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Dr. Joaqúın Alberto Hernández Ortega

Degree:

Bachelor on Aerospace Technologies Engineering

Call:

Spring, 2022 - Extension



Study of Machine Learning Techniques
for modelling Large Structural Vibrations

Abstract

The main purpose of the present work can be divided into two separate objectives.

The first one and most important is to study the different computational techniques that are used in the

structural vibrations modelling field in both the linear and nonlinear regimes, as well as their methodology

of implementation. In particular, this thesis places special emphasis on a specific order-reducing model

called hyperreduction. This approach makes use of Machine Learning techniques such as the Singular Value

Decomposition to solve an optimization problem that selects the set of reduced elements to be integrated

from the entirety of finite elements of the mesh.

To do so, several simulations are launched an analysed throughout the study. These simulations intend to

estimate the dynamic response that a simple 2D cantilever beam would suffer when subjected under different

types of boundary conditions. Such a task is performed thanks to a Finite Element Method based on the

Galerkin approximation. With the help of Matlab, the semi-discrete equation of motion that governs the

dynamic response of the system can be computationally integrated making use of the Newmark-Bossak

scheme and the Newton-Raphson algorithm.

The results obtained from the Finite Element study will be compared with the analytical solution deduced

from the modal analysis decomposition technique and also with the results obtained from the hyperreduction

stage.

On the other hand, the second goal of this thesis is to study the dynamic response of the above-mentioned

structure when subjected to the action of real wind gusts. This study is included in the list of simulations to

be launched in this project.

In this sense, the Fast Fourier Transform (FFT) is also employed in order to obtain a continuous representation

in the time domain of a discrete data set representing real measurements of wind speed.

The main conclusion of this work is that the hyperreduction method is significantly more efficient than a

standard Finite Element method since it requires less than 1% of the finite elements of the mesh to integrate

the semi-discrete equation of motion, thus contributing to achieving reductions of up to 96% in computational

time within an accuracy tolerance of the order of 10−3. Therefore, this technique is a highly valuable tool in

any engineering field that involves simulations with very refined meshes or with complex nonlinear conditions

among others, since they require great computational efforts.
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for modelling Large Structural Vibrations

El principal propòsit d’aquest treball es divideix en dos objectius diferenciats:

En primer lloc, l’objectiu més important és el d’estudiar les diferents tècniques de computació que s’utilitzen

en el camp de la modelització de vibracions estructurals, tant en el règim lineal com en el no lineal, aix́ı

com la seva metodologia d’implementació. En particular, aquesta tesis dona especial importància a un

mètode concret de reducció d’orde, anomenat hiperreducció. Aquest mètode fa servir tècniques de Machine

Learning com per exemple el Singular Value Decomposition per resoldre un problema d’optimització que

permet seleccionar el conjunt d’elements a integrar, respecte del total d’elements finits que formen la malla.

Per fer-ho, es llancen un conjunt de simulacions al llarg de l’estudi. Aquestes simulacions intenten estimar

la resposta dinàmica que experimentaria una biga 2D en volad́ıs quan fos sotmesa sota diferents tipus de

condicions de contorn. Aquesta tasca com a tal és realitzada gràcies a un Mètode d’Elements Finits basat

en l’aproximació de Galerkin. Amb l’ajuda de Matlab, l’equació semi-discreta de moviment que regeix la

resposta dinàmica del sistema es pot integrar computacionalment fent servir l’esquema de Newmark-Bossak i

l’algoritme de Newton-Raphson.

Els resultats obtinguts del estudi d’Elements Finits es compararà amb la solució anaĺıtica dedüıda de l’anàlisi

de descomposició modal aix́ı com també amb els resultats obtinguts de l’hiperreducció.

Per altra banda, el segon objectiu d’aquesta tesis és poder estudiar la resposta dinàmica de l’estructura

mencionada anteriorment quan aquesta és sotmesa a l’acció de ràfegues de vent reals. Aquest estudi està

inclòs a la llista de simulacions que es llançaran al llarg del projecte.

En aquest sentit, la Transformada Ràpida de Fourier (FFT) és també usada amb la intenció d’aconseguir

una representació continua en el domini temporal d’un conjunt de dades que representen mesures reals de la

velocitat del vent.

La conclusió principal d’aquest projecte és que el mètode d’hiperreducció és significativament més eficient

que un mètode estàndard d’Elements Finits ja que només necessita menys d’un 1% del total d’elements

finits que formen la malla per integrar l’equació semi-discreta de moviment, contribüınt aix́ı a aconseguir

reduccions de fins el 96% en temps de computació dins una tolerància de precisió de l’orde de 10−3. Per tant,

aquesta tècnica és una eina altament valuosa en qualsevol camp de l’enginyeria que involucri simulacions

amb malles molt denses o amb condicions no lineals complexes entre altres, ja que requereixen grans esforços

computacionals.
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Chapter 1

Introduction

1.1 Object

The object of this project is to get familiar with the computational techniques that are used in real-life

projects that study both linear and nonlinear structural vibrations, going through the time integration

schemes, rigid body semi-discrete equations of motion, etc. and to explore a specific ML approach that

significantly enhances the computational efficiency.

In this project, the student will conduct a study on the finite element method (FEM) used for modelling

structural vibrations of large amplitude, going through the conventional computational techniques applied to

this theory and exploring other new methodologies that combine the conventional ones with machine ML

technique known as Hyperreduction Order Model (HROM).

On the one hand, the student will conduct several FEM simulations in the linear regime, including the analysis

of the dynamic response of a structure submitted to real wind gusts. On the other hand, the nonlinear regime

will also be analysed and discussed.

1.2 Scope

This project will be divided into five different blocks.

1. Introduction to large strains

In this block the student will complement and expand his education on the theory of small strains,

as well as get introduced to the large strains regime in both the static and the dynamic regimes.

Furthermore, he will acquire familiarity with some computational methods used to study these regimes,

such as the Newmark-Bossak method (for integrating the semi-discrete motion equation) or the theory

of model order reduction for linear structures (standard modal analysis).

2. Studying and understanding the formulation and methodology behind both the Finite

Element Method (FEM) and the modal analysis code
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In this pack, the student will examine a series of given Matlab codes used for simulating small and

large strains in structural analysis and understand its functioning, thanks to the acquired theory from

the first block. Precisely, the student will carry out the analysis of the Newmark-Bossak method, the

Newton Raphson algorithm and the classical linear modal approach.

3. Code testing and adapting

Once the student is able to understand the coding, he will run a series of finite element simulations for

different boundary conditions and external forces to compare the performance of the Newmark-Bossak

method with the predictions provided by the linear modal analysis. To conduct this variety of studies,

the student will also have to perform some adaptations and/or modifications to some functions of the

original code.

Moreover, to conduct a more rigorous analysis, the student will make use of the software GiD for pre

and postprocess purposes, in order to visualize the behaviour of the structure in a clearer way.

4. Study of the hyperreduced order model (HROM) and comparison with other techniques

As done in blocks 2 and 3, the student will study the theory behind the HROM and the ML techniques

for mining data from FE simulations that this method implies.

A comparison of this method’s results with the predictions from both the modal analysis and the FEM

will also be performed in this block.

5. Fourier analysis

This pack is independent of the rest and its objective is to obtain a temporal and continuous expression

from a series of discrete data obtained from real measurements of wind speed along time.

To do that, the student will have to create a code which will make us of the Fast Fourier Transform

(FFT) algorithm.

It is important to notice that, except for the last block, the student will not develop any original Matlab code,

nor will he create any structure or mesh using GiD. All these resources will be provided by this project’s

director in order for the student to be able to conduct a proper and complete study within the accepted time

allocations.

However, the student will have to conduct some adaptations to the given code, since it is only prepared to

cope with specific boundary conditions.

Buckling analysis, code optimization and aerodynamic analysis are out of the scope of the present work.

1.3 Requirements

The requirements that the final solution of this project must meet are divided into project management

requirements and technical requirements.

Project management requirements:
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• The project dedication must be roughly 300 hours.

• The project must be written and presented in English.

• There must be a project meeting at least one day a week with the project director to monitor and

supervise the advances made by the student.

• Deadlines must be respected.

Technical requirements:

• All the data obtained from all the FE or HROM simulations must be extracted and stored offline.

• The developed code must be created with and for MATLAB and must be as accurate and efficient as

possible.

• Any creation or modification of the finite element structure or its mesh must be carried out using GiD.

• The pre and post process of any simulation or test must be done with GiD.

1.4 Rationale

Data-driven discovery is currently revolutionizing how we model, predict, and control complex systems. The

most pressing scientific and engineering problems of the modern era are not amenable to empirical models or

derivations based on first-principles. These systems are typically nonlinear, dynamic, multi-scale in space and

time, high-dimensional, with dominant underlying patterns that should be characterized and modeled for the

eventual goal of sensing, prediction, estimation, and control. With modern mathematical methods, enabled

by unprecedented availability of data and computational resources, we are now able to tackle previously

unattainable challenge problems [1].

Driving modern data science is the availability of vast and increasing quantities of data, enabled by remarkable

innovations in low-cost sensors, orders-of-magnitudes increases in computational power, and virtually unlimited

data storage and transfer capabilities. Such vast quantities of data are affording engineers and scientists across

all disciplines new opportunities for data-driven discovery, which has been referred to as the fourth paradigm

of scientific discovery [2]. This fourth paradigm is the natural culmination of the first three paradigms:

empirical experimentation, analytical derivation, and computational investigation. In the context of this new

paradigm, machine learning techniques and algorithms play a crucial role, as they are created to cope with

such large amounts of data (nowadays also referred as Big Data) obtained from measurements of a complex

system, identify and classify it, and combine it with the theory that governs the above-mentioned method to

produce fast, efficient subrogate models, able to provide predictions in almost real time.

Increasingly, researchers are turning to data-driven approaches for a diverse range of those complex systems,

such as turbulence, the brain, climate, epidemiology, finance, robotics, autonomy and structural vibration

modelling among others.

In this circumstance and relating to these novel techniques, accurate modelling of structural vibrations of
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large amplitude is of utmost importance in the aerospace field. The industry of aviation is gaining more and

more importance through the years and it does not appear to be changing in the future. Two of the most

important aspects of this sector are safety and reliability. Being able to predict the structural behaviour of a

plane when given, for example, some specific meteorologic conditions, would represent a major breakthrough

for the industry.

As such, this project will intend to carry out a study of how small and large strains caused by the effect

of random wind gusts are computationally modelled using the FEM combined with the FFT, and answer

whether certain new ML techniques and algorithms can be applied to the FEM for the sake of modelling the

dynamic structural response in a more efficient way.
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Chapter 2

Review of the state of the art

Taking into consideration that this thesis addresses different topics, this chapter intends to give a brief

contextualization of the state of the art of each of them.

2.1 Finite Elements Method

Essentially, a Finite Element Method is an approximation method that reduces a problem space, most usually

a structure, into a numerous small and easier to deal with pieces referred to as the finite elements.

Analysing the semi-discrete equations that govern the behaviour of the structure is way simpler when the

physical domain is a quadrilateral/triangular element, for 2D cases, or a tetrahedral/hexahedral element for

3D cases.

FEM was originally developed for engineering analysis to model and analyze complex systems in mechanical,

civil, and aeronautical engineering. It has as its foundation the basic concepts of mechanics, such as Newton’s

laws of motion, conservation of mass and energy, equilibrium, and the laws of thermodynamics.

FEMs are nowadays used inside a wide range of applications, being the more common ones the study of

structural mechanics of structures under different loading conditions, the heat flows, or the distribution of

electromagnetic radiation.

Such phenomena are described by multiple interdependent partial-differential equations that involve different

variables (being space and time the most usual). The main intention of the FEMs is to deal with these

equations and, to do so, they use one of the following approaches:

• Variational methods: are the most common in FEMs and is the technique that will be addressed in

this thesis. They are based on the energy minimization principle.

Knowing the equations that define the minimum-energy condition enables the definition of “weak form”

equations, so called because they allow for discontinuities that are inherent in a system in which each

element is analyzed separately.

These equations enable discretization to a set of matrix equations (one for each finite element), which
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are solved by an iterative solver.

• Finite difference analysis: it approximates the derivatives driving the PDEs by use of finite difference

equations.

The Finite Elements Method can be employed to analyse three types of problems:

• Static: Frequently used in structural analysis to assess the stress that certain parts of a structure can

be exposed to when specific loads are applied.

• Dynamic: its main application is in systems where external conditions change over time, producing

motion (in structural analysis) or heat flow (in thermodynamics analysis).

• Modal: It is widely used in structural analysis to evaluate the effects of vibration on a structure.

In this thesis, only the dynamic and modal approaches will be carried out.

According to [3] several variants of the FEM exist depending on the characteristics of the problem to analyse:

• Extended FEM: applied in systems with discontinuities, such as fractures.

• Generalized FEM: makes use of advanced meshless methods in combination with the traditional

ones.

• Mixed FEM: employed in problems that involve contact between two moving parts.

• hp-FEM: used when the equations have different order depending on the element and thus the mesh

needs to be refined on specific places.

• Galerkin FEM: which converts a continuous problem, i.e a differential equation in its weak form, to a

discrete problem by applying constraints determined by finite element basis functions that are needed

to approximate and integrate the internal forces.

The FEM that will be employed in this work is a Galerkin FEM whose basis functions are linear.

2.2 Reduced-Order Methods

A class of approximated methods that is receiving increasing attention in recent years are those combining

the FE method at the coarse-scale and Reduced-Order Modeling (ROM) at the fine scale [4]. Because of its

relevance within the present work, the basic principles of these approaches - hereafter referred to as FE-ROM

methods - are described in what follows.

Like classical model reduction methods for linear modal analysis, FE-ROM methods rely on the approximation

of the displacement field of the structure as a linear combination of a few characteristic modes. The distinct

feature here is that these modes are not obtained via the modal decomposition analysis, but rather determined

from computational experiments.

The matrix of modes is obtained in a process that is performed offline: FE analyses of the structure subjected

to representative deformation histories are conducted; and then the set of computed solutions is processed by
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dimensionality reduction tools in order to identify and unveil the most statistically dominant displacement

modes [5].

In cases where the governing equations feature nonlinear relationships between the state variable and the input

parameters, these methods entail two sequential stages [6] to achieve a dimensional reduction: projection

onto the reduced basis and approximation of the nonlinear term.

The first stage consists in introducing the approximation of the state variables in the governing equation and

subsequently posing the resulting equation in the space spanned by the basis matrix. Galerkin projection of

the FE equilibrium equations onto the subspace spanned by these modes leads to a reduced-order model with

far fewer equations that the original FE model and thus reduces the computational effort.

To complete the reduction process, the projection has to be accompanied by a second stage that consists on

an efficient integration rule, tailored to the physics of the problem: ROM with efficient integration rules are

known as Hyperreduced-Order Models (HROM) [7].

Some of the procedures to conduct these second stage are the Empirical Interpolation Method (EIM) [8], [9],

the Best Point Interpolation Method (BPIM) [10], the Discrete BPIM [11] or the Missing Point Estimation

Method [12].

Nonetheless, the present work is not interested in the construction of the low-dimensional interpolant

required in the above-mentioned approaches, and it focuses the attention on solving the balance equations at

appropriately selected points. This idea, known as collocation, is proposed in [7] and is based on the idea of

approximating the integral of the nonlinear vector rather than approximating the vector itself. Such operation

can be performed by either computing a low-dimensional approximation of the integrand or, as it is the case

in this thesis, by approximating the integral itself as a weighted sum of the integrand evaluated at optimal

sampling points thanks to cubature methods - which are similar to the Gauss quadrature of polynomials.

More precisely, the cubature-based ROM that will be employed in the present work is the Empirical Cubature

Method (ECM), proposed by [13] and which essentially determines, among the integration points of the FE

mesh, a reduced set of points and associated positive weights so that the integration error is minimized over a

set of representative samples of the integrand. This technique makes use of the Singular Value Decomposition

to efficiently perform the dimensionality reduction process, selects the p dominant modes of the problem

and finally selects the above-mentioned points by integrating the p dominant modes. According to [13], the

integration can be exactly solved with m = p+ 1 Gauss points.
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Chapter 3

Methodology

3.1 Finite Element Method Implications

As it has been briefly introduced in the previous chapters, the solution of this project will require the use of

FEMs. This methods need both pre and post-process actions in order to create the mesh of the structure

on which the balance equations will be solved, and also to be able to represent and analyse its results. As

mentioned, these processes will be carried out with the aid of a software called GiD, which is developed by

CIMNE (International Centre of Numerical Methods in Engineering), Barcelona.

Pre-process tasks include the definition of the structure to be analysed, as well as its meshing, material,

Neumann boundary conditions, etc. The structure that will be used throughout this project is a simple but

legitimate 2D cantilever beam (embedded on one end and free on the other), as exemplified in figure 3.1

whilst its mesh is depicted in figure 3.2.

Figure 3.1: Example of a 2D cantilever beam. Its length L is 1 meter, while its height h is just 2 cm.
Source: Own elaboration.
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Figure 3.2: Representation of the mesh of the cantilever beam created using GiD.
Source: Own elaboration.

Since one of the main objectives of the present work is to study the response of the structure under the

influence of wind gusts, it has been considered that the material that would be the most realistic given such

circumstances is aluminium. The wind is a phenomena of interest in the aerospace industry and, as it is

widely known, the vast majority of aeronautical structures are mostly made of aluminium.

This material has the following properties:

Property Young Modulus (E) Poisson Coefficient (v) Density (ρ)

Value 70000 MPa 0.33 2712× 10−6 kg/m3

Table 3.1: List of the properties that will be needed for this project studies.

Since it is a cantilever beam, the Neumann boundary conditions have to restrict any displacement and

rotation on the embedded end.

As it can be seen in figure 3.1, the finite element mesh is a structured mesh consisting on quadrilateral

elements. In the physical domain, a quadrilateral element has four nodes, i.e one for each corner. However, in

the FE analysis there are usually more nodes. Depending on the desired degree of accuracy of the FEM,

one finite element (FE) may consist on higher nodes. The more nodes there are in an element, the higher

accuracy is obtained when solving the FE integrals. Figure 3.3 represents the default case of analysis, in

which the FE mesh will have 506 elements of 9 nodes each, thus 1407 nodes.
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Figure 3.3: Representation of the 9 node quadratic elements that form the mesh.
Source: Own elaboration.

Figure 3.3 shows the order of the nodes according to the criteria that GiD uses by default. This criteria will

be crucial to identify every node correctly when understanding the FE code.

ξ and η are the coordinates of the FE parent domain, which are further addressed in chapter 4.

3.2 Work Methodology

The methodology followed throughout the execution of this project has been based on the different work

packages exposed in the scope (see section 1.2).

The first step aim is to acquire the necessary background on the structural dynamics field in both the linear

and nonlinear regimes, as well as the finite element methods behind them. Furthermore, the student will

have to investigate and research on the order reducing methods that exist and some of the ML that they

require to decrease the computational cost of those studies.

All the information gathered during the first stage is summarised in chapter 4. This content will serve as a

guideline for all the remaining tasks that contribute to make up the final solution.

Once the theoretical framework behind this work is settled, it is time to analyse the FE code that is provided

to the student with the objective to conduct this project’s studies.

At the beginning of the project, the code is able to obtain the dynamic response in both the linear and

nonlinear regime, and is also able to conduct the HROM. However, the code is only prepared for cases where

the external force consists on a harmonic and uniformly distributed force with the form:

F ext(t) = F̄ sin(Ωt) (3.1)
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Moreover, the code is only prepared to obtain the analytical solution (i.e the modal decomposition analysis)

for the undamped vibration case.

One of the final objectives of this project is to study the dynamic response of a structure subjected to real

wind gusts. Those wind gusts will be represented by a Fourier expansion thanks to the FFT algorithm, so all

the code adaptations will be carried out with the intention of being able to obtain the temporal evolution of

a structure subjected to an external force consisting on a large combination of sines (i.e a Fourier expansion).

Moreover, to compare the results with the analytical solution, the code will also have to solve the modal

analysis for the damped vibrations produced by this type of force.

To reach that point, the student will conduct several simulations for different types of external forces and

boundary conditions (including large strains conditions), which will help to verify that all the necessary

adaptations work correctly and to gain confidence with the code.

First of all, the damped case will be solved exclusively for one sine. Afterwards, once everything works,

the process will be repeated but with an external force consisting on a combination of 10 sines, which will

simulate a truncated Fourier expansion. Furthermore, the student will also study the nonlinear regime by

launching different simulations under this condition, and comparing its results with the linear response.

All these simulations and their respective results will be later discussed in chapter 6. As it has been previously

advanced, the modal decomposition analysis will be the analytical solution used to understand the precision

of the results obtained in the different simulations.

As it has been mentioned, this project seeks to study the response of a structure under the action of the

wind, among other objectives. That being said, the code will need an external force function that is able to

represent the wind speed along time.

In the real world, wind tends to be rather random and, although there are statistical and complex methods

to represent it, those are totally out of this project scope. Instead, the approach that will be performed

in this work will be to take real measurements of wind speed in a wind turbine blade and try to obtain a

continuous time function that would match with the discrete data. To do that, the FFT algorithm will be

used in order to extract a Fourier expansion from the original data, which will be later used to obtain the

time expression of the external force that the wind would produce on the structure.

Finally, and once the code works well with the FFT, the student will be able to conduct the final simulation

which will give out the dynamic response of the structure exposed to real wind gusts. In this final task, the

student will obtain and compare results from 3 different approaches: the FEM, the HROM and the analytical

or modal analysis.

Based on these results, the student will discuss and extract some conclusions on the effectiveness and feasibility

of the HROM in the field of structural vibrations modelling.

During the entire development of the solution, the student will collect all the necessary information about

the different simulations and all the considerations and code modifications associated to each of them.

Given the complexity of the code, this procedure will allow the student to track all the simulations no matter
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when they are launched. This way, if any inconsistency is to appear, the student is able to detect its origin

in an easier and more comfortable way, and is also capable of retracting his own steps by undoing all the

incorrect code modifications.

All these information is gathered with Matlab in a format that has the extension .mlx, i.e Live Scripts.

This work environment is ideal if one wants to launch different simulations while also writing down some

considerations about them that may be relevant in the future.
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Chapter 4

Theoretical Framework

Structural dynamics is an engineering field that studies the dynamic behaviour of structures. This dynamic

response is caused by one or more external dynamic loads. Dynamic stresses can include people, wind, waves,

earthquakes, etc. and can affect any kind of structure. Precisely, one of the goals of this project is to study

the response of a structure when submitted to the effect of real wind gusts.

To better understand the methodology that has been carried out to achieve the final solution, this chapter

will try to give a background on the theory that surrounds this work.

First of all the physical equation of motion derived from the linear regime problem will be formulated and

discussed. Afterwards, the computation formulation and time integration method will be explored and

compared with the analytical approach. Then, the same procedure will be followed for the case of nonlinear

structural vibrations and, finally, the Reduced Order Models (ROM) and the ML techniques behind them

will be introduced.

4.1 Preliminaries

Before beginning with the theoretical framework, this section will expose some of the preliminary notation

that will be respected henceforth:

4.1.1 Notation

• nsd = 2 or 3, will refer to the space dimension of the problem.

• The concept Degree of Freedom (DOF) refers to the direction in which a node can move. Every node

has as many DOFs as dimension has the problem.

• Ω0 is an open set, representing the physical domain, with piecewise smooth boundary Γ0, representing

the boundaries of the physical domain.

The sub index 0 indicates the undeformed or initial configuration. Ωt and Γt are the same but in the

deformed configuration.
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• N and n denote the unit outward vector to Γ0 and Γt respectively.

• In the Finite Element analysis, the sub-indices r will refer to the restricted or prescribed degrees of

freedom, while the sub-indices l will represent the unrestricted or free degrees of freedom.

• The Voigt notation avoids repeating the non-diagonal components of a symmetric tensor, with the

objective of saving computational effort and avoiding redundancies (see equation 4.1).

When using this notation, the tensors will be written between braces as:

E =


E11 E12 E13

E12 E22 E23

E13 E23 E33


→ {E} =



E11

E22

E33

E23

E13

E12



(4.1)

4.1.2 Large Strain Kinematics

• The material or Lagrangian coordinates (X) will refer to a general point in Ω0, which will be identified

with a position vector emanating from the origin of the cartesian coordinates.

It is important to notice that X includes all the coordinates of the point, and not only the x coordinate.

• The spatial or Eulerian coordinates (x) will denote the coordinates ofX but in the deformed configuration

Ωt.

• The displacement field, which will be the solution of the FE analysis, will be represented as:

u(X, t) = ϕ(X, t)−X (4.2)

Where ϕ is the function that represents the motion from Ω0 to Ωt, and t denotes the time, which

domain will be [0, T ].

• The velocity and acceleration fields:

u̇(x, t) =
∂u

∂t
, ü(x, t) =

∂2u

∂2t
(4.3)
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• The deformation gradient, which identifies the deformation state at any X ∈ Ω0, will be expressed as:

F =
∂ϕ

∂X
=



∂ϕ1

∂X1

∂ϕ1

∂X2

∂ϕ1

∂X3

∂ϕ2

∂X1

∂ϕ2

∂X2

∂ϕ2

∂X3

∂ϕ3

∂X1

∂ϕ3

∂X2

∂ϕ3

∂X3


(4.4)

This second order tensor is used to relate an infinitesimal line segment from the undeformed configuration

with an infinitesimal line segment from the deformed configuration:

dx = F dX (4.5)

From equation 4.2, F can be expressed in terms of the gradient of the displacements as:

F = ∇0u+ I =
∂u

∂X
+ δ −→ F =



∂u1

∂X1

∂u1

∂X2

∂u1

∂X3

∂u2

∂X1

∂u2

∂X2

∂u2

∂X3

∂u3

∂X1

∂u3

∂X2

∂u3

∂X3


+


1 0 0

0 1 0

0 0 1


(4.6)

• The Green-Lagrange strain tensor will be expressed as:

E =
1

2

(
FTF − I

)
(4.7)

According to 4.6, E can be expressed as

E =
1

2

(
(∇0u+ I)T (∇0u+ I)− I

)
=

∇s
0u︷ ︸︸ ︷

1

2

(
∇0u

T +∇0u
)
+
1

2
∇0u

T∇0u (4.8)

4.1.3 Stress Measurements

• The Cauchy stress tensor σ (see [14]), which is used to obtain the traction vector t (force per unit

deformed area) in the deformed configuration, will be referenced as

t = σn (4.9)

• The Kirchhoff stress tensor, τ , is the same as σ, but measured of undeformed area units (force per unit

undeformed area):

t0 = τn (4.10)

The relation between τ and σ is

τ = detF σ (4.11)
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• The first Piola-Kirchhoff stress tensor, P (abbreviated PK1 stress), relates t0 with the normal of a

given surface in the undeformed configuration:

t0 = PN (4.12)

And

P = τF−T (4.13)

• The second Piola-Kirchhoff stress tensor (abbreviated PK2 stress), S, relates normals of a given surface

in the undeformed configuration to a traction vector T defined in the undeformed configuration as well:

T 0 = SN (4.14)

S can be related to τ with the following expression:

S = F−1τF−T (4.15)

And thus equation 4.13 can be also expressed as:

P = F S (4.16)

• The elasticity tensor C is used to relate the second Piola-Kirchhoff stress tensor S with the Green-

Lagrange strain tensor E.

In the linear regime and for isotropic materials, the elastic tensor is defined by Hooke’s Law and relates

the PK2 stresses with the Green-Lagrange strains. This relationship is also know ans the constitutive

equation, given by:

S = C E (4.17)

Where C is a fourth order tensor (n2
sd × n2

sd) that depends on the lame parameters λ and µ, which are

functions of the Young’s modulus E and the Poisson’s coefficient ν.

This tensor will be further discussed in sections 4.2 and 4.3.

4.1.4 Boundary Conditions

• The Dirichlet boundary conditions, which refer to the prescribed displacements on undeformed bound-

aries Γi
0u (i going from one to the number of dimensions of the problem nsd), will be expressed

as

ui = ūi (4.18)

• The Neumann boundary conditions, which refer to the prescribed tractions on undeformed boundaries
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Γ0
i
σ, will be expressed as

PiJNJ = t̄0i (4.19)

• The initial conditions, i.e at t0, will be denoted as:

u(X, 0) = u0(X), u̇(X, 0) = v0(X) (4.20)

4.2 Linear Regime: Small Strains

In many structural design problems it can be assumed that ∥E∥ << 1. This is the same hypothesis that

holds in the small displacement case, except that, in that case, the hypothesis is formulated in terms of the

infinitesimal strain tensor ϵ. It is important to remark that neither follower loads nor rotational frames are

considered in the scope of this project.

To address the dynamic problem, it is necessary to introduce the static formulation.

4.2.1 Static Strong Form

In this kind of problems, the motion is considered to be quasi-static, which means that the instantaneous

acceleration can be neglected and thus the system will always find itself in physical equilibrium, which is why

the problem can be treated statically.

The governing equation and boundary condition, also known as the strong form of the problem or physical

system, can be expressed as (indexes i, J take values 1 . . . nsd, where nsd = 2 for 2D problems, and nsd = 3

for 3D problems):

S.F



Given fi : Ω0 → R, ūi : Γ
i
0u → R, t̄0i : Γi

0σ → R, find ui : Ω̄0 → R such that

∂PiJ

∂XJ
+ fi = 0, in Ω0

ui = ūi on Γi
0u

PiJNJ = t̄0i on Γi
0σ

(4.21)

Where fi : Ω0 → R, i, j = 1, 2 . . . nsd denotes the body force per unit volume (see [15], page 121).

4.2.2 Dynamic Strong Form

In the dynamic analysis, the acceleration is indeed considered, which means that one must take the inertial

force into account when defining the governing equations. In addition, the physical displacements field u(X),

besides of being space dependant, will now also depend on time.

Moreover, it should be noted that, in dynamic analysis, the frictional resistances opposing the motion of the

physical system or structure must be also considered. More commonly know as viscous damping terms, they
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can be caused by the aerodynamic resistance of the fluid surrounding the structure, internal micro structural

movements, etc. These losses are often related to the velocity in a nonlinear way, but, to avoid complexity,

the term will be considered linear with velocity through the viscosity parameter µ0 : Ω0 −→ R (see [16]).

That being said, the strong form of the dynamic approach is derived from the static formulation by adding

the following new terms to the body forces per unit volume:

f −→ fstatic − ρ0ü− µ0u̇ (4.22)

Where ρ0 : Ω0 → R represents the density of the surrounding fluid, being the air in this project. Notice that

both new body forces involve the minus sign, which means that both of them oppose to the movement and

will apparently try to dissipate it.

The strong form can be then written as

S.F.



Given fi : Ω0 × [0, T ]→ R, ūi : Γ
i
0u → R, t̄0i : Γi

0σ × [0, T ]→ R, find ui : Ω̄0×
[
0, T

]
→ R such that

∂PiJ

∂XJ
+ fi − µ0u̇i = ρ0üi, in Ω0

ui = ūi on Γi
0u×

[
0, T

]
PiJNJ = t̄0i on Γi

0σ×
[
0, T

]
ui(X, 0) = u0

i (X) X ∈ Ω0

u̇i(X, 0) = u0
i (X) X ∈ Ω0

(4.23)

4.2.3 Finite Element Basis Functions

As it has been already mentioned in the state of the art review (see chapter 2), the main objective of any

FEM is to solve the differential equations that govern any physical system.

The basis functions that will be used in this work will consist on linear finite element functions or degree one

polynomials. For example, for a 1D mesh like the one depicted in figure 4.1, the basis function would be:

N(x) =


x2−x
x2−x1

if x ∈ [x1, x2]

0 otherwise

(4.24)

However, in cases like the one studied in this project, where the dimension is 2, each element has its own

origin of coordinates, which do not match with the physical origin of coordinates. The elemental reference

system is called the parental domain ξ, (see figure 3.3).

In this case, the mesh is 2D and the shape function:

Ne
ξ = [(1− ξ)(1− η) (1 + ξ)(1− η) (1 + ξ)(1 + η) (1− ξ)(1 + η) ] (4.25)

18



CHAPTER 4. THEORETICAL FRAMEWORK
Study of Machine Learning Techniques

for modelling Large Structural Vibrations

To go from one domain to the other:

X = Ne
ξ Xe ←→ X(ξ) = Xe NeT (ξ) (4.26)

The spatial derivative of this elemental shape function is also of interest when solving the balance equation

that appears in the strong form (deduced in the previous section 4.2.2). Nevertheless, one needs to distinguish

between the derivative in the parental domain Be
ξ and the in the physical domain Be.

Be
ξ = ∇ξN

e =


∂Ne

∂ξ

∂Ne

∂η

 =
1

4

−(1− η) (1− η) (1 + η) −(1 + η)

−(1− ξ) −(1 + ξ) (1 + ξ) (1− ξ)

 (4.27)

Be is also the spatial derivative but, this time, in the physical domain:

Be = ∇Ne = Je−T (∇ξN
e) = Je−TBe

ξ (4.28)

Where Je is the elemental Jacobian of the domain transformation, which, in 2D cases, can be expressed as

follows:

Je =


∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

 (4.29)

As it can be seen in figure 4.1, in the 1D case, these functions have their maximum value when x is situated

at the node that they represent.

Figure 4.1: Linear basis functions for a 1D structure composed of 5 nodes.
Source: Extracted from [17].

In the 2D case, however, the concept is the same but it is harder to represent. Nevertheless, figure 4.1 can be

19



CHAPTER 4. THEORETICAL FRAMEWORK
Study of Machine Learning Techniques

for modelling Large Structural Vibrations

understood as the behaviour of Ne when y is maintained constant and x is varied among this dimension.

The essence of these FE basis is to interpolate the displacement coefficient d, that the FEM has solved for

every degree of freedom (DOF) from every node of the mesh, to the entire physical domain of the structure.

This way, the solution of the problem will be constructed by a linear combination of these shape functions

and the displacement coefficients obtained by the FEM. This construction is also known as trial function

vector uh(X, t), and is expressed as:

u(X, t) ≈ uh(X, t) =

n∑
i=1

Ni(x)di(t) = [N1(x) N2(x) ... Nn(x)]



d1(t)

d2(t)

...

dn(t)


= N(x) d(t) (4.30)

4.2.4 Dynamic Weak Form

As it has been shown in figure 4.1, basis functions are only continuous in the vicinity of the node that they

are associated to. Taking a look into the strong form of the problem (see balance equation in 4.23), one can

spot the presence of the following spatial derivative:

∂PiJ

∂XJ
(4.31)

Regarding equations 4.16 and 4.17, the previous expression can be rewritten as:

∂

∂XJ
FilSlJ =

∂

∂XJ
FilClJKLEKL (4.32)

Where the Green-Lagrange strain tensor E depends on the physical displacement u.

If FE analysis is to be conducted, the physical displacement field u has to be substituted by the trial function

vector uh in the balance equation inside the strong form 4.23, which would result in an expression called the

residual force r(X;u; t). In this case, the above expression 4.32 will also depend on the basis functions N .

Carrying out this spatial derivative would imply deriving N , and that would result on discontinuities at the

points where N reaches its maximum.

If the spatial derivative could be avoided, the continuity inconsistencies would not have any repercussion and

the differential equation of the strong form would be solvable using the FEM.

The weak form does exactly that by converting the differential equation into an integral form which has a

lower order and is usually easier to solve than the strong form. Moreover, when transforming the initial

differential equation into an integral, one is also considering the boundary conditions in the same equation

thanks to the limits of integration.
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This alternative formulation makes use of a mathematical construction called test functions (vh):

vh(X) = N(X) c (4.33)

Where N is the vector of FE basis functions and c is a vector of coefficients that has the same dimension as

the vector of displacement coefficients d. Furthermore, to respect the prescribed displacements (ū = 0), it is

imposed that cr = 0, where r refers to the restricted or prescribed degrees of freedom that are derived from

the Neumann boundary conditions.

Understanding the entire mathematical analysis behind the weak form is out of the scope of this work.

Nevertheless, according to [18], the weak form is a method that tries to nullify the effect of the residual forces,

since, in a real problem, they would be nonexistent.

One can understand the test functions as a tool that guarantees the condition of orthogonality between the

residual r(X;u; t) and the real displacement field u(X, t).

Since the trial functions uh are an approximation of u, the residual will never be strictly equal to zero and

that is a condition that must be met, according to the strong form 4.23. The test function vector and its

consequent orthogonality condition are the mathematical resources which ensure that the work or energy

produced by the residual forces r(X;u, t) will be equal to zero, and thus allow the problem to be solved using

the FEM.

The weak form is then obtained by integrating the energy produced by the residual forces and using the test

function vh as a ”trick” to ensure that this energy will be zero.

Making use of the Divergence Theorem to shift the derivatives on the stresses PiJ to the test functions vhi ,

one can finally obtain the expression of the weak form:

W.F.



Given f : Ω0 × [0, T ]→ Rnsd , t̄ : Γ0σ × [0, T ]→ Rnsd ,

find u ∈ Sh
(
with u(X, 0) = u0, u̇(X, 0) = v0

)
so that

∫
Ω0

vh
T

ρ0üdΩ0 +
∫
Ω0

vh
T

µ0u̇dΩ0 +
∫
Ω0

{
∇0v

h
}T {P (uh)}dΩ0 =

∫
Ω0

vh
T

fdΩ0 +
∫
Γ0σ

vh
T

t̄0dΓ0 ∀v ∈ Vh

(4.34)

Where the integrals can be physically understood as, from left to right, the inertia forces, the damping forces,

the internal forces, and the external forces (consisting on body and traction forces).

Vh and Sh are the finite dimensional space of test functions vh(X) and trial functions uh(X, t) respectively.

Expressing the velocity u̇ and acceleration ü as u̇h and üh,

∂uh(X, t)

∂t
= N(X)ḋ(t) and

∂2uh(X, t)

∂t2
= N(X)d̈(t) (4.35)

Substituting the preceding equation 4.35 as well as equation 4.33 into the weak form 4.34, and factoring out
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cT , one gets:

cT

(
d̈

∫
Ω0

ρ0N
TN dΩ0 + ḋ

∫
Ω0

µ0N
TN dΩ0 +

∫
Ω0

{∇0N}T {P (d)}dΩ0 −
∫
Ω0

NT f dΩ0 −
∫
Γ0σ

NT t̄0 dΓ0

)
= 0

(4.36)

In the FEM literature, the integrals defined after the weak form expression 4.34, are referred as:

• The global mass matrix M , which forms the global vector of nodal inertia forces Md̈:

M =

∫
Ω0

ρ0N
TNdΩ0 (4.37)

• The global damping matrix D, which forms the global vector of nodal damping forces Dḋ:

D =

∫
Ω0

µ0N
TNdΩ0 (4.38)

• The global vector of nodal internal forces F̂ :

F̂ (d) =

∫
Ω0

BT {P (d)}dΩ0 (4.39)

• Global vector of nodal external forces F ext:

F ext =

∫
Ω0

NT fdΩ0 +

∫
Γ0σ

N̄T t̄0dΓ0 (4.40)

Introducing all these global nodal forces into expression 4.36, one gets:

cT
(
Md̈+Dḋ+ F̂ (d)− F ext

)
= 0 (4.41)

In order for cT to vanish from the equation, one must work only with c ̸= cr, or in other words, with the

unrestricted or free DOFs (cl). Since c and d have the same dimension, d will also represent the free DOFs

(dl).

Applying these details to equation 4.41, yields the famous semi-discrete equation of motion used in structural

dynamic analysis with its corresponding initial conditions and boundary conditions:

Mld̈+Dlḋ+ F̂l(d) = F ext
l

dl(0) = u0
l ḋl(0) = v0l

dr(t) = u(t)

(4.42)

4.2.5 Gauss Quadrature

Before going through how to solve the previous semi-discrete equation of motion in the time domain, one

must understand how to integrate a function, say f , over the physical domain of a given finite element in the

22



CHAPTER 4. THEORETICAL FRAMEWORK
Study of Machine Learning Techniques

for modelling Large Structural Vibrations

undeformed geometry Ωe
0:

I =

∫
Ωe

0

f dΩ0 (4.43)

Since the finite element domain is represented by the parent domain, the preceding integral must be solved

using the change of variable 4.26 to go from the physical to the parent domain. Thus

I =

∫
Ωe

0

f dΩ0 =

∫
Ω0ξ

Je(ξ)f(ξ) dΩ0ξ (4.44)

Where dΩ0ξ = dξdη (for 2D) and Je(ξ) is the elemental Jacobian of the transformation defined in equation

4.29.

The Gauss Quadrature is a method of integration that seeks to find a set of m points in the parent domain

(ξg) and their corresponding weights ωg such that the integral in equation 4.44 can be approximated as:

∫
Ω0ξ

Je(ξ)f(ξ) dΩ0ξ ≈
m∑

g=1

ωgJ
e(ξg)f(ξg) (4.45)

According to [19], Gauss quadrature gives an exact result if f is a polynomial. Moreover, it has been

demonstrated that m Gauss points integrate exactly a polynomial of order p ≤ 2m− 1.

However, if the function does not meet this requirement, Gauss Quadrature yields an approximate result as

represented in the preceding equation. Accuracy improves as more Gauss points are used.

In conformity to what has been discussed in the previous section, all the FE integrals represented in equations

4.37 to 4.40, will be solved via Gauss Quadrature, hence computing Nξ(ξg) and Bξ(ξg) for every Gauss point.

The coordinates of the Gauss points ξg and their corresponding weights ωg are found in [20], and depend on

the degree of the polynomial f .

Having reach that point, one is faced with nel finite elements, each one of them having m Gauss points and

each point having 2 DOFs. To express the FE matrices in a more compact way, the element-free notation is

briefly introduced, since it will be necessary for upcoming sections.

The main idea behind it is to create a matrix that includes the information in all of the m Gauss points of an

element e. Thus, the element-free matrices for Nξ, Bξ, ωξ and PK1 stresses are defined as:

N e =
[
Ne

ξ1N
e
ξ2 . . . N

e
ξm

]
→ N =

nel∑
e=1

N eLe (4.46)

Where Le is boolean connectivity matrix commonly used in FEMs to relate the element nodal variables e

with the global vector.

Be =
[
Be

ξ1B
e
ξ2 . . . B

e
ξm

]
→ B =

nel∑
e=1

BeLe (4.47)
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We =



ω1J
e
1I 0 . . . 0

0 ω2J
e
2I . . . 0

...
...

. . .
...

0 0 . . . ωmJe
mI


→W = diag

(
W1, W2, . . . ,Wnel

)
(4.48)

Pe =



{P (de)}ξ1

{P (de)}ξ2
...

{P (de)}ξm


→ P =



P1

P2

...

Pnel


(4.49)

4.2.6 Newmark-Bossak’s Time Integration Scheme

As it has been shown, the FEM objective is to solve the semi-discrete equation of motion 4.42 for any moment

in a desired time interval [0, T ].

The essence of any integration scheme used in a FEM is to solve the motion equation at every moment in

time, given the value of some variables in the corresponding moment. As it was done with the physical

domain, the time domain also needs to be divided into sub-intervals or infinitesimal time steps, so that the

motion equation can be solved at each of them. The more number of divisions, the more accurate the result

will be.

The first step in the integration method is to divide the interval [0, T ] into nsteps.

Considering that ḋ and d̈ refer to the velocity (v) and the acceleration (a) respectively, the residual of the

semi-discrete motion equation at the end of any interval [tn, tn+1], can be written as:

Rl(d) = Mla
n+1 +Dlv

n+1 + F̂l(d)− F ext
l (tn+1) (4.50)

As mentioned, the aim of any time integration scheme is to solve the system of equations Rl = 0 at a given

time tn+1, i.e find the nodal displacement vector at that time, dn+1. The inputs that are used to solve such

system are the nodal external forces vector at time tn+1 (F ext
l (tn+1)), the prescribed displacements ū(tn+1)

and the kinematic variables in the previous step tn, d
n, vn and an.

There are different kinds of integration methods addressed in chapter 5, but the one that will be carried out

in this work is the Newmark-Bossak’s method.

The acceleration and velocity expressions invloved in this method will be the same as the ones that are

defined in the implicit Newmark β-methods [15].
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One the one hand, the acceleration will be computed as follows:

an+1 =
1

β∆t2n+1

(
dn+1 − d̃n+1

)
β > 0 (4.51)

Where

d̃n+1 = dn +∆tn+1v
n +

∆t2n+1

2
(1− 2β)an (4.52)

On the other hand, the velocity will be represented as:

vn+1 = ṽn+1 + γ∆tn+1a
n+1 where ṽn+1 = vn + (1− γ)∆tn+1a

n (4.53)

β and γ are scalar parameters which respectively ensure the stability of the algorithm and numerically take

the damping condition into account.

Since the main unknown of the FEM is the nodal displacements vector d, it is convenient to express vn+1 in

terms of dn+1. Substituting equation 4.51 into the preceding equation 4.53, yelds:

vn+1 =
γ

β∆tn+1
dn+1 +

(
ṽn+1 − γ

β∆tn+1
d̃n+1

)
(4.54)

The Newmark-Bossak algorithm differs form the mentioned implicit Newmark β-methods with the fact that

it uses a third parameter αb, called the Bossak integration parameter, to obtain a second order scheme of

integration. This parameter, as discussed in [21], enables the capturing of the damping effect in the higher

modes of vibration, without compromising the accuracy.

Following this integration scheme, the residual in equation 4.50 is written as:

Rl(d) = (1− αb)Mla
n+1 + αbMla

n +Dlv
n+1 + F̂l(d)− F ext

l (tn+1) (4.55)

Combining equations 4.51 and 4.54 into the previous residual expression yields:

Rl(d) = (1− αb)Ml

(
1

β∆t2n+1

d− 1

β∆t2n+1

d̃n+1

)
+ αbMla

n +Dl

(
γ

β∆tn+1
d− ṽn+1

)
+ F̂l(d)− F ext

l (tn+1)

(4.56)

Gathering all the terms,

Rl(d) =

(
1− αb

β∆t2n+1

Ml +
γ

β∆tn+1
Dl

)
d+ F̂l(d)−Ml

(
1− αb

β∆t2n+1

d̃n+1 − αba
n

)
+Dlṽ

n+1 +F ext
l (tn+1) (4.57)

For the sake of simplicity, the above residual is said to consist of four different nodal force vectors, where the

nodes only refer to the ones containing one or more unrestricted DOFs (l):

• The nodal vector of internal forces F̂l.

• The nodal vector of external forces F ext
l .
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• The nodal vector of displacement-dependant forces, F̂nb
l , which can be expressed as:

F̂nb
l (d) =

(
1− αb

β∆t2n+1

Ml +
γ

β∆tn+1
Dl

)
d (4.58)

• And the displacement-independent forces, F enb
l :

F enb
l = Ml

(
1− αb

β∆t2n+1

d̃n+1 − αba
n

)
+Dlṽ

n+1 (4.59)

Thus, the Newmark-Bossak scheme is the same as the implicit Newmark β-method, but adding the terms

F̂nb
l and F enb

l :

Rl(d) =
(
F̂nb
l (d) + F̂l(d)

)
−
(
F enb
l + F ext

l (tn+1)
)

(4.60)

According to [22], to achieve an unconditional stability, capture the maximum amount of high-frequency

dissipation, and maintain the second order accuracy, one must set the Newmark-Bossak parameters as follows:

αb ≤ 0

γ = 1
2 − αb

β = 1
4 (1− αb)

2

(4.61)

In this work, αb is set to -1/3 and will be varied on the go if necessary.

4.2.7 Newton-Raphson’s Method

The Newmark-Bossak’s leaves one with a nonlinear equation in the unknown dl. Thus, the Newton-Raphson

algorithm is brought into light in order to complement the Newmark-Bossak, by facilitating the convergence

of the nonlinear expression.

This numerical algorithm consists on an iterative method which linearly approximates a nonlinear system

and solves it at each iteration, updating the tentative solution until a convergence threshold is met.

The statement consists on, as in the Newmark-Bossak case, computing dl(tn+1) given the initial conditions

at time step n, as well as the prescribed displacements dr(tn+1) and the external force vector F ext(tn+1).

Nevertheless, the system of equations to be solved in every iteration k is now linear:

Rl

(
d
(k)
l

)
+

[
∂Rl

∂dl

]
d
(k)
l

(
d
(k+1)
1 − d

(k)
l

)
= 0 (4.62)

Where d
(0)
1 = dl (tn)

Notice that, when the unknowns obtained in two successive iterations are the same, the residual will be equal

to zero, as desired. Since computationally speaking, the previous statement is not possible, a convergence

tolerance is needed. This threshold is the the absolute difference between dk+1
l and dkl , and will be set to
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10−10.

Considering that dl = Pld, and d = PT
l dl, (where Pl is the assembly operator that identifies the global

unrestricted DOFs), and making use of the chain rule, the Jacobian matrix (∂Rl/∂dl) is rewritten as:

∂Rl

∂dl
=

∂PlR

∂d

∂d

∂dl
= Pl

K︷︸︸︷
∂R

∂d
PT
l = Kll (4.63)

Where K is the global stiffness matrix of the system, which, in the Newmark-Bossak case, is equal to

Kll =
∂F̂nb

l

∂dl
+

∂F̂l

∂dl
(4.64)

Making use of equation 4.39 and the derivative of expression 4.58, one can write the expression of K as:

Kll =

∫
Ω0

BT ∂{P}
∂d

dΩ0 +

(
1− αb

β∆t2n+1

Ml +
γ

β∆tn+1
Dl

)
(4.65)

Where
∂{P}
∂{F}

= {C̃} (4.66)

With that expression in mind and applying the chain rule:

∂{P}
∂{F}

∂{F}
∂d

= {C̃}B (4.67)

According to equation 4.6, the deformation gradient F and its derivative can be written in terms of the FE

shape functions as:

{F} = ∂u

∂X
+ δ =

∂

∂X
N(X)d+ δ = B(X)d+ δ → ∂{F}

∂d
= B(X) (4.68)

Finally, K can be rewritten as follows:

Kll =

∫
Ω0

BT {C̃mat}B dΩ0 +

(
1− αb

β∆t2n+1

Ml +
γ

β∆tn+1
Dl

)
(4.69)

In the small strains regime, C̃, which will be further explained in section 4.3, can be understood as the

rotated elastic tensor C. Therefore, in this regime, C̃ only depends on the material and thus C̃ = C̃mat.

As mentioned in the preliminaries (see section 4.1), when the small strains or linear hypothesis is applied and
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the material is isotropic, C is linear and defined by Hooke’s Law (2D):

C =



λ+ 2µ λ 0 0

λ λ+ 2µ 0 0

0 0 µ 0

0 0 0 µ


(4.70)

The lame parameters λ and µ are represented by the following expressions:

λ =
vE

(1 + v)(1− 2v)
and µ = G =

E

2(1 + v)
(4.71)

Where G is the shear modulus of the material.

However, the convergence of the Newton-Raphson method is directly linked with the positive definiteness

of K. As it will be later discussed in section 4.3, there is sometimes the possibility that K is non-positive

definite, which, physically, can be interpreted as the initiation of buckling instabilities.

4.3 Nonlinear Regime: Large Strains

In the small strain regime, the strain is measured by the Green-Lagrange expression in 4.7, while the stresses

are defined by the PK2 equation in 4.15. Under this hypothesis, C̃mat, which is the derivative of the PK1

stresses P with respect to the deformation gradient F , is linear. As mentioned, this tensor is related to the

elastic tensor defined by the Hooke’s Law (see equation 4.70).

This relation can be expressed as follows [23]:

{Cmat} = T (F ){C}T (F )T (4.72)

Where C is the Hookean constitutive elastic tensor, and T is the matrix that relates the PK1 and PK2

stresses:

{P} = T (F ){S} (4.73)

This expression is the same as the one given in the preliminaries (see equation 4.16 in section 4.1.3). However,

in FE analysis, it is usual to write symmetric tensors, like the ones representing the PK1 and PK2 stresses,

in what is called the Voigt notation (see equation 4.1).

T (F ) is then the deformation gradient F , but in Voigt notation. With such rearrangement, equation 4.16 can

be transformed into the preceding equation 4.73.

In the small strains regime, when F is not very large, T plays the role of a rotation matrix and thus, as it

has been previously discussed, C̃mat is the rotated Hookean constitutive elastic tensor C.

Nevertheless, there are different conditions that can manifest in the real world and which tend to be nonlinear.

28



CHAPTER 4. THEORETICAL FRAMEWORK
Study of Machine Learning Techniques

for modelling Large Structural Vibrations

On one side, not all materials are isotropic. In this case, Hooke’s Law is not applicable anymore, since the

constitutive equation that relates the stresses with the strains is not linear.

On the other side, the circumstances introduced at the end of the previous section can also manifest. When a

structure has to deal with large strains, the undeformed and deformed configurations differ significantly from

one another. In this case the deformed geometry is really different from the original, which translates into a

variation of the constitutive properties of the material, such as density or stiffness.

For the sake of simplicity and taking into account that the objective of this work is to get introduced to the

nonlinear regime, the material will be maintained isotropic and the only constitutive property that will be

affected due to large strains will be the stiffness.

This way, C̃ will now depend not only on the material but also on the geometry:

C̃ = C̃mat + C̃geo (4.74)

The new term (C̃geo), is responsible for the non-linearity and depends on the geometry of the structure.

The nonlinear term of C̃ only depends on the PK2 stress tensor S. In 2D, the expression of C̃geo is expressed

as (Voigt notation on the left and standard notation on the right):

{C̃geo} =



{S}1 0 {S}3 0

0 {S}2 0 {S}3

{S}3 0 {S}2 0

0 {S}3 0 {S}1


=



S11 0 S12 0

0 S22 0 S12

S12 0 S22 0

0 S12 0 S11


(4.75)

As it was previously anticipated in section 4.2.7, the nonlinear regime can result on a non-positive definteness

of the stiffness matrix K. C̃mat is always invariably positive definite, whereas the C̃geo can sometimes be

non-positive definite. As explained, the physical interpretation behind C̃geo being non-positive definite is

related to buckling conditions. However, studying the buckling phenomena is out of the scope of this project

and thus, all the simulations conducted under the large strains regime will be far away from this condition.

That being said, the FEM used to solve the large strains simulations will be the same as the small strains,

except for the computation of the stiffness matrix K, which will as well have a new nonlinear term:

Kll =

∫
Ω0

BT {C̃}matB dΩ0 +

∫
Ω0

BT {C̃}geoB dΩ0 +

(
1− αb

β∆t2n+1

Ml +
γ

β∆tn+1
Dl

)
(4.76)
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4.4 Modal Decomposition Analysis

So far, the theory behind the FEM in both the linear and nonlinear regimes has been established. However,

if one wants to compare the results obtained from those methods with the ones dictated by the continuum

mechanics strain theory, it is necessary to solve the semi-discrete equation of motion 4.42 analytically, rather

than numerically.

The modal decomposition analysis is a very useful tool to analyse a dynamic system under vibration. This

method studies the dynamic behaviour of the structure by formulating the mathematical model with natural

frequencies, damping factors and natural modes of vibration.

It solves the eigenvalue problem detailed in section 4.4.1 to extract the different manners in which the

structure can vibrate (natural modes), as well as the predominance of each and every one of them and their

vibrating natural frequency. The natural modes and their respective frequency of the present cantilever beam

can be found in the first section of the Annexes document.

In this sense, it is necessary to conduct a change of variable in the semi-discrete equation of motion 4.42.

The nodal displacements vector d, which was the unknown to solve in the FEM, is replaced by ϕiqi(t), where

ϕi denotes the i-th vector of mode shapes and qi(t) is a temporal function that represents the amplitude at

which the i-th mode manifests along time.

One of the advantages of the modal decomposition analysis is the uncoupling of equations, which enables a

better understanding of the vibration of a structure. Furthermore, thanks to the uncoupling, the solution of

the problem can be regarded as a combination of natural modes and their respective amplitudes:

d =

nmodes∑
i=1

ϕiqi(t) = ϕ1q1(t) + ϕ2q2(t) + ...ϕnmodes
qnmodes

(t) (4.77)

By conducting the mentioned replacement, one is able to move from a discrete solution to a continuous one,

which means that now equation 4.42 is an second order Ordinary Differential Equation (ODE) of the form:

M

(
ϕi

d2qi(t)

dt2

)
+D

(
ϕi

dqi(t)

dt

)
+Kϕiqi(t) = F ext(t) (4.78)

Depending on the terms that one considers inside the preceding equation, there are different types of modal

analysis, some of which are relevant for this project.

On the one hand, the case in which the external force is not considered (F ext = 0) is known as free vibration,

whereas the opposite case is referred as forced vibration.

On the other, if the damping effect (D = 0) is neglected, one is faced with an undamped vibration.

In order to extract the natural modes and frequencies of a structure, the free undamped vibration problem is

to be solved. Nevertheless, since undamped vibrations are an ideal phenomena and this project’s intention is

to simulate the real response of a structure, the simulations will be based on the forced damped vibrations

problem, since they must consider the damping effects as well as the external forces that produce such

response.
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4.4.1 Free Undamped Vibrations

The ODE that has to be solved in this type of problem is

M

(
ϕi

d2qi(t)

dt2

)
+Kϕiqi(t) = 0→Mϕiq̈i +Kϕiqi = 0 (4.79)

If one analyses this kind of ODE for scalar values instead of matrices, the solution of this equation has the

following form

qzi (t) = Aicos(ωit) +Bisin(ωit) (4.80)

Thus, returning to the free undamped vibration ODE 4.79 and substituting the second derivative of qi(t),

(−ω2
iM +K)ϕiqi(t) = 0→ (−ω2

iM +K)ϕi = 0 (4.81)

One is faced with an eigenvalue problem discussed in [24], which solutions of interest are the non-trivial

solutions. These consist on an eigenvalue and an eigenvector, which, physically, respectively correspond to a

natural frequency (ωi) and its associated mode of vibration (ϕi).

These non-trivial solution satisfy:

ωiMϕi = Kϕi and ϕTMϕ = I (4.82)

Moreover, eigenvectors are orthogonal with respect to M and K.

Multiplying equation 4.79 by ϕT , and according to the normalization of ϕ described in 4.82, yields:

q̈i + ϕT
i Kϕi qi = 0 (4.83)

Moreover, multiplying the first condition in 4.82 by ϕT , one gets:

ω2 = ϕTKϕ (4.84)

With this final consideration, the uncoupled ODE that governs the free undamped vibrations problem, has

the following form:

q̈i + ω2
i qi = 0

qi(0) = q0i = ϕT
i Md0

q̇i(0) = q̇0i = ϕT
i Mḋ0

i = 1, 2, 3 ... nmodes (4.85)

Using the undetermined coefficients method and solving with generic initial conditions for constants Ai and

Bi in equation 4.80, the analytical solution of the free undamped vibrations (fu) problem is:

qfui = q0i cos(ωit) +
q̇0i
ωi

sin(ωit)→ dfu =

nmodes∑
i=1

ϕiq
fu
i (t) (4.86)
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4.4.2 Forced Damped Vibrations

As it will be later discussed in chapter 5, to be able to maintain the uncoupling of the modal analysis in the

case of damped vibrations, the damping matrix D will be constructed according to the Rayleigh damping

hypothesis:

D = ᾱM + β̄K (4.87)

With that in mind, the differential equation for the forced damped vibrations problem stands as:

Md̈+
(
ᾱM + β̄K

)
ḋ+Kd = F ext(t) (4.88)

Applying the change of variable discussed in the previous section and multiplying the preceding equation by

ϕT
i yields:

I︷ ︸︸ ︷
ϕT
i Mϕi q̈i +

ᾱ

I︷ ︸︸ ︷
ϕT
i Mϕi +β̄

ω2
i︷ ︸︸ ︷

ϕT
i Kϕi

 q̇i +

ω2
i︷ ︸︸ ︷

ϕT
i Kϕi qi = ϕT

i F
ext(t)

↓

q̈i +
(
ᾱ+ β̄ω2

i

)
q̇i + ω2

i qi = ϕT
i F

ext(t)

(4.89)

The damping ratio ξ̄i is defined by:

ξ̄i =
1

2ωi

(
ᾱ+ β̄ω2

i

)
→ 0 ≤ ξ̄i < 1 (4.90)

The forced damped vibrations ODE can be finally stated in terms of ξ̄i and taking the initial conditions into

account:

q̈i + 2ξ̄iωiq̇i + ω2
i qi = ϕT

i F
ext(t)

qi(0) = q0i = ϕT
i Md0

q̇i(0) = q̇0i = ϕT
i Mḋ0

i = 1, 2 ... nmodes (4.91)

The homogeneous solution (qzi (t)) of this ODE corresponds to the free damped vibrations (fd) problem, since

it must be imposed that F ext = 0. This solution is defined in equation 4.93, where the natural frequency of

damped vibration ω̄i is expressed as (see [25]):

ω̄i = ωi

√
1− ξ̄2i (4.92)

qzi (t) = qfdi (t) = e−ξ̄iωit

(
q0i cos(ω̄it) +

q̇0i + ξ̄iωiq
0
i

ω̄i
sin(ω̄it)

)
→ dfd =

nmodes∑
i=1

ϕiq
fd
i (t) (4.93)

The particular solution qpi (t) will depend on the type of external force that is applied to the structure. In

this project’s study, the external forces that have been considered are mainly sinusoidal functions.

The analytical solution of the forced damped vibrations problem (Fd) is the sum of the homogeneous and the

particular solutions. However, qzi (t) must have a generic expression different from qfdi (t) since the evaluation
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in the initial conditions will also depend on the expression of qpi (t). This way:

qFd
i (t) = e−ξ̄iωit (Aicos(ω̄it) +Bisin(ω̄it)) + qpi (t) (4.94)

In what follows, the particular solutions for different types of F ext(t) will be detailed. These solutions have

been computed solving ODE 4.94 using the method of the undetermined coefficients and, for reasons of

simplicity, considering that the initial conditions are zero (q0i = q̇0i = 0).

As explained in this thesis’ methodology, (see section 3.2), the explored external forces are uniformly

distributed forces formed by one single sine or by a combination of them.

Harmonic Force

These functions take the form:

F ext(t) = F̄ sin (Ωt+ φ) (4.95)

According to equation 4.91, F ext has to be multiplied by ϕT
i . Thus,

ϕT
i F

ext(t) =

fi︷︸︸︷
ϕT
i F̄ sin (Ωt+ φ) = fi sin (Ωt+ φ) (4.96)

Where fi is the force amplitude projected into the i-th mode shape.

The particular solution of equation 4.91 for this kind of force results in:

qpi (t)|Sin =

qmax
i |Sin︷ ︸︸ ︷

fi
ω2
i

1

(1− ρ̄2i )
2
+
(
2ξ̄iρ̄i

)2 [(1− ρ̄2i
)
sin(Ωt+ φ)− 2ξ̄iρ̄i cos(Ωt+ φ)

]
(4.97)

Where qmax
i is the maximum amplitude that the i-th mode of vibration will reach, and ρ̄i is the relation

between the external frequency Ω and ωi:

ρ̄i =
Ω

ωi
(4.98)

Constants Ai and Bi take the form:

Ai|Sin = qmax
i

(
2ξ̄iρ̄i cos(φ)− (1− ρ̄2i )sin(φ)

)
Bi|Sin = 1

ω̄i

(
Ai|Sin ξ̄iωi − qmax

i

(
(1− ρ̄2i )Ω cos(φ)− 2ξ̄iρ̄iΩ sin(φ)

)) (4.99)

Harmonic Expansion Force

Nevertheless, as previously introduced in the work methodology (see section 3.2 from chapter 3), this project

seeks to study the response of a cantilever beam when subjected to the action of the wind. This physical

phenomena is a random feature which, apparently, does not have any time function to be introduced as

F ext(t) in the forced damped vibration ODE 4.91 and thus, it seems impossible to know the analytical

solution of the problem.
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However, taking the discrete data from real measurements of wind speed over time, and using the FFT

algorithm, one is able to construct a sinusoidal time dependant function which can be later used to construct

a valid expression of F ext(t). This Fourier expansion can be modelled as (see section 4.5 for further detail):

V 2
w =

∞∑
k=1

F̄k sin(Ωkt+ φk) (4.100)

Where V 2
w is the square of the wind speed. Chapter 6 explains why it is interesting to compute the square

instead of the actual wind speed (see section 6.4).

The particular solution for this case of interest is similar to the case of a single sine (see expression 4.97),

except that the number of sines is now infinite. On the other side, the homogeneous solution remains the

same except for constants Aik and Bik .

Carrying out the same approach that has been conducted for sinusoidal, polynomial and exponential forces,

the analytical solution, i.e qzi (t) + qpi (t), for the forced damped vibrations caused by the action of the wind,

can be regarded as:

d =

nmodes∑
i=1

∞∑
k=1

ϕiq
max
ik

{
e−ξ̄iωit (Aikcos(ω̄it) +Biksin(ω̄it)) + (1− ρ̄2ik)sin(Ωkt+ φk)− 2ξ̄iρ̄ikcos(Ωkt+ φk)

}
(4.101)

Where

qmax
ik

=

fik︷ ︸︸ ︷
ϕT
i F̄k
ω2

i

1(
1−ρ̄2

ik

)2
+(2ξ̄iρ̄ik)

2
ρ̄ik = Ωk

ωi

(4.102)

And

Aik = qmax
ik

(
2ξ̄iρ̄ik cos(φk)− (1− ρ̄2ik)sin(φk)

)
Bik = 1

ω̄i

(
Aik ξ̄iωi − qmax

ik

(
(1− ρ̄2ik)Ωk cos(φk)− 2ξ̄iρ̄ikΩk sin(φk)

)) (4.103)

4.5 Fourier Analysis

As it has been described, the Fourier analysis is key for conducting the main study of this project. Hence,

this section’s intention is to briefly introduce the Fourier Transform and, more precisely, the Discrete Fourier

Transform DFT and its fast and efficient computation, the Fast Fourier Transform FFT.

4.5.1 Fourier Transform

In Fourier analysis, when a function f(x) is periodic and piecewise smooth, it can be written in terms of a

Fourier Series, which is an infinite sum of sines and cosines that have increasing frequencies. For a L-periodic

f(x), i.e periodic in the interval [0, L), the corresponding Fourier Series is given by [26]:

f(x) =
a0
2

+

∞∑
k=1

akcos

(
2πk

L
x

)
+ bksin

(
2πk

L
x

)
(4.104)
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Where

ak = 2
L

∫ L

0
f(x)cos

(
2πk
L x

)
dx

bk = 2
L

∫ L

0
f(x)sin

(
2πk
L x

)
dx

(4.105)

When f(x) is not periodic, the Fourier Series are extrapolated to a more general method called the Fourier

Transform, which is essentially the limit of a Fourier Series when the domain goes to infinity. This allows to

define a function on (−∞, ∞) that only repeats once, as it is depicted in figure 4.2:

Figure 4.2: (Top) Fourier Series for a periodic function on a finite domain [L, L) vs (Bottom) Fourier
Transform for a non-periodic function.

Source: Extracted from [1].

In such case, and taking into account the Euler formula eikx = cos(kx) + i sin(kx), equation 4.104 can also

be written as:

f(x) =

∞∑
k=−∞

ck eikx (4.106)

Where ck is given by the inner product of f(x) and an infinite-dimensional orthogonal function space spanned

by sines and cosines, e−ikπξ/Lξ = cos(kπL ξ)− i sin(kπL ξ).

ck =
1

2L

∫ L

−L

f(x)e−ikπξ/L dξ = αk + i βk (4.107)

According to 4.107, the discrete set of frequencies that are present in a Fourier Transform can be regarded as

ωk = kπ/L. If one takes the domain to infinity, i.e L → ∞, this discrete set becomes continuous and the
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frequency increase ∆ω = π/L, tends to zero in equation 4.106:

f(x) = lim
∆ω→∞

∞∑
k=−∞

∆ω

2π

∫ π/∆ω

−π/∆ω

f(ξ)e−ik∆ωξ dξ︸ ︷︷ ︸
f̂(ω)

eik∆ωx (4.108)

Where f̂(ω) is the Fourier Transform of f(x), which will be represented by F(f(x)).

Finally, equation 4.108 is converted to the widely known Fourier Transform pairs, represented by the Riemann

integrals in equation 4.109. As stated by [1], this conversion is possible if the summation in equation 4.108 is

done with weight ∆ω.

f(x) = F−1
(
f̂(ω)

)
= 1

2π

∫∞
−∞ f̂(ω)eiωx dω

f(ω) = F (f(x)) =
∫∞
−∞ f(x)e−iωx dx

(4.109)

Where ω = kπ/L.

This pair is more commonly referred as, from top to bottom, the Inverse Fourier Transform (IFT) and the

Fourier Transform (FT). Generally speaking, these techniques serve as a way to transform signals from the

continuous time domain to the frequency domain and vice versa.

However, these expressions are only valid for continuous functions. In this study’s case, one is faced with

discrete data from wind speed measurements, which suggests that the tool to be used should be the Discrete

Fourier Transform.

4.5.2 The DFT and the FFT

The DFT is widely used in the engineering industry since it is able to approximate the Fourier Transform on

discrete vectors of real-data, making it really useful for numerical approximation and computation.

The Discrete Fourier Transform is given by:

f̂k =

N−1∑
j=0

fje
−i2πjk/N (4.110)

Where fj is the function value, which in this project will be the wind speed Vw, at sample j. The total

number of samples is N .

The inverse procedure or IDFT is given by:

fk =
1

N

N−1∑
j=0

f̂je
i2πjk/N (4.111)

Generally speaking, the DFT is a linear operator that makes it possible to identify which frequencies

ωk = 2πjk/N better represent the data set using a Fourier Series. All these frequencies are multiples, by

means of k, of the natural frequency ωn:

ωn = e−i2π/N (4.112)
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To better understand the DFT, it is represented in its matrix format:



f̂1

f̂2

f̂3

...

f̂N


︸ ︷︷ ︸
f̂(ω)

=



1 1 1 . . . 1

1 ωn ω2
n . . . ωN−1

n

1 ω2
n ω4

n . . . ω
2(N−1)
n

...
...

...
. . .

...

1 ωN−1
n ω

2(N−1)
n . . . ω

(N−1)2

n


︸ ︷︷ ︸

F



f1

f2

f3

...

fN


︸ ︷︷ ︸
f(x)

(4.113)

Since the DFT matrix F is a complex-valued matrix, the vector of Fourier coefficients f̂ has both magnitude

and phase. The physical interpretation behind them, which will be later explained in section 6.3, is fundamental

to convert a discrete set of data into a Fourier expansion.

When working with the DFT, it is essential for the gathered data to be sampled with a constant sampling

ratio. Otherwise, ∆ω would never be constant and all that has been discussed so far would not be applicable.

Despite all of the above mentioned benefits, carrying out the DFT matrix system of equations in 4.113

involves O(N2) operations.

The Fast Fourier Transform is a revolutionary algorithm capable of computing the DFT matrix multiplication

with an order of O(N log(N)). These algorithm is essentially a more efficient way of computing the DFT,

since, for large amounts of data (N), the process scales almost linearly thanks to the logarithm.

In the real world, the need of coping with enormous quantities of data (also known as Big Data) is rapidly

increasing in recent years. In this context, the FFT comes into play bringing with it a huge range of

applications, being audio and image compressing or signal processing among others.

To achieve a computational reduction of such order, it is optimal, but not fundamental, that the number of

samples N is a power of 2. Thanks to a careful reorganization of the terms in expressions 4.110 and 4.113 as

even and odd terms, the DFT can be written as [1]:

f̂ = FNf =

IN/2 −DN/2

IN/2 −DN/2


FN/2 0

0 FN/2


feven
fodd

 (4.114)
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Where IN/2 is de N/2×N/2 identity matrix and DN/2 is a diagonal matrix given by:

DN/2 =



1 0 0 . . . 0

0 ωn 0 . . . 0

0 0 ω2
n . . . 0

...
...

...
. . .

...

0 0 0 . . . ω
N/2−1
n


(4.115)

The essential idea is that this reorganization process expressed in 4.114 is repeated from FN/2 to FN/4, FN/8,

FN/16, etc. until, eventually, F is a 2× 2 order matrix, which has a really fast computation.

If the vector of data samples is not a power of 2, it is completed with zeros until the requirement is met.

In such circumstances, the matrix system in 4.113 can be solved much more efficiently by interleaving even

and odd indices of sub-vectors of f(x) and transforming 4.113 into multiple 2× 2 systems of equations.

4.6 Reduced Order Models

To conclude the theoretical background that is necessary to understand this work, this section will go

through the importance of the Reduced Order Models (ROMs) and will also glance over the formulation and

computation behind them.

4.6.1 Introduction

The main motivation of any ROM is to reduce the operational cost associated to the assembly of the nodal

internal forces vector F̂ in a FEM. This can happen, for example, when the FE mesh must be really refined

and thus it requires a high amount of elements and, consequently, an even higher number of Gauss points

to integrate. Furthermore, in dynamic problems, the time parameter forces the equations to be solved for

every element but also at every time step. If the time domain is large, the computational effort can be really

compromised.

As a first approach and as it was done in section 4.4 with the modal decomposition analysis, the FEM can be

conducted via space-time decomposition. In such case, the basis functions of the FEM (Φ) will then have the

same function as the natural mode shapes ϕ defined in the Modal Analysis.

Similarly to what was stated in the small strains problem (see 4.2), the only inputs that change along time are

the nodal external forces F ext(t) and the prescribed displacements ū(t). Hence, the space-time decomposition

of both inputs is given by:

F ext(t) = Φα(t)

ū = Duβu(t)

(4.116)
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Where Φ is considered as a fixed spatial pattern and α(t) is a scalar-valued function that depends on the

loading parameter t like, for example, the sinusoidal function discussed in section 4.4.2. Du and βu(t) are the

same concepts (spatial pattern and time functions) but they only refer to the prescribed displacements.

This way, the nodal displacement vector can be written as

d =

 Φq

Duβu

 =

Φ 0

0 Du


︸ ︷︷ ︸

Φ̄

 q

βu


︸ ︷︷ ︸

q̄

=

Φ̄l 0

0 Φ̄r


 q̄l
q̄r

 (4.117)

Where q is the scalar-valued time function that describes the nodal displacement amplitude along time.

To obtain the reduced vector of internal forces F̂ ∗, it is necessary to define an optimal number of modes. In a

dynamic problem, the state of the system not only depends on the displacements but also on the velocities.

Thus, the basis matrix Φ must capture both variables within a certain degree of accuracy. In consequence,

some modes that may be negligible in terms of displacement amplitude q may contrarily become relevant to

velocities, since v = ωq (see equation 4.80 in section 4.4).

Once the optimal number of modes has been established, one is faced with a reduced basis matrix Φ̄ which

represents a reduced-order space. The process to obtain the basis matrix Φ is explained at the end of this

section.

Likewise in the modal decomposition analysis, the FE semi-discrete equation of motion in 4.42 is brought

into light. This time however, the equation is replaced with the reduced-space variables:

δqT Φ̄T
(
MlΦ̄¨̄q +DlΦ ˙̄q + F̂l(q̄)− F ext

l

)
= 0

q̄(0) = Φ̄T d0

˙̄q(0) = Φ̄Tv0(0)

(4.118)

As in the modal analysis, the unknown is q. However, as the preceding equation is used for FE analysis, the

unknown is now a discrete variable (one value for each node at each time step).

The reduced-order counterpart of the original mass and damping matrices, as well as the external and internal

forces vectors, are defined as:

M∗ = Φ̄TM Φ̄

D∗ = Φ̄TDΦ̄

F̂ ∗ = Φ̄T F̂

F ext ∗ = Φ̄TF ext

(4.119)

Hence, semi-discrete equation of motion is rewritten in terms of the reduced-order coordinates as

M∗
l
¨̄q +D∗

l
˙̄q + F̂ ∗

l − F ext ∗
l = 0 (4.120)
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M∗
l
¨̄q +D∗

l
˙̄q + F̂ ∗

l − F ext ∗
l = 0



M∗ = Φ̄TM Φ̄

D∗ = Φ̄TDΦ̄

F̂ ∗ = Φ̄T F̂

F ext ∗ = Φ̄TF ext

(4.121)

This ROM has less equations to be solved than the initial semi-discrete equation of motion. Nevertheless,

according to expression 4.39, the term F̂ is still related to the FE mesh, since it still requires the computation

of the PK1 stresses at all Gauss points of the mesh.

Instead, this project seeks to overcome this computational bottleneck by trying to reduce the number of

Gauss points needed to compute F̂ ∗ within a certain level of accuracy.

Computation of Φ

The basis matrix Φ belongs to a Rnelnsd×n space, where n is the optimal number of modes needed to reduce

the dimension of the problem within a given accuracy tolerance.

Thus:

Φ =

[
Φ1 Φ2 . . . Φn

]
(4.122)

This basis matrix is normalized such that ΦTMΦ = I, where the geometric matrix is equal to the identity

M = I in cases where the mesh is regular. Hence, in this work, ΦTΦ = I.

The basis matrix is obtained in two subsequent stages: the training and the dimensionality reduction.

• Training: The FE equations are solved for the corresponding inputs of the problem and its solutions

(displacements and PK2 stresses at each time step), are stored in snapshot matrices Ad and As,

respectively. These matrices take the following form:

Ad =

[
dl(t1) dl(t2) . . . dl(tnsteps

)

]
(4.123)

As =

[
S(t1) S(t2) . . . S(tnsteps)

]
(4.124)

• Dimensionality Reduction: the basis matrix is computed as a linear combination of the columns of

Ad, or, in other words, Φ is a subspace of the column space of Ad.

As stated above, the idea is to obtain the smallest sumber of columns of Φ while retaining the essential

information from the solution (Ad and As). For such, error thresholds for each solutions are defined (ϵd

and ϵs).

Φ is then obtained by solving the following system:

||Ad − ΦΦTAd|| ≤ ϵd||Ad|| with 0 ≤ ϵd < 1

||As −As
Φ|| ≤ ϵs||As|| with 0 ≤ ϵs < 1

(4.125)
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Where || || is the Frobenius norm and As
Φ is the snapshot matrix of the PK2 stresses produced by

dΦ = ΦTΦd, i.e the displacements projected onto the span of Φ.

The preceding matrix system 4.125 is solved with the help of a Truncated Singular Value Decomposition

(SVD), which is fundamental to compute As
Φ in an efficient way.

The SVD is computed so as to meet the first equation in 4.125:

Ad =

r∑
i=1

UiλiV
T
i + E (4.126)

Where Ui, λi and Vi are the left singular vectors, singular values and right singular vectors, respectively

[26]. The desired basis matrix will be Φ = U . Furthermore, r is the level of truncation (i.e the number

of rows that are included from the entire SVD) and E is the truncation term, which Forbenius norm is

given by:

||E||2 =

P∑
i=1

λ2
i︸ ︷︷ ︸

||Ad||2

−
r∑

i=1

λ2
i =

P∑
i=r+1

λ2
i (4.127)

The level of truncation r is therefore chosen according to:

P∑
i=r+1

λ2
i ≤ (ϵd)2

P∑
i=1

λ2
i (4.128)

As previously mentioned, in a dynamic problem, the state of the system is determined by the velocities

too. This issue is either solved by constructing a mix snapshot matrix of displacements and velocities

instead of only displacements, or progressively decrease the SVD tolerance until the error is below the

prescribed threshold. In the present work, the first option is the one that has been considered in the

code.

Finally, As
Φ can be computed to check whether the second constraint of the matrix system 4.125 is met.

The snapshot matrix of projected displacements is given by:

Ad
Φ = ΦΦTAd = UUTAd (4.129)

And thus, As
Φ will be the PK2 stresses produced by Ad

Φ:

As
Φ = S

(
Ad

Φ

)
(4.130)

System 4.125 is to be solved until the convergence is met. In practical terms, it has to be iteratively

solved until the truncation level r satisfies the convergence tolerances ϵd and ϵs.

4.6.2 Hyperreduction

This study will cover a ROM known as the Hyperreduction Order Model (HROM), whose main idea is based

on a property of integrals that states that if the integrand lies in a subspace of dimensions r, then the required
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number of integration points is of order of magnitude O(r). According to [13], exactly integrating p integrand

modes Φ (plus the volume) requires m = p+ 1 points.

As previously advanced, this method seeks to compute the reduced vector of nodal internal forces F̂ ∗ by

using the minimum amount of Gauss points and their respective positive weights, required to respect an

arbitrary accuracy tolerance. To do so, it is interesting to express the assembly of this vector in terms of all

the Gauss points (see section 4.2.5):

F̂ ∗ =

nel∑
e=1

Φ̄eT F̂ e =

nel∑
e=1

m∑
g=1

We
g

(
Φ̄eT f̂e

g

)
=

nel∑
e=1

m∑
g=1

We
g f̂

∗e
g (4.131)

According to the definition of F̂ in 4.39 and applying it to every Gauss point in a finite element, f̂∗e
g is given

by:

f̂∗e
g = Φ̄eTBeT (X(ξg)) P (X(ξg)) (4.132)

Where P refers to the PK1 stress at every Gauss point.

Since this project does not contemplate the effect of follower loads, the hyperreduction stage is posed only in

terms of the internal forces.

The HROM can be conducted in two different ways: Element-based or Point-based HROM (see chapter 5).

As mentioned, the approach that will be carried out in this study is the Point-based HROM, which allows to

find a set of points X̄1, X̄2 . . . X̄m̄ and their associated positive volumetric weights ω1, ω2 . . . ωm̄:

F̂ ∗ =

m̄∑
g=1

ωg f̂
∗ (X̄g

)
=
∑
g∈Z

ωg f̂
∗
g (4.133)

Where m̄ is the number of desired Gauss points extracted from the set of all Gauss points, with m̄ << m · nel.

This subset of points is referred as Z.

f̂∗
g is the g-th entry of the vector formed by stacking the internal forces per unit volume at all Gauss points.

Thus, the vector containing all f̂∗
g is given by F̂∗

l (t) in the element-free notation (see section 4.2.5):

F̂∗
l (t) =



f̂∗
l

(
X1

1 , t
)

f̂∗
l

(
X1

2 , t
)

...

f̂∗
l

(
X1

m, t
)

f̂∗
l

(
X2

1 , t
)

...

f̂∗
l

(
Xnel

m−1, t
)

f̂∗
l (Xnel

m , t)



=



(Φ1T

l B1T (X1
1 )) P (X1

1 , t)

(Φ1T

l B1T (X1
2 )) P (X1

2 , t)

...

(Φ1T

l B1T (X1
m)) P (X1

m, t)

(Φ2T

l B2T (X2
1 )) P (X2

1 , t)

...

(Φ
nT
el

l BnT
el(Xnel

m−1)) P (Xnel
m−1, t)

(Φ
nT
el

l BnT
el(Xnel

m )) P (Xnel
m , t)



(4.134)
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Hence, for each time step, one is faced with a block matrix F̂∗(t) that has as many rows as Gauss points per

element and as many columns as modes in Φ:

F̂∗(t) =

[
F̂∗

1 (t) F̂∗
2 (t) . . . F̂∗

nmodes
(t)

]
(4.135)

Thus, F̂ ∗
l given in equation 4.119 is rewritten as:

F̂ ∗
l (t) = ΦT F̂l(t) = F∗T

(t)W with W =
[
W1

1 , W2
1 . . .Wnel

m

]
(4.136)

4.6.3 Empirical Cubature Method

Henceforth, the procedure of finding the subset of Z points and their associated weights (α) will be briefly

covered. As mentioned in the state of the art review, the algorithm that has been selected to conduct the

point selection problem is called the Empirical Cubature Method (ECM).

To better deal with the large amount of data that a space-temporal problem involves, the snapshot matrix of

reduced internal forces is constructed as follows [27]:

Af =
[
F̂∗ (t1) , F̂∗ (t2) , . . . , F̂∗ (tnsteps

)]
(4.137)

For the point selection problem, the following condition must be met:

AfT

W = Af (Z, :)T ω (4.138)

Where the index (Z, :) refers to all the columns of the rows represented by Z.

In cases where AfTW ≈ 0, to avoid the trivial solution ω = 0 in the preceding equation 4.138, it is necessary

to introduce a second constraint:
m̄∑

g=1

ωg =

m∑
g=1

nel∑
e=1

We
g = V (4.139)

Where V is the volume of the undeformed domain Ω0.

According to [28], the point selection problem should be addressed with respect to an orthogonal matrix (Q)

of the column space of Af .

Thus, Q must satisfy Af = QR (where R = QTAf ), and is used to rewrite equation 4.138 as:

RTQTW = RTQ (Z, :)T ω (4.140)

Taking into account the fact that Q spans the column space of Af , the preceding equation is equivalent to

QTW = Q (Z, :)T ω (4.141)
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In practice, Q is approximated using a relative truncation error ϵf as:

||Af −QQTAf || ≤ ϵf ||Af || (4.142)

Where the norm is calculated with the vector of Gauss points weights W.

With this in mind, equation 4.141 is reformulated as:

ĀfT√
W = Āf (Z, :)T

(√
W(Z) ◦ ω

)
︸ ︷︷ ︸

α

(4.143)

Where ◦ is the element-wise matrix multiplication or Hadamard multiplication and Āf :

Āf (:, l) = Af (:, l) ◦W (4.144)

The approximation of Q is achieved thanks to the Truncated Singular Value Decomposition (SVDT) of Āf ,

the level of truncation of which is imposed by ϵf . The process to conduct the SVDT is exactly the same as

the one used to obtain the displacement snapshot matrix Ad in section 4.6.1.

If the problem involves AfW ≈ 0, Q is expanded with an extra column (a) that corresponds to the extra

constraint regarding the volume of Ω0 (see equation 4.139):

a =
√
W −QQT

√
W (4.145)

Finally, one can compute the matrix G, which is fundamental to determine the subset of Gauss points m̄ and

their respective positive weights α:

GT =


[
Q a

||a||

]
if AfW ≈ 0

Q otherwise

(4.146)

The ECM takes as inputs G, W and a convergence tolerance of 10−8 referred as TOL in [28] and [27]. Its

objective is to compute the Z indices of G and their weights α so that:

G (:,Z)α = G
√
W (4.147)

m̄ is equal to the number of columns of G and the desired positive weights are extracted from α = ω ◦
√
W(Z).

The indices of the desired Gauss points Z are the same as those Z columns of G.

Thus, the ECM consists on a greedy selection algorithm that uses ML techniques to be able to find the absolute

minimum (exact integration) of the optimization problem arising from the above-mentioned decomposition of

Af into its component along the range of the integral operator, and its component along the nullspace [13].
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Chapter 5

Consideration of the solution

adopted with respect to other

approaches

In this chapter, the author intends to cover some alternatives that could have been performed in order to

reach the same objectives that this project seeks to achieve. Moreover, the author will also provide the reader

with arguments that justify the reasons why these alternative paths have not been considered.

The approach that have been used, which is detailed in chapter 4, has been the same from the very beginning

and therefore, the alternatives explained in this chapter must not be understood as discarded approaches.

All of these alternatives are related to the different hypothesis and techniques that can be used inside a

structural vibrations finite element analysis. They will be divided into three different categories: Problem

Statement, Computational Techniques and Hyperreduction alternatives.

5.1 Problem Statement

The alternatives that are given in this section are related to the physical statement of the structural vibrations

problem.

5.1.1 Isotropy

Isotropy is a property of same materials which indicates that their properties do not depend on the direction

in which they are measured. For example, an isotropic material will offer the same resistance against either

an axial or tangential stress.

All simulations conducted inside this project consider the aluminium described in table 3.1 as isotropic.

However, one could also have opted for an anisotropic material. Considering this choice would add effort
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and complexity to the pre-process, since one would have to search for the properties in table 3.1 for each

direction. Furthermore, the FE code would have to be adapted, as it would have to verify which type of

direction does every stress have, thus significantly increasing the computational effort.

Since this project by itself already requires an important computational effort, adding the anisotropic effect

to it is considered unnecessary, since the solution that would yield from it would not provide added value to

the chosen solution.

5.1.2 Frame of Reference

Choosing a rotating frame of reference instead of the selected inertial frame would imply reformulating the

entire model of both small and large strains (sections 4.2 and 4.3 respectively). Rotating frames also involve

rotating matrices that would translate into a new type of displacement known as straining displacement,

which represents the strain that the structure suffers when it rotates. In addition, the fact that there is

rotation also complicates the FE formulation.

On top of that, the simulations that are ran in this project only consider distributed forces which are applied

on the top surface of the beam. This means that the beam will only suffer a 2D bending motion that can be

fully captured using an inertial frame of reference.

5.1.3 Rayleigh Damping

In the modal decomposition analysis, the Rayleigh damping hypothesis has been used (see equation 4.87).

This statement is used in order for the damping matrix D to be a linear combination of the mass matrix M

and the stiffness matrix K. This hypothesis enables the system to be decoupled, which indicates that every

ODE can be solved independently.

This greatly facilitates the process of obtaining the analytical solution, since it consists on a linear combination

of all the uncoupled solutions (as explained in section 4.4).

Even so, other damping models could also be used to find an analytical solution. These models try to

counteract the main drawbacks from the Rayleigh damping, such as the need for small time steps or the

induced body forces for motion at a constant velocity. One example is the Maxwell damping, which, according

to [29], is widely used to approximate frequency independent damping in time-domain seismic deformation

analyses.

5.1.4 Buckling Phenomena

Although not included in this project’s scope, the buckling phenomena would be a nonlinear feature that

would indeed add extra value to the simulations. Being able to detect a plastic failure in a structure is of

utmost importance in the field of structural analysis.

However, as it happened with the isotropy, including buckling would imply searching for the plastic behaviour

of the material and reformulate the FE pre-process. Furthermore, in cases where buckling is reached, the

state equations that govern the problem would vary drastically and thus would further complicate matters.
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To avoid it, the chosen solution is intentionally subjected to conditions under which buckling does not occur.

5.2 Computational Techniques

This section’s aim is to cover alternative computational approaches that could have been used instead of the

selected ones.

5.2.1 Time Integration Scheme

As explained in chapter 4, section 4.2.6, the method that is followed during this study when it comes to

temporal integration is the Newmark-Bossak integration scheme.

According to [22], ”Because the higher modes of semi-discrete structural equations are artifacts of the

discretization process and not representative of the behavior of the governing partial differential equations, it

is generally viewed as desirable and often is considered absolutely necessary to have some form of algorithmic

damping present to remove the participation of the high-frequency modal components”. Removing high

frequency modes involves increasing the value of the Newmark parameter γ, which at the same time, results

in an accuracy drop.

Thus, implicit Newmark β-methods like the ones described in [15] are not of interest for this study, since the

damping effect is a feature that must be considered and analysed.

The Newmark-Bossak scheme though, is one of the methods that have been developed with the objective of

algorithmically computing the damping effect in higher frequencies without compromising the accuracy.

5.2.2 Finite Element Basis

All FEMs are based on finite-dimensional approximations. Although there is a wide range of approximation

methods, there are two of them that are specifically used for academic purposes.

The first one and most simple, is to solve the FE equations for every node in every element. In this case, the

outcome is a series of discrete data that corresponds to the solution of each node. Although this method

could be appropriate for this work, the accuracy clearly depends on the mesh, since it must be quite refined

in order to obtain a seemingly continuous solution.

The second approach, which is the one chosen for this work, is the Galerkin’s approximation method. As seen

in chapter 4, section 4.2.3, this technique assigns what is known as shape function N(x, y) to every single

node in the mesh. By doing so, the solution that corresponds to this node can be extrapolated to all the

physical domain of the corresponding finite element. Considering that for every node, the solution becomes

piecewise smooth and can be seen as continuous, is a great advantage for post-process matters.

These shape functions consist on polynomials known as basis FE functions. The higher the degree of the

basis function, the higher the accuracy of the FEM, while, on the other hand, the more complicated does the

FE formulation get.

Since the simulations included in this work do not contain conditions (i.e external forces, boundary conditions
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or material properties) that could lead to complex and highly nonlinear responses, choosing linear FE basis

as shape functions is held to be legitimate.

Nonetheless, there exist other approximations like the Petrov-Galerkin method, which, according to [30],

employs different types of shape functions for trial and test functions (uh and vh - see section 4.2.4).

5.2.3 FFT Alternative

Regarding the wind-response analysis, there are two distinctive ways of obtaining the external force that the

wind produces and formulate it in the FE code.

On the one side, and the most obvious one, would be to manually introduce the wind speed measurements

into the code and directly calculate the lift force that the wind produces on the structure at every time step.

However, the way in which the code has been thought to operate is to introduce the external forces as

temporal functions. Moreover, the manner in which the code stores the variables for their general use in any

function also complicates the fact of manually introducing the data.

On the other side, as previously discussed in section 4.5, the FFT can be used to transform discrete data into

a time domain function consisting on a Fourier expansion, which is exactly what the original code has been

thought to cope with.

Although it requires more effort than the first option, once the code to compute the FFT is created, it can be

applied to any series of data, which is better if more simulations are to be conducted using real measurements.

5.3 Hyperreduction

To conclude this chapter, other possibilities regarding the HROM techniques are exposed along this section.

Taking into account that Artificial Intelligence is a disruptive field that is nowadays exploding more than ever,

it must be noted that there is a large number of alternatives to data compression, dimensionality reduction,

optimization, etc.

Nonetheless, some of these alternatives are still in their infancy, and many theoretical and practical aspects

still remain unaddressed.

That being said, this section will only cover some of the relevant ML techniques in this work and their

possible alternatives.

5.3.1 Element-based HROM

Alternately to the point-based HROM, this method’s aim is to choose a reduced set of FE elements

E ∈ {1, 2, . . . , nel} and thus, their respective Gauss points too. This approach is by far the less intrusive

methodology and it is more suited for cases in which the FE implementation does not allow the extraction

and storage of information at the Gauss point level. According to [31], numerical experience states that the

number of required entities, i.e elements or points, is practically the same either with the point-based or the
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element-based methods. Hence, the number of Gauss points selected in the element-based approach is m

times larger than the one obtained with the point-based.

The downside of this approach is, a part from the larger number of chosen Gauss points, the fact that it is

also less efficient than the point-based HROM, since the rank of the snap hot matrix is higher.

5.3.2 Updatable Basis

The HROM with updatable basis is an alternative to the chosen approach, since it makes use of what is called

the k-means clustering algorithm (see, for instance, [32], [33], [21]). This is a ML algorithm that essentially

divides the given set of snapshots Ad and As into clusters that exhibit similar features. By doing so, the

nodal displacements are approximated using local basis for each region or cluster instead of being obtained

with a single global basis matrix.

Nevertheless, this kind of approach is used in problems where the dimension of the input space, i.e the

external forces, is much smaller than the FE space dimension and/or in problems where the solution is also

of dimension much smaller than the FE space.

In the case of study, none of those hypothesis apply.
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Chapter 6

Description of the Study

and Discussion of the Results

As it has been advanced in the foregoing, this project includes a series of studies, which will be pertinently

covered in this chapter. The two principal studies are:

• Analysis of the dynamic linear response of the cantilever beam under the action of the wind. Comparison

of the FEM, the modal decomposition analysis and the HROM.

• Analysis of the dynamic nonlinear response of the cantilever beam under the action arbitrary forces.

Comparison of the FEM and the HROM.

As explained in chapter 4, section 4.2, the FEM equations will be integrated using a combination of the

Newmark-Bossak integration scheme and the Newton-Raphson method. Furthermore, all the equations used

for the modal approach have been deduced in section 4.4, and the HROM background is found in section 4.6,

both sections in the aforementioned chapter.

Initially, the code which is used to conduct the analysis is only capable to work with a specific external

force. As explained in 3, this external force is a single harmonic distributed force like the one represented in

equation 3.1. Therefore, the code must be adapted and/or modified gradually, with the objective of being

able to launch simulations no matter the external force or the regime to which the structure is responding.

To ensure that the code gives out legitimate results and that the adaptations are not affecting its functionality

and efficiency, it is necessary to conduct some preliminary simulations that will serve to corroborate that

everything is in order.

Hence, these intermediate simulations will also be included in this chapter.

Moreover, since computing the time function of the wind speed requires using the FFT, the only piece of

code that has been created from scratch by the author is the one discussed in section 6.3.

It is worth mentioning that the majority of work behind this thesis comes from the analysis and discussion of
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the simulations results but, most of all, it comes from the process of iteratively adapting and fixing the code

until the right results are obtained.

6.1 Forced Undamped Vibrations

As described in section 4.4.1, this is the simplest case, since the response of the system does not depend on

the velocity of vibration and damping effects are not included.

In the beginning of this thesis, the initial code was already capable of solving these problem for the case of a

uniformly distributed external force consisting of one single sinusoidal function given by:

F ext(t) = F̄ sin(Ωt) (6.1)

Since the study seeks to analyse the dynamic response of the structure in an environment that simulates

reality to the fullest extent possible, these case of study is only used for getting familiar with the code

methodology. This way, the student is able to understand the code and how it operates, and makes it more

intuitive to adapt it to the following cases of studies.

6.2 Forced Damped Vibrations

Considering that the code can only be faced with external forces like the one described in equation 6.1 when

the problem is under the hypothesis of undamped conditions, the code must suffer some adjustments. The

final objective of this case of study is being able to correctly compute the dynamic response of the cantilever

beam under the forced damped vibration problem hypothesis detailed in section 4.4.

Moreover, the results will be discussed for 2 different types of uniformly distributed external forces, also

explained in section 4.4: external force consisting on a single sine (harmonic force), and external force

consisting on a harmonic expansion. These forces, as well as all the forces contemplated on this work, are

distributed on the top surface of the beam.

Before beginning with the actual simulations, it is important to define the general inputs that will be used in

all of them, as well as the reasons behind their choice.

6.2.1 Code Inputs and Considerations

Since the damping effect is addressed, one must consider the Rayleigh damping hypothesis defined in section

4.4.2, equation 4.87:

D = ᾱM + β̄K

Bearing in mind that no rigorous method to estimate ᾱ and β̄ has been explored in chapter 4, it is more

suitable to follow the author’s criteria.
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If one considers equation 4.90, the damping ratio ξ̄ is a function of both the damping parameters ᾱ and β̄:

ᾱ+ β̄ω2
i = 2ξ̄iωi (6.2)

Where ωi and ξ̄i are the natural frequency and damping ratio of the i-th natural mode of the structure.

It is actually simpler to estimate the damping ratio than the damping parameters ᾱ and β̄, since the damping

ratio is a property of utmost importance in any structure: every structural study or analysis refers to the

damping ratio when addressing any issue related to the damping effect. Thus, finding values of ξ̄ for similar

cases of study is not as complex as doing it for ᾱ and β̄.

The procedure that is followed to compute the damping parameters is to select an arbitrary value of ξ̄ for the

first natural mode of the structure. In this case, the first natural mode is also the first and most important

bending mode. Since uniformly distributed forces applied on the top surface of the beam only produce

bending motion, it seems coherent to define the damping ratio of the main mode of vibration and extract the

values of ᾱ and β̄ from it. The rest of ξ̄i can be then calculated with equation 6.2.

Strictly speaking, the stiffness matrix represented in equation 4.87 is the initial stiffness matrix K0, i.e K

when the displacements are zero, which happens to be the initial condition of the cantilever beam. Hence, as

the structure finds itself in equilibrium in the initial condition, it does not suffer any stiffening effect and

thus, one can consider K0 = 0.

It is important to notice that this hypothesis can be formulated only when the viscosity effects are introduced

directly in the constitutive equation, i.e the damping effect is incorporated into the relationship between the

stresses and strains (see equation 4.17). Since the Green-Lagrange strain tensor {E} includes the viscosity or

damping effect, K0 can be neglected.

This way, β̄ can be disregarded and one is only faced with ᾱ, which, according to equation 6.2, is given by:

ᾱ = 2ξ̄iωi (6.3)

In order to avoid overdampng, underdamping or critical damping, the chosen value of ξ̄ has been established

to 0.02 and thus, considering the natural frequency of the first mode ω1 = 109.309 rad/s (see section 1 from

the Annexes document), ᾱ = 4.372.

The code uses, 20 modes by default in the modal decomposition analysis (ϕ), see section 4.4. For the

hyperreduced order stage, see section 4.6, the basis modes (Φ), are determined by the code itself in accordance

with the error tolerances that are arbitrarily defined.

Furthermore, the HROM stage will only be performed in the wind and nonlinear studies (see sections 6.4

and 6.5 respectively), since all the other cases do not involve a considerable computational effort and, thus,

running the HROM stage would not make an appreciable difference.

The time domain of the simulation is considered 20 times the first natural period, i.e 20T1 = 40π/ω1 = 1.150 s.

The number of time steps is considered to be of 200 steps per first natural period. Although it may seem
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as an excessive value, it will later be seen that, in order to capture the damping effects in the vibration of

the structure, the number of time steps must be higher than usual, since those effects translate into small

perturbations inside each oscillation.

In such case, since the time domain is equal to 20 times the first natural period, the default number of time

steps ascends to 4000.

Finally, it must be highlighted that, in order to use the analytical solutions deduced with the modal

decomposition analysis in section 4.4, the initial conditions d0 and v0, i.e when t = 0 s, are considered zero in

every single simulation to be launched in this chapter.

The inputs related to the external forces will be addressed in what follows.

6.2.2 Harmonic Force

According to section 4.4.2, the external force has the upcoming form (extracted from equation 4.95):

F ext(t) = F̄ sin(Ωt+ φ)

In contrast with equation 6.1, this harmonic force also includes a phase shift φ. This parameter is intentionally

included with an eye on the FFT, which, as further explained in section 6.3, gives out phase shifts for every

single frequency.

Low Frequency Sine

The first simulation seeks to represent the dynamic response of the structure under the effect of a uniformly

distributed force which consists on a harmonic force like the one depicted in figure 6.4.

The parameters that define this harmonic function are given by:

F̄ = 0.1 MPa

f = 1
3 Hz → Ω = 2π

3 rad/s

φ = π
4 rad

(6.4)
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Figure 6.1: Time evolution of an external force consisting on a single low-frequency sinusoidal function.
Source: Own elaboration.

It is worth mentioning that this sine is the first one of the expansion that will be addressed in the next section

6.2.3.

With all the inputs defined in the present section and section 6.2.1, the simulation is launched and the

following is obtained:

Firstly, it is interesting to visualize the portion of the external force represented in 6.1, since the time domain

is cut to just 1.15 seconds:
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Figure 6.2: Representation of the external force applied in this case of study.
Source: Own elaboration.

To analyse both the displacement and the velocity of vibration of the structure, it has been decided to

represent them on a node situated at the free end of the beam (see figure 6.3), since it is located on the

section that experiences the maximum displacement and velocity.

Considering that it is a 2D problem and that the external forces that are to be applied only contribute to

producing bending motion, the only degree of freedom of interest is the vertical movement, i.e along the y

axis. Thus, the corresponding degree of freedom will be number 2814, which corresponds to node 1407.

Figure 6.3: Identification of the 1407th node in the GiD mesh of the structure.
Source: Own elaboration.

That being said, the displacement and velocity of DOF 2814 obtained after launching the FE study are the

upcoming:
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Figure 6.4: Displacement of DOF 2814 through time, caused by the external force represented in figure 6.2.
Source: Own elaboration.

Regarding the displacement evolution, one can easily identify the damping effect explained in section 4.4.2:

the movement’s amplitude decreases over time. Given the fact that the damping effect is proportional to the

velocity of vibration and thus looking at figure 6.5, the damping phenomena depicted in figure 6.4 must be

strongly present at the beginning of the motion, where the velocity is higher.

Furthermore, once the damping effect weakens, the structure behaviour becomes steady. This steadiness

is determined by the external force, since it is then the only responsible for exciting the movement of the

structure. Hence, if one compares the external force represented in figure 6.2 with the steady stage of the

displacement curve 6.4, it can be noted that the structure vibrates in concordance with the external force.
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Figure 6.5: Velocity of DOF 2814 thorugh time, caused by the external force represented in figure 6.2.
Source: Own elaboration.

In terms of the velocity, both the damping effect and the steady response are also clearly visible. However,

the steady response is different from the one in figure 6.4, since it is defined by the derivative of the external

force.

To assess the possible error of the simulation, it is also useful to plot the total energy of the response, which

can be obtained by summing up both the kinetic and the strain energy. Bearing in mind that those energies

are obtained from squaring the velocity and displacement respectively, spotting an error would be easier in

this case as it would also be squared up.

In matrix format, the kinetic and strain energy can be computed as:

K =
1

2
vTMv (6.5)

U =
1

2
dTKd (6.6)

Where K and M are the mass and stiffness matrices respectively.

Hence, the energy of the system results in:
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Figure 6.6: Strain, kinetic and total energy of the system through time.
Source: Own elaboration.

According to the preceding figure, the strain energy is significantly higher than the kinetic energy, which

suggests that the stiffness of the material is considerably larger than its density. According to table 3.1,

aluminium is a really resistant material with a high Young modulus, and it is also really light thanks to its

low density.

To assess the precision of the FE analysis, it is necessary to have the real response of the structure. Since the

student does not count on such information, it must be calculated analytically.

As mentioned in previous sections, the analytical solution that is used to check the accuracy of the FE

analysis is the one obtained with the modal analysis decomposition in section 4.4.

The solution of the forced damped vibrations problem is expressed in equation 4.94, and it is composed of a

homogeneous solution (which depend on constants Ai and Bi) and a particular solution that will depend on

the external force.

Section 4.4.2 deduces the particular solution for an external force formed by a single harmonic function, i.e

one single sine. Substituting the particular solution expressed in equation 4.97 in 4.94, yields:

qi(t) = qmax
i

(
e−ξ̄iωit (Aicos(ω̄it) + sin(ω̄it)) +

(
1− ρ̄2i

)
sin(Ωt+ φ)− 2ξ̄iρ̄i cos(Ωt+ φ)

)
(6.7)

And, according to equation 4.77, the nodal displacements vector is computed as (only for the unrestricted
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DOFs):

dl =

nmodes∑
i=1

ϕliq
max
i

(
e−ξ̄iωit (Aicos(ω̄it) + sin(ω̄it)) +

(
1− ρ̄2i

)
sin(Ωt+ φ)− 2ξ̄iρ̄i cos(Ωt+ φ)

)
(6.8)

The velocity response is obtained by deriving the previous equation.

Relaunching the simulation with the modal analysis added to the code one can compare the results:

Figure 6.7: Maximum amplitude qmax
i of each mode of vibration ϕi.

Source: Own elaboration.

One of the main advantages of the modal decomposition analyses is that, as depicted in figure 6.7, one is able

to know which natural modes of vibration of the structure are triggered.
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Figure 6.8: Snapshot of the 1st natural mode of the structure.
Source: Own elaboration.

In this case, only the two first modes are activated, being the first one the most dominant one by far. The

reason behind it is that the frequency of the external force, i.e 1/3 Hz, is closer to the first natural frequency

of the structure than to any of the other natural frequencies.

These modes, as one would expect, represent bending motion (every mode shape is included in section 1 of

the Annex document), which suggests that the structure will vibrate periodically and slightly reducing its

amplitude of movement due to the damping effect that can be observed in figure 6.4.

Figure 6.9: Comparison between the 2814th DOF displacement obtained by the FE analysis and the one
deduced from the modal decomposition analysis.

Source: Own elaboration.
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Figure 6.10: Comparison between the 2814th DOF velocity obtained by the FE analysis and the one deduced
from the modal decomposition analysis.

Source: Own elaboration.

Taking a look into both figures 6.9 and 6.10, one can observe two distinct features.

On the one hand, the transient and steady responses are also captured by the modal decomposition analysis,

and can be explained with equation 6.8: the transient stage is associated to the homogeneous solution while

the steady stage corresponds to the particular solution.

On the other hand, both methods match perfectly, which, in principle, would indicate that the FE analysis is

a legitimate tool to compute the dynamic response of the structure under the conditions specified in this case

of study.

Nonetheless, the energies will also be compared to assure that the preceding statement is correct. To avoid

overloading the plot with too many curves, only the total energy is compared.
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Figure 6.11: Comparison between the 2814th DOF energy obtained by the FE analysis and the one deduced
from the modal decomposition analysis.

Source: Own elaboration.

According to [34], the time constant τ is a widely used concept to study in damped systems. It essentially

indicates how much time must elapse for the response to have decayed by approximately 63.2%. In other

words, when τ is reached, the energy of the system is roughly a 36.8% of its maximum value.

In a second order ODE, the time value τ is given by:

m
d2x

dt2
+ b

dx

dt
+ kx = 0→ τ =

2m

b
(6.9)

Comparing the form of this ODE with the forced damped vibrations ODE (see equation 4.91), and according

to equation 6.2, τ is estimated as:

τ =
2m

b
=

2

2ξ̄iωi
=

2

ᾱ
= 0.457 s (6.10)

As detailed below, the amplitude of the displacement oscillation that takes place around 0.457 seconds is

approximately 0.116 meters, whilst the maximum amplitude of the displacement, which is given at the

beginning of the response, is roughly 0.339.

Since the energy of a sinusoidal wave can be estimated with its amplitude, the energy of the oscillation that

occurs around 0.457 is 34.27% the energy of the maximum amplitude.

Given that the above-mentioned procedure relies on big approximations to obtain a visual idea of the energy
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decrease, the precision is considered acceptable and thus the value of τ for the FEM response is accepted as

approximately 0.457 seconds.

Figure 6.12: Representation of the energy of the system computed by the FEM at different instants.
Source: Own elaboration.

It is now clear that the FEM is legitimate when trying to study the dynamic response of the structure when

the external force is formed by a low frequency sine.

Nevertheless, since one of the main objectives of the project is to study the structure response to the wind,

one must assure that the FEM is also successful when faced with external forces that consist on a combination

of several sinusoidal functions.

It must be noted that, when working with Fourier expansions, the combination of different frequencies can

produce narrow-width peaks, which are characteristic of higher frequency sines. Thus, high frequencies are

also of interest and it is convenient to take them into account when defining the optimal number of time

steps.

6.2.3 Harmonic Expansion Force

Once the foundations have been laid, one can consider launching a simulation with an external force constituted

by a combination of sines with increasing frequencies Ω.

As it has been repeated, this case of study is done in order to simulate how the code would behave when a

combination consisting on a larger number of sines is introduced (i.e the Fourier Series extracted from the

FFT results in the following section 6.3).

The resulting external force function is illustrated in figure 6.13 and is formed by the sum of 10 different

sines, which have the upcoming characteristics (being the first one the low frequency sine analysed in the
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previous section 6.2.2):

F̄ =

[
0.1 0.02 0.005 −0.6 0.9 1.2 0.03 −0.7 0.8 −1.1

]

Ω = 2πf = 2π

[
1/3 2 10 50 120 350 400 680 830 1010

]

φ = π

[
1/4 0 1/2 7/4 8/7 3/2 0 5 1/6 9/5

]
(6.11)

Hence, the external force applied on the structure’s top surface is given by:

F ext(t) =

10∑
k=1

F̄k sin(Ωkt+ φk) (6.12)

Figure 6.13: Time evolution of an external force consisting on the combination of sinusoidal functions
detailed in expression 6.11.

Source: Own elaboration.

Given the fact that the simulation will initially cover a time domain of less than 2 seconds, figure 6.13 is

zoomed in to better appreciate this mentioned interval:
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(a) External Force (b) Zoom in

Figure 6.14: Enlargement of figure 6.13 in the 0-2 seconds domain (a), and zoom in of the external force (b).
Source: Own elaboration.

Notice that, since the frequency is much higher than in the preceding case, the time domain has been

drastically cut to just 0.01 seconds in order to better visualize the narrow oscillations.

Combining a set of sines with different frequencies translates into a noisy and aperiodic function that contains

much more oscillations during the same period of time in comparison to the low frequency sine studied in the

previous section. Hence, more time steps are required in order to capture those narrow-peaked oscillations.

To determine the optimal number of steps, one can define an appropriate number of points that would define

a sinusoidal wave. According to figure 6.15, 10 points seem to be the best idea.
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Figure 6.15: Location of the 10 points that optimally represent a sinusoidal wave.
Source: Own elaboration.

Less points could imply too few information in simulations where the time domain is short and the frequency

of external force is low, like in the previous case 6.4. If that happened, the code could interpret the external

force as a linear function.

On the contrary, too many data points would translate into a greater computational effort and a waste of

valuable time when launching simulations.

Hence, the method to estimate the required number of time steps, which will be carried out hereinafter,

consists on multiplying the number of oscillations that occur during the specified time domain by 10, the

number of data points that will determine every oscillation.

Taking a look into figure 6.14, one can easily calculate the number of oscillations of the external force by

tend/T , where tend is the time domain of 1.15 seconds and T is the period of the external force. The 10 point

criteria is applied to the sine with the greatest frequency of the combination, i.e 1010 Hz.

Hence, the number of oscillations is 1161.5 and, consequently, the number of time steps must increase from

4000 to 11615.

The analytical solution given by the modal decomposition analysis for the case of an external force formed by

a sine expansion can be found in equation 4.101 (see section 4.4.2).
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Updating the inputs and adapting the code to make it able to cope with an external force represented by

equation 6.12, the dynamic response is synthesized in the following figures. To avoid repeating simulations,

the FEM and modal results will be hereafter represented in the same plot, except if a more in-depth analysis

of a result is required.

Figure 6.16: Maximum amplitude qmax
i of each mode of vibration ϕi.

Source: Own elaboration.

In this case, as the external force consist on a combination of sines with different frequencies Ω, figure 6.16

shows that the dynamic response is formed by 4 different modes of vibration.

67



CHAPTER 6. DESCRIPTION OF THE STUDY
AND DISCUSSION OF THE RESULTS

Study of Machine Learning Techniques
for modelling Large Structural Vibrations

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 5

Figure 6.17: Snapshot of the 4 different natural modes of vibration that contribute to the dynamic response
of the beam.

Source: Own elaboration.

Likewise in the other simulations, these modes all represent bending motions.

Figure 6.18: Comparison between the 2814th DOF displacement obtained by the FE analysis and the one
deduced from the modal decomposition analysis.

Source: Own elaboration.

68



CHAPTER 6. DESCRIPTION OF THE STUDY
AND DISCUSSION OF THE RESULTS

Study of Machine Learning Techniques
for modelling Large Structural Vibrations

Figure 6.19: Comparison between the 2814th DOF velocity obtained by the FE analysis and the one deduced
from the modal decomposition analysis.

Source: Own elaboration.

As observed in figures 6.18 and 6.19, considering a sine combination instead of only one sine contributes to

the creation of noisy and aperiodic responses.
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Figure 6.20: Comparison between the 2814th DOF energy obtained by the FE analysis and the one deduced
from the modal decomposition analysis.

Source: Own elaboration.

According to figure 6.20, the FEM matches almost perfectly with the modal analysis for 11615 time steps.

The mismatch that can be seen in figures 6.19 and 6.20, although seeming insignificant, must to be taken

into account.

The noisy and narrow-peaked shape of sine combination functions facilitate the formation of peaks with widths

even narrower than the ones associated to the sine with the greatest frequency (in this case Ω10 = 2020π rad/s).

Hence, it appears that, for sine combinations, the 10 point criteria that has been defined in this section for

estimating the time steps should be increased if more precision was desired.

In such context, the code is considered capable of obtaining the dynamic response of the structure caused by

the wind action. However, an intermediate step is needed in order to introduce the wind data as code input,

since it requires external forces to be represented by continuous time-dependant functions.

6.3 Fourier Expansion

As explained in section 4.5, the DFT and its computationally efficient computation, the FFT, can be used to

depict a discrete set of data in the time domain into its equivalent frequency domain representation.

Its main application in this thesis is its potential to convert empirical measurements of real gusts of wind

70



CHAPTER 6. DESCRIPTION OF THE STUDY
AND DISCUSSION OF THE RESULTS

Study of Machine Learning Techniques
for modelling Large Structural Vibrations

speed into continuous time-dependant function represented by a Fourier expansion.

All the procedures that will be detailed in the following sections are included in the Fourier code (see chapter

2 in the Annexes document).

6.3.1 From FFT to Fourier Expansion

According to section 4.5, this Fourier expansion is similar to the one in equation 4.104, but in the time

domain:

g(t) =
a0
2

+

∞∑
k=1

akcos

(
2πk

L
t

)
+ bksin

(
2πk

L
t

)
=

a0
2

+

∞∑
k=1

akcos (2πfkt) + bksin (2πfkt) (6.13)

Where fk is the frequency in Hertz of each sine/cosine combination and Ωk = 2πfk. However, since g(t) will

be extracted from the outputs of the FFT algorithm, the preceding equation must be slightly adapted.

For reasons of convenience that will be later justified, it is more convenient to write the Fourier expansion

exclusively with sines, since the previous simulations in section 6.2 have been dealing with sines instead of

cosines.

Considering that any sine and cosine combination can be represented by a single sine as:

akcos(Ωt) + bksin(Ωt) = Aksin(Ωt+ φ) (6.14)

g(t) is then given by:

g(t) = A0 +

∞∑
k=1

Aksin (Ωkt+ φk) (6.15)

Where A0 = a0/2.

According to equation 4.113 in section 4.5, the system of equations that one is faced with when conducting a

Fourier Transform has complex-valued results (f̂ vector). The physical interpretation behind f̂ , which will be

detailed below, enables one to extract an amplitude Ak, and a phase φk that fit perfectly with the adapted

Fourier expansion in 6.15.

As mentioned, the interpretation of f̂ is of utmost importance if one wants to construct a time-dependant

function from the real data.

The magnitude of the Fourier coefficient is related to the amplitude of the sine or cosine. This amplitude can

be computed as [35]:

Ak =
1

N
∥f̂k∥ (6.16)

Where N is the number of samples.

On the other side, the phase identifies how much of a sine/cosine behaviour has the corresponding frequency.

In other words, the phase indicates how shifted is the sine or cosine, and it is obtained by taking the imaginary

part of f̂ :

φk = Im(f̂k) (6.17)
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Provided that f̂ belongs to the frequency domain, its magnitude and phase are usually represented with

frequency spectrum similar to the ones depicted in figures 6.21 and 6.22. Such figures are obtained from the

FFT of the following signal:

f(t) = sin(4πt) + 3sin(10πt) (6.18)

Figure 6.21: Representation of the magnitude ||f̂k|| of each frequency fk.
Source: Own elaboration.

72



CHAPTER 6. DESCRIPTION OF THE STUDY
AND DISCUSSION OF THE RESULTS

Study of Machine Learning Techniques
for modelling Large Structural Vibrations

Figure 6.22: Representation of the phase φk of each frequency fk.
Source: Own elaboration.

As it can be seen, the spectrum indicates the magnitude and phase associated to each frequency. These

frequencies are symmetrically distributed, being f = 0 Hz the point of symmetry. In the spectrum, the point

of symmetry is found in the N/2 + 1 index.

Moreover, f is not an output of the FFT, and is instead arbitrarily constructed, keeping in mind that the

zero frequency must be located at index N/2 + 1:

f =
fs
N

[
−N

2 −N
2 + 1 . . . 0 . . . N

2 − 2 N
2 − 1

]
(6.19)

Where fs is the sampling rate, or the number of measurements performed in a second. To guarantee that the

FFT gives out satisfactory results, it is indispensable for the real data to be measured at a constant rate fs.

If this requirement is respected, the sampling rate can be calculated as:

fs =
NT

T
(6.20)

Where T is the period of the signal and NT is the number of samples per period. In aperiodic signals like the

one selected for this study (see figure 6.24), the entire time domain is considered their actual period T and

NT = N . Hence, the FFT gives out the amplitudes and phases of a signal which has the same shape as the

original discrete representation and which is periodic at intervals of T seconds.

73



CHAPTER 6. DESCRIPTION OF THE STUDY
AND DISCUSSION OF THE RESULTS

Study of Machine Learning Techniques
for modelling Large Structural Vibrations

Considering that negative frequencies do not have any physical sense, in a practical way, the only k-indices

that must be considered are k ∈ [0, ∞).

To avoid losing fundamental information from the FFT spectrum after carrying out the truncation of the

DFT for only positive frequencies, equation 6.16 must be reformulated as:

Ak =


1
N ∥f̂k∥ for Ωk = 0

2
N ∥f̂k∥ for Ωk > 0

(6.21)

Notice that, for Ωk = 0, the amplitude is not doubled. This is due to the symmetry in the spectrum of f̂

that has been noted in figure 6.21: since Ωk = 0 is the symmetry point, its associated information is only

computed once.

Moreover, regarding the DFT matrix F in equation 4.113, the zero frequency corresponds to the first row of

the mentioned matrix and, thus, f̂1 =
∑N

k=1 fk.

By dividing f̂1 by the total number of samples N , one is essentially computing the mean value of the total

data set, i.e the offset (A0) of the signal g(t) in equation 6.15.

According to [36], this method of approaching the FFT would result in a Fourier cosine expansion. Therefore,

and considering that cos(x) = sin(x+ π/2), equation 6.15 must be readapted a final time as follows:

g(t) = A0 +

N−1∑
k=1

Ak sin
(
Ωkt+ φk +

π

2

)
(6.22)

6.3.2 Wind Speed Signal Considerations

The selected wind speed data has been obtained from [37]. This paper studies the effects of wind speed

fluctuations on the short and long-term power fluctuations that occur in wind turbines.

Figure 6.24 represents the measurements of the wind speed (Vw) in a single point of the turbine’s rotor disk

during a short period of time.

The conditions that a wind turbine blade faces are similar to the circumstances that this study wants to

simulate, i.e real wind gusts applied in nearly sea level and during a relatively short period of time.

Hence, after carefully researching through different articles and researches, it has been concluded that the

particular data set represented in the upcoming figure is the most suitable for this thesis.
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Figure 6.23: Wind speed gusts measured in a single point of a wind turbine rotor disk.
Source: Data extracted from [37].

As it will be further explained in section 6.4, the force produced by the wind is proportional to the square of

its speed, i.e V 2
w . That being said, the original discrete signal that will be transformed into a continuous

time-dependant function is:
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Figure 6.24: Square of the original wind speed data represented in figure 6.23
Source: Data extracted from [37].

After analysing the data set in a deeper sense, one can see that the sampling rate of the signal is not constant

and the number of samples (113) is not even.

Such issues complicate the FFT stage, since, as it has been mentioned in the present section and also section

4.5, in order for the FFT to function properly, the number of samples must be even and the sampling rate

constant.

To deal with both requirements at the same time, the author has come with a solution which involves

interpolating. With this solution, the data set N is reshaped by defining the signal period T and the desired

sampling rate fs.

Adjusting the values of T and fs based on the characteristics of the signal, requires creating a new time vector

t and thus a new vector representing the square of the wind speed measurements V 2
w at these moments in

time. Both V 2
w and t will then have a dimension N defined by equation 6.20. Thus:

N = T fs (6.23)

Since the signal in figure 6.24 is clearly aperiodic, T is set to 120 seconds and fs = 10 samples/s. In such

circumstances, the new vectors of time and wind speed will have N = 1200 elements, which is intentionally

an even value.
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Once N is redefined, the time vector is given by:

t =

[
0 1

fs
2
fs

3
fs

. . . N−1
fs

]
(6.24)

Finally, the new vector of squared wind speed is obtained from a cubic interpolation with the original data

set and the new vector of time defined in the previous equation.

This cubic interpolation is possible thanks to the spline() Matlab function, which essentially computes the

values of V 2
w that the original signal in figure 6.24 would have for the corresponding values of the new time

vector.

To better visualize the approach, figure 6.25 shows the comparison between the original and the interpolated

signal, as well as the original data set and the new one:

(a) Signal (b) Dataset

Figure 6.25: Comparison between the original and the interpolated signal (a) and Representation of the
original dataset of N = 113 and the interpolated dataset of N = 1200 (b).

Source: Own elaboration.

As it can be observed, the cubic interpolation is considered legitimate to conduct the FE study, since the

mismatches that take place in the previous figure are not sufficient enough to be appreciable in the dynamic

response of the structure.

Furthermore, the fact that the interpolated signals finishes at 120 seconds is due to the arbitrary definition of

the T parameter. From this instant, the signal repeats itself with intervals of 120 seconds.

Such an approach makes it really easy to extend the procedure to a general point of view. In other words,

by defining the period and the sampling rate for subsequently interpolating the signal, one can ultimately

achieve a new data set equivalent to the original but much more adequate for the FFT algorithm.

With this pre-process technique, the FFT can be applied to any signal, no matter its shape or periodicity,

since the arbitrary values of T and fs reshape and adapt the original data set into what the FFT requires for

the corresponding situation.
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Noisy and narrow-peaked signals like the one in the present case require higher sampling frequencies, while

smoother signals with lower frequencies can be captured with less samples per second.

6.3.3 Resulting Signal

Running the Fourier code with the interpolated signal, the magnitude and phase spectrum obtained are the

following:

Figure 6.26: Magnitude spectrum of the wind data FFT.
Source: Own elaboration.
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Figure 6.27: Phase spectrum of the wind data FFT.
Source: Own elaboration.

Since the number of samples is N = 1200, the Fourier expansion that would result from these results would

consist on a combination of 1200 sines.

Launching a simulation with an external force that is formed by such a large amount of sines would be

extremely demanding in terms of computational effort. Hence, it is convenient to filter the results.

Taking a look into figure 6.26, one is faced with a really high value of f̂1, which corresponds to the zero

frequency.

To give relevance to the rest of the signal, one can get rid of f̂1 and plot the rest of magnitudes:
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Figure 6.28: Representation of the magnitude spectrum when f̂1 is omitted.
Source: Own elaboration.

After iteratively trying different filtering thresholds and according to figure 6.28, it is determined that all the

f̂ magnitudes smaller than 200 will be discarded. Therefore, the only k-indices that will be considered for

the Fourier expansion are the ones that meet the following condition:

||f̂k|| ≥ 200 (6.25)

Thus, applying this tolerance to equation 6.21, only amplitudes greater than 0.167 will be included.

Applying this criteria, the number of sines is reduced from 1200 to just 43, which represents a 96% decrease.

Furthermore, and according to figure 6.29 the resulting filtered signal’s accuracy is almost the same as the

one obtained with the whole 1200 samples, which, as it can be seen, matches perfectly with the original

N = 113 dataset (the one represented in figure 6.24).
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Figure 6.29: Filtered signal, i.e N = 43, obtained from the FFT analysis in contrast with the one obtained
with N = 1200 and the original data.

Source: Own elaboration.

Thus, one is be able to see that the cubic interpolation and the f̂ filtering have not contributed to creating a

big difference between the final time-dependant function obtained from the FFT and its original discrete

form.

Hence, it can be concluded that the approach carried out to obtain the continuous representation of discrete

wind speed data does not degrade the original signal and, moreover, it is also quite advantageous in terms of

computation, since going from 1200 to 43 sines will save a great deal of time when launching the definite

simulation.

6.4 Wind Analysis

This section’s objective is to transfer all the valuable data obtained by the FFT analysis into the FE main

code, in order to launch a simulation similar to those in section 6.2.

To do so, the problem must be properly formulated, going through the different hypothesis assumptions that

need to be adopted.
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6.4.1 Problem Statement

In aerodynamics, when a body moves inside a fluid (in this case, the air), there is a good chance that this

fluid will cause more pressure on some locations of the body. This pressure gradient is caused mainly because

the fluid moves slower at some regions, thus increasing the amount of static pressure, given that the energy

has to remain constant (see equation 6.26).

This phenomena is explained with the Navier-Stokes equations. For the sake of simplicity, it is considered

that, in this simple case of study, the fluid can be addressed as ideal, i.e incompressible, irrotational, inviscid,

and subjected to conservative forces. With such hypothesis and according to [38], the Navier-Stokes equation

of energy can be reduced to the famous Bernoulli expression.

It states that the total energy per unit volume of a streamline (PR), which is equal to the sum of the dynamic

pressure q (or the kinetic energy per unit volume), the static pressure P0 and the potential energy per unit

volume U, must be kept constant:

PR = q + P0 +U =
ρV 2

w

2
+ P0 + ρgz (6.26)

Where ρ is the air density at a given altitude z. As mentioned, ρ takes the value corresponding to sea level

altitude (ρ0 = 1.225kg/m3) and, since the fluid is ideal, ρ = constant through the entire simulation.

As it has been observed in the different simulations conducted in section 6.2, the maximum displacements of

the structure dynamic response, which are produced at the beam’s free end, are not large enough so as to

consider noticeable changes in gravity. Therefore, U can be neglected in the above equation.

Moreover, to further simplify the formulation, it is assumed that the structure finds itself in near vacuum

conditions. Thus, P0 can be also ignored.

With such considerations, the expression that describes the energy of the fluid that comes into contact with

the beam can be simplified from equation 6.26 to:

PR = q =
ρV 2

w

2
(6.27)

The energy of the fluid and consequently, the energy of the beam dynamic response, only depends on the

dynamic pressure that the wind applies on the structure. Hence, the external force that the beam will have

to withstand, will be proportional to the square of the wind speed V 2
w .

In the previous section, the student has been able to obtain a continuous time-dependant function that

describes how does the square of the wind speed behave along time. Since the external force is uniformly

distributed on the top surface of the beam, the squared wind speed represented on figure 6.29 is considered

to be a constant function in space, i.e the wind gusts are the same at any point of the top surface.

If wind gusts are subjected to the top surface of the beam, there is clearly a pressure gradient between the

top and bottom surfaces of the structure and thus, there must be a force trying to return the system to its

equilibrium position.

This stress is the result of the high pressure zone trying to compensate the pressure increase and thus trying

82



CHAPTER 6. DESCRIPTION OF THE STUDY
AND DISCUSSION OF THE RESULTS

Study of Machine Learning Techniques
for modelling Large Structural Vibrations

to reach the low pressure zone.

In aerodynamics, this resultant force is usually projected into two perpendicular axis, in this case the parallel

and perpendicular axis (relative to the wind direction), to form the lift and drag forces respectively:

L = qSCL

D = qSCD

(6.28)

Where S refers to the cross section of the structure that the flows sees when projected to the L and D axis,

and CL and CD are coefficients that indicate the aerodynamic efficiency of the structure.

Technically, the wind speed is only perpendicular to the surface of the beam in the equilibrium position,

meaning that when the beam is bending there is a small drag contribution that appears due to the angle

between the direction of the wind and the unit outward vector of the surface of the beam (see figure 6.30).

Figure 6.30: Schematic representation of the aerodynamic forces acting on the structure.
Source: Own elaboration.

As it has been already observed in the linear regime, the bending motion that is derived from a uniformly

distributed external force produce relatively small displacements. Thus, such displacements are small enough

to disregard this previously mentioned drag contribution, since the lift effect is several orders of magnitude

greater.

That being said, the only external force present in this problem will be the lift force that is derived from the

pressure gradient that the wind speed produces on the structure.

As it is a distributed force along the top surface of the beam, its expression must have units of force per unit

surface. Thus:

F ext(t) =
L

S
=

1

2
ρV 2

wCL (6.29)

Since the aerodynamic analysis of the beam is out of the scope of this thesis, it has been supposed that

CL = 1.

Furthermore, in order to match the external force units with the code requirements, F ext must be in units of
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mega Pascals (MPa). Since the above equation 6.29 has Pascal units (Pa = N/m2), the air density must be

scaled by a factor of 10−6, or, in other words, must have units of kg/cm3.

Introducing the amplitudes Ak, phases φk and frequencies Ωk of the 43 sines that represent the continuous

form of V 2
w and which have been extracted from the FFT in the preceding section, the external force is

rewritten as:

F ext(t) =
ρ

2

43∑
k=1

Aksin
(
Ωkt+ φk +

π

2

)
(6.30)

6.4.2 Simulation

Likewise in section 6.2.3, the simulation to be launched to estimate the response of the beam under the action

of the wind is also addressed with an external force consisting on a sinusoidal combination. In this particular

case however, the number of sines is 43 instead of 10, and the properties of those sines, i.e F̄k, φk and Ωk,

are determined by the Fourier analysis described in section 6.3.

As a first approach, the inputs are maintained unchanged from those in section 6.2.3 with the exception of

the time domain and, consequently, the number of time steps.

As seen in figure 6.24, the wind speed measurements have a duration of approximately 120 seconds, which is

almost 120 times larger than the 10 sine expansion simulation in section 6.2.3. Considering that the number

of time steps required in that simulation was 11615, the total number of time steps in the present case should

be about 120 times that amount, which entails a huge computational effort.

Furthermore, in section 6.2.3 it was found that for sine expansions the optimal number of time steps per

period, which was originally considered as 10, should be increased in order to enhance precision.

To avoid laptop overheating, the time domain of the this case of study is cut to 20 seconds and its consequent

number of time steps is iteratively estimated to be 23000 after performing several simulations. With this

amount of time steps, the computational expense has been 1032.39 seconds, or 17 minutes and 12 seconds

(this information will be useful when later comparing the FEM with the HROM).

Taking these considerations in mind, the external force that appears in such time domain in represented

below:
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Figure 6.31: Representation of the external force applied in this case of study.
Source: Own elaboration.

And the simulation results in what follows.
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Figure 6.32: Maximum amplitude qmax
i of each mode of vibration ϕi.

Source: Own elaboration.

In this case, only the first two modes are activated, being the first one the most dominant one by far. This

mode, as one would expect, represents bending motion (see figure 6.17).

Figure 6.33: Comparison between the 2814th DOF displacement obtained by the FE analysis and the one
deduced from the modal decomposition analysis.

Source: Own elaboration.
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Regarding the modal analysis, the analytical solution is the same as in 6.12 but with the exception that, for

the wind, the number of sines increases from 10 to 43 and thus k = 43.

Figure 6.34: Comparison between the 2814th DOF velocity obtained by the FE analysis and the one deduced
from the modal decomposition analysis.

Source: Own elaboration.

Figure 6.35: Comparison between the 2814th DOF energy obtained by the FE analysis and the one deduced
from the modal decomposition analysis.

Source: Own elaboration.

Likewise in the sine combination of section 6.2.3, the FEM matches perfectly with the modal analysis.

Moreover, given that the time domain is larger in this simulation, the time constant τ discussed in section

6.2.2 can be better visualized in figure 6.33.
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6.4.3 Hyperreduction Stage

In addition to what has been addressed so far, this section also seeks to analyze the outcome of the HROM

stage. After including the computational implementation of this technique, which is detailed in section 4.6,

in the code and running it, one is faced with figures 6.36, 6.37 and 6.38.

Figure 6.36: Comparison between the 2814th DOF displacement obtained by the FE analysis and the one
extracted from the HROM.

Source: Own elaboration.

Figure 6.37: Comparison between the 2814th DOF velocity obtained by the FE analysis and the one
extracted from the HROM.

Source: Own elaboration.
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Figure 6.38: Comparison between the 2814th DOF energy obtained by the FE analysis and the one extracted
from the HROM.

Source: Own elaboration.

Figures 6.36, 6.37 and 6.38 show that the HROM matches perfectly with the FEM. Moreover, to further

support the previous statement, the code calculates both the displacement and PK2 stresses errors of the

HROM with respect to the FEM. In this simulation the error in the displacement has been of 1.01× 10−3,

whilst for the PK2 stresses 6.49× 10−3.

Besides recognizing that the results obtained from both the FEM and the HROM are matched, it is more

convenient to analyze the computational aspects to check whether the HROM, in addition of having a

satisfactory precision, is also more efficient than the FEM.

• Firstly, the computational effort is reduced from 1032.39 seconds in the FEM to 34.18 seconds, which

represents a 96.69% decrease.

• In second place, the number of modes Φ required has been only 2 for the displacements, the PK1

stresses and for the PK2 stresses.

• Finally, the number of Gauss points selected by the ECM to integrate the internal forces has been just

4, which only represent a 0.28% of the total 1407 nodes of the mesh. These points, as depicted in figure

6.39, are located in 4 different finite elements of the beam’s mesh.
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Figure 6.39: Location of the elements containing the 4 ECM selected Gauss points required to integrate the
internal forces in the reduced order space.

Source: Own elaboration.

If one wished to obtained a smaller error, the number of modes could be arbitrarily defined as an input of

the code instead of being obtained by the HROM stage. For example, imposing a number of modes of 6, the

displacement error is reduced by two orders of magnitude (from 1.01× 10−3 to 2.42× 10−5), whilst for the

PK2 stresses the decrease is not as remarkable (from 6.49× 10−3 to 2.3× 10−3).

Nonetheless, an increase in accuracy also brings an increase in computational effort, since with 6 modes, the

computational duration is 32.29 seconds longer and the number of Gauss points rises up to 22.

It can be concluded that the HROM is significantly more efficient than the FEM and, additionally, it does

not involve a decrease in accuracy.

Nevertheless, these results have been obtained under the small strains hypothesis. Hence, it would also be

interesting to evaluate how does the HROM behave in nonlinear systems.

6.5 Nonlinear Analysis

Until this point, all the different simulations and studies that have been conducted were under the small

strains hypothesis, i.e linear regime.

Since one of the objectives of this thesis is to get introduced to the nonlinear regime, it has been decided to

launch a simple but yet illustrative simulation.

Hence, the analysis to be conducted will study the dynamic response of the beam when subjected to an

external force formed by a single sine, just like in section 6.2.2. However, the phase shift φ will not be

included in the external force. Thus, the external force expression can be extracted from equation 6.1:

F ext(t) = F̄ sin(Ωt)

To assess the results and compare them to the linear regime, each simulation will be launched in both the

linear and the nonlinear regime. More precisely, and to better visualize the difference between the linear

and nonlinear analysis it has been chosen to conduct two studies: one with an external force that would

cause a relatively small maximum displacement, and the other with a greater force, one which would create a

maximum displacement large enough to force the system response to be nonlinear.

With that in mind, F̄ will be estimated depending on the desired maximum displacement of the beam whilst

Ω will remain constant along this section. To avoid a large number of time steps, it has been supposed that

Ω = 30 rad/s. The number of time steps and time domain are set to 4000 and 1.15 seconds respectively, just
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like in section 6.2.2.

Moreover, since the modal decomposition analysis has only been addressed for linear systems, the upcoming

simulations will only include the FE and HROM analysis.

6.5.1 Small Strains

To estimate the maximum displacement that the force will cause, one must look at F̄ , since the frequency of

the harmonic does not have any effect on the amplitude of the displacement.

Taking a look into the analytical method of study, i.e the modal decomposition analysis, see equation 4.77,

the vector of nodal displacements d is given by:

d =

nmodes∑
i=1

ϕiqi (6.31)

For the case of damped vibrations produced by a harmonic external force like the one defined in equation 6.1

(see section 4.4.2), qi is given by:

qi = qmax
i

{
eξ̄iωit [Aicos(ω̄it) +Bisin(ω̄it)] + (1− ρ̄2i )sin(Ωt)− 2ξ̄iρ̄icos(Ωt)

}
(6.32)

Since this case of study does not contemplate any phase shift, constants Ai and Bi of the homogeneous

solution are the same as the ones in expression 4.99, but making φ = 0. Thus:

Ai = 2ξ̄iρ̄i

Bi =
1
ω̄i

(
Ai ξ̄iωi − (1− ρ̄2i )Ω

) (6.33)

In all the simulations that have been conducted, the maximum displacement is given at the beginning of the

response (almost when t = 0 s). That means that the exponential and the sines in the above equation 6.32

can be neglected.

Therefore, the maximum displacement of the response can be estimated with qmax
i , which, according to

equation 4.97, is given by:

qmax
i =

fi
ω2
i

1

(1− ρ̄2i )
2
+
(
2ξ̄iρ̄i

)2 =
ϕT
i F̄

ω2
i

1

(1− ρ̄2i )
2
+
(
2ξ̄iρ̄i

)2 (6.34)

Since the dynamic response of the structure under this kind of force is a combination of bending modes, it is

interesting to analyze which of these modes are triggered by Ω and F̄ .

To identify them, the modal response of the structure is analysed using an arbitrary value of F̄ , say F̄ = 1.

(the mode excitation is dictated by Ω while the mode maximum amplitude is related to F̄ ). Then:
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Figure 6.40: Representation of the structure natural modes that are triggered by a Ω = 30 rad/s and
harmonic external force.

Source: Own elaboration.

And the response obtained considering F̄ = 1 implies a maximum displacement of approximately 3.15 meters,

as seen in figure 6.41.

Considering that the beam length is only 1 meter, it is clearly noticeable that a maximum displacement of

more than 3 meters is impossible. However, these results are obtained under the small strains hypothesis,

which means that there are no limitations of movement on the dynamic response of the structure. Hence,

this result is only used as an orientation to estimate the maximum displacement of the linear response.
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Figure 6.41: Displacement response of the structure when a F̄ = 1 external force is applied.
Source: Own elaboration.

According to equation 6.31, the nodal displacement vector is a linear combination of modes shapes ϕi and

temporal functions qi(t) which represent the amplitude of each mode along time. Therefore, and since

modifying F̄ only affects qmax
i , one can establish a proportional relationship between dmax and F̄ .

In other words, taking into account that for F̄ = 1 the maximum displacement is 3.15 meters, one could use

a simple linear interpolation to deduce the required F̄ given an arbitrary dmax.

In order to ensure that the structure responds under the linear regime, it has been opted for a relatively

small value of the maximum displacement of the beam, i.e dmax = 2 cm. Thus, the required value of F̄ is

interpolated as:

F̄ ≈ 0.0063 MPa

After launching the simulations in both regimes, the displacement and energy plots obtained with the two

methods can be compared.
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(a) Displacement (b) Energy

Figure 6.42: Comparison between the displacement (a) and energy (b) results obtained when dmax = 2 cm,
under both the linear hypothesis and those achieved considering nonlinear regime.

Source: Own elaboration.

As it can be observed in figure 6.42, the linear interpolation to estimate the maximum displacement is

appropriate for this case of study.

Moreover, for the small strain case, linear and nonlinear results coincide. This is easily explained with the

fact that, for small strains, the nonlinearity of the structure is almost inappreciable, due to the fact that the

deformation is small.

Nonetheless, the HROM performance and efficiency, as table 6.1 suggests, has decreased for the nonlinear

case, particularly with regard to the number of elements selected by the ECM and, especially, the consistency.

Parameter Linear Simulation Nonlinear Simulation

Time 10.00 s 15.54 s

d Modes 2 3

PK1 Modes 2 3

PK2 Modes 2 3

ECM Points 4 10

d error 2.65× 10−4 8.52× 10−3

Table 6.1: Performance parameters of the HROM under both the linear and nonlinear hypothesis in a small
strains study, i.e dmax = 2 cm.
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Figure 6.43: Location of the elements containing the 10 ECM selected Gauss points required to integrate the
internal forces in the reduced order space.

Source: Own elaboration.

6.5.2 Large Strains

According to figure 3.1 in section 3, the length of the beam is 1 meter. Thus, to ensure that the problem

will be nonlinear at the same time that it does not involve any buckling phenomena, it has been decided to

impose a maximum displacement equivalent to 65% of the beam’s length. In other words, the beam should

bend up to 65 cm from its equilibrium position.

Repeating the same linear interpolation explained in the previous section, the required F̄ has the following

value:

F̄ ≈ 0.206 MPa

(a) Displacement (b) Energy

Figure 6.44: Comparison between the displacement (a) and energy (b) results obtained when dmax = 65 cm,
under both the linear hypothesis and those achieved considering nonlinear regime.

Source: Own elaboration.

In the nonlinear regime, C̃ is larger (see section 4.3), which translates also into a greater stiffness matrix K

and thus, as it can be seen in figure 6.44, the structure experiences a more rigid behaviour as its movement

seems to be limited.

In conclusion, it is clear that the displacements obtained using the nonlinear approach must differ from the

ones computed with the linear hypothesis: the rigidity or stiffness increase discussed above suggests a lower

displacement for this approach.
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Hence, it seems like the real properties of the material (which are nonlinear), would not let one node situated

at the tip of the beam (which corresponds to DOF 2814) bend up to 65 cm. Instead, the beam is only able

to deflect up to roughly 50 cm.

As it has been done in the small strains simulation, the HROM efficiency must also be checked. However,

since the linear simulation does not give legitimate results when subjected to large strains, the comparison is

to be done between the nonlinear HROM performed considering dmax = 2 cm and dmax = 65 cm.

Parameter dmax = 2 cm Simulation dmax = 65 cm Simulation

Time 15.54 s 21.37 s

d Modes 3 4

PK1 Modes 3 4

PK2 Modes 3 4

ECM Points 10 17

d error 8.52× 10−3 0.03

Table 6.2: Performance parameters of the HROM under both the linear and nonlinear hypothesis in a large
strains study, i.e dmax = 65 cm.

Finally, figure 6.45 shows the exact location of the 17 elements that include these 17 points selected by the

ECM.

Figure 6.45: Location of the elements containing the 17 ECM selected Gauss points required to integrate the
internal forces in the reduced order space.

Source: Own elaboration.

As explained, the nonlinearities of the problem (which only manifest when large strains are considered) affect

the computation of the stiffness matrix and ultimately contribute to an increase in the number of iterations

of the Newton-Raphson scheme. Moreover, in order to achieve convergence, more integration point are also

required.

Given such circumstances, the computational effort associated to the FEM is drastically increased from

177.50 seconds in the small strains regime, to 601.87 seconds in the large strains.

As a consequence, the HROM computational parameters depicted in table 6.2 have also increased, but just

slightly. Nonetheless, the HROM performance is still very remarkable with respect to the FEM, including

computational time reduction of more than 90%.
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Budget Summary

This thesis has not involved any direct costs. However, the author has gathered a set of different indirect

costs that would have been considered had it been a real engineering project.

As seen in table 7.1, the total budget consists on three distinct costs: the software license cost, the electric

consumption and the cost associated to the professional fees.

The budget breakdown is further explained in the Budget Annex.

Expenses Cost [AC]

Software 1040

Electric Consumption 25.74

Professional Fee 2268

TOTAL 3333.74

Table 7.1: Breakdown of the budget associated to this thesis’ development.
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Analysis and assessment of

environmental and social implications

The intention of this chapter is to give a brief analysis and assessment of how the study that the thesis

focuses on considers environmental and social considerations or has a positive impact in these dimensions.

Since this work is only focused on the study of the methodology behind the finite element implementation of

the structural vibrations problem, there little to no direct contributions to those considerations.

Nonetheless, it is safe to say that this project can create an indirect positive impact both environmentally

and socially, when scaled to real life situations.

Being able to predict the dynamic response of a structure is, on its own, a concept that has a huge range of

applications in any engineering industry, since the vast majority of engineering designs do include some kind

of structure that must withstand a series of external conditions. Furthermore, if one includes the optimization

phase, in this case the HROM, the impact becomes even higher, since reducing the number of points/elements

of the FE mesh required to obtain practically the same response is translated into being able to simulate

really complex situations much more efficiently. These scenarios can go from large structures made up of

really refined meshes to circumstances where the state of the system is highly nonlinear and complicated to

compute.

Socially, these benefits imply, as already mentioned, being able to predict the dynamic response that any

structure of interest, such as a building, bridge, plane, etc. would have under certain dangerous conditions,

thus preventing lots of lives from being taken. These interesting situations include earthquakes, strong winds

or typhoons, impacts or crashes, fatigue/buckling failures ...
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When a catastrophe or accident that involves human beings takes places, it usually leaves so many traces

that are really difficult to correct or get rid of. For example, when an earthquake or typhoon hits a city, lots

of structures are devastated and even sometimes, part of the city or even its entirety has to be abandoned.

Environmentally, being capable of launching simulations of such caliber would involve predicting the response

that structures would have against these kind of accidents. Since human beings have a huge impact on the

environment, being able to predict, reduce or even avoid these misfortunes would drastically decrease the

footprint that man-made related disasters leave on the environment.

Although this project is a major simplification of all those above-mentioned cases, it is important to understand

that it lays the foundations from which complexity can progressively be increased, until, eventually, the

model is scaled to the magnitude of any of the previous real life scenarios.
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Chapter 9

Conclusions

After having performed all the studies detailed in chapter 6, one could extract some relevant conclusions

about the present thesis, as well as some ideas about future work or aspects to improve.

This chapter will be divided into three different topics, each of which will cover one of the three main

objectives of the present work: the hyperreduction analysis, the nonlinear regime and the wind study.

First of all, it is of utmost importance to talk about the FEM and the HROM: they represent the heart of

this work, since, without them, no simulations would have been possible to launch.

Thanks to a deep analysis conducted in chapter 4, the author achieved the necessary background and

knowledge that enabled him to perform several simulations with different types of external forces as well as

analyse its dynamic response.

However, since Finite Element analysis is not anything new, the author wanted to apply dimensionality

reduction techniques in order to significantly optimize the solver. To do so, the classical finite element shape

functions used in the FEM were replaced by spaces spanned by globally supported basis.

After having discussed in sections 6.4 and 6.5 the results obtained from the wind and the nonlinear analysis

respectively, it can be concluded that the HROM stage is far better than humans in uncovering dominant

patterns from data. Hence, it represents a qualitative leap in modelling physical systems which are considerably

more complex than the cantilever beam.

The Empirical Cubatre Method (ECM) has enabled the evaluation of the internal forces in a set of reduced

Gauss points instead of in the totality of Gauss points (as it is the case in the FEM).

Thanks to this tailored cubature scheme, the computational time required to solve the problem is reduced

by more than 96% in section 6.4 and by more than 90% in 6.5. Moreover, the number of elements, which

corresponded to 506 by default, has been decreased to just 4 for section 6.4 and to 17 for 6.5.

Besides having achieved these upgrades in efficiency, it has also been observed that the accuracy has not been
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compromised: in the wind simulation (which included the linear hypothesis), the error of the displacements

has been 1.01× 10−3, while for the stress the error has been 6.49× 10−3.

On the other hand, in nonlinear simulations included in section 6.5, the displacement error has been kept in

the order of 10−2 or below.

Nevertheless, the employed ROM partitioning framework is rather general, and extensions to geometrically

distinct subdomains, as well as continuous interface boundaries, could be applied in future studies with minor

modifications.

Unfortunately, the computational approach that has been carried out to perform the FEM simulations does

have a major disadvantage, and that is the required number of time steps.

As it has been repeatedly showed in various sections from chapter 6, the number of time steps that are needed

to conduct simulations where the external force is formed by either high frequency sines or combination of

several of them, is drastically high due to the noisy and narrow-peaked nature of these functions.

Therefore, it would be really interesting, as further work, to develop an algorithm that could create adaptable

time vectors, i.e reducing the ∆t in periods where the response is expected to be transient and increasing

it when the response becomes more steady. Furthermore, it would also be interesting to research ML

time-forecasting algorithms that could be capable of predicting the behaviour of the dynamic response and

thus would require less number of time steps.

In second place, the nonlinear analysis has also been conducted satisfactorily. Although consisting just on

an introduction, the student has been able to get familiar with a phenomena that is omnipresent in any

engineering problem. It has been observed that, when structures are subjected to large deformations, their

stiffness increases and thus their movement becomes more restricted than under the linear hypothesis.

It has also been noticed that in the nonlinear regime, the computational time was higher due to a larger

number of iterations needed to achieve convergence in the Newton-Raphson algorithm.

As a result, the performance of the nonlinear HROM worsened with respect to the one obtained under the

small strains hypothesis: nonlinearities always complicate matters since they demand more calculations and,

thus, more ECM points. According to [5], the ECM is not optimal and there is room for improvement, since

it does not exploit the topology of the function it intends to integrate. On that account, it would be worth

exploring whether the ECM algorithm can be improved so that it gives out less integration points without

threatening accuracy.

In third place, and regarding the wind analysis, being able to find papers including experiments or studies

that involved measurements of wind speed in short periods of time has been extremely hard, since the most

frequent sampling rate for wind measurements is usually hourly or daily. In addition, extracting the data,

which had to be done manually, further complicated matters as it demanded high amounts of precision and
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patience.

Besides that, the Fast Fourier Transform, which was quite unfamiliar to the author at first, has been of vital

importance to the analysis of the structure under the action of the wind. Being able to obtain a continuous

representation of discrete data in such a simple way implies having the capacity of studying the dynamic

response of a structure for almost any kind of external condition, as long as it is properly represented with a

discrete dataset, i.e constant sampling rate, even number of samples, etc.

Finally, and as a rather personal conclusion, the author believes that although it may seem that the present

thesis’ results are not of great value, it is all the process and adaptation to new concepts and especially new

variants of code that represent the actual effort behind this work.

Having been faced with a Matlab code of such magnitude as the one used in the present work has not only

extended the author’s knowledge on this software, but has also given the opportunity to visualize the way in

which real-life problems of finite elements are addressed as well as understand how is all the code structured

in order to achieve the maximum efficiency.
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