
Operationalizing and automating Data
Governance
Sergi Nadal*, Petar Jovanovic, Besim Bilalli and Oscar Romero

Introduction
Big Data is no more a synonym for large volumes. After its first years, the focus has
steadily shifted towards data integration concerns, also known as the data variety chal-
lenge.1 Now, the difficulty is how to overcome the data heterogeneity, both syntactic and
semantic, in order to integrate the right variables enabling insightful data analysis and
covering the most relevant decisional aspects [1]. Indeed, private and public organiza-
tions aim at crossing the right data to make the right decision. Unfortunately, most of
the times the required data is not available inside the organisation and, therefore, there is
a need to contextualise the internal data with external data [2]. More precisely, data eco-
systems are getting more and more complex nowadays, with the so-called data deluge.
Relevantly, this problem may even arise inside the same organization. As a matter of fact,
different departments and areas may produce heterogeneous data not easily crossable.

Abstract

The ability to cross data from multiple sources represents a competitive advantage for
organizations. Yet, the governance of the data lifecycle, from the data sources into valu-
able insights, is largely performed in an ad-hoc or manual manner. This is specifically
concerning in scenarios where tens or hundreds of continuously evolving data sources
produce semi-structured data. To overcome this challenge, we develop a framework for
operationalizing and automating data governance. For the first, we propose a zoned
data lake architecture and a set of data governance processes that allow the systematic
ingestion, transformation and integration of data from heterogeneous sources, in order
to make them readily available for business users. For the second, we propose a set of
metadata artifacts that allow the automatic execution of data governance processes,
addressing a wide range of data management challenges. We showcase the usefulness
of the proposed approach using a real world use case, stemming from the collabora-
tive project with the World Health Organization for the management and analysis of
data about Neglected Tropical Diseases. Overall, this work contributes on facilitating
organizations the adoption of data-driven strategies into a cohesive framework opera-
tionalizing and automating data governance.

Keywords: Data Governance, Data Integration, Big Data, Metadata

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Nadal et al. Journal of Big Data (2022) 9:117
https://doi.org/10.1186/s40537-022-00673-5

Journal of Big Data

*Correspondence:
snadal@essi.upc.edu

Database Technologies
and Information Management
Group, Universitat Politècnica
de Catalunya - BarcelonaTech,
Barcelona, Spain

1 https:// sloan review. mit. edu/ artic le/ varie ty- not- volume- is- drivi ng- big- data- initi atives/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00673-5&domain=pdf
https://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

Page 2 of 31Nadal et al. Journal of Big Data (2022) 9:117

For example, an e-commerce platform gathering information about the sentiment raised
by their products in social networks and collecting price information about its competi-
tors to forecast customer churn; a retail company acknowledging the music played at a
time and at a store, the calendar of events/holidays, and users and clothing trajectories
(i.e., how clothes and users move inside the shop, for example, from the shelves to the
fitting room or directly to the counter) to contextualize the sales reports; a salesperson
combining the internal data with neighborhood statistics such as average income, age
and gender balance to decide the selling strategy in a certain area, etc.

The challenge in all these scenarios is to govern the data lifecycle. That is, to know
what data are available (at the level of variables), to know the semantic relationships
between variables from different sources, or to trace data processing so that one may
explain why a certain result is given. More precisely, according to [3], governance refers
to what decisions must be made to ensure effective management (i.e., making and imple-
menting decisions) and use of IT and who makes the decisions (locus of accountability for
decision making). In the last years, there has been substantial efforts to define IT govern-
ance and IT management, and currently [3] is a seminal book on that matter. However,
few works tackle data governance despite its current relevance. These works (e.g., [4])
claim there is a need to dig deeper and distinguish IT from data governance. Specifically,
they introduce the concept of data asset and redefine governance and management for
this specific asset.

Accordingly, data governance may be defined as to what decisions must be made to
ensure effective data management and data usage and who makes the decision (locus of
accountability for data assets). Indeed, [4] argues that data governance is still a broad
area covering data definition, management and accessibility. Figure 1, presents their
approach to data governance. The data principles establish the link between the data
assets with the business. As a first step, it is essential that the organization data assets
are elicited and standardized at the business level (i.e., including domain experts). This
is a typically long and complex process that requires the participation of domain experts
and IT designers in brainstorming sessions that must provide, as result, an overall view,
at the business level, of the organization data needs [5]. Next, the metadata describes
the elicited data assets, which must be specified in a precise and concise manner and
in a machine interpretable format. To that end, [4] describes three main metadata arti-
facts. The physical metadata must include information about the data physical stor-
age, needed in order to access and manipulate these data. The domain-independent
metadata includes relevant information for its processing and automatic management
(such as ownership, file format specific processing information, etc.). The domain-spe-
cific metadata are asserted at different organization levels and capture the day-by-day

Fig. 1 The organization data assets from [4] (in gray those covered by this paper)

Page 3 of 31Nadal et al. Journal of Big Data (2022) 9:117

terminology used in the organization (such as business concepts, organization’s key per-
formance indicators—KPIs, etc.), and thus represents the bridge between the physical
data representation and the business layer. Benefiting from the asserted metadata, which
guarantees standardized and interpretable data assets, the data access aspect makes data
available for different purposes (typically different business questions coming from dif-
ferent departments) and according to different Service Level of Agreement (SLAs). This
aspect enables data consumption and the analysis within the organization. Last, but not
least, Fig. 1 introduces two traversal aspects. The data quality aspect focuses on making
data meet the user requirements and guarantee the needed quality for its exploitation,
while the data lifecycle acknowledges that data moves through different stages and keeps
track of such transformations.

Despite the efforts made by the community on defining the foundations for data gov-
ernance, the adoption of these principles is scarce among organizations. Indeed, the
operationalization of data governance (i.e., the definition of the data processes and flows
that implement its principles) is not carried out systematically across organizations, and
each organization defines its own data architecture and associated data flows that best
suit their requirements. This is, however, a complex task which requires a high degree of
specialization (e.g., data stewards) and a large amount of resources. It is of no surprise
that only big tech players have successfully deployed in-house solutions for data gov-
ernance. Successful examples of such solutions are Amundsen2 (by Lyft), Databook3 (by
Uber), DataHub4 (by LinkedIn), or Artifact5 (by Shopify). Furthermore, cloud data pro-
viders provide layered architectures as a service, such as Hortonworks Data Platform6 or
Delta Lake.7 However, still the task of designing the data flows that transform and move
data from one layer to the next one is left to data stewards.

Departing from the above discussion, the objective of this paper is twofold. On the
one hand, we define a data architecture and set of data governance processes that allow
to systematically ingest, transform and integrate data from heterogeneous sources
and serve them to business users. To that end, we introduce a novel Data Lake archi-
tecture which is stratified into different zones inspired by [6]. Precisely, the Data Lake
is composed of three zones that have a specific purpose. The Landing Zone, stores raw
data as they are generated in the sources. Next, the Formatted Zone homogenizes all
ingested data into a common data model (in this paper, the relational data model) to
simplify the process of integration. Finally, the Exploitation Zone serves integrated and
transformed data for descriptive and predictive data analysis, this is data in the form of
tables, Dataframes, and tensors [7]. Then, we propose a set of executable data govern-
ance processes responsible of moving data into the Data Lake and between zones. The
Data Collectors extract data from external data sources and store it inside the Data Lake,
while the Data Persistance Loaders and Data Formatters move data to the Landing Zone

2 https:// github. com/ amund sen- io/ amund sen.
3 https:// eng. uber. com/ datab ook/.
4 https:// github. com/ linke din/ datah ub.
5 https:// shopi fy. engin eering/ solvi ng- data- disco very- chall enges- shopi fy.
6 https:// www. cloud era. com/ produ cts/ hdp. html.
7 https:// delta. io/.

https://github.com/amundsen-io/amundsen
https://eng.uber.com/databook/
https://github.com/linkedin/datahub
https://shopify.engineering/solving-data-discovery-challenges-shopify
https://www.cloudera.com/products/hdp.html
https://delta.io/

Page 4 of 31Nadal et al. Journal of Big Data (2022) 9:117

and to the Formatted Zone, respectively. Thus, we propose a framework to operational-
ize data management for data governance. Our framework is framed by [4] and covers
the data lifecycle, metadata and access stages as introduced in Fig. 1. On the other hand,
the second objective deals with the automation of such data governance processes under
a set of generic assumptions that cover a wide range of use cases. Precisely, and follow-
ing the terminology in [4], we present the physical, domain-independent and domain-
specific metadata artifacts that allow to represent data sources, target tables and their
mappings. Using such metadata, we are capable of automating the execution of Data
Collectors for periodically loading data into the Landing Zone. Next, and assuming that
the schema semi-structured datasets is available (e.g., JSONSchema for JSON data), the
Data Formatters automatically parse into relations and populate the target tables using
the specified mappings, which are of the form one-to-many and allow to model different
loading strategies (e.g., insert or update). The execution of all such processes is orches-
trated using a set of logs, which guarantee there is no redundant data in the different
layers and the overall consistency of the served data. To the best of our knowledge, there
is no available solution that combines both operationalization and automation of data
governance.

Contributions The lack of a proper framework to operationalize data governance
makes small and medium companies to struggle when adopting a data-driven strategy.
As for now, only big companies can afford the investment needed to operationalize data
management for data governance. Hence, we make a step forward towards facilitating
the adoption of data-driven strategies into a cohesive framework that operationalizes
and automates data governance. Shortly, our contributions are as follows:

• We present a layered Data Lake architecture and a set of standardized data flows that
aid on the systematic operationalization of data governance.

• We propose a concise set of metadata artifacts that allow to automate the execution
of the abovementioned data governance processes under a set of assumptions.

Outline We discuss related work in “Related work” section. In “Use case: The Fight
Against NTDs at WHO (WISCENTD)” section, we present a real use case exemplifying
the challenges to tackle and that will serve as running example throughout the paper.
Then, “Operationalizing Data Governance” and “Automating Data Governance” sections
represent the core technical contributions, where we respectively present our approach
to operationalize and automate data governance. Finally, “Conclusions and future work”
section wraps up the main conclusions derived from this work and outlines future
directions.

Related work
Incorporating the use of technology in the organizations has been (and is) a well
researched topic. Indeed, [3] is a seminal work in this area that defines a comprehensive
framework with key organizational assets to be governed in order to successfully attain
corporate governance: human, financial, physical, intellectual property, relationship and
information and IT assets. However, as noted in [4], the work of [3] does not distin-
guish between IT assets (which refer to technologies such as computers, communication

Page 5 of 31Nadal et al. Journal of Big Data (2022) 9:117

and databases) and data assets. It is from 2010 onward that the first frameworks aimed
at governing data assets emerged. These, refine previous works at the corporate and IT
governance levels and fine-grain the aspects related to data. Indeed, they follow a natu-
ral transition: once corporate and IT governance has been properly defined with frame-
works identifying and separating concerns (i.e., decision domains) there is a need to
drill-down and further investigate specific aspects. Although data governance has not
drawn as much research as corporate and IT governance yet, some efforts have already
been made (e.g., [8–10]). In our work, we focus on the data governance framework intro-
duced by [4], which we earlier discussed in Fig. 1. As main contribution, they adopt the
framework presented in [3] and extend it to define the five decision domains related to
data assets. This way, they provide a data governance definition and its link to IT govern-
ance. However, the resulting data governance framework, as also happens to the other
related works mentioned above, is still defined at a very high level of abstraction and
cannot be directly instantiated by data practitioners within the organization systems.

In the rest of this section, we summarize related work dealing with data governance
in a similar manner to our objectives. In the current literature, we find three big families
of approaches about data governance: (i) as means to resolve poor data quality, (ii) to
ensure availability of specific data sets to remain compliant with regulatory or legal pro-
visions, effective reporting and integrated customer management and (iii) as means to
increase the value of data as organization assets and framed by the concepts of corporate
and IT governance [4]. Our work belongs to the third family and covers data ingestion,
processing and availability but aligned with the organization goals, which is a key differ-
ence between (ii) and (iii). Regarding (i), even if we acknowledge the relevance of data
quality, this is a complex problem that we leave out of scope and plan to tackle in the
future.

Operationalizing data governance

When operationalizing data governance, the border with the concept of data manage-
ment gets diluted. Data management is defined as the features a database management
system (DBMS) must provide: namely ingestion, storage, modeling, processing, querying,
concurrency and recovery strategies [11]. Although data management was traditionally
bounded within the DBMS, with the arrival of Big Data and the concept of Data Lake
[12], it is nowadays acknowledged it can span different software packages. Indeed, this
generalization of the concept of data management is one of the reasons why data gov-
ernance is a hot research topic nowadays. Data architectures aim at separating concerns
and identifying relevant tasks to be implemented in a successful data governance pro-
tocol. Thus, we focus on data architectures as the means to operationalize data govern-
ance. The first attempts (e.g., the �-architecture [13]) were high-level descriptions that
introduced relevant concepts such as the ingestion, batch, real-time and serving layers,
which were adopted and polished by subsequent proposals. Recent works dig deeper
and acknowledge the need to the effective and efficient production of more complex
systems. Here, we focus on two main lines of work: pond architectures [14], and zoned
architectures [6, 15, 16].

Pond data architectures Here, datasets are stored in different data ponds based on their
properties (e.g., structured, semi-structured, and unstructured data) or the way data are

Page 6 of 31Nadal et al. Journal of Big Data (2022) 9:117

generated (e.g., from IoT systems with high velocity or running software applications).
This approach stores datasets only once organizing them with regard to the type of data
(e.g., textual data [17]) and regardless of its final purpose or user need, hence not permit-
ting dynamic repurposing of the data.

Zoned architectures In such approach, all data will be stored in different zones depend-
ing on the degree of transformation or refinement, fitted for a specific purpose. In con-
trast to the previous kind of architectures, here multiple copies of data can be stored in
different zones, enabling the repurposing of data for different data processing and analyt-
ics pipelines required by end users. There are many variants of the Data Lake zones typi-
cally including at least the three main zones, namely, a zone for dumping raw datasets,
known as Landing Zone, Transient Loading zone, or Raw vault; a zone with standard-
ized and refined data, known as Harmonized or Refined zone, and a zone where data are
ready for their final use, known as Distilled or Consumption zone. In [15], the authors
evaluate the adequacy of using Data Vault modeling techniques [18] for modeling a
zoned data lake, structuring it into Raw and Business Vaults as a generic separation and
then Use-case specific Data Marts resembling the Consumption zone. [6] evaluates the
use of data lakes in practice and detects the need for zoning data lake into several zones,
where besides raw data, more structured copies of data are also stored allowing faster
access to data by the end users. They also discover Hadoop as the preferred platform for
setting up a data lake, enabling the storage for wide variety of data formats and differ-
ent usage scenarios. Some approaches also include multiple intermediate zones [16], like
Trusted zone with standardized and cleansed data or Discovery sandboxes where data
are available for data wrangling or discovery actions.

Automating data governance

Once a data architecture is in place, the challenge is how to orchestrate the systematic
execution of processes that ultimately yield the required data to end-users. To that end,
recent works acknowledge the relevance of metadata to govern the data assets [19–21].
This has motivated a wealth of semantic-aware architectures, that leverage on metadata
to (partially) automate data exploitation, and to aid users in their decision making pro-
cesses. In parallel, there exist systems targeted to automate a specific task within the
lifecycle (e.g., schema discovery, data cleaning, or data fusion), which we denote as task-
specific automated governance. Additionally, there exist approaches for domain-specific
data governance, which provide solutions for specific domains (e.g., politics [22], cyber-
physical systems [23], etc.). Besides being specific for a domain and not easily adaptable
to others, they still present data governance frameworks meant to be largely manual.
Therefore, even if they operationalize data governance in these domains, they do not
automate it. Hence, in this subsection, we review related works on the first two areas.

Semantic-aware data architectures Constance [21] is a system that automatically
extracts structural and semantical metadata from the contents of a Data Lake. Such
metadata are used to define a unified query interface over the data sources. An alterna-
tive is Goods [24], Google’s solution to manage their Data Lake, which crawls, indexes
and integrates heterogeneous datasets. One of its distinguishing features is the relation-
ship graph, which encodes automatically extracted relationships between datasets like
containment, provenance or content similarity. Then, a search engine uses this metadata

Page 7 of 31Nadal et al. Journal of Big Data (2022) 9:117

to enable the exploration of the datasets. Finally, [25] presents a metadata framework
for Data Lagoons, which are a certain kind of Data Lake for IoT scenarios. The authors
propose a broker-based architecture that leverages a metadata repository which mod-
els aspects such as infrastructure resources, datasets, security or cost models. The usage
of this metadata allows to define logical operators on the underlying datasets, such as
aggregations, cleaning or profiling.

Task-specific automated governance The Data Tamer system [26], focuses on the pro-
cess of data curation. It adopts a wrapper-based architecture to extract data from the
sources into sites, representing collections of key-value pairs. Additionally, by making
heavy usage of machine learning techniques, it provides modules for schema integra-
tion, entity consolidation and record linkage. An evolution of Data Tamer is the Data
Civilizer system [27]. Besides including the aforementioned functionalities it also main-
tains the linkage graph where all relationships between tables or keys are represented.
This graph is used to compute queries that discover join paths with data cleaning opera-
tors. An alternative is the VADA [28] architecture, aimed to support the process of data
wrangling (i.e., extracting, cleaning and collating datasets). VADA is a knowledge-rep-
resentation system that, relying on the expressivity of the Datalog± description logic,
provides services for schema matching, schema alignment, data fusion or data quality,
among others.

Discussion

As a summary of this related work study, we conclude that current state-of-the-art is
either too high-level (i.e., reference architectures serve as blueprint on what tools should
be considered depending on the organization’s requirements and do not describe the
data flows among them), or very specific either to a task or a domain. For example, data
discovery is a well-researched problem focusing on identifying interesting or relevant
datasets that enable informed data analysis [29]. Similarly, data integration in the context
of Big Data (e.g., [30, 31]) aims at largely automating this specific task. However, none
of the current works tackling these problems automate data governance and only focus
on that task, which they largely automate, but failing to effectively manage the organiza-
tion data assets throughout its complete lifecycle. In parallel, several big tech companies
have presented their in-house solutions to automate data governance, which we denote
task-specific automated governance. Amundsen by Lyft, Databook by Uber, DataHub by
LinkedIn, or Artifact by Shopify, among many others. However, most of these tools are
either proprietary or simplistic approximations to the problem in the form of data dic-
tionaries that do not cover the whole data lifecycle. On top of that, most of them are ad-
hoc to the needs of the company creating it.

Use case: The Fight Against NTDs at WHO (WISCENTD)
To exemplify our approach, we present a use case based on a real project, which will
serve as running example, where data are used on the fight against Neglected Tropi-
cal Diseases (NTDs) at the World Health Organization (WHO). NTDs form a group of
21 diseases with different, sometimes very complex aspects, all having in common that
they affect population typically from economically challenging, rural areas of the world.
Depending on the disease (e.g., Chagas disase, Leishmaniasis), transmission routes can

Page 8 of 31Nadal et al. Journal of Big Data (2022) 9:117

vary (e.g., congenital from a mother to a child, blood transfusion, organ transplantation,
insect bites), as well as the causes of its spreading worldwide (e.g., high presence and
reproduction of insects in endemic areas, traveling to endemic areas, migration flows,
etc.). All this makes the control and eventual elimination and/or eradication of NTDs
very challenging. This is a paradigmatic example requiring to cross internal and external
data to meet the informational needs of an organization and for which our approach fits
naturally.

Recently, WHO has initiated building a data infrastructure that enables the collection
and comprehensive analysis of NTD-related data (i.e., WISCENTD8). In particular, two
subsystems have been created, (1) WHO Integrated Data Platform (WIDP),9 which is
powered by District Health Information System 2 (DHIS2),10 used to provide support for
routine surveillance of the case diagnosis, treatment and to standardize data collection
of NTDs at countries as well as country’s reporting to WHO, and (2) WHO Integrated
Medical Supply System (WIMEDS),11 powered by BonitaSoft,12 used to facilitate the
distribution of medicine and diagnostic kits for NTDs to countries, as well as to enrich
data collection with epidemiological information related to cases detected and transmis-
sion routes. However, given that NTDs have been typically overlooked by the national
health information systems in the past, currently, relevant historical data are either non-
existent or they must be searched elsewhere (e.g., non-governmental organizations,
researcher repositories, United Nations, etc.).

To create a more comprehensive epidemiological picture about the status of NTDs
at a country or globally (e.g., discover epidemiological silence, studying comorbidity of
diseases), WHO needs an effective infrastructure to capture both the data being col-
lected through their in-house systems (i.e., WIDP and WIMEDS) and data from existing
external data sources. For instance, they require part of United Nation’s data13 referring
to countries’ population and immigration, which UN reports yearly. Notice that this
is important for monitoring the main indicators about the disease, which are typically
computed over the territory population or total number of potentially affected people.
Lastly, in order to enable NTD data analysis for a specific geographical area (i.e., coun-
try with its lower administrative levels) or for a specific health facility, WHO requires
to include additional master data in the form of geographical hierarchy. Such master
data are stored separately within the WIDP system, where they are updated after being
reported by a member country (e.g., changes in the administrative level organization,
new health facilities, requiring data collection at the lower administrative level).

For the sake of simplicity, we focus on these three most relevant data sources for ana-
lyzing NTDs (WIDP with diagnosis and treatment data, and geographical master data,
WIMEDS with medicine request and shipment data, and United Nation’s population
and migration data). Hereinafter, we will use this use case to exemplify our technical

9 http:// quarry. essi. upc. edu: 8083/ wisce ntd- wiki/ index. php? title= WHO_ Integ rated_ Data_ Platf orm_ (WIDP).
10 https:// www. dhis2. org/.
11 http:// quarry. essi. upc. edu: 8083/ wisce ntd- wiki/ index. php? title= WHO_ Integ rated_ Medic al_ Suppl ies_ System_
(WIMEDS).
12 https:// www. bonit asoft. com/.
13 http:// data. un. org/.

8 https:// www. who. int/ negle cted_ disea ses/ disea se_ manag ement/ wisce ntds.

http://quarry.essi.upc.edu:8083/wiscentd-wiki/index.php?title=WHO_Integrated_Data_Platform_%28WIDP)
https://www.dhis2.org/
http://quarry.essi.upc.edu:8083/wiscentd-wiki/index.php?title=WHO_Integrated_Medical_Supplies_System_%28WIMEDS)
http://quarry.essi.upc.edu:8083/wiscentd-wiki/index.php?title=WHO_Integrated_Medical_Supplies_System_%28WIMEDS)
https://www.bonitasoft.com/
http://data.un.org/
https://www.who.int/neglected_diseases/disease_management/wiscentds

Page 9 of 31Nadal et al. Journal of Big Data (2022) 9:117

contributions. In the following, we discuss the challenges raised during the development
of WISCENTD, and the need to address them via operationalization and automation.

Data management challenges in WISCENTD

The data management challenges that arise in the WISCENTD use case, and which are
addressed in our approach, are conveniently depicted in Fig. 2. Each challenge is repre-
sented with a shaded ellipse of a different color, where the incoming arrows indicate the
data source(s) they arise from, and the outgoing arrows indicate what target (ready-to-
be-consumed) data would their proper handling result in. Details and examples for each
challenge follow next.

Heterogeneity of data formats and models

WISCENTD data sources consist of both structured and semi-structured data. Pre-
cisely, both WIDP and WIMEDS data are available in JSON formats (see for example an
excerpt of diagnosis and treatment data of WIDP in Listing 1), while UN data are pro-
vided as CSV/Excel files.

Fig. 2 WISCENTD Use Case

Page 10 of 31Nadal et al. Journal of Big Data (2022) 9:117

Semi-structured models like JSON provide high flexibility for structuring the data
in different ways (i.e., replication and redundancy, nesting, cross-referencing, etc.),
however they introduce certain complexity when it comes to data representation and
its automatic processing. Take for instance the diagnosis and treatment data snippet,
extracted from WIDP (see Listing 2) we can see that metadata used to create a data col-
lection form (data_element) is mixed with data values. This is due to the data model
provided by the underlying Web API of the DHIS2 platform, which is used to build
WIDP. Unlike WIDP, in the case of WIMEDS, JSON format that stores the data coming
from underlying Bonitasoft process management platform is free of other possible noise,
allowing its automatic processing. See an excerpt of such data in Listing 2).

Handling the variability of different data models is a challenging task for data govern-
ance, while additional noise in form of application specific metadata could easily hinder
the otherwise automatable data processing. Nevertheless, note that data sources typi-
cally expose the data in such a form as good habits promote and, in cases where they do
not, their conversion to such form would require a simple source-specific pre-process-
ing. For example, in Listing 3, we show a JSON snippet that resulted from converting the
data in Listing 2, containing the same relevant information, but freed from additional
unnecessary content (i.e., data_element and value keys).

Moreover, having the additional metadata in form of a schema (e.g., JSONSchema)
would allow automatic parsing of the a specific source format, thus making its data easily
available for the rest of the data pipeline.

Data accessibility for external data sources

While the internal data sources can be ingested by dumping them periodically to the
data lake, accessing external data sources can imply more complex processes, typically
retrieving data via a publicly available API. Both WIDP and WIMEDS are accessed via
Web APIs. The former is accessed by supplying at least programID that refers to the

Page 11 of 31Nadal et al. Journal of Big Data (2022) 9:117

Web form from which the data should be obtained and lastUpdatedDate to specify
the data period to which the ingested data refer. However, some APIs require more com-
plex querying. For instance, the calls to the WIMEDS API require first to specify the
business data type of interest (e.g., requests, shipments, medicines), and then,
depending on the complexity of the information requested, a default or pre-defined cus-
tom business data query needs to be specified inside the API call (e.g., requests
by disease, shipments by country, medicines by IDs).

UN data source (external to the WISCENTD system) is accessible via a publicly availa-
ble API,14 by providing the artifact specifying the data category (in our case popula-
tion and migration data) and artifactID specifying the variables to be retrieved (e.g.,
population totals, population by age range, population by gender, international migrant
stock in absolute number or as percentage of population). Additional parameters can
be provided to filter the results by specific countries or specific years.

From these examples we can see that accessing external data sources may some-
times require complex querying schemes that vary depending on the complexity of the
exposed API. While the processing of specific data models could be generalized (e.g.,
reading of keys and values is common to mostly any JSON document), access patterns
to obtain the data from the source would require source-specific programs, that can be
parametrized to obtain the required portion of the input data (e.g., from specific end-
points or for specific time periods).

Co‑existing schema versions and schema evolution

Moreover, being based on web forms, the schema of WIDP data is easily extensible to
include new fields to be collected at countries. For instance, during the pandemic of
COVID-19, another important parameter for treating Chagas disease patients could be
whether they were previously infected by COVID-19, so that the potentially toxic and
strong medicines for treating Chagas disease are administrated with care. In such case, a
new variable (CH_PR_16_COVID19) is added to include such information to the WIDP
data (see snippet in red in Listing 4).

Although data formats like JSON allow to easily extend the schema to dynamically
support modeling of the changing reality, handling the data with different schema ver-
sions is a challenging data governance task. To support the evolution of source schemata
and allow the co-existence of different schema versions in the system, it is essential to
maintain the metadata of different schemata and more importantly to guarantee the cor-
rect relationship between the data and its corresponding schema version.

14 http:// data. un. org/ ws/ rest/ {artif act}/ {artif actId }/ {param eters }.

http://data.un.org/ws/rest/%7bartifact%7d/%7bartifactId%7d/%7bparameters}

Page 12 of 31Nadal et al. Journal of Big Data (2022) 9:117

Data sources with complementary information

Given that WIMEDS collects data about requesting medicines for treating Chagas
patients (e.g., Lampit), it serves as a complementary data source to WIDP for treat-
ment data. Such sources are important in the case of NTDs in order to create more
complete picture about the current status of a disease in a territory and detect potential
(intentional or unintentional) misreporting by the country.

This however introduces additional challenge in managing NTD data, given that it
requires integration of such data and properly handling the possible duplicates. Impor-
tantly, proper data governance would require sufficient metadata to facilitate the inte-
gration of such data into a common dataset (e.g., conceptual model of the target domain
and mappings of different source schemata to that model) and further enable other
(instance-level) data integration steps like entity resolution.

Deltas during data ingestion

The lastUpdatedDate parameter in the WIDP Web API allows incremental inges-
tion of diagnosis and treatment data to the data lake, i.e., to ingest only the data reported
after the previous run of the ingestion process. In WIMEDS, there is no system level
parameter that enables incremental ingestion, however there are custom defined param-
eters that allow incremental ingestion per business data type (i.e., get requests by the
date of request, get shipments by the date of shipment). Using the UN data API, we can
at any time obtain a subset of data for specific time periods (i.e., years). However, geo-
graphical master data from WIDP, given their hierarchical structure, do not allow incre-
mental ingestion (e.g., modification of intermediate administrative levels can obscure
previously existing hierarchies and the update would require complex reconstructions).
Thus, the ingestion of such data into a data lake is always complete.

Handling both incremental and complete data ingestion must be effectively supported
in data governance systems in order to easily keep the needed freshness of the input
data, while preventing unnecessary duplicates or inconsistencies in the data.

On the need to operationalize and automate data governance

Following from the specific challenges detected in the WISCENTD use case, (but com-
mon to most Big Data projects), in this paper we propose a general framework to opera-
tionalize the data governance through a novel architectural proposal of a zoned Data
Lake (inspired by [6]), as well as to automate complex data management tasks to drive
the data through the complete data lifecycle, by means of concisely defined metadata
artifacts.

Overall, the proposed framework allows an easy incorporation of internal and exter-
nal data sources into data analysis pipelines, while effectively handling both structured
and semi-structured data formats. New data sources are expected to be accompanied
by minimum necessary metadata to automatically access, query, and parse their data.
Such metadata can be either provided by the data source itself or automatically extracted
using available bootstrapping techniques (e.g., [32]). The framework supports both
incremental and historical (complete) data ingestion, accommodating thus a wide vari-
ety of source access schemes. Moreover, the framework provides effective mechanisms

Page 13 of 31Nadal et al. Journal of Big Data (2022) 9:117

to deal with evolving data sources, enabling the propagation of source schema changes
to the rest of data lifecycle. Lastly, by maintaining the correspondences between the
data sources’ variables and a common (domain-specific) schema, the framework facili-
tates the integration among complementary or akin data, providing more complete
and consistent view of the domain. In the following sections, we describe the proposed
framework that operationalizes the data governance, as well as the automation of such
framework under clearly defined assumptions, each denote as Ax.

Operationalizing Data Governance
In this section, we introduce the building blocks of our framework to operational-
ize data governance. The framework consists of a zoned Data Lake architecture that
allows a clear separation of concerns and facilitates its instantiation towards different
use cases. We additionally present the data flows, hereinafter, the Data Governance Pro-
cesses (DGPs) that are responsible of moving data across the different zones. As shown
in Fig. 3, the Data Lake is stratified into the (1) Landing Zone, (2) Formatted Zone, and
(3) Exploitation Zone. Similarly, we distinguish between three kinds of DGPs, which
manage the flow of data throughout the stratified Data Lake. We consider (1) Data Col-
lectors, responsible of accessing specific data sources, extracting data from them, and
moving the data into the data lake, (2) Data Persistence Loader, responsible of perma-
nently and systematically storing the ingested data files, and (3) Data Formatters, which
for each specific format of ingested data files, manage the conversion of the data into
a unified format, making it suitable for the final consumption specific to the analytical
needs of each user. In the following subsections we present and exemplify, for each zone,
its functional description and discuss the DGPs responsible of the data flow.

Landing Zone

The Landing Zone serves as entry point to the Data Lake, enabling fast ingestion of raw
data in their original formats. Two submodules compose the Landing Zone, the Tempo-
ral Landing and the Persistent Landing, which as their names denote respectively repre-
sent a temporal storage of the ingested data and a permanent one.

Temporal Landing This submodule temporarily maintains the files that are automati-
cally collected from the data sources and ingested into the Data Lake. Precisely, the Data
Collector DGPs fetch data from the sources (either in a push or pull fashion) and store

Fig. 3 High-level overview of the proposed Data Lake architecture and its zones

Page 14 of 31Nadal et al. Journal of Big Data (2022) 9:117

them as files in a hierarchy of subdirectories, one per data source, in order to support
their exploration. To facilitate fast ingestion of new data, the Temporal Landing submod-
ule naturally builds on top of a (distributed) file system that allows rapid storage and easy
search for data files.

Example 4.1 In our running example, the Temporal Landing component is deployed
in a distributed file system (i.e., Apache HDFS), in order to provide both scalability for
storing data files of possibly very large sizes and flexibility for storing data of different
formats. To that end, data are conveniently organized in subdirectory structures specific
to the domain (e.g., source being the root). In Fig. 4, we show an example of such hierar-
chies, focusing for simplicity only on the WIMEDS and UN-Population data sources.

Persistent Landing Once new data from the sources have been ingested and are avail-
able in the Temporal Landing submodule, the Data Persistence Loader DGP is in charge
of systematically preparing them for facilitating the further integration process. To that
end, such DGP must organize the newly ingested information and enrich it with addi-
tional metadata (e.g., schema definition), which must contain sufficient information to
automatically parse the underlying datasets. To conveniently handle all this information,
we assume Persistent Landing is deployed using a Key-Value store (A1), on the one hand
to permit easier access and fast querying of the stored data via key, and on the other
hand, to provide flexibility in storing different information from the data source as value.
More specifically, data still in their original formats, together with the collected or gener-
ated metadata necessary to automate further data processing, are stored as value, while
the key is conveniently designed to enable efficient querying of such data and metadata.
In particular, we compose the key such that the prefix determines the name of the data

Fig. 4 Example of the Temporal Landing for the NTD-related data

Page 15 of 31Nadal et al. Journal of Big Data (2022) 9:117

source, followed by the variable set of determinators specific for the source (e.g., format,
data type, domain), and finally the timestamp as suffix. Such key design would enable
fast querying of data from a specific data source, different data formats within the same
data source, or ranges of consecutive extractions from the same data source.

Example 4.2 In our use case, we consider an Apache HBase data store as Persistent
Landing submodule. There, WIMEDS data are stored using a generated composite key
including the name of the source, source format (i.e., json), and a part of subdirectory
hierarchy from Temporal Landing (e.g., disease, data-type, and year-month). Such key
design allows for efficient range queries in HBase (i.e., access data in certain time peri-
ods and benefit from the distributed LSM-tree index cluster). For instance, to obtain all
the medicine requests data for the Chagas disease, for the last quarter of year 2017, we
run the following range query:

Furthermore, the HBase value includes two columns, data, with the content of the possi-
bly multiple ingested JSON files of the data (e.g., medicine requests) from the WIMEDS
data source, and metadata, the JSON schema referring to the ingested JSON files in the
data column (see Fig. 5).

Fig. 5 Persistent landing for medicine request data

Page 16 of 31Nadal et al. Journal of Big Data (2022) 9:117

Formatted Zone

The Formatted Zone contains a subset of ingested data, converted into a unified, struc-
tured format, enabling hence a homogeneous way to access and exploit the data from
different data sources. To this end, the Data Formatter DGPs, one per data format (and
independent of the data source from where the data originates) are executed to con-
vert and transfer the data from the Persistent Landing submodule into the Formatted
Zone. These DGPs use the accompanied schema information of the specific format (e.g.,
.xsd or .jschema files) to automatically process the data files and translate the data into
a canonical data model. Precisely, we assume a tabular format as canonical data model
in the Formatted Zone (A2) . Nevertheless, notice that this is not a strong assumption of
our framework, but, it conditions the implementation of the Data Formatter DGPs.

Finally, once the data are converted and stored in the Formatted Zone, they are ready
for further exploitation. Notice that these data, although reformatted, might still suf-
fer from original data quality issues (e.g., missing values, inconsistencies, redundancy),
which should be addressed depending on the final analytical purposes [33]. Addressing
such data quality issues is out of the scope of this paper, but having the data uniformly
structured largely facilitates data cleaning tasks [34].

Example 4.3 Retaking the running example, here, we deploy the Formatted Zone on
a column-oriented DBMS (i.e., MonetDB), suitable for efficient OLAP-like operations.
Thus, in the WISCENTD example, the medicine distribution data that were initially
loaded as JSON files from the WIMEDS data source to the Landing Zone are now trans-
formed into a set of relational tables inside the Formatted Zone. The resulting schema
and a set of exemplary tuples corresponding to the Diagnosis and Treatment table are
shown in Fig. 6. Note that the latter is fed with data coming from two different sources,
that is from WIDP and WIMEDS (see “Data sources with complementary information”
section).

Exploitation Zone

Finally, the Exploitation Zone provides the analysis-ready data, to be consumed by end-
users. Such data, depending on their exploitation purpose, are cleaned, integrated, (pre-)
aggregated and exposed in the format suitable for further processing, analysis, and/or
visualisation. We consider three exploitation models: tables, Dataframes and tensors,
which are known to cover most analytical needs [7]. Therefore, this zone can host vari-
ous views over the data previously stored in the Formatted Zone, each created potentially
for a different data service. In this paper, however, we focus on the data management for

Fig. 6 Example of the schema for the tables in Formatted Zone for the WIMEDS data

Page 17 of 31Nadal et al. Journal of Big Data (2022) 9:117

governance and therefore we do not cover the details of producing different data views
of the Exploitation Zone. Nevertheless, for the completeness of the proposed frame-
work, we show how the systematic governance of data can facilitate final exploitation
and analysis of data by different end users.

Example 4.4 The Disease Programme Manager, Technical Officers (epidemiologists, data
managers), and Mailing Office personnel (administrative and logistic specialists) at WHO are
interested in analyzing various aspects of history of medicine requests, shipments, or available
manufacturer to entrust the medical supply procurement. To satisfy such requirements, data
cubes are prepared to feed an OLAP tool that supports multidimensional analysis. In particu-
lar, the following three data cubes over the medicine distribution data are created to fulfill the
requirements of such users:

• Cube 1: Describes a detailed view of medicine requests data, including important infor-
mation such as medicine requests process duration times, the requests status, and the geo-
graphic distribution of medicine requests.

• Cube 2: Logistics information for mailing office personnel at WHO, such as the cou-
riers doing the shipments and shipment process times. Such information could be also
interesting for epidemiologists following the process at WHO and at the country.

• Cube 3: A cube that provides a link between specific medical supply and its available
manufacturers, an information important for WHO Mailing Office personnel, who should
choose the manufacturer to which the request order is entrusted.

These cubes are created over the Formatted Zone data previously stored in MonetDB.
Given the requirement for multidimensional analysis of these data, for each cube, a star
schema is created and implemented as a relational materialized view in an instance of
PostgreSQL, which is specifically optimized for OLAP data access patterns, while Mon-
etDB fully benefits of columnar data processing. Once created, such materialized views
are then fed to Tableau, a visualization tool, and depending on the end user role (i.e.,
WHO Technical Officer or Mailing Office Personnel) several dashboards exist to ana-
lyze medicine distribution data (see Fig. 7). Similarly, a matrix containing historical data
about the requests of a given country can be generated to allow for performing various
advanced analysis. For instance, a time series analysis can be applied to check for trends,
seasonality, or cyclic patterns, or even time series forecasting models can be applied
to learn models that are able to flag countries based on their risk of medicine shortage.
From a technological point of view, the creation of the exploitation zone boils down to
conducting a traditional data warehousing project but with the huge benefit of starting
from a single data source (i.e., the formatted zone), which largely facilitates its design.

Automating Data Governance
In this section, we present our approach to automate data governance which boils down
to the automatic generation and execution of DGPs. To that end, we rely on metadata
artifacts modeling the components of our framework (e.g., data sources, how the data

Page 18 of 31Nadal et al. Journal of Big Data (2022) 9:117

provided maps between zones, or the logs about the execution of DGPs). In the follow-
ing subsections, we introduce in detail the considered metadata artifacts and the auto-
mated implementation of DGPs that exploit such artifacts considering the assumptions
presented in “Operationalizing Data Governance” section.

Metadata artifacts

Our proposal is based on [4], which, as depicted in Fig. 1, frames the data assets of a
company. In our approach, we assume the data principles have been previously elicited
and elaborated (A3) (e.g., by means of [5]). Thus, our contributions are: a systematic
description of the metadata artifacts (physical, domain-independent, and domain-spe-
cific) required to execute the data lifecycle and data access aspects; and the implemen-
tation of generic DGPs that, using such metadata artifacts, automatically process and
homogenize data incoming from evolving heterogeneous sources.

Figure 8, depicts a UML conceptual schema showing the metadata artifacts that ena-
ble automation of data governance in our framework and their relationships. Succinctly,
we consider three kinds of artifacts implemented as tables. The Physical artifacts model
how data are ingested into the Data Lake’s Landing Zone and the necessary information
to automatically parse and integrate them into a unified view. Then, we consider a sin-
gle Domain-specific artifact, which models the integrated information in the Formatted
Zone. Finally, the Domain-independent artifacts, which are implemented as a set of logs,
model aspects of the execution of the different DGPs..

Fig. 7 Example of the medicine request dashboards in the Exploitation Zone

Page 19 of 31Nadal et al. Journal of Big Data (2022) 9:117

In our framework, we assume that the Physical and Domain-specific metadata
have been provided a priori (A4) (i.e., either created manually or via the available
automated approaches, while the Domain-independent metadata are automatically

Fig. 8 UML class diagram for the metadata artifacts

Fig. 9 Metadata artifacts and their attributes

Page 20 of 31Nadal et al. Journal of Big Data (2022) 9:117

populated from the DGPs. Figure 9, concisely depicts and describes the attributes we
define to govern the execution of DGPs. Throughout the rest of this section, we pre-
sent a detailed description of them and the rationale behind their definition.

Data collectors registry

The DataCollectorsRegistry artifact maintains information about external
data sources and where the data provided are to be stored. Examples of external data
sources are REST APIs or relational databases. For each collector registered in this
table, a new program will be automatically defined devoted to fetch data from an end-
point. To that end, we assume the existence of custom code (i.e., the client) implement-
ing the specific logic necessary to access each endpoint (e.g., authentication or protocol)
given a set of parameters (A5). Examples of such parameters are the country code, for
a collector fetching data from an API extracting migration data given a country. In
this case, it would be required to define as many collectors as countries we want to
extract data from, which boils down to add as many rows to the DataCollector-
sRegistry table.

Sources

The Sources artifact maintains information about all data sources to be considered
when loading data. This table, which is manually populated, allows to allocate new
files stored in the Temporal Landing Zone, either loaded manually or via Data collec-
tors. In this paper, we consider a data source to be that set of files that share the same
schema version and data format for a continuous period of time. Thus, we assume the
existence of a schema file with the required information describing how to parse each
source’s content (A6) (e.g., an XSD file for XML data, or a JSON Schema for JSON
data). For each source, we also encode its target table in the Formatted Zone, hence
we do not consider that a data source maps to more than one target table. Note that
the mappings between attributes are specified in the Mappings table, described
below. An additional distinguishing feature of our approach is the inclusion of main-
tenance policies for the data to be stored in Persistent Landing Storage. We, precisely,
maintain the following two types of security policies:

• KeepAll. All the historical data ingested in the Landing Zone is kept. This policy
type is relevant for incremental data.

• KeepLast. Only the data corresponding to the last load is kept. This policy type is
relevant for master data.

Target tables

The Targets artifact maintains the target table information in the Formatted Zone.
We assume the Formatted Zone to adhere to the relational model, which must be
manually defined a priori (e.g., to include integrity constraints). Some target tables
will have a unique source, while others might have multiple ones. In order to have a

Page 21 of 31Nadal et al. Journal of Big Data (2022) 9:117

general method that considers the specificities of each target table, we consider the
following load types:

• TRUNCATE. Indicating that before loading the sources to the target table, its con-
tent must be removed.

• APPEND. Indicating that the loading of new data is carried out maintaining the his-
tory in the destination table.

• UPSERT. Indicating that a value must be updated if it already exists in the target
table according to the UPSERT criteria attribute. If it does not exist, the value will be
added as a new record.

Column Mappings

The Mappings artifact defines the mappings between attributes stored in the Landing
Zone and their target attributes in the Formatted Zone tables. By default, we consider
mappings between source and target attributes to be one-to-one matching the attribute
names. For instance, let us assume a JSON data source with the keys A, B and C, and
a target table with attributes B, C, D. Then, we would automatically map the common
attributes B and C. In order to support the definition of more complex mappings (e.g.,
A → D), we consider the table Mappings allowing to define such kind of mappings.

Data collectors execution logs

Once a new file is generated and loaded from an external source, an entry is added in
the LogDataCollectors metadata table. This stores basic information about the files
that have been automatically loaded to the Temporal Landing submodule from data col-
lectors declared in the DataCollectorsRegistry table.

Formatted and Landing DGPs logs

We define the artifacts LogLanding and LogFormat to store information about the
process of extracting, integrating and loading data that the Data Persistence Loaders and
the Data Formatter DGPs executions. Precisely, for each processed source file, a new
temporal record is added indicating wether there has been an error or not. We addition-
ally store the key that has been generated for that file in the Persistent Landing Zone.

Upsert logs

The artifact LogUPSERT maintains the necessary information to guarantee traceability
of changes in the Formatted Zone when the UPSERT protocol is used. A new record is
added to this table for each change applied by the UPSERT protocol, where the old and
new tuple are serialized. In order to accomodate tuples conforming to multiple schemata
we serialize them into JSON format.

Page 22 of 31Nadal et al. Journal of Big Data (2022) 9:117

Automating DGP execution

Once the tables that will contain the infrastructure metadata have been described, we
proceed to describe the DGPs (i.e., the data flows that will consume such metadata and
automatically process data from the sources). First, in Fig. 10, we depict the instantiation
of the proposed system architecture for the WISCENTD use case, used to showcase the
particular components of our approach.

Data collectors

The process of downloading data from external data sources is governed by the DataC-
ollectorsRegistry table (see “Data collectors registry” section). For each external
source defined in the table, a Data Collector DGP is instantiated using the class indi-
cated in the ClientProgram attribute. This class contains all the relevant code to access
a specific data source and to extract the data indicated by the attribute params. Given
that some sources are rather static (e.g., lookup information or master data), and in
order to minimize the amount of duplicate data we store, we calculate the hash value of
the downloaded file (e.g., using the md5 algorithm). Such hash is compared to the lat-
est download for that source, which is stored in the table LogDataCollectors (see

Fig. 10 Instantiation of the system architecture for WISCENTD use case

Fig. 11 Data Collectors DGP

Page 23 of 31Nadal et al. Journal of Big Data (2022) 9:117

“Data collectors execution logs” section). If both values match, then we ignore the cur-
rent file as it is guaranteed to be exactly the same as the last download. Otherwise, a new
log entry is added to LogDataCollectors. Figure 11, depicts the data flow of the
Data Collector DGP that stores raw data in the Temporal Landing Zone.

Example 5.1 The instantiation of the Data Collectors DGP for the WISCENTD use
case is sketched in Fig. 12. The Data Collectors program processes the data sources reg-
istered in the DataCollectorsRegistry tables. In the case of WIMEDS, data are
accessed via REST APIs and thus they are pulled using a set of prepared API queries.
Yet, since many API endpoints, serving different types of data, are available, the program
fetches the correct data using the Parameters provided in the DataCollectorsReg-
istry metadata artifact (step number 1). Once the data are extracted, the program
compares the hash value of the newly fetched file with the corresponding hash value
of the last fetch from WIMEDS (retrieved from the LogDataCollectors artifact, in step
number 2). In our running example, the hash values are not the same, hence the new
file is written to the Temporal Landing (step number 3), inside the corresponding direc-
tory. Otherwise, the process continues with its planned execution (i.e., fetch the follow-
ing source, see Fig. 11). The directory hierarchy where the files are stored in the Tempo-
ral Landing is automatically created based on the information available in the DestPath

Fig. 12 Execution of the Data Collectors DGP (WISCENTD Use Case)

Page 24 of 31Nadal et al. Journal of Big Data (2022) 9:117

attribute. Once the files are correctly written, a new row marking the successful fetch
of the data is stored in the LogDataCollectors (step number 4), where among others the
path of the file of the data stored in HDFS, and the hash value of the content are stored.
Such information is necessary for the retrieval of the data from HDFS and for checking
if the content is new (i.e., the hash value). Finally, notice that the data in the LogDataCol-
lectors (including the Timestamp), can be used to trace back a data source stored in the
Temporal Landing.

Data Persistence Loader

The loading of files from the Temporal Landing Zone to the Persistent Landing Zone is
governed by the Sources metadata table (see “Sources”). For each source, a DGP will
be generated applying its Wildcard and obtaining all files corresponding to that source.
These are stored in the Temporal Landing Zone, and are candidates to be loaded to the
Persistent Landing Zone. Querying the table LogLanding (see “Formatted and Landing
DGPs logs” section) the DGP filters out candidate files that have already been processed.
Those that have not been processed will be logged in LogLanding. Additionally, if
the data source has a MaintenancePolicy of the kind KeepLast, a further filter will be
applied to the candidate files so that only the most recent one is processed. Once the
selected files have been processed, a new log entry will be added in LogLanding indi-
cating the successful execution of the DGP, or the presence of an error. Figure 13, depicts
the data flow of the Landing Zone DGP that processes and loads data from Temporal
Landing Zone to the Persistent Landing Zone.

Fig. 13 Data Persistence Loaders DGP

Page 25 of 31Nadal et al. Journal of Big Data (2022) 9:117

Example 5.2 The instantiation of the Data Persistence Loader governance process for
the WISCENTD use case is sketched in Fig. 14. In our use case, the WIMEDS directory
in the Temporal Landing is organized in terms of Diseases and types of Requests (e.g.,
ad-hoc requests or forecasts for a longer period of time). The wildcard parameter in the
Sources metadata artifact allows for the selection of all the files from the corresponding
directory in HDFS (step number 1). For each file, a check of whether the file was previ-
ously loaded is done by consulting the LogLanding metadata artifact (step number 2).
Since we assume this is the first execution and thus no data have been previously loaded,
the data and the corresponding metadata are immediately loaded into an HBase instance
in the Persistence Landing store (step number 3). To this end, the key of the HBase is
defined as to optimize the retrieval of the data by internal processes (e.g., range queries),
and uses the following structure Source, Disease, Request Type, Times-
tamp. Finally, once the data are stored as key values in HBase, the attempt of storing the
data (i.e., successful or unsuccessful) is logged in LogLanding.

Fig. 14 Execution of the Data Persistence Loader DGP (WISCENTD Use Case)

Page 26 of 31Nadal et al. Journal of Big Data (2022) 9:117

Data Formatters

The final data processing step is the homogenization of data from the Persistent Land-
ing Zone to the Formatted Zone, which is governed by the Targets metadata table (see
“Target tables” section). To that end, for each target, the Data Formatter DGP generates
a search key using the timestamp of the latest successful execution of the Landing Zone
DGP for that source, which can be obtained from the LogLanding table (see “Format-
ted and Landing DGPs logs” section). Recall that the technological choice for the Per-
sistent Landing Zone physically stores data in lexicographical order using the key, hence
by defining a range starting at the timestamp of the last successful execution, we can
fetch all files to be processed and integrated. Furthermore, by storing together their data
and metadata (i.e., schema and parsing information), the population of the Formatted
Zone can be automated regardless of the original format of data. During this phase, we
also apply column mappings, which can either be based on matching attribute names, or
using the Mappings table. Additionally, as previously mentioned, this DGP supports
the UPSERT protocol. To that end, once the file to be loaded has been processed, using
the LoadType attribute the DGP will decide the loading strategy, using the Upsert Crite-
ria and logging each change to the LogUPSERT table (see “Upsert logs” section). Alter-
natively, if the target table is of kind TRUNCATE, then it will be first emptied followed
by an incremental load. Figure 15, depicts the data flow of the Data Formatter DGP that
integrates data from the Persistent Landing Zone to the Formatted Zone.

Fig. 15 Data Formatters DGP

Page 27 of 31Nadal et al. Journal of Big Data (2022) 9:117

Example 5.3 The instantiation of the Data Formatters DGP for the WISCENTD
use case is sketched in Fig. 16. In particular, in the Formatted Zone we initially design
a Diagnosis and Treatment table that will be automatically populated via the
Data Formatters process from two different sources, namely WIMEDS Requests and
WIDP Individual data. Both of these sources contain information about patients and the
treatments they receive. Therefore, in terms of diagnosis and treatment, these sources
contain complementary information, and thus provide a more complete picture about
the status of a disease in a given country. Furthermore, combining such information
allows for detecting potential misreporting by the country (e.g., if medicine is requested
via WIMEDS, but cases are not reported via WIDP). As can be seen in Fig. 16, in step
number 1, the Data Formatter program uses the Targets metadata artifact to find
the name of the table in the Formatted Zone and the type of loading to be performed
(i.e., APPEND, TRUNCATE or UPSERT). Next, in step number 2, using the Map-
pings , the program knows that column patientAge from WIMEDS and column age
from WIDP need to be mapped to column Patient Age in the target. Next, column
healthFacilityName from WIMEDS and healthFacility from WIDP need to be mapped
to Health Facility. Finally, the source specific columns requestDate from WIMEDS and
CH_PR_Covid19 from WIDP, need to be mapped to Request Date and COVID 19 Sta-
tus, respectively. Since in this case the load type is APPEND, the program appends the

Fig. 16 Execution of the Data Formatters DGP (WISCENTD Use Case)

Page 28 of 31Nadal et al. Journal of Big Data (2022) 9:117

corresponding data to the target table in step number 3, and because there are no errors
during the execution, no error message is logged to the LogFormat, in step 4. Yet, other
details like the file, timestamp and the key are logged in order to be able to trace back the
source of the information.

Conclusions and future work
In this paper we have followed two generic steps to address the two main identified chal-
lenges in data governance. First, operationalize the data management aspect (i.e., apply
well-known data management practices), such as separating concerns, to systematically
break down the data management problem into a set of effective and easily maintainable
modules (i.e., the zoning approach). Second, we automate the processes that result from
the operationalization (i.e., processes that deal with the flow of the data within zones) via
DGPs.

Threats to validity

In terms of threats to validity, in this paper we consider the following.
Construct validity Which refers to the extent that an experimental setting reflects

the theory. Instead of experimental results, here we depict the proposed approach via a
detailed example (i.e., the WISCENTD use case). The challenges defined in Sect. 3, arose
during the development of the WISCENTD project, however they originally stem from
the variety dimension of Big Data, and thus generalize to most Big Data projects. Hence,
addressing them systematically, allows to adapt the framework in different use cases.

External validity Denoting the ability to generalize the obtained results beyond the
presented setting. For this, it is important to consider we have made some assumptions
that allow us to bound the scope of our method. Precisely, in Table 1, we show how each
challenge was concretely addressed both in terms of operationalization and automa-
tion, and we additionally list the assumption(s) made at each stage. For the sake of an

Table 1 Challenges addressed in our framework, including what components provided
operationalization and automation of data governance

∗ Ch1 - Heterogeneity of data formats and models. Ch2 - Data accessibility for external sources. Ch3 - Co-existing schema
version and schema evolution. Ch4 - Data sources with complementary information. Ch5 - Deltas management

† A1 - Persistent Landing deployed as a Key-Value store. A2 - Tabular format as canonical data model for the Formatted Zone.
A3 - Data principles previously elicited and elaborated. A4 - Physical and Domain-specific metadata provided a priori. A5 -
Custom client code to access the source. A6 - Schema file describing the source

Chall.∗ Operationalization Automation Assump.†

Ch1 Persistent Landing, Formatted Zone Data Formatters DGP A1,A2,A5

Ch2 Temporal Landing, Persistent Landing Data Collectors DGP, Data Persi-
tence Loader DGP

A5,A6

Ch3 Persistent Landing Data Formatters DGP A4,A6

Ch4 Landing Zone, Formatted Zone Data Formatters DGP A4

Ch5 Landing Zone, Formatted Zone Data Formatters DGP A5,A6

Page 29 of 31Nadal et al. Journal of Big Data (2022) 9:117

example, note that, in terms of operationalization, for Ch1 — which had to do with the
heterogeneity of data formats and models in the sources, the Landing Zone allows for
an easy ingestion of any type of data, since it is based on a flexible data model (i.e., Key-
Value store), and then the Formatted Zone allows for homogenizing the data for easy
extraction. In terms of automation, the process of translating the data from one zone to
the other is largely automated assuming that the schemas for parsing the contents of the
data sources are available (A5).

Future work

Through the WISCENTD use case we showed how data governance can be practically
addressed via operationalization and automation. As future work, we aim to generalize
our framework for supporting the specific needs of ML-based software systems (MLSS),
namely those software systems which behaviour is greatly determined by ML models
embedded therein. In this setting, the quality of incoming data, defined as fitness for use,
is very low at its inception; therefore, a great deal of management, processing and analy-
sis effort is required to increase its value. As a result, MLSS projects tend to be complex,
inherently iterative and difficult to manage and govern, hence their systematic opera-
tionalization and automation is essential. Another promising research lines arising from
our work is that of addressing the question on how to automate accountability from an
automatically operationalized data governance, which requires collecting and analyzing
provenance data about the process, data providers and data consumers.
Acknowledgements
This work was partly supported by the DOGO4ML project, funded by the Spanish Ministerio de Ciencia e Innovación
under project PID2020-117191RB-I00/AEI/10.13039/501100011033. Sergi Nadal is partly supported by the Spanish
Ministerio de Ciencia e Innovación, as well as the European Union - NextGenerationEU, under project FJC2020-045809-I/
AEI/10.13039/501100011033.

Author contributions
All authors made equal contributions to the paper. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors have no competing interests to declare that are relevant to the content of this article.

Received: 28 March 2022 Accepted: 29 November 2022

References
 1. Horrocks I, Giese M, Kharlamov E, Waaler A. Using semantic technology to tame the data variety challenge. IEEE

Internet Comput. 2016;20(6):62–6. https:// doi. org/ 10. 1109/ MIC. 2016. 121.
 2. Popovic A, Hackney R, Tassabehji R, Castelli M. The impact of big data analytics on firms’ high value business perfor-

mance. Inf Syst Front. 2018;20(2):209–22. https:// doi. org/ 10. 1007/ s10796- 016- 9720-4.
 3. Weill P, Ross JW. IT Governance: How Top Performers Manage IT Decision Rights for Superior Results. New York:

Harvard Business Press; 2004.
 4. Khatri V, Brown CV. Designing data governance. Commun ACM. 2010;53(1):148–52. https:// doi. org/ 10. 1145/ 16291

75. 16292 10.
 5. García S, Romero O, Raventós R. DSS from an RE perspective: a systematic mapping. J Syst Softw. 2016;117:488–507.

https:// doi. org/ 10. 1016/j. jss. 2016. 03. 046.
 6. Russom P. Data lakes: Purposes, practices, patterns, and platforms. TDWI white paper. 2017.
 7. Petersohn D, Ma WW, Lee DJL, Macke S, Xin D, Mo X, Gonzalez J, Hellerstein JM, Joseph AD, Parameswaran AG.

Towards scalable dataframe systems. Proc VLDB Endow. 2020;13(11):2033–46.

https://doi.org/10.1109/MIC.2016.121
https://doi.org/10.1007/s10796-016-9720-4
https://doi.org/10.1145/1629175.1629210
https://doi.org/10.1145/1629175.1629210
https://doi.org/10.1016/j.jss.2016.03.046

Page 30 of 31Nadal et al. Journal of Big Data (2022) 9:117

 8. Jagals M, Karger E. Inter-organizational data governance: a literature review. In: Rowe F, Amrani RE, Limayem M,
Matook S, Rosenkranz C, Whitley EA, Quammah AE (eds.) 28th European Conference on Information Systems - Lib-
erty, Equality, and Fraternity in a Digitizing World , ECIS 2020, Marrakech, Morocco, 2021;June 15-17, 2020. https://
aisel. aisnet. org/ ecis2 021_ rp/ 57.

 9. Nielsen OB, Persson JS, Madsen S. Data governance as a collective action problem. Inf Syst Front. 2020;22(2):299–
313. https:// doi. org/ 10. 1007/ s10796- 019- 09923-z.

 10. Prado R, Prado EPV, Grotta A, Barata AM. Benefits of the enterprise data governance in industry: A qualitative
research. In: Filipe J, Smialek M, Brodsky A, Hammoudi S, (eds.) Proceedings of the 23rd International Conference
on Enterprise Information Systems, ICEIS 2021, Online Streaming, 2021;April 26-28, 2021, Volume 2, pp. 699–706.
SCITEPRESS, ???. https:// doi. org/ 10. 5220/ 00104 18606 990706.

 11. Garcia-Molina H, Ullman JD, Widom J. Database Systems - the Complete Book. New York: Pearson Education; 2009.
 12. Quix C, Hadfi R. Data lake. In: Sakr S, Zomaya AY, editors. Encyclopedia of Big Data Technologies. Berlin: Springer;

2019. https:// doi. org/ 10. 1007/ 978-3- 319- 63962-8_ 7-1.
 13. Warren J, Marz N. Big Data: Principles and Best Practices of Scalable Realtime Data Systems. New York: Simon and

Schuster; 2015.
 14. Inmon B. Data Lake Architecture: Designing the Data Lake and Avoiding the Garbage Dump. New York: Technics

publications; 2016.
 15. Giebler C, Gröger C, Hoos E, Schwarz H, Mitschang B. Modeling Data Lakes with Data Vault: Practical Experiences,

Assessment, and Lessons Learned. In: Laender AHF, Pernici B, Lim E, de Oliveira JM, editors. Conceptual Modeling -
38th International Conference, ER 2019, Salvador, Brazil, November 4–7, 2019, Proceedings, vol. 11788. Lecture Notes
in Computer Science. New York: Springer; 2019. p. 63–77.

 16. Sharma B. Architecting Data Lakes: Data Management Architectures for Advanced Business Use Cases. Sebastopol:
O’Reilly Media; 2018.

 17. Sawadogo PN, Kibata T, Darmont J. Metadata management for textual documents in data lakes. In: Filipe J, Smialek
M, Brodsky A, Hammoudi S (eds) Proceedings of the 21st International Conference on Enterprise Information Sys-
tems, ICEIS 2019, Heraklion, Crete, Greece, May 3-5, 2019, Volume 1, pp. 72–83. SciTePress,New York. 2019.

 18. Linstedt D, Olschimke M. Building a Scalable Data Warehouse with Data Vault 2.0. Bridlington: Morgan Kaufmann;
2015.

 19. Quix C, Hai R, Vatov I. GEMMS: A generic and extensible metadata management system for data lakes. In: España S,
Ivanovic M, Savic M. (eds.) Proceedings of the CAiSE’16 Forum, at the 28th International Conference on Advanced
Information Systems Engineering (CAiSE 2016), Ljubljana, Slovenia, June 13-17, 2016. CEUR Workshop Proceedings,
vol. 1612, pp. 129–136. CEUR-WS.org, 2016. http:// ceur- ws. org/ Vol- 1612/ paper 17. pdf

 20. Walker C, Alrehamy HH. Personal data lake with data gravity pull. In: Li K, Qi H, Gaudiot J, Kishigami J, Wu H, Li K, Wu
Y (eds.) Fifth IEEE International Conference on Big Data and Cloud Computing, BDCloud 2015, Dalian, China, August
26-28, 2015, pp. 160–167. IEEE Computer Society, 2015. https:// doi. org/ 10. 1109/ BDClo ud. 2015. 62.

 21. Hai R, Geisler S, Quix C. Constance: An intelligent data lake system. In: Özcan F, Koutrika G, Madden S. (eds.) Proceed-
ings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pp. 2097–2100. ACM, New York. 2016. https:// doi. org/ 10. 1145/ 28829 03. 28993 89.

 22. Visvizi A, Lytras MD, Aljohani NR. Big data research for politics: human centric big data research for policy making,
politics, governance and democracy. J Ambient Intell Humaniz Comput. 2021;12(4):4303–4. https:// doi. org/ 10. 1007/
s12652- 021- 03171-3.

 23. Garriga M, Aarns K, Tsigkanos C, Tamburri DA, van den Heuvel W. Dataops for cyber-physical systems governance:
The airport passenger flow case. ACM Trans Internet Techn. 2021;21(2):36–13625. https:// doi. org/ 10. 1145/ 34322 47.

 24. Halevy AY, Korn F, Noy NF, Olston C, Polyzotis N, Roy S, Whang SE. Managing google’s data lake: an overview of the
goods system. IEEE Data Eng Bull. 2016;39(3):5–14.

 25. Theodorou V, Hai R, Quix C. A metadata framework for data lagoons. In: Welzer T, Eder J, Podgorelec V, Wrembel R,
Ivanovic M, Gamper J, Morzy M, Tzouramanis T, Darmont, J., Latific, A.K. (eds.) New Trends in Databases and Informa-
tion Systems, ADBIS 2019 Short Papers, Workshops BBIGAP, QAUCA, SemBDM, SIMPDA, M2P, MADEISD, and Doctoral
Consortium, Bled, Slovenia, September 8-11, 2019, Proceedings. Communications in Computer and Information
Science, vol. 1064, pp. 452–462. Springer, Berlin; 2019. https:// doi. org/ 10. 1007/ 978-3- 030- 30278-8_ 44.

 26. Stonebraker M, Bruckner D, Ilyas IF, Beskales G. Cherniack M, Zdonik SB, Pagan A, Xu S. Data curation at scale: The
data tamer system. In: Sixth Biennial Conference on Innovative Data Systems Research, CIDR 2013, Asilomar, CA,
USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013. http:// cidrdb. org/ cidr2 013/ Papers/ CIDR13_
Paper 28. pdf

 27. Rezig EK, Cao L, Stonebraker M, Simonini G, Tao W, Madden S, Ouzzani M, Tang N, Elmagarmid AK. Data civilizer 20: A
holistic framework for data preparation and analytics. Proc VLDB Endow. 2019;12(12), 1954–1957. https:// doi. org/ 10.
14778/ 33520 63. 33521 08

 28. Konstantinou N, Abel E, Bellomarini L, Bogatu A, Civili C, Irfanie E, Koehler M, Mazilu L, Sallinger E, Fernandes AAA,
Gottlob G, Keane JA, Paton NW. VADA: an architecture for end user informed data preparation. J Big Data. 2019;6:74.
https:// doi. org/ 10. 1186/ s40537- 019- 0237-9.

 29. Bogatu A, Fernandes AAA, Paton NW, Konstantinou N. Dataset discovery in data lakes. In: 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pp. 709–720. IEEE, 2020. https:// doi.
org/ 10. 1109/ ICDE4 8307. 2020. 00067.

 30. Golshan B, Halevy AY, Mihaila GA, Tan W. Data integration: After the teenage years. In: Sallinger E, den Bussche JV,
Geerts F (eds.) Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2017, Chicago, IL, USA, May 14-19, 2017, pp. 101–106. ACM, New York; 2017. https:// doi. org/ 10. 1145/ 30347 86.
30561 24.

 31. Stonebraker M, Ilyas IF. Data integration: The current status and the way forward. IEEE Data Eng Bull. 2018;41(2):3–9.
 32. Tadesse S, Gómez C, Romero O, Hose, K, Rabbani K. ARDI: automatic generation of RDFS models from heterogene-

ous data sources. In: 23rd IEEE International Enterprise Distributed Object Computing Conference, EDOC 2019, Paris,
France, 2019;October 28-31, 2019, pp. 190–196. IEEE, New York. https:// doi. org/ 10. 1109/ EDOC. 2019. 00031.

https://aisel.aisnet.org/ecis2021_rp/57
https://aisel.aisnet.org/ecis2021_rp/57
https://doi.org/10.1007/s10796-019-09923-z
https://doi.org/10.5220/0010418606990706
https://doi.org/10.1007/978-3-319-63962-8_7-1
http://ceur-ws.org/Vol-1612/paper17.pdf
https://doi.org/10.1109/BDCloud.2015.62
https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1007/s12652-021-03171-3
https://doi.org/10.1007/s12652-021-03171-3
https://doi.org/10.1145/3432247
https://doi.org/10.1007/978-3-030-30278-8_44
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
https://doi.org/10.14778/3352063.3352108
https://doi.org/10.14778/3352063.3352108
https://doi.org/10.1186/s40537-019-0237-9
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1145/3034786.3056124
https://doi.org/10.1145/3034786.3056124
https://doi.org/10.1109/EDOC.2019.00031

Page 31 of 31Nadal et al. Journal of Big Data (2022) 9:117

 33. Pipino L, Lee YW, Wang RY. Data quality assessment. Commun ACM. 2002;45(4):211–8. https:// doi. org/ 10. 1145/
505248. 50600 10.

 34. Morton K, Balazinska M, Grossman D, Mackinlay JD. Support the data enthusiast: Challenges for next-generation
data-analysis systems. Proc VLDB Endow. 2014; 7(6), 453–456. https:// doi. org/ 10. 14778/ 27322 79. 27322 82

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/505248.5060010
https://doi.org/10.1145/505248.5060010
https://doi.org/10.14778/2732279.2732282

	Operationalizing and automating Data Governance
	Abstract
	Introduction
	Related work
	Operationalizing data governance
	Automating data governance
	Discussion

	Use case: The Fight Against NTDs at WHO (WISCENTD)
	Data management challenges in WISCENTD
	Heterogeneity of data formats and models
	Data accessibility for external data sources
	Co-existing schema versions and schema evolution
	Data sources with complementary information
	Deltas during data ingestion

	On the need to operationalize and automate data governance

	Operationalizing Data Governance
	Landing Zone
	Formatted Zone
	Exploitation Zone

	Automating Data Governance
	Metadata artifacts
	Data collectors registry
	Sources
	Target tables
	Column Mappings
	Data collectors execution logs
	Formatted and Landing DGPs logs
	Upsert logs

	Automating DGP execution
	Data collectors
	Data Persistence Loader
	Data Formatters

	Conclusions and future work
	Threats to validity
	Future work

	Acknowledgements
	References

