator, we evaluate the implemented disaggregated
infrastructure described in Section IV-D simulating the dif-
ferent heterogeneous scenarios presented in Section V-C. In
this step, we assumed that the scalability of our memory
access contention model has the same behaviour presented
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Fig. 4. Slowdown model prediction maximum error.

on Section VI-A when we scale the number of nodes. For
every system configuration, we simulated different job mixes
in terms of pressure on the large memory resource. Fig. 5
presents the throughput achieved for each simulated scenario
when different job mixes are submitted. It is normalized
towards the homogeneous 100% large nodes system, since it
has enough resources to execute any job across all inputs.

The baseline approach is able to execute all job mixes
except when the system has 0% large nodes, in which case the
baseline cannot execute any large jobs as no node has enough
memory. We therefore remove all baseline data points for the
0% system and job mixes except 0% large. For this reason,
the x-axis in Fig. 5 has double bars showing the comparison
between the baseline and disaggregated approaches except
for the 0% system for job mixes with large jobs.

Fig. 5 shows a clear trend in the system’s throughput based
on the resources availability and the jobs mix. We can notice
that for the baseline approach throughput is high when the
job mix matches or is lower than the ratio of large and
normal memory resources within the system. However, the
baseline’s throughput decreases substantially when the job mix
has higher ratio of large memory jobs and the system is under-
provisioned to satisfy the request. It indicates that the resource
manager considers for allocation only a subset of nodes on
the system that are able to run the large jobs, thereby the jobs
waits longer to have access to the resources needed leaving
aside other nodes. It contributes to increase the makespan and
therefore for low utilization and throughput.

On the other hand, besides reaching the same throughput
as the baseline when the mix of jobs matches the system
or the system is overprovisioned, our approach increased the
throughput compared to the baseline when the job mix runs on
an underprovisioned system. It happens because our approach
performs a disaggregated allocation that leverages the remote
idle resources that are not used by other jobs or that is not
possible using the baseline approach.

The memory savings provided by the disaggregated ap-
proach are noticeable. For a example, when the job mix has
50% large jobs, the baseline requires at least 50% of the nodes
to have large capacity whereas the disaggregated approach has
only 5% degradation with 0% large capacity nodes (Fig. 5).
Since the large nodes have twice the memory capacity of the
normal nodes, the disaggregated approach reduces the total
memory capacity by 33%, compared with the baseline. The
savings in the other scenarios are lower but still significant.
For the 15%, 25% and 75% large job scenarios, the potential
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Fig. 5. Normalized throughput (y-axis) experienced by each simulated system (x-axis) for various job mixes.
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Fig. 6. Cumulative distribution of response time for two different systems and different job mixes.

memory savings are 14%, 20% and 15%.

C. System Response Time

Fig. 6 shows the cumulative distribution of the response
time for two different systems and three job mixes. We show
these scenarios for brevity since the others exhibit the same
trend presented in this figure. When the job mixes match or
run on an overprovisioned system, the approach’s lines overlap
showing similar performance. On the other hand, when the job
mix stress more resources on an underprovisioned system, we
notice that the baseline starts to increase its response time
compared to our approach. The jobs will compete for a small
number of resources hence increasing their waiting time. This
performance penalty will start to be apparent to the users in
the system as their submitted jobs will take longer to finish
after its submission. The impact of decreasing resources is less
noticeable with our approach as it presents lower probability
of longer response times. Our approach leverages the idle
resources that are deemed unable to run some jobs by the
baseline, consequently decreasing the waiting time.

D. CPU and Memory System Utilization

Fig. 7 shows the CPU and memory utilization, across all
executed scenarios. In all subplots the x-axis is the CPU
utilization and the y-axis is the memory utilization, both
relative to the maximum capacity of the memory and nodes
of the system on which the trace is executed. The scenarios
are divided into overprovisioned (job mix demands less large
nodes than available), match (job mix demand equals number
of large nodes), and underprovisioned (demands more). We
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Fig. 7. Average memory and CPU utilization when using either Disaggrega-
tion or Baseline under different job/node requirements/capacities.

notice that when the system is overprovisioned to satisfy any
submission of a job mix (left-hand side), our approach and the
baseline have similar performance. In this scenario, both are
constrained by CPUs, with a moderate utilization of memory.
The same pattern goes for the scenarios where the job mix
matches the system ratio (middle).

When there is a mismatch between the job mix and the
system resource capacity (right-hand side) we see that the
baseline performs poorly, and both memory and CPU have low
utilization. This happens because the baseline is constrained
by the number of large nodes, leaving normal node memory
and cores idle and decreasing the overall utilization.

In contrast, our approach uses remote memory to satisfy the
job requests, hence increasing CPU and memory utilization in
the mismatched scenarios. The jobs are not constrained by the
memory of a particular node, but by the total memory available
within the system. On average, our approach increases the



memory utilization by a factor of 1.6, while having almost
90% of CPU utilization compared to the baseline.

VII. CONCLUSION

This paper investigates how a disaggregated-memory–aware
job scheduler can make use of a disaggregated memory
platform to maintain throughput and improve response time
while using less total system memory. Since research in job
scheduling requires a simulation platform that is both faster
and less intrusive than running on a real system, this paper
extended an existing Slurm simulator to support disaggre-
gated memories. We developed a multi-node slowdown based
method to quantify the impact of remote memory sharing
on application performance and embedded this model into
the Slurm simulator. We used the simulator to develop and
evaluate at scale a disaggregated memory allocation policy
implemented in Slurm. The results show that depending on the
level of imbalance between the system and memory demands
of scheduled jobs, memory disaggregation enables resource
savings of up to 33% compared to the state-of-the-art resource
manager. The Slurm simulator extension and allocation policy
are released open source [8].
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Do we need more or could we live with less?” ACM TACO, 2017.

[4] R. Nishtala, P. Carpenter, and X. Martorell, “Performance effects on
HPC workloads of global memory capacity sharing,” in MULTIPROG,
2019.

[5] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in NSDI, 2017.

[6] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Opti-
cally disaggregated data centers with minimal remote memory latency:
technologies, architectures, and resource allocation,” Journal of Optical
Communications and Networking, 2018.

[7] F. V. Zacarias, R. Nishtala, and P. Carpenter, “Contention-aware appli-
cation performance prediction for disaggregated memory systems,” in
CF, 2020.

[8] “Disaggregated memory slurm simulator.” https://github.com/
felippezacarias/slurm simulator, 2021, accessed: 2021-04-08.

[9] M. Bielski, I. Syrigos, K. Katrinis, D. Syrivelis, A. Reale, D. Theodor-
opoulos, N. Alachiotis, D. Pnevmatikatos, E. Pap, G. Zervas et al.,
“dReDBox: Materializing a full-stack rack-scale system prototype of
a next-generation disaggregated datacenter,” in DATE, 2018.

[10] Y. Durand, P. M. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy,
G. Gaydadjiev, J. Goodacre, M. Katevenis, M. Marazakis et al., “Eu-
roserver: Energy efficient node for european micro-servers,” in 17th
Euromicro Conference on Digital System Design, 2014.

[11] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch, “System-level implications of disaggregated mem-
ory,” in HPCA, 2012.

[12] A. Rigo, C. Pinto, K. Pouget, D. Raho, D. Dutoit, P.-Y. Martinez,
C. Doran, L. Benini, I. Mavroidis, M. Marazakis et al., “Paving the
way towards a highly energy-efficient and highly integrated compute
node for the exascale revolution: the exanode approach,” in Euromicro
Conference on Digital System Design, 2017.

[13] E. project, “H2020 project number 754337,” 2009, accessed: 2019-10-
16. [Online]. Available: https://euroexa.eu/

[14] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in JSSPP. Springer, 2003.

[15] “Bsc slurm simulator,” https://github.com/BSC-RM/slurm simulator,
2021, accessed: 2021-01-20.

[16] A. Jokanovic, M. D’Amico, and J. Corbalan, “Evaluating slurm simu-
lator with real-machine slurm and vice versa,” in PMBS, 2018.

[17] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and standards
for the evaluation of parallel job schedulers,” in Workshop on Job
Scheduling Strategies for Parallel Processing, 1999.

[18] “The standard workload format,” https://www.cs.huji.ac.il/labs/parallel/
workload/swf.html, 2021, accessed: 2021-01-20.

[19] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated,
distributed OS for hardware resource disaggregation,” in OSDI, 2018.

[20] M. Amaral, J. Polo, D. Carrera, N. Gonzalez, C.-C. Yang, A. Morari,
B. D’Amora, A. Youssef, and M. Steinder, “Drmaestro: orchestrating
disaggregated resources on virtualized data-centers,” Journal of Cloud
Computing, 2021.

[21] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020.

[22] A. De Blanche and T. Lundqvist, “A methodology for estimating co-
scheduling slowdowns due to memory bus contention on multicore
nodes,” in International conference on parallel and distributed com-
puting and networks, 2014.

[23] ——, “Addressing characterization methods for memory contention
aware co-scheduling,” The Journal of Supercomputing, 2015.

[24] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten, “Bandwidth
bandit: Quantitative characterization of memory contention,” in CGO,
2013.

[25] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in MICRO, 2011.

[26] BSC, “Profet: Code for generating memory bandwidth load, for
different read traffic ratios and bandwidth intensity.” 2019, accessed:
2019-10-16. [Online]. Available: https://github.com/bsc-mem/PROFET

[27] I. Corporation, “Intel® Xeon® processor E5-2600 product family uncore
performance monitoring guide,” tech. rep., March 2012.

[28] D. Molka, D. Hackenberg, and R. Schöne, “Main memory and cache
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