
EEBE UPC

Evaluation of three
phase motors
Categorisation of local magnetic polarity combinations

Josef Kartomi Thomas

Evaluation of three
phase motors

Categorisation of local magnetic polarity
combinations

by

Josef Kartomi Thomas
Student Name Student Number

Josef Kartomi Thomas 590152

Instructor: Ramon Bargallo
Lab technician: Jordi Vilanova
Project Duration: March, 2022 - June, 2022
Faculty: Electrical engineering, EEBE UPC

Cover: The Rolex Learning Center at EPFL (Modified)
Style: EPFL Report Style, with modifications by Batuhan Faik Derinbay

Preface
Practical knowledge is becoming more and more important as I near my graduation. While I feel I have
quite a broad understanding of electrical engineering, it’s hard to concretely picture using this under-
standing in a professional setting. This project is therefore a supplement for my theoretical classes
and a means for me to explore what it is to put into use practice knowledge in order to contribute to
something of use. The project unfortunately started late due to some miscommunication but luckily
professor Bargallo was nice enough to accommodate the rushed timeline.

This is a first attempt at creating something useful with my skills, and I hope that the project is
able to reach the requirements and use sophisticated but simple techniques to achieve this. I appre-
ciate your interest in reading this report and am open to criticism or questions which may be sent to
josef.thomas@epfl.ch.

Josef Kartomi Thomas
EEBE, July 2022

i

Contents

Preface i

1 Introduction 1

2 The working principle 2
2.1 Three phase motors . 2
2.2 The method . 2
2.3 The specifics of the project . 3

3 Hardware 5
3.1 Sensors . 5

3.1.1 Hall sensors (A3144) . 5
3.1.2 Piezo-electric buzzer . 6
3.1.3 NeoPixel Ring . 6
3.1.4 LCD display (HD44780U) . 7
3.1.5 SD card Reader/Writer . 7
3.1.6 4 pin plug . 7
3.1.7 Relays . 8
3.1.8 Switches . 8

3.2 Mounting/usage . 9
3.3 Possible improvements . 9

4 Software 10
4.1 Arduino . 10
4.2 Code structure . 10
4.3 Dependencies . 10
4.4 main.ino . 11
4.5 constants.h . 12
4.6 pitches.h . 12
4.7 peripherals.h . 13
4.8 peripherals.cpp . 13
4.9 peripherals.cpp . 13
4.10 Possible improvements . 16

5 Conclusion 17

References 18

A Source Code 19

B Binary local magnetic field representations 33

C Magnetic field simulations 35

ii

List of Figures

2.1 Correct stator winding . 2
2.2 Stator measurement diagram . 3
2.3 Magnetic field of correctly wound motor . 3
2.4 Magnetic field of motor where B1 and B2 are inverted 4

3.1 Digital hall sensor diagram . 5
3.2 Passive buzzer . 6
3.3 24 LED NeoPixel Ring . 6
3.4 Front of machine with LCD display active . 7
3.6 Example of 4 pin plug [10] . 8
3.7 5 V relay . 8
3.8 Front of machine showing switches on the right . 8

C.1 Motor with correct windings . 35
C.2 Motor with winding A inverted . 35
C.3 Motor with winding B inverted . 35
C.4 Motor with winding C inverted . 36
C.5 Motor with winding A and B inverted . 36
C.6 Motor with winding A and C inverted . 36
C.7 Motor with winding B and C inverted . 36
C.8 Motor with winding A, B and C inverted . 36

iii

1
Introduction

Currently electric motors already contribute a large part towards driving the world across many differ-
ent domains. With every technological improvement, the world only steps towards a higher level of
dependence on this technology. From electric cars to small consumer electronics, electric motors are
becoming essential to humanity.

This project was therefore born in the Energy laboratory of EEBE due to the necessity to study and
improve 3 phase motors and in particular in an efficient manner. Additionally, the project serves as a
pedagogical exercise for a final year bachelor student in order to expand his practical skills underneath
the supervision of an expert.

Objective
In order to improve motors quickly and efficiently before even testing the characteristics of a prototype,
it’s necessary to be certain that the prototype actually corresponds to desired design. While it’s fairly
obvious why this is the case, it is an important step in manufacturing and testing to know that the
physical prototype matches the blueprints. This project is hence aimed at achieving this verification in
the case of 3 phase motors. It will be further explained later in the report, but the project will study the
use of local magnetic poles induced when current flows through the windings of the motor as a means
to verify the motor.

The project is based on a machine made by a laboratory outside of EEBE and hence the majority of
the work contained in this report will be concerning the software. In turn, the report will explore efficient
means of evaluating a motor while maintaining robustness and above all methods that facilitate the
ease of use of final machine.

**Note: Italicised text in the software section often indicates a link to further information/explanation
on the content in question.

1

2
The working principle

2.1. Three phase motors
Without entering into too much detail, this type of motor works with 3 AC signals dephased by pi/3 rad.
Generally, the signals are provided to different windings of the motor in a symmetrical and procedural
design as seen in figure 2.1. These signals are split depending on the form of the inside of the motor
but the overall principle is the same.

Figure 2.1: Correct stator winding

Each winding inside the stator produces a magnetic field according to Lenz’s law [8]. Independent
of the number of windings, the overall magnetic field can be calculated by taking the sum each indi-
vidual magnetic field within each rotor winding at a given time. This overall magnetic field has both
an amplitude (i.e. the strength of the field) and a direction (i.e. where the north and south poles are
located). This property is exploited by the 3 phase current system because it is easy to create a rotating
overall magnetic field while maintaining the same amplitude [6]. The function of this depends on the
design of the rotor, but in essence the rotor follows a similar path the magnetic field of the rotor as it
attempts to align itself. As the stator’s magnetic field is rotating, the rotor will follow a similar path, and
hence a rotational force is created.

2.2. The method
The stators explained above also produce magnetic fields when provided DC current and this principle
is what will be exploited by the machine. With a fairly low amount of current, magnetic fields can
be generated around each winding whose direction can be easily measured electrically (Hall sensors).
Consequently, as 3 phase motors are manufactured in a specific form, it is possible to predict the shape
of the induced magnetic field around the circular axis of the stator. One can visualise this using the
green point in the image in 2.2 and following the line anti-clockwise while plotting the amplitude of the
magnetic field at each point.

2

2.3. The specifics of the project 3

Therefore, the basic idea is to:

• Supply enough DC current to the motor in order to induce magnetic fields which can be measured
by Hall sensors.

• Measure the magnetic field around the circular axis as explained above.
• Check which parts of the field do not coincide with the desired magnetic field.
• Knowing the configuration of the motor, deduce which coils are wound incorrectly.

Figure 2.2: Stator measurement diagram

2.3. The specifics of the project
This project studies in particular 3 phase motors that have 12 stator windings. Like all 3 phase motors,
this type has 3 lines dephased by π

3 rad which will be called A, B, and C that begin in the windings A1,
B1, and C1 and end in the windings A2, B2, and C2 as seen in figure 2.1. However, in this case U, V
and W represent A, B and C respectively.

Additionally, the points at which the magnetic field is maximal or minimal are found in specific posi-
tions which are very easy to measure. As each A1, B1, C1, A2, etc contains 2 coils, the total amount
of coils are 12. Therefore using only 12 measurements of the magnetic field, the order and orientation
of each winding can be determined. As the correct configuration of the windings is known, it is directly
possible to deduce which lines are incorrectly wound.

A correctly wound motor will have a magnetic field analogous to the one in figure 2.3. By measuring
themagnetic field at the points shown in blue in figure 2.2, it is possible to extract a binary representation
where 1 signifies an overall local north pole and 0 a south one. This is useful later on when working
with the micro-controller.

Figure 2.3: Magnetic field of correctly wound motor

2.3. The specifics of the project 4

In order to be able to categorise properly each improper configuration (i.e. one or multiple windings
wound incorrectly) simulations were run by Professor Ramon Bargallo and the results of these simula-
tions were then converted to digital values by checking the polarity at the blue points in figure 2.2 and
then used to create table B.1. This table is directly used in the program discussed in a later section of
the report. An example of an incorrectly wound motor can be found below in figure 2.4.

Figure 2.4: Magnetic field of motor where B1 and B2 are inverted

3
Hardware

As explained before, software was the focus of this project and little work was done on the hardware.
There were however several unexpected problems that arose, which required solutions involving hard-
ware modifications. A more in depth explanation of their function and feedback behaviours can be
found in the README.md.

3.1. Sensors
3.1.1. Hall sensors (A3144)
This type of hall sensor [5] is digital and only senses whether the magnetic field is above or below a
certain threshold. By placing one next to each winding, it is therefore possible to measure the local
magnetic field and set its output pin to 1 or 0 depending on the magnetic field’s overall direction. 12 of
these are used to measure the local magnetic pole at each blue point in figure 2.2.

Figure 3.1: Digital hall sensor diagram
[5]

5

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/README.md

3.1. Sensors 6

3.1.2. Piezo-electric buzzer
A simple audible feedback for each measurement forgoes the need to visually check the machine in
order to know whether the motor is correct or not. This buzzer [2] is hence used to this means as it is
not only simple to implement but cheap and power efficient. Separate and easily recognisable sounds
are emitted for the case where the motor is correct and when it is not.

Figure 3.2: Passive buzzer
[2]

3.1.3. NeoPixel Ring
The NeoPixel Ring [7] used in the project consists of 12 LEDs connected in series, controlled through
an i2c bus. The colour of each LED can be controlled individually with colours of a large variety. The
purpose of these is to indicate which windings are correct visually. This avoids having to analyse the
measurement as the evaluation is given next to each winding, allowing the user to pinpoint which one
needs to be fixed. Correct local magnetic poles will have their corresponding LED turn green and
incorrect ones will have theirs turn red.

Figure 3.3: 24 LED NeoPixel Ring
[4]

3.1. Sensors 7

3.1.4. LCD display (HD44780U)
This module serves simply as a more direct means of knowing which windings are inverted. The other
peripherals such as the LED ring only display which magnetic poles are incorrect but are unable to tell
the user which winding(s) is incorrect. The LCD has the advantage of being able to communicate the
incorrect windings in terms of their line terminal (i.e. A1, B1, etc), the actual measurement of each
magnetic pole and which of these poles do not match the intended magnetic field. The benefit of this
LCD device is that it uses the i2c protocol meaning it only needs 2 communication pins to control it and
the commands can be heavily simplified though use of a library.

Figure 3.4: Front of machine with LCD display active

3.1.5. SD card Reader/Writer
This module was proposed later on in the project as a means to avoid having to check any of the above
peripherals for feedback after each measurement. The idea is to record each measurement directly
to an SD card while carefully noting which motors are tested in which order. In this way the operator
can set the external computer to run and switch the motor after each test. Then when all the tests are
complete, the operator can examine all of the results in a single csv file allowing for ease of automation.
The model chosen uses the SPI protocol meaning it requires 4 communication pins to operate however,
it is extremely quick to read and write files.

(a) SD Card reader reader (b) Mounted SD Card reader

3.1.6. 4 pin plug
This acts only as a means for an external computer to control the machine without the need for a human
operator. It is conceivable to use a robotic system to automate the testing of a large number of motors.
The system could place a new motor on the testing mount, then activate the machine to run the test
and record the output and repeat this for each motor. Only 2 of these pins are required for the project.

1. The so called ”error pin” communicates the outcome of a test. It is connected to one of the relays
and another pin on the plug. It can signify that the motor has an error or is fine by closing or
opening the relay.

2. The activation pin used to control the machine. Refer to the section 3.1.8 to understand how it is
used.

3.1. Sensors 8

Figure 3.6: Example of 4 pin plug [10]

3.1.7. Relays
There are two relays [1] selected work as electronically controlled switches essentially. The first one is
used to closed the circuit between the power supply and the terminals of the motor. This relay is only
on during the measurement itself so as to avoid power loss and overheating. The second one acts as
a signal relay to the external computer. Attached to the external 4 pin connector, it closes the circuit
between two pins when an error is detected and leaves it open when the motor is properly wound. The
purpose of this is to avoid having to use the system designed in this project as much as possible so that
some form of automation can be used. This can not only speed up the testing of motors, but eliminate
the operator’s need to check both the system and the external computer for each system which reduces
the overall amount probability that mistakes may occur.

Figure 3.7: 5 V relay
[1]

3.1.8. Switches
These are nothing more than normal 3 channel flip switches which connect electrically the middle pin
with either the left or right pin.

Figure 3.8: Front of machine showing switches on the right

3.2. Mounting/usage 9

The only direct input available to the operator is two switches. A switch on the right of the panel
simply turns on the machine. Once the machine is ready and has indicated this to the operator, the
switch on the left can be used to carry out each motor test. It is worth noting that the external signal
connection for the computer is directly attached to this switch and hence either can be used in the same
way to control the machine.

Usage
1. When the switch is pulled HIGH, the machine will carry out a single test of the motor and then

await another signal.
2. When the switch is pulled LOW, the error connector will be reset and the machine will be ready

for another test.

3.2. Mounting/usage
It is a fairly simple machine and only requires a few things to be done in order to prepare the machine
for operation:

• Plug in the motor mount to the 12 pin connector on the back
• Plug in the LED ring to the 4 pin connector on the left of the back
• (Optional) Plug in the external computer to the 4 pin connector on the right of the back
• (Optional) Insert micro SD card into SD card reader
• Place motor on testing mount
• Operate as directed in section 3.1.8

(a) Testing mount with LED ring assembled on top (b) Testing mount with motor mounted

3.3. Possible improvements
• Use a pcb. Not only would this dramatically reduce the size of the machine but the level of
capacitance and noise. Internally, there are a lot of wires crossing currently which could easily
be avoided with a pcb.

• Use shorter wires. The machine is undergoing magnetic interference each time the motor is
turned on due to the high amount of current passing through the wires. If these wires can be
minimised and placed as far away from the electronics in the machine as possible, then the
interference can be reduced.

• Use a galvanically isolated DC to DC converter. As it currently stands, the machine uses two
separate power supplies to avoid noise caused when the current jolts when the motor turns on.
An isolated converter could reduce the size of the machine, as well as costs.

4
Software

The code of this project was designed to be first and foremost effective and efficient, however it was
intentionally designed to be understandable for those that aren’t very experienced in programming. For
these purposes, the program was split into distinct sections.

4.1. Arduino
As a brief background, an Arduino micro-controller can be programmed in various languages using
various compilers that serve all types of different purposes. A practical way to develop such a project is
to use the provided Arduino IDE as it requires little setup and configuration in order to begin prototyping.
The IDE also employs a programming language that resembles greatly C++ just with added functions,
keywords, constants, etc. As such this was selected to be the basis of the project.

The Arduino language has a very specific template where it always includes Arduino.h and contains
an init() function and a loop() function as shown below.

1 #inc lude <Arduino . h>
2
3 void setup () {
4 // put your setup code here , to run once :
5
6 }
7
8 void loop () {
9 // put your main code here , to run repea t ed ly :
10
11 }

The setup() function runs once at the start-up of the micro-controller, then loop() runs infinitely
as implies its name until the micro-controller is stopped. This is important as setup() will act as a
initialisation function for the system and the loop will act as a the main functionality of the device.

4.2. Code structure
The code uses the aforementioned structure as a base which is implemented in main.ino. In order
to improve readability the project has been separated into separate files that have distinct purposes.
constants.h contains the global variables whereas pitches.h contains only the frequencies of the buzzer,
and all functions pertaining to the external peripherals are defined in peripherals.h and peripherals.cpp.

4.3. Dependencies
In order to use this code the following libraries must be installed onto the Arduino IDE:

• LiquidCrystal_I2C.h [3]

10

https://github.com/JosefTAv/Motor_winding_evaluator
https://www.arduino.cc/en/software
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/main.ino
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/constants.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/constants.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.cpp

4.4. main.ino 11

• Adafruit_NeoPixel.h [4]
• Wire.h (built in)
• SD.h (built in)
• SPI.h (built in)

4.4. main.ino
Description
Without entering into too much detail, this file acts as the main function for the Arduino Mega. It only
defines two functions:

1 void i n i tAc t i v a t i onP in (i n t enablePin)
2 void enableS igna l ISR (void)

void initActivationPin(int enablePin)
Enables the interrupt on either a falling or rising flank for any given interrupt compatible pin while en-
abling its the pullup resistor.

void enableSignalISR()
Acts as a way of modifying a volatile boolean variable called activated. The purpose of this is to prevent
the system from acting unless the state of the input pin is changed. The benefit of this is that the the
system only has to check that this variable is true or not in order become active. There is no polling of
the pins required, as a change of state of the pin will set off the interrupt. In this way, the system is free
to do other tasks if required and the system reacts immediately because it avoids having to constantly
call the function readDigital() which takes a long time to execute.

Function
As stated above, the system is designed in a way to minimise the time spent checking the state of the
activation pin. As such, the activation pin has an external interrupt enabled on it whenever there is a
changing flank in the signal. This is because when the activation pin is pulled:

1. Down, the motor connected will be evaluated and the state of error pin will reflect the outcome
of this measurement

2. Up, the error pin on the plug will be opened to tell the external computer that it is ready for another
measurement

Features
At several points a short delay is used to filter out any bouncing in the signal. Because the change in
current can be so extreme, the whole system is effected by the resulting oscillations of while it tries to
stabilise itself. These delays therefore avoid requiring filtering as they give time for the system to sta-
bilise. An integral example of this the delay of 50 ms at line 33. This comes straight after the program
detects the changing flank on the activation pin. At this point the program is aware that the value has
changed but not what value it has changed to. By employing a delay, any residual bouncing is skipped
and the system can determine whether the activation is now LOW or HIGH. Another fundamental ex-
ample of this is in line 73. The delay of only 10 ms is enough to prevent the system from completely
failing. Without this delay, the system would activate itself each time the motor switched off. The large
difference in current supplied would cause the voltage to oscillate radically for a short period which
would be interpreted as a changing flank on the activation pin, which would in turn cause the motor to
be switched on. This would continue forever, rendering the system unusable.

The program also improves upon the efficiency of the previous one by restricting the time the motor
is on. Because it consumes such large amount of power, it is preferable to have the motor for as little
time as possible. To achieve this, the motor is turned on, the program waits for 1.2 seconds while the
motor is supplied current, then the measurement is taken, and finally the motor is turned off. Lines 36
to 41 correspond to this feature.

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/main.ino
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/main.ino

4.5. constants.h 12

To avoid repeating calculations and wasting time re-displaying results, the system also compares
the current measurement with the previous in line 45. When it is detected that they are the same, the
program uses the much simpler functions displaySameReadingLCD() and displaySameReadingLED()
to communicate this fact. In the case where they aren’t the same, the program uses the more much
complex logic and display functions to compute and communicate the new results.

4.5. constants.h
The file 4.5 contains only definitions of what would otherwise be magic numbers however it also has
the added benefit of increasing the flexibility of the code. This is because the pin numbers for each
peripheral are defined here. Not only this, the name of the file in which the data will be stored in the
micro SD is defined as well as the header of the resulting CSV file.

In this way each constant can be changed depending entirely on the layout of the physical system in
addition to the micro-controller used. The beauty of this approach is that as long as a micro-controller
is supported by Arduino IDE and has the right amount of pins with the required properties, constants.h
can be altered to work with a large number of micro-controllers and configurations.

1 #i f n d e f CONSTANTS_H
2 #de f i n e CONSTANTS_H
3
4 #de f i n e CORRECT 0
5
6 #de f i n e UPARROW 0
7 #de f i n e DOWNARROW 1
8 #de f i n e CROSS 2
9 #de f i n e TICK 3
10
11 #de f i n e ENABLE_PIN 19
12 #de f i n e IN2 12 // t i e n e que c e r r a r que hay e r r o r
13 #de f i n e IN1 13 // t i e n e que ab r i r cuando ha terminado de medir (c i r c u l a e l

c o r r i e n t e)
14
15 #de f i n e FIRST_HALL_SENSOR_PIN 22
16 #de f i n e NB_HALL_SENSORS 12
17 #de f i n e LAST_HALL_SENSOR_PIN 44
18
19 #de f i n e LCD_POWER 8
20
21 #de f i n e LED_PIN 10
22 #de f i n e NB_LEDS 12
23 #de f i n e BRIGHTNESS 20
24
25 #de f i n e BUZZER_PIN 9
26
27 #de f i n e CS_SD 53
28 #de f i n e FILENAME ” log ” // . csv f i l e
29 #de f i n e HEADER ”No . , Time , Correct (BIN) , Measurement (BIN) , Correct po l e s (BIN) ,

Winding type ”
30 #end i f

4.6. pitches.h
In order to quickly debug and implement the tones corresponding to a correctly manufacturedmotor and
a poorly manufactured one, pitches.h was included. The file is directly copied from a GitHub repository
[9]. Each definition is simply a note as one would see in the sheet music which is corresponded to its
frequency.

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/constants.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/constants.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/constants.h

4.7. peripherals.h 13

4.7. peripherals.h
This is simply the header file for peripherals.cpp and the functions will hence be described under the
section for peripherals.cpp. The only noteworthy part of it is the separation of each function prototype.
They have been separated by the point at which they are executed in the code. This separation is done
namely by whether they are executed during void init() or void loop().

4.8. peripherals.cpp
Description
All functions pertaining to the external peripherals are defined here and as such this is the most impor-
tant file. Each set of functions are grouped by the peripheral they are designed for as well as whether
they are in the init or loop function. It also contains some variables which are used for the LCD and for
the evaluation of the motor.

Variables
Firstly, the objects that are used to control the LCD and LEDs are instantiated based on default values
as well as the configurations in found in constants.h. These are used throughout the entire program
and heavily simplify the control of these peripherals. Secondly, in order to avoid using complex data
structures, having to import large C++ libraries and inefficient memory usage, two arrays are defined.
Each of the elements these arrays correspond to each other by index.

The variables are:

1. uint16_t combinations[]: which contains the total possible combination of local magnetic poles
for a motor with 12 windings (table B.1).

2. String combinationNames[]: which contains the string that corresponds to the above combina-
tion. In general, it indicates which terminal(s) improperly wound.

Therefore the first element of combinations[] corresponds to the first element of combinationNames[]
and the second with the second and so forth. This property will be used by the program often as a single
index can be used to retrieve both of the appropriate elements. A noteworthy feature of this is that it
avoids creating a copy of these two arrays until necessary. The index of the combination and the
combination name always correspond to each other, so it is the index that passed around the program.

4.9. peripherals.cpp
Description
This is the most complex of the files and contains the functions and some definitions that are used to
control the external peripherals. For the sake of simplicity, this report will only give brief summaries of
functions and some fuller ones for the more important or difficult functions. If there are any doubts the
reader can refer to the GitHub repository.

Variables
In order to use the more complex external libraries (LCD and LED Ring), they have been instantiated
as objects which allows for the low level code to be hidden. nbMeasurements also acts to record how
many measurements have been made which is used for the data logging in the csv file. nbCombina-
tions represents how many possible local magnetic field combinations exist so as to limit loops when
searching for a corresponding combination.

Listing 4.1: Variables in peripherals.cpp

1 LiquidCrystal_I2C LCD(0x27 , 20 , 4) ;
2 Adafruit_NeoPixel LEDstrip (NB_LEDS, LED_PIN, NEO_GRB + NEO_KHZ800) ;
3 uint16_t nbMeasurements = 0 ;
4 uint16_t nbCombinations = LENGTH(combinat ions) ;

As a means to make the machine easier to understand intuitively, the symbols ↑, ↓,✓ and × and
were selected. Unfortunately, these custom characters weren’t provided by the LCD’s internal memory
of characters. They were therefore introduced manually in this file. The up and down arrows will be

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.cpp
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.cpp
https://github.com/JosefTAv/Motor_winding_evaluator

4.9. peripherals.cpp 14

used to represent a north polarity and south polarity respectively. And the crossmark and tickmark will
represent an incorrect and correct polarity respectively.

Listing 4.2: Custom character definitions in peripherals.cpp

1 byte upArrow [] ;
2 byte downArrow [] ;
3 byte c r o s s [] ;
4 byte t i c k [] ;

These arrays all represent the custom characters, where 1 is a pixel that is on and 0 is a pixel that
is off.

Initialisation functions
void initRelays(void)
This just prepares the two relays described in section 3.1.7. Both are set to be initially open and have
pullup resistors enabled to avoid ambiguous cases.

void initLCD(void)
The transistor connected between VCC of the LCD and the 5 V of the Arduino is closed. The program
then waits briefly for the LCD to turn on and then custom characters are uploaded to the LCD.

void initMessageLCD(bool SDWorking, String fileName)
The inital message is written to the LCD with the exception of the last line. It either writes ** SD error
** if the micro SD card (i.e. SDWorking is false) isn’t functioning otherwise it prints the name of the file
to which the data will be written.

void initHallSensors(void)
The pins controlling the Hall sensors have their pullup resistors enabled.

void initLEDs(void)
The LED rings are turned on and their initial colour is set to white. Their brightness is controlled by the
definition BRIGHTNESS.

void initBuzzer(void)
The buzzer is enabled by setting its signal pin to OUTPUT.

String checkFileNamesSD(void)
The function of this to search the micro SD for existing files. While the base name of the file will always
be FILENAME (which is ”log” in this case), the function will simply increment the number following its
name. Simply put, if ”log.csv”, ”log0.csv” and ”log1.csv” exist on the micro SD card, then the function
will create a new file called ”log2.csv” and return its name.

bool initSD(String fileName)
The purpose of this function is to check that the SD card reader and the micro SD card are working as
well as print the header or columns of the csv file into the selected file. If both are working then true is
returned, otherwise false.

Loop functions
void motorOn(void), void motorOff(void)
These functions simply close or open respectively the relay connected to the motor to allow current to
pass through or not.

void errorPortOn(void), void errorPortOff(void)
This is the same as section 4.9 except it controls the error port connected to the external computer.

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.cpp

4.9. peripherals.cpp 15

uint16_t readHallSensors(void)
Here the signal pin of each Hall sensor is read and put into a single 16-bit number where bits 0 → 11
correspond to the starting magnetic pole to the final one. Bit shifting allows the information to be stored
in a single variable which would otherwise require 12, 8-bit (=96bits) variables.

uint16_t evaluateMotor(uint16_t reading)
This is the key function of the program. As the array combinations[] contains the magnetic poles in
the same manner as the function readHallSensors() 4.9, the program simply has to cycle through
each element in combinations[] until it finds a match. If a match is found, its index is returned. If not,
nbCombinations (which is one larger than the largest possible index) is returned in order to signify that
a match could not be found.

void displayStartMeasure(void)
This indicates to the user that a measurement is starting, then it turns off the LCD so as to avoid
magnetic interference due to high currents while the motor is on.

void displayEndMeasure(void)
The purpose of this function is to turn on the LCD after themotor is switched off again and then reintialise
it using the function initLCD() 4.9.

void displayNewReadingLCD(uint8_t comboIndex, uint16_t reading)
In the main loop, it is checked whether the current measurement is the same as the previous. This
function is called only if they are not the same. It clears the LCD then displays from left to right the
magnetic poles starting from bit 0 to 11. Underneath, the function checks which poles are correct using
a bitwise XNOR.

void displayNewReadingLED(uint8_t comboIndex, uint16_t reading)
This works similarly to the above function however it uses green next to the physical position of the
winding to signify that it is correct and red when it is wrong. If no combination matches then they are
all set to blue.

void displaySameReadingLCD(void)
When the main loop determines that the measurement is the same as the last, this function is called. It
simply flashes the LEDs a few times to show the operator that the motor is the same as the previous.

void displaySameReadingLED(uint8_t comboIndex, uint16_t reading)
The functions simply blinks Same as previous twice on the last line of the LCD.

void buzzerCorrect(void), void buzzerIncorrect(void)
These functions play the predetermined melodies that signify that the motor is correctly or incorrectly
wound.

void writeToSD(String fileName, unsigned long t, uint8_t comboIndex, uint16_t reading)
While appearing somewhat complex, this function simply writes the data of the measurement to the csv
file determined at the beginning of the program’s execution. It writes the following data to a line in the
file:

1. The number of the measurement
2. The time at which the measurement was taken Whether the motor was correct or not
3. The measurement of the poles themselves
4. Which poles were correct and incorrect (represented in binary)
5. The winding type

Special function
boolean getBit(uint16_t b, uint8_t n)
The purpose of this is the retrieve the value of the nth bit in a 16-bit integer called b. It is used in other
functions to reduce the length of the code and improve readability.

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.cpp

4.10. Possible improvements 16

4.10. Possible improvements
• Remove the arrays containing the magnetic field combinations and their names. Instead of
storing the combinations an combination names, it could be possible to store only the correct com-
bination and deduce the rest algorithmically. This could reduce memory requirements however it
may slow down the system. It would make it much easier to input new motor types however. All
that is required to this is to know that each pair of poles in the table B.1 correspond to a winding
terminal. For example, P1 and P2 correspond to winding A1. Therefore if their polarities are
reversed then A1 must be inverted. The same can said for the other terminals. The following
poles correspond to the following terminals:

1. P1 & P2 -> A1
2. P3 & P4 -> C2
3. P5 & P6 -> B2
4. P7 & P8 -> A2
5. P9 & P10 -> C1
6. P11 & P12 -> B1

• Better optimise the delay times. Most of the time, the delays in each function have a margin
added to them to be sure that the system doesn’t break. After a fair amount of testing the smallest
necessary delay time could be determined. This would improve the program’s speed. Not only
this but the time that the motor is active could be considerably reduced which could save a lot of
power and wear over a long time. This was not reduced as this project’s main requirement was
an accurate machine and as such extra time was given for the motor’s magnetic fields to stablise
before taking measurements.

• Use multi-threading. The code currently only runs on a single thread meaning that while it is
easy to read, the system is stuck doing nothing each time a delay is called. For example, when
the LCD is blinking there are short delays between each blink. During this entire time the micro-
controller can do nothing else, whereas multi-threading would allow it to do other things in these
pauses.

5
Conclusion

A project like this presented a very interesting exploration into real world applications of engineering.
The project originally appeared quite straight forward but it took a lot of trial and error to get the system to
run as intended. It took even more work to then optimise the program however by then more problems
would arise. What was interesting was the strange line of seemingly unrelated problems that each
required unique solutions.

The project is far from being done but it can serve as a good base for the next person. A little more
time would have served well to really correct any remaining issues and improve robustness as well
as scalability. As it currently stands, the machine is able to accept different configurations of 3 phase
motors however, to implement them is not as simple as inputting the magnetic poles. It is possible but
it would either require a good understanding of the code or my assistance.

I’d like to specifically thank professor Ramon Bargallo for giving me the chance to work with him at
such late notice. He was under no obligation but worked with me to have a project that was achievable
in such a short amount of time. His sustained support throughout the entire project inspired me to work
hard as well as explore all the possible sources of problems thanks to his expertise in electric motors.

I’d also like to thank the lab assistant Jordi Vilanova for his help in assembling and improving the
system week by week. It was very helpful to be able to discuss possible solutions with him and then
have him implement ones we could agree on.

17

References
[1] 5V relay module : Pin Configuration, circuit, working & its applications. Aug. 2021. URL: https:

//www.elprocus.com/5v-relay-module/.
[2] Arduino Buzzer. 2022. URL: https://es.aliexpress.com/item/32525682460.html?gatewayAdapt=

glo2esp.
[3] Frank de Brabander. Arduino-LiquidCrystal-I2C-library. 2022. URL: https://github.com/fdebrab

ander/Arduino-LiquidCrystal-I2C-library.
[4] Phil Burgess. Adafruit_NeoPixel. 2022. URL: https://github.com/adafruit/Adafruit_NeoPixel.
[5] Digital Output Hall Effect Sensor. 2018. URL: https://microcontrollerslab.com/hall-effect-sensor-

working/.
[6] Ed Edwards. What is a 3-phase motor and how does it work? URL: https://www.thomasnet.

com/articles/machinery-tools-supplies/what-is-a-3-phase-motor-and-how-does-it-work/.
[7] Adafruit Industries. Neopixel ring - 24 x 5050 RGB led with integrated drivers. URL: https://www.

adafruit.com/product/1586.
[8] Lenz’s law. June 2022. URL: https://en.wikipedia.org/wiki/Lenz’s_Law.
[9] Mike Putnam. pitches.h. 2022. URL: https://gist.github.com/mikeputnam/2820675.
[10] Standard Industrial Cable M12 Connector 4 pin aviation plug. Nov. 2018. URL: https://adamconn.

com/product/standard-industrial-cable-m12-connector-4-pin-aviation-plug.

18

https://www.elprocus.com/5v-relay-module/
https://www.elprocus.com/5v-relay-module/
https://es.aliexpress.com/item/32525682460.html?gatewayAdapt=glo2esp
https://es.aliexpress.com/item/32525682460.html?gatewayAdapt=glo2esp
https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library
https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library
https://github.com/adafruit/Adafruit_NeoPixel
https://microcontrollerslab.com/hall-effect-sensor-working/
https://microcontrollerslab.com/hall-effect-sensor-working/
https://www.thomasnet.com/articles/machinery-tools-supplies/what-is-a-3-phase-motor-and-how-does-it-work/
https://www.thomasnet.com/articles/machinery-tools-supplies/what-is-a-3-phase-motor-and-how-does-it-work/
https://www.adafruit.com/product/1586
https://www.adafruit.com/product/1586
https://en.wikipedia.org/wiki/Lenz's_Law
https://gist.github.com/mikeputnam/2820675
https://adamconn.com/product/standard-industrial-cable-m12-connector-4-pin-aviation-plug
https://adamconn.com/product/standard-industrial-cable-m12-connector-4-pin-aviation-plug

A
Source Code

This contains the current source code of the project. It is preferable to use the GitHub repository as it
is guaranteed to be up to date, however this is included for redundancy.

Listing A.1: main.ino

1 #inc lude ” p e r i ph e r a l s . h”
2 #inc lude ” cons tant s . h”
3 //#de f i n e DEBUG
4
5 v o l a t i l e boolean ac t i va t ed = f a l s e ;
6
7 void enableS igna l ISR (void) ;
8 void i n i tAc t i v a t i onP in (i n t enablePin) ;
9
10 St r ing f i leName = ”” ;
11 bool SDWorking = f a l s e ;
12
13 void setup () {
14 S e r i a l . begin (115200) ;
15 delay (50) ;
16
17 // i n i t i a l i s e IO pe r i ph e r a l s
18 f i leName = checkFileNamesSD () ;
19 SDWorking = initSD (f i leName) ;
20 initLCD () ;
21 initMessageLCD (SDWorking , f i leName) ;
22 i n i tHa l l S e n s o r s () ;
23 initLEDs () ;
24 i n i tRe l a y s () ;
25 i n i tAc t i v a t i onP in (ENABLE_PIN) ;
26 }
27
28 uint16_t oldMeasurement = 0 ;
29 uint8_t comboIndex = nbCombinations ;
30
31 void loop () {
32 i f (a c t i va t ed) {
33 delay (50) ; //Check that s i g n a l r e a l l y i s LOW
34 i f (d i g i t a lRead (ENABLE_PIN) == LOW){ //DOWNWARD Flank
35 di sp layStartMeasure () ;
36 motorOn () ; //Allow cur rent to f low to c r e a t e magnetic f i e l d

19

https://github.com/JosefTAv/Motor_winding_evaluator
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/main.ino

20

37 delay (1200) ; //Wait f o r r e l a y s to turn on be f o r e making a
measurement , could be l onge r (than 1000) because i t doesn ’ t reach

f u l l cur rent yet . But the measurements look good
38
39 unsigned long measureTime = m i l l i s () ;
40 uint16_t measurement = readHa l lSenso r s () ;
41 motorOff () ; // Deact ivate motor to conserve power
42 delay (100) ;
43 displayEndMeasure () ;
44
45 i f (measurement != oldMeasurement) { //Check i f cur rent measurement i s

the same as prev ious
46 comboIndex = evaluateMotor (measurement) ;
47 displayNewReadingLCD (comboIndex , measurement) ;
48 displayNewReadingLED (comboIndex , measurement) ;
49
50 oldMeasurement=measurement ;
51 }
52 e l s e {
53 displaySameReadingLCD (comboIndex , oldMeasurement) ;
54 displaySameReadingLED () ;
55 }
56 i f (comboIndex == CORRECT){ // check i f the motor i s c o r r e c t or not
57 buzzerCorrect () ;
58 e r ro rPor tOf f () ; //Not nece s sa ry but good f o r redundancy
59 }
60 e l s e {
61 buzz e r In co r r e c t () ;
62 errorPortOn () ;
63 }
64
65 i f (SDWorking)
66 writeToSD (fi leName , measureTime , comboIndex , measurement) ;
67 }
68 e l s e {
69 delay (50) ; //Debounce
70 i f (d i g i t a lRead (ENABLE_PIN) == HIGH) //UPWARD Flank
71 e r ro rPor tOf f () ; // r e s e t e r r o r pin
72 }
73 delay (10) ; // When the r e l a y s turn o f f , they c r e a t e a bounce in the

s i g n a l which a c t i v a t e s measurement again and never s tops : wait f o r
bounce then cont inue

74 ac t i va t ed = f a l s e ;
75 }
76 }
77
78 void enableS igna l ISR (void) {
79 ac t i va t ed = true ;
80 }
81
82 void i n i tAc t i v a t i onP in (i n t enablePin) {
83 pinMode (enablePin , INPUT_PULLUP) ; // I n i t a c t i v a t i o n s i g n a l pin
84 a t ta ch In t e r rup t (d i g i t a lP inTo In t e r rup t (enablePin) , enableSignalISR ,

CHANGE) ; // i n t e r r up t f o r the enable s i g n a l
85 }

21

Listing A.2: constants.h

1 #i f n d e f CONSTANTS_H
2 #de f i n e CONSTANTS_H
3
4 #de f i n e CORRECT 0
5
6 #de f i n e UPARROW 0
7 #de f i n e DOWNARROW 1
8 #de f i n e CROSS 2
9 #de f i n e TICK 3
10
11 #de f i n e ENABLE_PIN 19
12 #de f i n e IN2 12 // t i e n e que c e r r a r que hay e r r o r
13 #de f i n e IN1 13 // t i e n e que ab r i r cuando ha terminado de medir (c i r c u l a e l

c o r r i e n t e)
14
15 #de f i n e FIRST_HALL_SENSOR_PIN 22
16 #de f i n e NB_HALL_SENSORS 12
17 #de f i n e LAST_HALL_SENSOR_PIN 44
18
19 #de f i n e LCD_POWER 8
20
21 #de f i n e LED_PIN 10
22 #de f i n e NB_LEDS 12
23 #de f i n e BRIGHTNESS 20
24
25 #de f i n e BUZZER_PIN 9
26
27 #de f i n e CS_SD 53
28 #de f i n e FILENAME ” log ” // . csv f i l e
29 #de f i n e HEADER ”No . , Time , Correct (BIN) , Measurement (BIN) , Correct po l e s (BIN) ,

Winding type ”
30 #end i f
31
32 // In t e r rup to r abajo (a HIGH) -> abre IN2
33 // Memoria e l 20 Lunes

Listing A.3: peripherals.h

1 #i f n d e f PERIPHERALS_H
2 #de f i n e PERIPHERALS_H
3
4 #inc lude ” cons tant s . h”
5 #inc lude <Wire . h>
6 #inc lude <LiquidCrystal_I2C . h>
7 #inc lude <Adafruit_NeoPixel . h>
8 #inc lude <SPI . h>
9 #inc lude <SD. h>
10
11 i n l i n e bool ge tB i t (uint16_t b , uint8_t n) __attribute__ ((a lways_in l ine)) ;

// i n l i n e in order to improve speed
12
13 //Template/Macro f o r count ing number o f e lements in array s a f e l y , works

f o r many types
14 template <typename T, s i z e_t N>
15 char (&_ArraySizeHelper (T (&arr) [N])) [N] ;
16 #de f i n e LENGTH(ar r) (s i z e o f (_ArraySizeHelper (a r r)))

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/constants.h
https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.h

22

17
18 extern uint16_t nbCombinations ;
19
20 /* ***** I n i t i a l i s a t i o n func t i on s ****** */
21 void i n i tRe l a y s (void) ;
22 St r ing checkFileNamesSD (void) ;
23 bool in itSD (St r ing f i leName) ;
24 void initLCD (void) ;
25 void initMessageLCD (bool SDWorking , S t r ing f i leName) ;
26 void i n i tHa l l S e n s o r s (void) ;
27 void initLEDs (void) ;
28 void in i tBuzze r (void) ;
29 /* ***** I n i t i a l i s a t i o n func t i on s ****** */
30
31 /* *****Loop func t i on s ***** */
32 void motorOn(void) ;
33 void motorOff (void) ;
34 void errorPortOn (void) ;
35 void e r ro rPor tOf f (void) ;
36
37 uint16_t readHa l lSensor s (void) ;
38 uint16_t evaluateMotor (uint16_t read ing) ;
39
40 void d i sp layStartMeasure (void) ;
41 void displayEndMeasure (void) ;
42 void displayNewReadingLCD (uint8_t comboIndex , uint16_t read ing) ;
43 void displayNewReadingLED (uint8_t comboIndex , uint16_t read ing) ;
44
45 void displaySameReadingLCD (uint8_t comboIndex , uint16_t read ing) ; // b l i nk

sc r e en with ”Same as prev ious ”
46 void displaySameReadingLED (void) ;
47
48 void buzzerCorrect (void) ;
49 void buzz e r In co r r e c t (void) ;
50
51 void writeToSD (St r ing fi leName , unsigned long t , uint8_t comboIndex ,

uint16_t read ing) ;
52 /* *****Loop func t i on s ***** */
53
54 #end i f

Listing A.4: peripherals.cpp

1 #inc lude ” p e r i ph e r a l s . h”
2 #inc lude ” cons tant s . h”
3 #inc lude ” p i t ch e s . h”
4
5 LiquidCrystal_I2C lcd (0 x27 , 20 , 4) ; // s e t the LCD address to 0x27 f o r a

16 chars and 2 l i n e
6 Adafruit_NeoPixel LEDstrip (NB_LEDS, LED_PIN, NEO_GRB + NEO_KHZ800) ; //12 =

NB_HALL_SENSORS
7 uint16_t nbMeasurements = 0 ;
8
9 /* ******CONSTANTS****** */
10 //Known po l a r i t y combinat ions
11 //Each b i t r ep r e s en t s a p o l a r i t y : 1-> N pole , 0-> S po le
12 //LSb r ep r e s en t s the measurement o f the l a s t h a l l s en so r =

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/peripherals.cpp

23

13 uint16_t combinat ions [] = {
14 0b101001010110 , 0b011001010110 , 0b101001100110 , 0b011001100110 ,

0b101001010101 ,
15 0b011001010101 , 0b101001100101 , 0b011001100101 , 0b101010010110 ,

0b011010010110 ,
16 0b101010100110 , 0b011010100110 , 0b101010010101 , 0b011010010101 ,

0b101010100101 ,
17 0b011010100101 , 0b101001011010 , 0b011001011010 , 0b101001101010 ,

0b011001101010 ,
18 0b101001011001 , 0b011001011001 , 0b101001101001 , 0b011001101001 ,

0b101010011010 ,
19 0b011010011010 , 0b101010101010 , 0b011010101010 , 0b101010011001 ,

0b011010011001 ,
20 0b101010101001 , 0b011010101001 , 0b100101010110 , 0b010101010110 ,

0b100101100110 ,
21 0b010101100110 , 0b100101010101 , 0b010101010101 , 0b100101100101 ,

0b010101100101 ,
22 0b100110010110 , 0b010110010110 , 0b100110100110 , 0b010110100110 ,

0b100110010101 ,
23 0b010110010101 , 0b100110100101 , 0b010110100101 , 0b100101011010 ,

0b010101011010 ,
24 0b100101101010 , 0b010101101010 , 0b100101011001 , 0b010101011001 ,

0b100101101001 ,
25 0b010101101001 , 0b100110011010 , 0b010110011010 , 0b100110101010 ,

0b010110101010 ,
26 0b100110011001 , 0b010110011001 , 0b100110101001 , 0b010110101001
27 } ;
28
29 // Corresponding code f o r each po l a r i t y combination
30 St r ing combinationNames [] = {
31 ” Correct ” , ”A1inv” , ”A2inv” , ”Ainv” , ”B1inv” ,
32 ”A1B1inv” , ”A2B1inv” , ”AB1inv” , ”B2inv” , ”A1B2inv” ,
33 ”A2B2inv” , ”AB2inv” , ”Binv” , ”A1Binv” , ”A2Binv” ,
34 ”ABinv” , ”C1inv” , ”A1C1inv” , ”A2C1inv” , ”AC1inv” ,
35 ”B1C1inv” , ”A1B1C1inv” , ”A2B1C1inv” , ”AB1C1inv” , ”B2C1inv” ,
36 ”A1B2C1inv” , ”A2B2C1inv” , ”AB2C1inv” , ”BC1inv” , ”A1BC1inv” ,
37 ”A2BC1inv” , ”ABC1inv” , ”C2inv” , ”A1C2inv” , ”A2C2inv” ,
38 ”AC2inv” , ”B1C2inv” , ”A1B1C2inv” , ”A2B1C2inv” , ”AB1C2inv” ,
39 ”B2C2inv” , ”A1B2C2inv” , ”A2B2C2inv” , ”AB2C2inv” , ”BC2inv” ,
40 ”A1BC2inv” , ”A2BC2inv” , ”ABC2inv” , ”Cinv” , ”A1Cinv” ,
41 ”A2Cinv” , ”ACinv” , ”B1Cinv” , ”A1B1Cinv” , ”A2B1Cinv” ,
42 ”AB1Cinv” , ”B2Cinv” , ”A1B2Cinv” , ”A2B2Cinv” , ”AB2Cinv” ,
43 ”BCinv” , ”A1BCinv” , ”A2BCinv” , ”ABCinv” , ”Not found ”
44 } ;
45
46 byte upArrow [] = {
47 0b00000 ,
48 0b00100 ,
49 0b01110 ,
50 0b10101 ,
51 0b00100 ,
52 0b00100 ,
53 0b00100 ,
54 0b00000
55 } ;
56

24

57 byte downArrow [] = {
58 0b00000 ,
59 0b00100 ,
60 0b00100 ,
61 0b00100 ,
62 0b10101 ,
63 0b01110 ,
64 0b00100 ,
65 0b00000
66 } ;
67
68 byte c r o s s [] = {
69 0b00000 ,
70 0b10001 ,
71 0b01010 ,
72 0b00100 ,
73 0b01010 ,
74 0b10001 ,
75 0b00000 ,
76 0b00000
77 } ;
78
79 byte t i c k [] = {
80 0b00000 ,
81 0b00000 ,
82 0b00000 ,
83 0b00001 ,
84 0b00010 ,
85 0b10100 ,
86 0b01000 ,
87 0b00000
88 } ;
89
90 uint16_t nbCombinations = LENGTH(combinat ions) ; // depends only on array ’

combinat ions ’ , t h e r e f o r e adaptable f o r d i f f e r e n t motor c on f i g u r a t i o n s
91 /* ******CONSTANTS****** */
92
93 /* ***** I n i t i a l i s a t i o n func t i on s ****** */
94 void i n i tRe l a y s (void) {
95 pinMode (IN1 , OUTPUT) ;
96 pinMode (IN2 , OUTPUT) ;
97 motorOff () ;
98 e r ro rPor tOf f () ;
99 }
100
101 void initLCD (void) {
102 pinMode (LCD_POWER, INPUT_PULLUP) ;
103 d i g i t a lWr i t e (LCD_POWER, HIGH) ;
104 delay (100) ;
105
106 l cd . i n i t () ;
107 l cd . back l i gh t () ;
108 l cd . createChar (UPARROW, upArrow) ;
109 l cd . createChar (DOWNARROW, downArrow) ;
110 l cd . createChar (CROSS, c r o s s) ;
111 l cd . createChar (TICK, t i c k) ;

25

112 }
113
114 void initMessageLCD (bool SDWorking , S t r ing f i leName) {
115 l cd . p r i n t (” State : no measurement”) ;
116 l cd . se tCursor (0 , 1) ;
117 l cd . p r i n t (”Awaiting a c t i v a t i o n ”) ;
118 l cd . se tCursor (0 , 3) ;
119 i f (! SDWorking) {
120 l cd . p r i n t (” ** SD e r r o r **”) ;
121 }
122 e l s e {
123 l cd . p r i n t (” F i l e : ” + fi leName) ;
124 }
125 }
126
127 void i n i tHa l l S e n s o r s (void) {
128 f o r (i n t i = FIRST_HALL_SENSOR_PIN; i <= LAST_HALL_SENSOR_PIN /*

NB_HALL_SENSORS + FIRST_HALL_SENSOR_PIN*/ ; i+=2) { //MSB f i r s t
129 #i f d e f DEBUG
130 S e r i a l . p r i n t l n (i) ;
131 #end i f
132 pinMode (i , INPUT_PULLUP) ;
133 }
134 }
135
136 void initLEDs (void) {
137 LEDstrip . begin () ;
138 LEDstrip . s e tBr i gh tne s s (BRIGHTNESS) ;
139 LEDstrip . f i l l (LEDstrip . Color (255 , 255 , 255)) ; //White
140 LEDstrip . s e tP i x e lCo l o r (0 , LEDstrip . Color (0 , 117 , 255)) ; // Set f i r s t

p i x e l to Blue to show s t a r t
141 LEDstrip . show () ;
142 }
143
144 void in i tBuzze r (void) {
145 pinMode (BUZZER_PIN, OUTPUT) ;
146 }
147
148 St r ing checkFileNamesSD (void) {
149 i f (! SD. begin (CS_SD)) {
150 S e r i a l . p r i n t l n (”SD card or not pre sent . ”) ;
151 re turn ”” ; // don ’ t do anything more :
152 }
153
154 St r ing f i leName = FILENAME;
155 i n t l en = fi leName . l ength () ;
156 i f (! SD. e x i s t s (f i leName + ” . csv ”))
157 re turn f i leName + ” . csv ” ;
158
159 uint8_t i = 0 ;
160 whi le (1) {
161 i f (! SD. e x i s t s (f i leName + i + ” . csv ”))
162 re turn f i leName + i + ” . csv ” ; // i i s incremented i f a f i l e o f the

same name i s detec ted
163 i++;
164 }

26

165 }
166
167 bool in itSD (St r ing f i leName) {
168 i f (! SD. begin (CS_SD)) {
169 S e r i a l . p r i n t l n (”SD card broken or not pre sent . ”) ;
170 re turn f a l s e ; // don ’ t do anything more :
171 }
172
173 F i l e l o gF i l e = SD. open (fi leName , FILE_WRITE) ;
174 i f (l o gF i l e) {
175 //These w i l l be the headers f o r your ex c e l f i l e , CHANGE ”” to whatever

headers you would l i k e to use
176 l o gF i l e . p r i n t l n (” sep=,”) ;
177 l o gF i l e . p r i n t l n (HEADER) ;
178 l o gF i l e . c l o s e () ;
179 re turn true ;
180 }
181 S e r i a l . p r i n t l n (”Unable to open . ”) ;
182 re turn f a l s e ;
183 }
184 /* ***** I n i t i a l i s a t i o n func t i on s ****** */
185
186 /* *****Loop func t i on s ***** */
187 void motorOn(void) {
188 d i g i t a lWr i t e (IN2 , LOW) ; // Closed
189 }
190
191 void motorOff (void) {
192 d i g i t a lWr i t e (IN2 , HIGH) ; //Open
193 }
194
195 void errorPortOn (void) {
196 d i g i t a lWr i t e (IN1 , LOW) ; // Closed
197 }
198
199 void e r ro rPor tOf f (void) {
200 d i g i t a lWr i t e (IN1 , HIGH) ; //Open
201 }
202
203 uint16_t readHa l lSensor s (void) {
204 uint16_t read ing = 0 ;
205
206 f o r (i n t i = FIRST_HALL_SENSOR_PIN, j = NB_HALL_SENSORS - 1 ; i <=

LAST_HALL_SENSOR_PIN; i +=2, j - -) { //MSB f i r s t
207 read ing |= (d ig i t a lRead (i) << j) ; // each read ing i s a s i n g l e b it , the

b i t s h i f t i n g enab l e s t h i s
208 }
209 #i f d e f DEBUG
210 S e r i a l . p r i n t (” read ing = ”) ;
211 S e r i a l . p r i n t l n (reading , BIN) ;
212 #end i f
213 re turn read ing ;
214 }
215
216 uint16_t evaluateMotor (uint16_t read ing) {
217 f o r (i n t i = 0 ; i < nbCombinations - 1 ; i++) {

27

218 #i f d e f DEBUG
219 S e r i a l . p r i n t (reading , BIN) ;
220 S e r i a l . p r i n t (” =? ”) ;
221 S e r i a l . p r i n t l n ((combinat ions [i]) , BIN) ;
222 #end i f
223 i f (r ead ing == combinations [i]) {
224 // s t r cpy (s , combinationNames [i] . c_str ()) ;
225 re turn i ; // index o f c o r r e c t combination
226 #i f d e f DEBUG
227 S e r i a l . p r i n t l n (s) ;
228 #end i f
229 }
230 }
231
232 #i f d e f DEBUG
233 S e r i a l . p r i n t l n (s) ;
234 #end i f
235 re turn nbCombinations ; //No correponding combination found
236 }
237
238 void d i sp layStartMeasure (void) {
239 l cd . se tCursor (0 , 3) ;
240 l cd . p r i n t (”Measuring po l e s ”) ;
241 // l cd . noDisplay () ;
242 d i g i t a lWr i t e (LCD_POWER, LOW) ;
243 }
244
245 void displayEndMeasure (void) {
246 // l cd . d i sp l ay () ;
247 d i g i t a lWr i t e (LCD_POWER, HIGH) ;
248 initLCD () ;
249 }
250
251 void displayNewReadingLCD (uint8_t comboIndex , uint16_t read ing) {
252 l cd . c l e a r () ;
253 delay (10) ;
254 f o r (i n t i = 0 ; i < 3 ; i++){ // repeat data sending so that the s c r e en i s

more s t ab l e
255 l cd . home () ;
256 l cd . p r i n t (” State : ”) ;
257 l cd . p r i n t (combinationNames [comboIndex]) ;
258
259 l cd . se tCursor (0 , 1) ;
260 i f (comboIndex >= 0) { // p r in t raw po le r ead ings
261 l cd . p r i n t (” Poles : ”) ;
262 f o r (i n t i=NB_HALL_SENSORS- 1 ; i >= 0 ; i - -)
263 getBi t (reading , i) ? l cd . wr i t e (UPARROW) : l cd . wr i t e (DOWNARROW) ;
264
265 l cd . se tCursor (7 , 2) ; // a l i g n with p o l a r i t i e s
266 read ing ^= combinat ions [CORRECT] ;
267 f o r (i n t i=NB_HALL_SENSORS- 1 ; i >= 0 ; i - -) { // p r in t whether po l e s are

c o r r e c t or not
268 getBi t (reading , i) ? l cd . wr i t e (CROSS) : l cd . wr i t e (TICK) ; //Negated

because with xor 1 means the va lue s are d i f f e r e n t
269 }
270 l cd . se tCursor (0 , 3) ;

28

271 l cd . p r i n t (” ”) ;
272 }
273 e l s e {
274 // l cd . p r i n t (” - P lease t ry again -”) ;
275 }
276 }
277 }
278
279 void displayNewReadingLED (uint8_t comboIndex , uint16_t read ing) {
280 read ing ^= combinat ions [CORRECT] ; //Find i n c o r r e c t windings : 1 where the

va lue s are d i f f e r e n t i e . wrong
281 LEDstrip . c l e a r () ;
282 i f (comboIndex >=0){
283 f o r (i n t i=NB_HALL_SENSORS- 1 ; i >= 0 ; i - -) { // Star t from MSb -> LSb
284 uint32_t co l our = LEDstrip . Color (0 , 255 , 0) ; //Green
285
286 i f (ge tB i t (reading , i)) //This checks i f the b i t at the g iven index

i s 1 or 0
287 co l our = LEDstrip . Color (255 , 0 , 0) ; //Red
288
289 LEDstrip . s e tP i x e lCo l o r (i , c o l ou r) ;
290 LEDstrip . show () ;
291 delay (35) ;
292 }
293 }
294 e l s e {
295 LEDstrip . f i l l (LEDstrip . Color (0 , 0 , 255)) ; //Blue
296 LEDstrip . show () ;
297 }
298 }
299
300 void displaySameReadingLCD (uint8_t comboIndex , uint16_t read ing) {
301 displayNewReadingLCD (comboIndex , read ing) ;
302 l cd . se tCursor (0 , 3) ;
303 l cd . p r i n t (”Same as prev ious ”) ;
304 delay (500) ;
305 l cd . se tCursor (0 , 3) ;
306 l cd . p r i n t (” ”) ; // c l e a r l i n e
307 delay (500) ;
308 l cd . se tCursor (0 , 3) ;
309 l cd . p r i n t (”Same as prev ious ”) ;
310 }
311
312 void displaySameReadingLED (void) {
313 f o r (i n t j =0; j <5; j++){
314 f o r (i n t i =0; i<BRIGHTNESS; i++){ //DIM LEDS
315 LEDstrip . s e tBr i gh tne s s (BRIGHTNESS- i) ;
316 LEDstrip . show () ;
317 delay (8) ;
318 }
319
320 delay (8) ;
321
322 f o r (i n t i =1; i<=BRIGHTNESS; i++){ //BRIGHTEN LEDs
323 LEDstrip . s e tBr i gh tne s s (i) ;
324 LEDstrip . show () ;

29

325 delay (8) ;
326 }
327 }
328 }
329
330 void buzzerCorrect (void) {
331 i n t melodyGood [] = {NOTE_C5, NOTE_E5, NOTE_G5} ;
332 i n t durat ion = 200 ;
333 f o r (i n t th i sNote = 0 ; th i sNote < 3 ; th i sNote++) {
334 tone (BUZZER_PIN, melodyGood [th i sNote] , durat ion) ;
335 delay (200) ;
336 }
337 }
338
339 // void buzz e r In co r r e c t (void) {
340 // i n t melodyBad [] = {NOTE_CS4, NOTE_C5} ;
341 // i n t durat ion = 300 ;
342 // f o r (i n t j = 0 ; j < 4 ; j++){
343 // f o r (i n t th i sNote = 0 ; th i sNote < 2 ; th i sNote++) {
344 // tone (BUZZER_PIN, melodyBad [th i sNote] , durat ion) ;
345 // de lay (20) ;
346 // }
347 // }
348 //}
349
350 void buzz e r In co r r e c t (void) {
351 i n t melodyGood [] = {NOTE_G4, NOTE_G4} ;
352 i n t durat ion = 200 ;
353 f o r (i n t th i sNote = 0 ; th i sNote < 2 ; th i sNote++) {
354 tone (BUZZER_PIN, melodyGood [th i sNote] , durat ion) ;
355 delay (200) ;
356 }
357 }
358
359 void writeToSD (St r ing fi leName , unsigned long t , uint8_t comboIndex ,

uint16_t read ing) {
360 F i l e l o gF i l e = SD. open (fi leName , FILE_WRITE) ;
361 i f (l o gF i l e) {
362 uint16_t mask = 0b0000111111111111 ; // remove the f i r s t 4 b i t s o f

measurement which correspond to nothing
363 uint16_t co r r e c tPo l e s = ~(read ing ^= combinat ions [CORRECT]) ;
364 c o r r e c tPo l e s &= mask ;
365
366 l o gF i l e . p r i n t (S t r ing (nbMeasurements) + ” , ”
367 + Str ing (t /1000 .0) + ” , ” //

Time
368 + Str ing (comboIndex == CORRECT) + ” , ”) ; // I s

the motor complete ly c o r r e c t ?
369 l o gF i l e . p r i n t (reading , BIN) ; //

Raw measurement
370 l o gF i l e . p r i n t (” , ”) ;
371 l o gF i l e . p r i n t (co r r e c tPo l e s , BIN) ; //

Correct / i n c o r r e c t po l e s
372 l o gF i l e . p r i n t (” , ”) ;
373 l o gF i l e . p r i n t l n (combinationNames [comboIndex]) ; //

Winding type

30

374 l o gF i l e . c l o s e () ;
375
376 //For debugging purposes
377 St r ing s = (St r ing (nbMeasurements) + ” , ”
378 + Str ing (comboIndex == CORRECT) + ” , ”
379 + Str ing (t) + ” , ”
380 + Str ing (read ing) + ” , ”
381 + Str ing (~(read ing ^= combinat ions [CORRECT])) + ” , ”
382 + combinationNames [comboIndex]) ;
383 S e r i a l . p r i n t l n (s) ;
384 nbMeasurements++;
385 }
386 }
387 /* *****Loop func t i on s ***** */
388
389 /* ***** Supplementary func t i on ***** */
390 boolean getBi t (uint16_t b , uint8_t n) {
391 uint16_t mask = 1<<n ;
392 re turn b & mask ;
393 }
394 /* ***** Supplementary func t i on ***** */

Listing A.5: pitches.h

1 /* **
2
3 Frequency o f notes
4
5 ** */
6 #de f i n e NOTE_B0 31
7 #de f i n e NOTE_C1 33
8 #de f i n e NOTE_CS1 35
9 #de f i n e NOTE_D1 37
10 #de f i n e NOTE_DS1 39
11 #de f i n e NOTE_E1 41
12 #de f i n e NOTE_F1 44
13 #de f i n e NOTE_FS1 46
14 #de f i n e NOTE_G1 49
15 #de f i n e NOTE_GS1 52
16 #de f i n e NOTE_A1 55
17 #de f i n e NOTE_AS1 58
18 #de f i n e NOTE_B1 62
19 #de f i n e NOTE_C2 65
20 #de f i n e NOTE_CS2 69
21 #de f i n e NOTE_D2 73
22 #de f i n e NOTE_DS2 78
23 #de f i n e NOTE_E2 82
24 #de f i n e NOTE_F2 87
25 #de f i n e NOTE_FS2 93
26 #de f i n e NOTE_G2 98
27 #de f i n e NOTE_GS2 104
28 #de f i n e NOTE_A2 110
29 #de f i n e NOTE_AS2 117
30 #de f i n e NOTE_B2 123
31 #de f i n e NOTE_C3 131
32 #de f i n e NOTE_CS3 139
33 #de f i n e NOTE_D3 147

https://github.com/JosefTAv/Motor_winding_evaluator/blob/main/main/constants.h

31

34 #de f i n e NOTE_DS3 156
35 #de f i n e NOTE_E3 165
36 #de f i n e NOTE_F3 175
37 #de f i n e NOTE_FS3 185
38 #de f i n e NOTE_G3 196
39 #de f i n e NOTE_GS3 208
40 #de f i n e NOTE_A3 220
41 #de f i n e NOTE_AS3 233
42 #de f i n e NOTE_B3 247
43 #de f i n e NOTE_C4 262
44 #de f i n e NOTE_CS4 277
45 #de f i n e NOTE_D4 294
46 #de f i n e NOTE_DS4 311
47 #de f i n e NOTE_E4 330
48 #de f i n e NOTE_F4 349
49 #de f i n e NOTE_FS4 370
50 #de f i n e NOTE_G4 392
51 #de f i n e NOTE_GS4 415
52 #de f i n e NOTE_A4 440
53 #de f i n e NOTE_AS4 466
54 #de f i n e NOTE_B4 494
55 #de f i n e NOTE_C5 523
56 #de f i n e NOTE_CS5 554
57 #de f i n e NOTE_D5 587
58 #de f i n e NOTE_DS5 622
59 #de f i n e NOTE_E5 659
60 #de f i n e NOTE_F5 698
61 #de f i n e NOTE_FS5 740
62 #de f i n e NOTE_G5 784
63 #de f i n e NOTE_GS5 831
64 #de f i n e NOTE_A5 880
65 #de f i n e NOTE_AS5 932
66 #de f i n e NOTE_B5 988
67 #de f i n e NOTE_C6 1047
68 #de f i n e NOTE_CS6 1109
69 #de f i n e NOTE_D6 1175
70 #de f i n e NOTE_DS6 1245
71 #de f i n e NOTE_E6 1319
72 #de f i n e NOTE_F6 1397
73 #de f i n e NOTE_FS6 1480
74 #de f i n e NOTE_G6 1568
75 #de f i n e NOTE_GS6 1661
76 #de f i n e NOTE_A6 1760
77 #de f i n e NOTE_AS6 1865
78 #de f i n e NOTE_B6 1976
79 #de f i n e NOTE_C7 2093
80 #de f i n e NOTE_CS7 2217
81 #de f i n e NOTE_D7 2349
82 #de f i n e NOTE_DS7 2489
83 #de f i n e NOTE_E7 2637
84 #de f i n e NOTE_F7 2794
85 #de f i n e NOTE_FS7 2960
86 #de f i n e NOTE_G7 3136
87 #de f i n e NOTE_GS7 3322
88 #de f i n e NOTE_A7 3520
89 #de f i n e NOTE_AS7 3729

32

90 #de f i n e NOTE_B7 3951
91 #de f i n e NOTE_C8 4186
92 #de f i n e NOTE_CS8 4435
93 #de f i n e NOTE_D8 4699
94 #de f i n e NOTE_DS8 4978

B
Binary local magnetic field

representations
This table is the result of simulations run by professor Ramon Bargallo. The ”Winding” column shows
which windings are inverted. The ”Px” columns show the expected local magnetic polarity for the
particular ”Winding” configuration. Only the first row is considered correct.

Table B.1: Possible magnetic polarities and their corresponding winding configurations

Winding P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Correct 1 0 1 0 0 1 0 1 0 1 1 0
A1inv 0 1 1 0 0 1 0 1 0 1 1 0
A2inv 1 0 1 0 0 1 1 0 0 1 1 0
Ainv 0 1 1 0 0 1 1 0 0 1 1 0
B1inv 1 0 1 0 0 1 0 1 0 1 0 1
A1B1inv 0 1 1 0 0 1 0 1 0 1 0 1
A2B1inv 1 0 1 0 0 1 1 0 0 1 0 1
AB1inv 0 1 1 0 0 1 1 0 0 1 0 1
B2inv 1 0 1 0 1 0 0 1 0 1 1 0
A1B2inv 0 1 1 0 1 0 0 1 0 1 1 0
A2B2inv 1 0 1 0 1 0 1 0 0 1 1 0
AB2inv 0 1 1 0 1 0 1 0 0 1 1 0
Binv 1 0 1 0 1 0 0 1 0 1 0 1
A1Binv 0 1 1 0 1 0 0 1 0 1 0 1
A2Binv 1 0 1 0 1 0 1 0 0 1 0 1
ABinv 0 1 1 0 1 0 1 0 0 1 0 1
C1inv 1 0 1 0 0 1 0 1 1 0 1 0
A1C1inv 0 1 1 0 0 1 0 1 1 0 1 0
A2C1inv 1 0 1 0 0 1 1 0 1 0 1 0
AC1inv 0 1 1 0 0 1 1 0 1 0 1 0
B1C1inv 1 0 1 0 0 1 0 1 1 0 0 1
A1B1C1inv 0 1 1 0 0 1 0 1 1 0 0 1
A2B1C1inv 1 0 1 0 0 1 1 0 1 0 0 1
AB1C1inv 0 1 1 0 0 1 1 0 1 0 0 1
B2C1inv 1 0 1 0 1 0 0 1 1 0 1 0
A1B2C1inv 0 1 1 0 1 0 0 1 1 0 1 0
A2B2C1inv 1 0 1 0 1 0 1 0 1 0 1 0
AB2C1inv 0 1 1 0 1 0 1 0 1 0 1 0
BC1inv 1 0 1 0 1 0 0 1 1 0 0 1
A1BC1inv 0 1 1 0 1 0 0 1 1 0 0 1

33

34

Table B.1 continued from previous page
A2BC1inv 1 0 1 0 1 0 1 0 1 0 0 1
ABC1inv 0 1 1 0 1 0 1 0 1 0 0 1
C2inv 1 0 0 1 0 1 0 1 0 1 1 0
A1C2inv 0 1 0 1 0 1 0 1 0 1 1 0
A2C2inv 1 0 0 1 0 1 1 0 0 1 1 0
AC2inv 0 1 0 1 0 1 1 0 0 1 1 0
B1C2inv 1 0 0 1 0 1 0 1 0 1 0 1
A1B1C2inv 0 1 0 1 0 1 0 1 0 1 0 1
A2B1C2inv 1 0 0 1 0 1 1 0 0 1 0 1
AB1C2inv 0 1 0 1 0 1 1 0 0 1 0 1
B2C2inv 1 0 0 1 1 0 0 1 0 1 1 0
A1B2C2inv 0 1 0 1 1 0 0 1 0 1 1 0
A2B2C2inv 1 0 0 1 1 0 1 0 0 1 1 0
AB2C2inv 0 1 0 1 1 0 1 0 0 1 1 0
BC2inv 1 0 0 1 1 0 0 1 0 1 0 1
A1BC2inv 0 1 0 1 1 0 0 1 0 1 0 1
A2BC2inv 1 0 0 1 1 0 1 0 0 1 0 1
ABC2inv 0 1 0 1 1 0 1 0 0 1 0 1
Cinv 1 0 0 1 0 1 0 1 1 0 1 0
A1Cinv 0 1 0 1 0 1 0 1 1 0 1 0
A2Cinv 1 0 0 1 0 1 1 0 1 0 1 0
ACinv 0 1 0 1 0 1 1 0 1 0 1 0
B1Cinv 1 0 0 1 0 1 0 1 1 0 0 1
A1B1Cinv 0 1 0 1 0 1 0 1 1 0 0 1
A2B1Cinv 1 0 0 1 0 1 1 0 1 0 0 1
AB1Cinv 0 1 0 1 0 1 1 0 1 0 0 1
B2Cinv 1 0 0 1 1 0 0 1 1 0 1 0
A1B2Cinv 0 1 0 1 1 0 0 1 1 0 1 0
A2B2Cinv 1 0 0 1 1 0 1 0 1 0 1 0
AB2Cinv 0 1 0 1 1 0 1 0 1 0 1 0
BCinv 1 0 0 1 1 0 0 1 1 0 0 1
A1BCinv 0 1 0 1 1 0 0 1 1 0 0 1
A2BCinv 1 0 0 1 1 0 1 0 1 0 0 1
ABCinv 0 1 0 1 1 0 1 0 1 0 0 1

C
Magnetic field simulations

Below are the results of simulations run by Ramon Bargallo of the magnetic field inside a stator when
supplied current. The measurement follows a circular path around the stator meaning that the distance
axis represents the distance around the circumference.

Figure C.1: Motor with correct windings

Figure C.2: Motor with winding A inverted

Figure C.3: Motor with winding B inverted

35

36

Figure C.4: Motor with winding C inverted

Figure C.5: Motor with winding A and B inverted

Figure C.6: Motor with winding A and C inverted

Figure C.7: Motor with winding B and C inverted

Figure C.8: Motor with winding A, B and C inverted

	Preface
	Introduction
	The working principle
	Three phase motors
	The method
	The specifics of the project

	Hardware
	Sensors
	Hall sensors (A3144)
	Piezo-electric buzzer
	NeoPixel Ring
	LCD display (HD44780U)
	SD card Reader/Writer
	4 pin plug
	Relays
	Switches

	Mounting/usage
	Possible improvements

	Software
	Arduino
	Code structure
	Dependencies
	main.ino
	constants.h
	pitches.h
	peripherals.h
	peripherals.cpp
	peripherals.cpp
	Possible improvements

	Conclusion
	References
	Source Code
	Binary local magnetic field representations
	Magnetic field simulations

