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Abstract: This paper addresses the system identification problem, as well as its application to
robust fault detection, considering parametric uncertainty and using zonotopes. As a result, a
Zonotopic Recursive Least Squares (ZRLS) estimator is proposed and compared with the Set-
membership (SM) approach when applied to fault detection, taking as a reference the minimum
detectable fault generated in the worst-case. To illustrate the effectiveness of the proposed robust
parameter estimation and fault detection methodologies, a quadruple tank process is employed.
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1. INTRODUCTION

Models are the basis of fault diagnosis (FD) approaches
based on the concept of analytical redundancy. These
models are generally affected by uncertainty that comes
from the measurements discretization process, external
disturbances, or inevitable modelling errors. Therefore,
defining adaptive thresholds for enclosing the uncertainty
is essential to achieve robust decisions. Basically, FD
schemes suggest a strategy focused on comparing the
measured outputs from the system with the estimated
outputs provided by the faultless model at each time step
(Blanke et al., 2006). When inconsistencies are perceived,
the existence of faults will be demonstrated. In essence,
a significant trade-off between robustness to disturbances
and sensitivity to faults must be assured (Combastel et al.,
2008).

Depending on the way of determining the bounds of un-
certainty, two kinds of approaches are mainly found in the
literature: probabilistic and deterministic. Deterministic
methods (worst-case), have been widely reported in the
literature, due to the fact that assuming bounded uncer-
tainty is much easier to satisfy in real applications. Diverse
geometrical sets have been employed to propagate the
uncertainty from the parameter estimation point of view,
for instance: ellipsoids (Kurzhanski, 1997), polytopes (Mo
and Norton, 1990) and zonotopes.

In particular, zonotopes provide a less conservative model
compared to using ellipsoids and are more efficient and
fast in terms of computational complexity compared to
polytopes. This is due to the fact that zonotopes are closed
under Minkowski sum and linear maps and even its inter-
sections can be efficiently over-approximated (Althoff and
Rath, 2021). In the case of model-based fault detection,
several works using zonotopes have been reported and
grouped in two kinds of algorithms: Interval Predictors
(IO) and Set-membership (SM) (Combastel et al., 2008;
Blesa et al., 2012).

The fact that IO employs interval hulls for enclosing the
parametric uncertainty may lead to an over-approximation
in the uncertainty sets. This paper proposes a Zonotopic
Recursive Least Squares (ZRLS)-based approach for fault
detection. In this sense, ZRLS guarantees a robust con-
vergence towards the set that encloses all the parameter
vectors consistent with the model structure and the noise
bounded by minimizing the weighted Frobenius norm of its
covariance. Likewise, ZRLS is compared to the well-known
SM approach taking into consideration the minimum de-
tectable fault in the worst-case. It is worth pointing out
that both ZRLS and SM formulation are different taking
into account a conceptual point of view. However, their
mathematical interpretations provide equivalent results.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Background on Zonotopes

Definition 1. (McMullen, 1971) Zonotopes are represented
as ⟨c, R⟩ with the center c ∈ Rmx1 and the generator
matrix R ∈ Rmxp. Zonotopes are particular forms of
polytopes defined as the linear image of the unit hypercube
[−1,+1]p ⊂ Rp such that ⟨c, R⟩ = {c+Rψ : ∥ψ∥∞ ≤ 1}.
Definition 2. (Combastel, 2003) ⟨R⟩ = ⟨0, R⟩ is denomi-
nated centered zonotope. Any permutation of the columns
of R, the zonotope remains invariant.

Definition 3. (Kühn, 1998) Given Z = ⟨c, R⟩, the interval
hull rs(R) ⊂ Rmxm is the smallest aligned box where Z
can be enclosed; that is, ⟨c, R⟩ ⊂ ⟨c, rs(R)⟩. rs(R) is a
diagonal matrix determined by the sum of the rows of R.

Definition 4. (Combastel, 2005) Given Z = ⟨c, R⟩, the
reduction operator is represented as Redq where q specifies
the maximum number of columns of Redq that holds the
inclusion property ⟨c, R⟩ ⊂ ⟨c, Redq⟩.
Definition 5. (Combastel, 2015) Given Z = ⟨c, R⟩ and
W ∈ Rmxm, W = WT ≻ 0 is a weighting matrix, the FW -
radius of Z is defined by computing the weighted Frobe-
nius norm of R, such that ∥⟨c, R⟩∥F,W =

√
Tr(RTWR)

with W = In.
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Sergio E. Samada ∗ Vicenç Puig ∗ Fatiha Nejjari ∗

∗ Advanced Control Systems, Technical University of Catalonia (UPC),
Rambla Sant Nebridi 22, 08222 Terrassa, Spain;

(e-mail:{sergio.emil.samada, vicenc.puig, fatiha.nejjari}@upc.edu)

Abstract: This paper addresses the system identification problem, as well as its application to
robust fault detection, considering parametric uncertainty and using zonotopes. As a result, a
Zonotopic Recursive Least Squares (ZRLS) estimator is proposed and compared with the Set-
membership (SM) approach when applied to fault detection, taking as a reference the minimum
detectable fault generated in the worst-case. To illustrate the effectiveness of the proposed robust
parameter estimation and fault detection methodologies, a quadruple tank process is employed.

Keywords: zonotopes, least squares, set-membership, fault detection, minimum detectable fault

1. INTRODUCTION

Models are the basis of fault diagnosis (FD) approaches
based on the concept of analytical redundancy. These
models are generally affected by uncertainty that comes
from the measurements discretization process, external
disturbances, or inevitable modelling errors. Therefore,
defining adaptive thresholds for enclosing the uncertainty
is essential to achieve robust decisions. Basically, FD
schemes suggest a strategy focused on comparing the
measured outputs from the system with the estimated
outputs provided by the faultless model at each time step
(Blanke et al., 2006). When inconsistencies are perceived,
the existence of faults will be demonstrated. In essence,
a significant trade-off between robustness to disturbances
and sensitivity to faults must be assured (Combastel et al.,
2008).

Depending on the way of determining the bounds of un-
certainty, two kinds of approaches are mainly found in the
literature: probabilistic and deterministic. Deterministic
methods (worst-case), have been widely reported in the
literature, due to the fact that assuming bounded uncer-
tainty is much easier to satisfy in real applications. Diverse
geometrical sets have been employed to propagate the
uncertainty from the parameter estimation point of view,
for instance: ellipsoids (Kurzhanski, 1997), polytopes (Mo
and Norton, 1990) and zonotopes.

In particular, zonotopes provide a less conservative model
compared to using ellipsoids and are more efficient and
fast in terms of computational complexity compared to
polytopes. This is due to the fact that zonotopes are closed
under Minkowski sum and linear maps and even its inter-
sections can be efficiently over-approximated (Althoff and
Rath, 2021). In the case of model-based fault detection,
several works using zonotopes have been reported and
grouped in two kinds of algorithms: Interval Predictors
(IO) and Set-membership (SM) (Combastel et al., 2008;
Blesa et al., 2012).

The fact that IO employs interval hulls for enclosing the
parametric uncertainty may lead to an over-approximation
in the uncertainty sets. This paper proposes a Zonotopic
Recursive Least Squares (ZRLS)-based approach for fault
detection. In this sense, ZRLS guarantees a robust con-
vergence towards the set that encloses all the parameter
vectors consistent with the model structure and the noise
bounded by minimizing the weighted Frobenius norm of its
covariance. Likewise, ZRLS is compared to the well-known
SM approach taking into consideration the minimum de-
tectable fault in the worst-case. It is worth pointing out
that both ZRLS and SM formulation are different taking
into account a conceptual point of view. However, their
mathematical interpretations provide equivalent results.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Background on Zonotopes

Definition 1. (McMullen, 1971) Zonotopes are represented
as ⟨c, R⟩ with the center c ∈ Rmx1 and the generator
matrix R ∈ Rmxp. Zonotopes are particular forms of
polytopes defined as the linear image of the unit hypercube
[−1,+1]p ⊂ Rp such that ⟨c, R⟩ = {c+Rψ : ∥ψ∥∞ ≤ 1}.
Definition 2. (Combastel, 2003) ⟨R⟩ = ⟨0, R⟩ is denomi-
nated centered zonotope. Any permutation of the columns
of R, the zonotope remains invariant.
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Sergio E. Samada ∗ Vicenç Puig ∗ Fatiha Nejjari ∗

∗ Advanced Control Systems, Technical University of Catalonia (UPC),
Rambla Sant Nebridi 22, 08222 Terrassa, Spain;

(e-mail:{sergio.emil.samada, vicenc.puig, fatiha.nejjari}@upc.edu)

Abstract: This paper addresses the system identification problem, as well as its application to
robust fault detection, considering parametric uncertainty and using zonotopes. As a result, a
Zonotopic Recursive Least Squares (ZRLS) estimator is proposed and compared with the Set-
membership (SM) approach when applied to fault detection, taking as a reference the minimum
detectable fault generated in the worst-case. To illustrate the effectiveness of the proposed robust
parameter estimation and fault detection methodologies, a quadruple tank process is employed.

Keywords: zonotopes, least squares, set-membership, fault detection, minimum detectable fault

1. INTRODUCTION

Models are the basis of fault diagnosis (FD) approaches
based on the concept of analytical redundancy. These
models are generally affected by uncertainty that comes
from the measurements discretization process, external
disturbances, or inevitable modelling errors. Therefore,
defining adaptive thresholds for enclosing the uncertainty
is essential to achieve robust decisions. Basically, FD
schemes suggest a strategy focused on comparing the
measured outputs from the system with the estimated
outputs provided by the faultless model at each time step
(Blanke et al., 2006). When inconsistencies are perceived,
the existence of faults will be demonstrated. In essence,
a significant trade-off between robustness to disturbances
and sensitivity to faults must be assured (Combastel et al.,
2008).

Depending on the way of determining the bounds of un-
certainty, two kinds of approaches are mainly found in the
literature: probabilistic and deterministic. Deterministic
methods (worst-case), have been widely reported in the
literature, due to the fact that assuming bounded uncer-
tainty is much easier to satisfy in real applications. Diverse
geometrical sets have been employed to propagate the
uncertainty from the parameter estimation point of view,
for instance: ellipsoids (Kurzhanski, 1997), polytopes (Mo
and Norton, 1990) and zonotopes.

In particular, zonotopes provide a less conservative model
compared to using ellipsoids and are more efficient and
fast in terms of computational complexity compared to
polytopes. This is due to the fact that zonotopes are closed
under Minkowski sum and linear maps and even its inter-
sections can be efficiently over-approximated (Althoff and
Rath, 2021). In the case of model-based fault detection,
several works using zonotopes have been reported and
grouped in two kinds of algorithms: Interval Predictors
(IO) and Set-membership (SM) (Combastel et al., 2008;
Blesa et al., 2012).

The fact that IO employs interval hulls for enclosing the
parametric uncertainty may lead to an over-approximation
in the uncertainty sets. This paper proposes a Zonotopic
Recursive Least Squares (ZRLS)-based approach for fault
detection. In this sense, ZRLS guarantees a robust con-
vergence towards the set that encloses all the parameter
vectors consistent with the model structure and the noise
bounded by minimizing the weighted Frobenius norm of its
covariance. Likewise, ZRLS is compared to the well-known
SM approach taking into consideration the minimum de-
tectable fault in the worst-case. It is worth pointing out
that both ZRLS and SM formulation are different taking
into account a conceptual point of view. However, their
mathematical interpretations provide equivalent results.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Background on Zonotopes

Definition 1. (McMullen, 1971) Zonotopes are represented
as ⟨c, R⟩ with the center c ∈ Rmx1 and the generator
matrix R ∈ Rmxp. Zonotopes are particular forms of
polytopes defined as the linear image of the unit hypercube
[−1,+1]p ⊂ Rp such that ⟨c, R⟩ = {c+Rψ : ∥ψ∥∞ ≤ 1}.
Definition 2. (Combastel, 2003) ⟨R⟩ = ⟨0, R⟩ is denomi-
nated centered zonotope. Any permutation of the columns
of R, the zonotope remains invariant.
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Definition 3. (Kühn, 1998) Given Z = ⟨c, R⟩, the interval
hull rs(R) ⊂ Rmxm is the smallest aligned box where Z
can be enclosed; that is, ⟨c, R⟩ ⊂ ⟨c, rs(R)⟩. rs(R) is a
diagonal matrix determined by the sum of the rows of R.

Definition 4. (Combastel, 2005) Given Z = ⟨c, R⟩, the
reduction operator is represented as Redq where q specifies
the maximum number of columns of Redq that holds the
inclusion property ⟨c, R⟩ ⊂ ⟨c, Redq⟩.
Definition 5. (Combastel, 2015) Given Z = ⟨c, R⟩ and
W ∈ Rmxm, W = WT ≻ 0 is a weighting matrix, the FW -
radius of Z is defined by computing the weighted Frobe-
nius norm of R, such that ∥⟨c, R⟩∥F,W =

√
Tr(RTWR)

with W = In.
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Definition 6. (Combastel, 2015) Given Z = ⟨c, R⟩, the
covariation of Z is determined by the expression Cov[Z] =
RRT .

Definition 7. (Alamo et al., 2005) Given Z = ⟨c, R⟩, the
strip S = {x ∈ Rηx : |Hx − y| ≤ F} and λ ∈ Rηx , the
intersection between the zonotope and the strip is defined
as Z ∩ S = ⟨ĉ(λ), R̂(λ)⟩, where ĉ(λ) = c+ λ(y −Hc) and

R̂(λ) = [(I − λH)R, λF ].

Property 1. The following arithmetic set properties are
satisfied by zonotopes, representing the Minkowski sum
and the linear image as ⊕ and ⊙, respectively. Likewise,
M is a matrix with appropriate dimension, such that:

⟨c1, R1⟩ ⊕ ⟨c2, R2⟩ = ⟨c1 + c2, [R1, R2]⟩ (1a)

M ⊙ ⟨c, R⟩ = ⟨Mc,MR⟩ (1b)

Property 2. Given x, A, B and C matrices of appropriate
dimension we have:

Tr(A) = Tr(AT ) (2a)

∂Tr(AxTB)

∂x
= ATBT (2b)

∂Tr(AxBxTC)

∂x
= BxTCA+BTxTATCT (2c)

2.2 Problem statement

Let us consider a linear and uncertain discrete-time system
modelled in regression form as follows:

yk = Hkθk + υk, ∀k ∈ N
υk ∈ ⟨0, Fk⟩
θ0 ∈ ⟨c0, R0⟩ ⊂ Rηθ

(3)

where yk ∈ R denotes the available measurement, Hk ∈
R1xηθ represents the regressor vector, θk ∈ Rηθx1 is the
unknown parameter vector to be estimated, and υk ∈ R
denotes the uncertainty associated with the measurement,
that is bounded by a centered zonotope. In addition, the
initial parameter vector θ0 belongs to a zonotope which
can be large depending on the lack of knowledge of the
system. Then, the feasible parameter set, at each time
step is approximated by a zonotopic set consistent with
the measurements and the bounded-error model,

θ̂k+1 ∈ ⟨ck+1, Rk+1⟩ (4)

such that ck+1 is the center and Rk+1 is the generator
matrix of the parameter bounding zonotope.

3. ZONOTOPIC PARAMETER ESTIMATOR

3.1 Estimator structure

Recursive estimator in prediction-type is defined as:

θ̂k+1 = θ̂k +Kk(yk −Hkθ̂k − υk)

= (In −KkHk)θ̂k +Kkyk −Kkυk
(5)

and provides the update estimate when one more observa-

tion is added. The prediction parameter θ̂k+1 ∈ Rηθx1 is

calculated as a function of the previous estimate θ̂k plus
a correction term which is proportional to the difference
between the available measurement (yk) and the quantity

(Hkθ̂k − υk) for k ≥ 0. Kk ∈ Rηθ is the correction gain
vector.

Proposition 1. Considering the system (3) with determin-
istic uncertainties, the zonotopic parameter estimator is

recursively defined by θ̂k+1 ∈ ⟨ck+1(Kk), Rk+1(Kk)⟩ as:
ck+1 = (In −KkHk)ck +Kkyk

Rk+1 = [(In −KkHk)R̄k,−KkFk]
(6)

where R̄k = Redq, and θ̂k ∈ ⟨ck, Rk⟩ ⊂ ⟨ck, R̄k⟩.

Proof. Assuming θ̂k ∈ ⟨ck, Rk⟩ and the operator Redq
holds θ̂k ∈ ⟨ck, R̄k⟩. Since υk from (3) is bounded by Fk

and taking into consideration (5), it results in:

θ̂k+1(K) ∈ ⟨ck+1(K), Rk+1(K)⟩ = ((I −KkHk)⊙
⟨ck, Rk⟩)⊕ (Kk ⊙ ⟨yk, 0⟩)⊕ (−Kk ⊙ ⟨0, Fk⟩)

(7)

By using zonotope properties (1a) and (1b) to the above
equation, ck+1 and Rk+1 are obtained as in (6). Therefore,
the proof have been completed.

3.2 Optimal gain estimation

The optimal criterion to compute Kk is based on mini-
mizing the FW -radius from Rk+1 in (6), where FW -radius
is a dimension criterion of a zonotope. Combastel (2015)
demonstrates that minimizing the FW -radius is equivalent
to minimize a weighted function of its covariance (see
Definition 6). Then, according to Definition 5, the FW -
radius leads to calculate ∥Rk+1∥F,W .

Theorem 1. Given Rk+1 as in (6), the optimal estimator

gain (K̃k) is determined by minimizing the cost function

JW = Tr(WPk+1) =⇒ K̃k = argminK∥Rk+1∥2F,W , such
that:

K̃k = LS−1 (8a)

L = P̄kH
T
k , S = HkP̄kH

T
k +Qυ,k (8b)

with P̄k = R̄kR̄
T
k = Cov[Redq] and Qυ,k = FkF

T
k .

It is worth emphasizing that K̃k is independent of the
weighting matrix W .

Proof. From (6) and taking into account Definition 6,
Pk+1 is derived as:

Pk+1 = (In −KkHk)P̄k(In −KkHk)
T +KkQυ,kK

T
k (9)

So, replacing Pk+1 in JW leads to:

JW = Tr(W (In −KkHk)P̄k(In −KkHk)
T + . . .

· · ·+WKkQυ,kK
T
k )

(10)

Then, applying suitable manipulations using (2a), and
taking advantage that P and W are symmetric JW =
Tr(WP̄k − 2WLKT

k +WKkSK
T
k ) is obtained, with L =

P̄kH
T
k and S = HkP̄kH

T
k + Qυ,k, such that S is equally

symmetric. Finally, computing ∂JW

∂Kk
= 0 through (2b) and

(2c), and solving for Kk result in 2WL = 2SKT
k W which

yields to (8).

The proposed method is based on the RLS estimator.
At each sample instant with the available measurement,
a zonotopic set ⟨ck+1, Rk+1⟩ that satisfies the FW -radius
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Definition 6. (Combastel, 2015) Given Z = ⟨c, R⟩, the
covariation of Z is determined by the expression Cov[Z] =
RRT .

Definition 7. (Alamo et al., 2005) Given Z = ⟨c, R⟩, the
strip S = {x ∈ Rηx : |Hx − y| ≤ F} and λ ∈ Rηx , the
intersection between the zonotope and the strip is defined
as Z ∩ S = ⟨ĉ(λ), R̂(λ)⟩, where ĉ(λ) = c+ λ(y −Hc) and

R̂(λ) = [(I − λH)R, λF ].

Property 1. The following arithmetic set properties are
satisfied by zonotopes, representing the Minkowski sum
and the linear image as ⊕ and ⊙, respectively. Likewise,
M is a matrix with appropriate dimension, such that:

⟨c1, R1⟩ ⊕ ⟨c2, R2⟩ = ⟨c1 + c2, [R1, R2]⟩ (1a)

M ⊙ ⟨c, R⟩ = ⟨Mc,MR⟩ (1b)

Property 2. Given x, A, B and C matrices of appropriate
dimension we have:

Tr(A) = Tr(AT ) (2a)

∂Tr(AxTB)

∂x
= ATBT (2b)

∂Tr(AxBxTC)

∂x
= BxTCA+BTxTATCT (2c)

2.2 Problem statement

Let us consider a linear and uncertain discrete-time system
modelled in regression form as follows:

yk = Hkθk + υk, ∀k ∈ N
υk ∈ ⟨0, Fk⟩
θ0 ∈ ⟨c0, R0⟩ ⊂ Rηθ

(3)

where yk ∈ R denotes the available measurement, Hk ∈
R1xηθ represents the regressor vector, θk ∈ Rηθx1 is the
unknown parameter vector to be estimated, and υk ∈ R
denotes the uncertainty associated with the measurement,
that is bounded by a centered zonotope. In addition, the
initial parameter vector θ0 belongs to a zonotope which
can be large depending on the lack of knowledge of the
system. Then, the feasible parameter set, at each time
step is approximated by a zonotopic set consistent with
the measurements and the bounded-error model,

θ̂k+1 ∈ ⟨ck+1, Rk+1⟩ (4)

such that ck+1 is the center and Rk+1 is the generator
matrix of the parameter bounding zonotope.

3. ZONOTOPIC PARAMETER ESTIMATOR

3.1 Estimator structure

Recursive estimator in prediction-type is defined as:

θ̂k+1 = θ̂k +Kk(yk −Hkθ̂k − υk)

= (In −KkHk)θ̂k +Kkyk −Kkυk
(5)

and provides the update estimate when one more observa-

tion is added. The prediction parameter θ̂k+1 ∈ Rηθx1 is

calculated as a function of the previous estimate θ̂k plus
a correction term which is proportional to the difference
between the available measurement (yk) and the quantity

(Hkθ̂k − υk) for k ≥ 0. Kk ∈ Rηθ is the correction gain
vector.

Proposition 1. Considering the system (3) with determin-
istic uncertainties, the zonotopic parameter estimator is

recursively defined by θ̂k+1 ∈ ⟨ck+1(Kk), Rk+1(Kk)⟩ as:
ck+1 = (In −KkHk)ck +Kkyk

Rk+1 = [(In −KkHk)R̄k,−KkFk]
(6)

where R̄k = Redq, and θ̂k ∈ ⟨ck, Rk⟩ ⊂ ⟨ck, R̄k⟩.

Proof. Assuming θ̂k ∈ ⟨ck, Rk⟩ and the operator Redq
holds θ̂k ∈ ⟨ck, R̄k⟩. Since υk from (3) is bounded by Fk

and taking into consideration (5), it results in:

θ̂k+1(K) ∈ ⟨ck+1(K), Rk+1(K)⟩ = ((I −KkHk)⊙
⟨ck, Rk⟩)⊕ (Kk ⊙ ⟨yk, 0⟩)⊕ (−Kk ⊙ ⟨0, Fk⟩)

(7)

By using zonotope properties (1a) and (1b) to the above
equation, ck+1 and Rk+1 are obtained as in (6). Therefore,
the proof have been completed.

3.2 Optimal gain estimation

The optimal criterion to compute Kk is based on mini-
mizing the FW -radius from Rk+1 in (6), where FW -radius
is a dimension criterion of a zonotope. Combastel (2015)
demonstrates that minimizing the FW -radius is equivalent
to minimize a weighted function of its covariance (see
Definition 6). Then, according to Definition 5, the FW -
radius leads to calculate ∥Rk+1∥F,W .

Theorem 1. Given Rk+1 as in (6), the optimal estimator

gain (K̃k) is determined by minimizing the cost function

JW = Tr(WPk+1) =⇒ K̃k = argminK∥Rk+1∥2F,W , such
that:

K̃k = LS−1 (8a)

L = P̄kH
T
k , S = HkP̄kH

T
k +Qυ,k (8b)

with P̄k = R̄kR̄
T
k = Cov[Redq] and Qυ,k = FkF

T
k .

It is worth emphasizing that K̃k is independent of the
weighting matrix W .

Proof. From (6) and taking into account Definition 6,
Pk+1 is derived as:

Pk+1 = (In −KkHk)P̄k(In −KkHk)
T +KkQυ,kK

T
k (9)

So, replacing Pk+1 in JW leads to:

JW = Tr(W (In −KkHk)P̄k(In −KkHk)
T + . . .

· · ·+WKkQυ,kK
T
k )

(10)

Then, applying suitable manipulations using (2a), and
taking advantage that P and W are symmetric JW =
Tr(WP̄k − 2WLKT

k +WKkSK
T
k ) is obtained, with L =

P̄kH
T
k and S = HkP̄kH

T
k + Qυ,k, such that S is equally

symmetric. Finally, computing ∂JW

∂Kk
= 0 through (2b) and

(2c), and solving for Kk result in 2WL = 2SKT
k W which

yields to (8).

The proposed method is based on the RLS estimator.
At each sample instant with the available measurement,
a zonotopic set ⟨ck+1, Rk+1⟩ that satisfies the FW -radius

minimization (see Theorem 1) is estimated from the error
covariance matrix Pk+1. The predicted set preserves the

inclusion property θ̂k ∈ ⟨ck, Rk⟩ defining the error at

instant k as θ̂k − ck ∈ ⟨0, Rk⟩. Analogously, the error at

k + 1 time is deduced by θ̂k+1 − ck+1 ∈ ⟨0, Rk+1⟩.

4. SET-MEMBERSHIP PARAMETER ESTIMATOR

Taking into account the proposed system in (3), the SM
approach aims to determine the feasible parameter set
(FPS) consistent with the N input-output samples in the
parameter space. Thus, the FPS is defined as:

FPS = {θk ∈ x0 : yk − Fk ≤ Hkθk ≤ yk + Fk, ∀k ∈ N}
(11)

Several methods in the literature are reported to compute
inner or outer regions that approximate the FPS (Andrew,
2002). The zonotope-based approach proposed by Alamo
(Alamo et al., 2005) to estimate uncertain parameters is
applied in this work.

4.1 SM estimator structure

Proposition 2. Given the dynamic modelled by the deter-
ministic approach (3), Zsm

k+1 ∈ ⟨ck+1(λk), Rk+1(λk)⟩ is the
outer-approximated feasible parameter zonotopic set con-
ditioned by each measurement component yk. The center
and the segment matrix are ck+1 and Rk+1, respectively,
deriving in:

ck+1 = ck + λk(yk −Hkck)

Rk+1 = [(In − λkHk)Rk,−λkFk]
(12)

Proof. Recalling again the regression model (3), the re-
gion with each measurement vector component, defined as
a strip at k instant is expressed as follows

Ss
k =

{
θk ∈ Rηθ : |Hkθk − yk| ≤ Fk

}
(13)

Following Definition 7 according to Alamo et al. (2005),
the Zsm (12) that satisfies Zsm

k+1 ⊇ Zsm
k ∩ Ss

k is obtained.

4.2 Optimal zonotope segment size

Based on (12), Zsm
k+1 depends on λk at each iteration.

Several procedures focused on decreasing the size of the
set, such as, segments, volume, or P -radius minimization
are reported (Le et al., 2013). In this paper, the optimal

λ̃k is calculated using Theorem 2.

Theorem 2. Considering the Zsm
k+1 structure (12), the opti-

mal λ̃k is determined by minimizing the segment size of the
zonotope, that implies computing the Frobenius norm of
the generator matrix. Therefore, λ̃k = argminλ∥Rk+1∥2F
such that:

λ̃k = RkR
T
k H

T
k (FkF

T
k +HkRkR

T
k H

T
k )

−1 (14)

Proof. The proof is explicitly carried out in the work
presented by (Alamo et al., 2005).

5. FAULT DETECTION USING ZRLS APPROACH

Considering the dynamic parameterized as in (3), and
including the fault effects it yields:

yk = Hkθk + fH
k θk +Hkf

θ
k + fy

k + Fkυk, ∀k ∈ N (15)

where fH
k and fy

k indicate the sensor fault signals added

to the regressor and the output, and fθ
k represents the

parametric fault signal. To apply and compare ZRLS and
SM approaches for fault detection, two different tests,
called direct and inverse, (Blesa et al., 2012) are used,
respectively. In particular, ZRLS relies on the consistency
test of the residual whereas SM checks the intersection
between the outer-approximated zonotope Zsm and the
strip consistent with the available measurements Ss. In
this sense, the residual generation problem in ZRLS is
reformulated in terms of the strip for the sake of character-
izing the minimum detectable fault. Closely related to the
sensitivity against faults, the minimum detectable fault is
equivalent to the magnitude of the fault able to produce
an inconsistency; that is, to bring the parameters out of
their bounds. Hence, defining large bounds can provide
undetected faults whereas false alarms can occur if tight
bounds are selected. In this paper, only parametric faults
(fθ

k ) are considered.

5.1 Description of the FD test

Algorithm 1 is used for fault detection as an extension
of ZRLS approach. The predicted zonotopic set (6) is
employed to compute the zonotope support strip which is
defined as the region between two hyperplanes, such that:

Sz
k =

{
θk ∈ ⟨ck, Rk⟩ : qzlowk ≤ Hkθk ≤ q

zupp

k

}
(16)

where qzlowk and q
zupp

k constitute the minimum and the
maximum bounds of the zonotope support strip, which
are calculated as in (17).

qzlowk = Hkck − ∥RkHk∥1
q
zupp

k = Hkck + ∥RkHk∥1
(17)

Algorithm 1 Fault detection based on ZRLS approach

1: k ← 0
2: ⟨ck, Rk⟩ ← θ0
3: R̄0 ← Redq(R), q is determined according to Defini-

tion 4.
4: P̄0 ← R̄0R̄

T
0

5: Qυ ← FFT

6: while k ← N do
7: Obtain input-output uk, yk and build regressorHk.
8: Compute the optimal K̃k using (8).
9: Compute ck+1 and Rk+1 utilizing (6).

10: Compute Pk+1 using (9).
11: Compute Sz

k employing (17).
12: if Sz

k ∩ Ss
k = ∅ then

13: Fault ← true
14: end if
15: k ← k + 1
16: end while

On the other hand, from the strip consistent with the ob-
servations Ss

k (see (18)), the minimum and the maximum
values qslowk and q

supp

k , respectively, are determined using
(19).

Ss
k =

{
θk ∈ Rηθ : |Hkθk − yk| ≤ Fk

}
(18)
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qslowk = yk − Fk

q
supp

k = yk + Fk
(19)

Then, the inconsistency or fault is proven if and only if
Sz
k ∩ Ss

k = ∅ or complying the following inequalities:

qzlowk > q
supp

k

q
zupp

k < qslowk

(20)

5.2 Minimum parametric fault magnitude

The minimum parametric fault magnitude fθ
k is computed

using (20) and assuming that no other faults are present
(Gertler, 1998). Considering θk = ⟨ck, Rk⟩ and replacing
q
zupp

k from (17) and qslowk from (19) into expression (20) it
follows:

Hkck + ∥RkHk∥1 < yk − Fk (21)
Depending on the position of the strip Ss

k, the fault mag-
nitude must overcome the uncertainty for generating an
inconsistency. In the worst-case scenario for the parameter
vector, Ss

k is located on the border of Sz
k ; that is, Hkck +

∥RkHk∥1 = 2∥RkHk∥1 is deduced. In this sense, Sz
k must

change the parameter value at least twice to achieve the
opposite threshold. Using (15), and taking into considera-
tion the fault parametric effect only, the magnitude of fθ

k
that will always be detected is calculated as follows:

Hk,if
θ,i
k > 2∥RkHk∥1 + 2Fk (22)

where i is the component of the regressor Hk associated
with the i-th parametric fault.

6. FAULT DETECTION USING SM APPROACH

6.1 Description of the FD test

FD methods grounded on SM approach check the in-
tersection between the Zsm

k and the strip Ss
k at each k

iteration. If the intersection is empty, i.e., Zsm
k ∩ Ss

k = ∅
the existence of faults can be demonstrated. Otherwise,
the method predicts a new zonotopic set approximating
the resulting intersection if consistency test is proved.
Algorithm 2 is used for fault detection. Analogously, the

Algorithm 2 Fault detection based on SM approach

1: k ← 0
2: Zsm

k+1 ← θ0
3: while k ← N do
4: Obtain input-output uk, yk and build regressorHk.
5: Compute the strip Ss

k according to (13).
6: if Ssm

k ∩ Ss
k = ∅ then

7: Fault ← true
8: end if
9: Compute Zsm

k+1 ⊇ Zsm
k ∩ Ss

k using (12) and (14).
10: k ← k + 1
11: end while

zonotope support strip is defined as:

Ssm
k =

{
θk ∈ ⟨ck, Rk⟩ : qsmlow

k ≤ Hkθk ≤ q
smupp

k

}
(23)

where qsmlow

k and q
smupp

k are defined as the minimum
and the maximum values of the zonotope support strip,
respectively, which are determined as follows:

qsmlow

k = Hkck − ∥RkHk∥1
q
smupp

k = Hkck + ∥RkHk∥1
(24)

In the same way, qslowk and q
supp

k are the minimum and

maximum bounds of the strip Ss
k =

{
θk ∈ Rηθ : |Hkθk −

yk| ≤ Fk

}
, expressed by:

qslowk = yk − Fk

q
supp

k = yk + Fk
(25)

Finally, the appearance of the fault is demonstrated when
Ssm
k ∩ Ss

k = ∅ or satisfying the conditions below:

qsmlow

k > q
supp

k

q
smupp

k < qslowk

(26)

6.2 Minimum parametric fault magnitude fθ

Following a similar procedure such as ZRLS, the minimum
fault magnitude fθ is obtained employing inequalities (26).
Then, substituting q

smupp

k from (24), and qslowk from (25)
results in:

Hkck + ∥RkHk∥1 < yk − Fk (27)

Then, taking into account the worst-case for the parameter
vector, a fault able to provide an effect greater than (28)
will always be detected

Hk,if
θ,i
k > 2∥RkHk∥1 + 2Fk (28)

where i is the component of the regressor Hk associated
with the i-th parametric fault.

6.3 Comparative analysis

In order to compare both ZRLS and SM approaches when
applied to FD, a methodology based on performing a
consistency test has been proposed. This procedure aims
to check the intersection defined by the strip consistent
with the measurements and the predicted zonotope or the
zonotope support strip (see Algorithms 1 and 2). Specifi-
cally, the strip Ss is determined considering the bound Fk

of the noise, according to (18) and (13), and the zonotope
support strip is obtained by means of an optimization
problem that results in (17) and (24) for ZRLS and SM,
respectively. In addition, the minimum detectable fault
has been considered for analysing the behaviour of both
approaches. As can be noted, the expression to compute
the minimum detectable parametric fault in the worst-case
scenario is equivalent in both methods according to (22)
and (28). Since the minimum detectable fault depends on
the amplitude of the generator matrix R, therefore the
convergence of both methods is similar. However, a slightly
greater conservativeness degree is provided by ZRLS. An-
other interesting point to discuss is the sensitivity of the
system to faults or external disturbances. In this sense, for
detecting parametric faults in systems as (15), the sensitiv-
ity is characterized by the magnitude of the additive noise
υk, the amplitude of the predicted set and the criterion to
determine the optimal observer gain. Roughly speaking,
the noise is associated with the measurements or the sensor
accuracy levels. Depending on the unknown degree of the
noise, an appropriate threshold must be selected for F to
avoid false alarms or missed detections. In practice, higher
noise values lead to low sensitivity against faults and,
therefore faults could be undetected; whereas lower noise
magnitudes could induce false alarms. On the other hand,
the amplitude of the zonotopic set can affect the sensitivity
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qslowk = yk − Fk

q
supp

k = yk + Fk
(19)

Then, the inconsistency or fault is proven if and only if
Sz
k ∩ Ss

k = ∅ or complying the following inequalities:

qzlowk > q
supp

k

q
zupp

k < qslowk

(20)

5.2 Minimum parametric fault magnitude

The minimum parametric fault magnitude fθ
k is computed

using (20) and assuming that no other faults are present
(Gertler, 1998). Considering θk = ⟨ck, Rk⟩ and replacing
q
zupp

k from (17) and qslowk from (19) into expression (20) it
follows:

Hkck + ∥RkHk∥1 < yk − Fk (21)
Depending on the position of the strip Ss

k, the fault mag-
nitude must overcome the uncertainty for generating an
inconsistency. In the worst-case scenario for the parameter
vector, Ss

k is located on the border of Sz
k ; that is, Hkck +

∥RkHk∥1 = 2∥RkHk∥1 is deduced. In this sense, Sz
k must

change the parameter value at least twice to achieve the
opposite threshold. Using (15), and taking into considera-
tion the fault parametric effect only, the magnitude of fθ

k
that will always be detected is calculated as follows:

Hk,if
θ,i
k > 2∥RkHk∥1 + 2Fk (22)

where i is the component of the regressor Hk associated
with the i-th parametric fault.

6. FAULT DETECTION USING SM APPROACH

6.1 Description of the FD test

FD methods grounded on SM approach check the in-
tersection between the Zsm

k and the strip Ss
k at each k

iteration. If the intersection is empty, i.e., Zsm
k ∩ Ss

k = ∅
the existence of faults can be demonstrated. Otherwise,
the method predicts a new zonotopic set approximating
the resulting intersection if consistency test is proved.
Algorithm 2 is used for fault detection. Analogously, the

Algorithm 2 Fault detection based on SM approach

1: k ← 0
2: Zsm

k+1 ← θ0
3: while k ← N do
4: Obtain input-output uk, yk and build regressorHk.
5: Compute the strip Ss

k according to (13).
6: if Ssm

k ∩ Ss
k = ∅ then

7: Fault ← true
8: end if
9: Compute Zsm

k+1 ⊇ Zsm
k ∩ Ss

k using (12) and (14).
10: k ← k + 1
11: end while

zonotope support strip is defined as:

Ssm
k =

{
θk ∈ ⟨ck, Rk⟩ : qsmlow

k ≤ Hkθk ≤ q
smupp

k

}
(23)

where qsmlow

k and q
smupp

k are defined as the minimum
and the maximum values of the zonotope support strip,
respectively, which are determined as follows:

qsmlow

k = Hkck − ∥RkHk∥1
q
smupp

k = Hkck + ∥RkHk∥1
(24)

In the same way, qslowk and q
supp

k are the minimum and

maximum bounds of the strip Ss
k =

{
θk ∈ Rηθ : |Hkθk −

yk| ≤ Fk

}
, expressed by:

qslowk = yk − Fk

q
supp

k = yk + Fk
(25)

Finally, the appearance of the fault is demonstrated when
Ssm
k ∩ Ss

k = ∅ or satisfying the conditions below:

qsmlow

k > q
supp

k

q
smupp

k < qslowk

(26)

6.2 Minimum parametric fault magnitude fθ

Following a similar procedure such as ZRLS, the minimum
fault magnitude fθ is obtained employing inequalities (26).
Then, substituting q

smupp

k from (24), and qslowk from (25)
results in:

Hkck + ∥RkHk∥1 < yk − Fk (27)

Then, taking into account the worst-case for the parameter
vector, a fault able to provide an effect greater than (28)
will always be detected

Hk,if
θ,i
k > 2∥RkHk∥1 + 2Fk (28)

where i is the component of the regressor Hk associated
with the i-th parametric fault.

6.3 Comparative analysis

In order to compare both ZRLS and SM approaches when
applied to FD, a methodology based on performing a
consistency test has been proposed. This procedure aims
to check the intersection defined by the strip consistent
with the measurements and the predicted zonotope or the
zonotope support strip (see Algorithms 1 and 2). Specifi-
cally, the strip Ss is determined considering the bound Fk

of the noise, according to (18) and (13), and the zonotope
support strip is obtained by means of an optimization
problem that results in (17) and (24) for ZRLS and SM,
respectively. In addition, the minimum detectable fault
has been considered for analysing the behaviour of both
approaches. As can be noted, the expression to compute
the minimum detectable parametric fault in the worst-case
scenario is equivalent in both methods according to (22)
and (28). Since the minimum detectable fault depends on
the amplitude of the generator matrix R, therefore the
convergence of both methods is similar. However, a slightly
greater conservativeness degree is provided by ZRLS. An-
other interesting point to discuss is the sensitivity of the
system to faults or external disturbances. In this sense, for
detecting parametric faults in systems as (15), the sensitiv-
ity is characterized by the magnitude of the additive noise
υk, the amplitude of the predicted set and the criterion to
determine the optimal observer gain. Roughly speaking,
the noise is associated with the measurements or the sensor
accuracy levels. Depending on the unknown degree of the
noise, an appropriate threshold must be selected for F to
avoid false alarms or missed detections. In practice, higher
noise values lead to low sensitivity against faults and,
therefore faults could be undetected; whereas lower noise
magnitudes could induce false alarms. On the other hand,
the amplitude of the zonotopic set can affect the sensitivity

considering the minimum detectable fault in the worst-
case (22) and (28) for both methods. Finally, concerning
the influence of the observer gain on the sensitivity, in
this work the gain was selected to guarantee parameter
estimation convergence. However, the observer gain could
be selected for optimizing fault detection instead of esti-
mation accuracy. In (Pourasghar et al., 2019), the optimal
gain observer is designed to achieve better performance in
fault detection scenarios, but from the state estimations
point of view.

7. SIMULATION RESULTS

A quadruple-tank process (Johansson, 2000) is considered
to illustrate the proposed methodology. Due to space
limitation, only the first tank is used for simulations. Thus,
the mathematical model in continuous-time is obtained
using mass-balance relations and Bernoulli’s law as follows:

dh1,t

dt
= −α1

A1

√
2gh1,t +

α3

A3

√
2gh3,t +

γ1κ1

A1
ν1,t (29)

where:

• Ai is the cross-section of tank i; A1 = A3 = 28cm2.
• hi is the water level of tank i.
• αi is the cross-section area of the outlet pipe i;
α1 = α3 = 0.071cm2.

• γi depends on the i valve position (degree of opening);
γ1 = 0.7.

• g = 981cm/s2 is the acceleration due to gravity.
• κiνi is the flow through of pump i; κ = 3.33cm3/V s.

On the other hand, the operating level range from both
tanks are: h1 ∈ [2, 11]cm and h3 ∈ [1, 15]cm.

7.1 Performing ZRLS and SM approaches for parameter
identification

In a fault-free environment, N = 140 samples are stored to
perform both approaches. Then, for determining the model
in the regression form, equation (29) is discretized using
the Euler method with sampling time Ts = 1s. Finally,
making some manipulations and assuming α1 and α3 as
unknown, (29) can be rewritten as:

yk = h1,k − h1,k−1 −
γ1κ1

A1
ν1,k−1

Hk =

[
− 1

A1

√
2gh1,k−1,

1

A3

√
2gh3,k−1

]

θk = [α1, α3]
T

(30)

where h1,k is corrupted by some noise υ which is bounded
by F = 0.044. In addition, the predicted segment matrix R
in ZRLS (6) is computed without using the reduction op-
erator Redq to avoid over-approximations and for achiev-
ing better accuracy in the comparison. Hence, the term
−KkFk will introduce one column at each iteration. Taking
into account the initial conditions which are defined in
(31), estimation results are shown in Figures 1-2. It is
worth empathizing that confidence regions assuming the
worst-case are determined employing Definition 3.

ZRLS : ⟨c0, R0⟩ = ⟨[0, 0]T , 2I2⟩, P0 = 4I2, F = 0.044

SM : ⟨c0, R0⟩ = ⟨[0, 0]T , 2I2⟩, F = 0.044
(31)

20 40 60 80 100 120 140

0.02

0.04

0.06

0.08

0.1

15 20 25

0.07

0.075

0.08

20 40 60 80 100 120 140

0.02

0.04

0.06

0.08

0.1

15 20 25

0.065

0.07

0.075

Fig. 1. Evolution of the estimated center into the param-
eter space for ZRLS and SM approaches.
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Fig. 2. Evolution of the confidence regions assuming the
worst-case for ZRLS and SM approaches.

7.2 FD results

In this comparative assessment, faults in the estimated
parameters α1 and α3 taking into account the minimum
detectable fault in the worst-case are introduced. The ex-
pressions that characterize the minimum detectable para-
metric faults are defined in (22) and (28) for the ZRLS
and SM methods, respectively. The resulting values are
shown in Table 1 as well as the evolution of the mini-
mum detectable fault during 140 samples is depicted in
Figure 3 for parameter α1. As it can be appreciated and

Table 1. Minimum detectable parametric faults
(fα1) and (fα3) in the worst-case scenario.

ZRLS SM

fα1 0.0416 cm2 0.0413 cm2

fα3 0.1287 cm2 0.1269 cm2

due to the fact that generator matrices are similar, the
minimum detectable fault obtained by performing both
methods converges towards similar values. The proposed
fault scenario consists in affecting the parameter α1 at
k = 70 instant by a slightly greater value than the mini-
mum detectable; that is, fα1 = 0.05 cm2. Figure 4 shows
the result of fault detection when the introduced fault is
greater than the minimum detectable. As it can be seen,
the strips do not intersect with the zonotopes, or specifi-
cally, the zonotope support strips. Hence, because of the
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Fig. 3. Evolution of the minimum detectable parametric
fault (fα1) in the worst-case.
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Fig. 4. Detected fault by performing ZRLS and SM ap-
proaches at instant k = 70. The fault added has a
magnitude equivalent to fα1 = 0.05 cm2.

inconsistency, the fault is detected. The strip consistent
with the measurements Ss, the zonotope support strip Sz

and the estimated set by computing ZRLS are plotted
with blue colour; while Ss, Ssm and the Zsm obtained
by executing SM are represented in red colour. It is worth
noting that for faults bigger than the minimum detectable,
the detection is always guaranteed.

8. CONCLUSIONS

This paper has addressed the problem of robust fault di-
agnosis using a zonotopic parameter estimation approach.
First, system identification problem considering paramet-
ric uncertainty and using zonotopes has been investigated.
Then, its application to robust fault detection is addressed.
As a result, a Zonotopic Recursive Least Squares (ZRLS)
estimator is proposed and compared in fault detection
with the set-membership (SM) approach, taking as a refer-
ence the minimum detectable fault in the worst-case. The
proposed estimation and fault detection methodologies
have satisfactorily been assessed using a quadruple tank
process.
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