

HOKKAIDO UNIVERSITY

| Title                  | Effect of Lewis acid on catalytic dehydration of a chitin-derived sugar alcohol                                                        |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Author(s)              | Sagawa, Takuya; Kobayashi, Hirokazu; Fukuoka, Atsushi                                                                                  |  |  |
| Citation               | Molecular Catalysis, 498, 111282<br>https://doi.org/10.1016/j.mcat.2020.111282                                                         |  |  |
| Issue Date             | 2020-12                                                                                                                                |  |  |
| Doc URL                | http://hdl.handle.net/2115/87489                                                                                                       |  |  |
| Rights                 | © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ |  |  |
| Rights(URL)            | https://creativecommons.org/licenses/by-nc-nd/4.0/                                                                                     |  |  |
| Туре                   | article (author version)                                                                                                               |  |  |
| Additional Information | There are other files related to this item in HUSCAP. Check the above URL.                                                             |  |  |
| File Information       | ADI_Lewis_SI_20201015.pdf (Supporting Information)                                                                                     |  |  |



## Effect of Lewis acid on catalytic dehydration of chitin-

## derived sugar alcohol

Takuya Sagawa<sup>a,b</sup>, Hirokazu Kobayashi<sup>a,\*</sup>, Atsushi Fukuoka<sup>a,\*</sup>

<sup>a</sup>Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.

<sup>b</sup>Department of Industrial Chemistry, Faculty of Science, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo, 162-0826, Japan.

\*Corresponding authors: kobayashi.hi@cat.hokudai.ac.jp (H.K.); fukuoka@cat.hokudai.ac.jp (A.F.) Fax: +81-11-706-9139

## -Totals-9 pages, 8 figures, 4 tables

## **Table of Contents**

| Figure S1 | Synthetic route of isosorbide from D-(+)-glucose ······ S2                                       |
|-----------|--------------------------------------------------------------------------------------------------|
| Figure S2 | <sup>1</sup> H NMR spectrum of ADIAc····· S2                                                     |
| Figure S3 | <sup>13</sup> C NMR spectrum of ADIAc                                                            |
| Figure S4 | DEPT spectra of ADIAc ······ S3                                                                  |
| Figure S5 | <sup>13</sup> C- <sup>1</sup> H HMQC and <sup>13</sup> C- <sup>1</sup> H HMBC of ADIAc ······ S4 |
| Figure S6 | LR-ESI-MS of ADIAc                                                                               |
| Figure S7 | Relationship between physical properties of rare earth triflate and ADI yield in the             |
|           | dehydration of ADS at 150 °C for 1 h····· S6                                                     |
| Figure S8 | Energy diagrams for the dehydration of ADS in the presence and absence of                        |
|           | Yb(OTf) <sub>3</sub> (EG) calculated by DFT ····· S6                                             |
| Table S1  | Orientation, charge and multiplicity for the transition state of 3,6-dehydration with            |
|           | Yb(OTf) <sub>3</sub> (EG) in a format of Gaussian input                                          |
| Table S2  | Orientation, charge and multiplicity for the transition state of 1,4-dehydration with            |
|           | Yb(OTf) <sub>3</sub> (EG) in a format of Gaussian input                                          |
| Table S3  | Orientation, charge and multiplicity for the transition state of 3,6-dehydration                 |
|           | without Yb(OTf) <sub>3</sub> (EG) in a format of Gaussian input S9                               |
| Table S4  | Orientation, charge and multiplicity for the transition state of 1,4-dehydration                 |
|           | without Yb(OTf) <sub>3</sub> (EG) in a format of Gaussian input                                  |



Figure S1. Synthetic route of isosorbide from D-(+)-glucose.



Figure S2. <sup>1</sup>H NMR spectrum of ADIAc. Top: full scale, Bottom: enlarged view.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**:  $\delta = 1.97$  (s, 3H, CH<sub>3</sub><sup>1</sup>), 2.11 (s, 3H, CH<sub>3</sub><sup>2</sup>), 3.82 (d, J = 9.6 Hz, 1H, H<sup>1</sup>), 3.84 (dd, J = 4.9, 10.3 Hz, 1H, H<sup>8</sup>), 3.88 (dd, J = 5.5, 10.3 Hz, 1H, H<sup>7</sup>), 3.92 (dd, J = 4.1, 9.6 Hz, 1H, H<sup>2</sup>), 4.38 (d, J = 4.8, 1H, H<sup>4</sup>), 4.44 (dd, J = 4.1, 7.5 Hz, 1H, H<sup>3</sup>), 4.74 (dd, J = 4.8, 4.8 Hz, 1H, H<sup>5</sup>), 5.12 (dd, J = 4.8, 5.5 Hz, 1H, H<sup>6</sup>), 5.87 (d, J = 7.5 Hz, 1H, NH).



Figure S3. <sup>13</sup>C NMR spectrum of ADIAc.

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.6 (NHCOCH<sub>3</sub>), 23.1 (OCOCH<sub>3</sub>), 56.2 (C<sup>2</sup>), 70.7 (C<sup>6</sup>), 73.0 (C<sup>1</sup>), 74.0 (C<sup>5</sup>), 80.3 (C<sup>4</sup>), 86.6 (C<sup>3</sup>), 169.7 (NHCOCH<sub>3</sub>), 170.4 (OCOCH<sub>3</sub>).



Figure S4. DEPT spectra of ADIAc.



Figure S5. <sup>13</sup>C-<sup>1</sup>H HMQC (horizontal axis: <sup>1</sup>H, vertical axis: <sup>13</sup>C) (top) and <sup>13</sup>C-<sup>1</sup>H HMBC (horizontal axis: <sup>1</sup>H, vertical axis: <sup>13</sup>C) (bottom) of ADIAc.



Figure S6. LR-ESI positive (A) and negative (B) mass spectra of ADIAc.



**Figure S7.** Relationship between physical properties of rare earth triflate and ADI yield in the dehydration of ADS at 150 °C for 1 h. Six coordination is assumed for the ionic radius.



**Figure S8.** Energy diagrams for the 1,4-dehydration of ADS in the presence and absence of Yb(OTf)<sub>3</sub>(EG) calculated by DFT. (Yb) represents Yb(OTf)<sub>3</sub>(EG).

Table S1. Orientation, charge and multiplicity for the transition state of 3,6-dehydration with Yb(OTf)<sub>3</sub>(EG) in a format of Gaussian input.

| 1 2    |    |             |             |              |
|--------|----|-------------|-------------|--------------|
| Yb     | -1 | 0.59807000  | -0.39873000 | -0.03193900  |
| 0      | 0  | -1.09881600 | 0.18355900  | -1.36084400  |
| C      | 0  | -1.46443200 | 0.82491300  | -2.38064000  |
| N      | 0  | -2.43285400 | 1.74795700  | -2.31016500  |
| C .    | 0  | -0.83408200 | 0.56140400  | -3./1/02100  |
| н      | 0  | -2.62644100 | 2.2/69/400  | -3.15/10/00  |
|        | 0  | 1 22571200  | -0.51502100 | -3.91352900  |
|        | 0  | -1.525/1200 | 0 97127600  | -4.55214500  |
| п<br>0 | 1  | 1 94700900  | 0.0/12/000  | -3.000000/00 |
| 0      | -1 | 0 94205600  | 0.12371000  | 1 901647200  |
| C      | -1 | 1 10081000  | 0.1040000   | 3 10983200   |
| L L    | _1 | 1 55800000  | 0.05150200  | 1 10236100   |
| н      | -1 | 1 08793100  | 1 70397900  | 2 81473400   |
| C      | -1 | -0 29606500 | 0 08776400  | 3 14548200   |
| н      | -1 | -0.92335100 | 0.66626700  | 3.83028000   |
| н      | -1 | -0.28479900 | -0.96160400 | 3,46584100   |
| Н      | -1 | 2.64774000  | 0.40590900  | 1,90341400   |
| Н      | -1 | -1.60321300 | -0.45702400 | 1.76002400   |
| 0      | -1 | 2.53358900  | -1.31938600 | -0.87739000  |
| 0      | -1 | -0.28249800 | -2.50477400 | 0.37455700   |
| 0      | -1 | 1.74390400  | 1.66677500  | -0.41213000  |
| S      | -1 | -1.54319000 | -3.14908600 | 0.90492400   |
| S      | -1 | 3.62900700  | -2.36031700 | -0.85255800  |
| S      | -1 | 2.99809800  | 2.41509900  | -0.03719600  |
| 0      | -1 | -2.38152800 | -2.19917000 | 1.67513000   |
| 0      | -1 | -1.31812000 | -4.47145000 | 1.49809000   |
| 0      | -1 | 3.62381400  | 1.88973300  | 1.20274800   |
| 0      | -1 | 3.89944000  | 2.68693100  | -1.16412000  |
| 0      | -1 | 4.11313000  | -2.69015600 | -2.20606600  |
| 0      | -1 | 3.34172400  | -3.49210700 | 0.04721700   |
| С      | -1 | 5.02082000  | -1.44119100 | -0.05001300  |
| C      | -1 | -2.50756600 | -3.45773300 | -0.65449000  |
| C      | -1 | 2.31190100  | 4.07258500  | 0.44529000   |
| F      | -1 | -3.6361/200 | -4.10860000 | -0.36360600  |
| F      | -1 | -2.81304700 | -2.2905/300 | -1.23656400  |
| F      | -1 | -1./8343800 | -4.19020700 | -1.506/3100  |
| r<br>r | -1 | 3.200/4300  | 1 14672400  | -0./118/000  |
| r<br>c | -1 | 4.70821100  | -1.14072400 | 0.05802200   |
| г<br>с | -1 | 3 20505700  | 1 85500000  | 0.03002300   |
| F      | -1 | 1 74084600  | 4.85363300  | -0 61393400  |
| F      | -1 | 1.39203800  | 3,92986800  | 1.40918100   |
| c      | 0  | -2.99701100 | 2,27067100  | -1.05799600  |
| c      | 0  | -4.54276000 | 2,20352500  | -1.12115400  |
| H      | 0  | -2.63696600 | 1.62440600  | -0.25829200  |
| С      | 0  | -2.47868400 | 3.69313000  | -0.83312700  |
| С      | 0  | -5.29930100 | 2.21439200  | 0.21887900   |
| н      | 0  | -4.92449000 | 2.99910500  | -1.77013800  |
| 0      | 0  | -4.99371900 | 0.94498000  | -1.66090000  |
| Н      | 0  | -2.73248400 | 4.31723700  | -1.70268000  |
| Н      | 0  | -2.95861700 | 4.12337800  | 0.05114200   |
| 0      | 0  | -1.06622400 | 3.60276500  | -0.66300900  |
| Н      | 0  | -6.36240000 | 2.33732600  | -0.01173000  |
| С      | 0  | -5.11719800 | 0.82801200  | 0.92094800   |
| 0      | 0  | -4.83895300 | 3.24044900  | 1.07067500   |
| Н      | 0  | -4.33679700 | 0.59295100  | -2.29721000  |
| H      | 0  | -0./1840600 | 4.50671100  | -0.59734800  |
| L III  | 0  | -2.12383300 | -0.2/554/00 | -0.0851/600  |
| п      | 0  | -2.90300100 | 0.70/21100  | 1.62420400   |
| 0      | 0  | -3.88/9/600 | 0./8234600  | 1.02438400   |
| п<br>u | 0  | 4 2520000   | 0 77565200  | 1.0//20000   |
| н      | 0  | -4.23/20000 | -0.62206400 | -0.72270000  |
| н      | a  | -3 76050200 | 1 68031500  | 1 99039600   |
| 0      | â  | -5.24389000 | -1.87101400 | 1.28832200   |
| Ĥ      | ด  | -5.70444000 | -1.58082300 | 2.09731200   |
| н      | õ  | -4.30899700 | -1.99425600 | 1.56197900   |
|        |    |             |             |              |

Table S2. Orientation, charge and multiplicity for the transition state of 1,4-dehydration with Yb(OTf)<sub>3</sub>(EG) in a format of Gaussian input.

| 1 2    |    |             |                            |             |
|--------|----|-------------|----------------------------|-------------|
| Yb     | -1 | -0.98601400 | 0.43254600                 | 0.38568600  |
| 0      | 0  | 1.12204400  | 0.28120300                 | -0.41380600 |
| С      | 0  | 1.74169600  | 0.32105600                 | -1.51076900 |
| N      | 0  | 2.88083000  | -0.35934000                | -1.67117300 |
| C      | 0  | 1.24043600  | 1.13576000                 | -2.66641100 |
| C      | 0  | 3.46046600  | -1.21181700                | -0.64420700 |
| н      | 0  | 3.34784500  | -0.29518700                | -2.57038300 |
| н      | 0  | 1.19142300  | 2.18594600                 | -2.36066000 |
| н      | 0  | 1.87658900  | 1.04398000                 | -3.54968000 |
| Н      | 0  | 0.22372700  | 0.81229500                 | -2.91434000 |
| C      | 0  | 3.61993200  | -2.63028200                | -1.12210300 |
| C      | 0  | 4.82448700  | -0.68651400                | -0.1156/800 |
| н      | 0  | 2.78285300  | -1.19985400                | 0.20969800  |
| н      | 0  | 3.46510200  | -2.90119600                | -2.15606900 |
| Г      | 0  | 5.69642500  | - 3. 39362300              | -0.4142/500 |
|        | 0  | 5.6/90/000  | -1.0105/000                | -1.1/14/900 |
|        | 0  | 4.74908000  | 1 24219200                 | 1 12252900  |
| 0      | 0  | 5 59029400  | -1.34218300                | -1 51255800 |
| U U    | 0  | 5.33023400  | -2.400000000<br>0.20620200 | 2 05146900  |
| п<br>С | 0  | 7 3/008200  | -0.38039200                | -2.03140800 |
| L<br>L | 0  | 6 00002400  | -1 56986100                | 1 17107000  |
| н      | a  | 5 76010000  | -2 55524200                | -2 /6182700 |
| C      | 0  | 7 75050800  | 0 51627100                 | -2.40182700 |
| н      | a  | 7 97567100  | -1 22585200                | -0.55251000 |
| 0      | a  | 7 62669600  | -1.73/51700                | 0 10257100  |
| н      | â  | 7 19090500  | 0 83102100                 | 0.40237100  |
| н      | â  | 7 51258100  | 1 20372300                 | -1 16956800 |
| 0      | â  | 9 15251200  | 0 60936700                 | -0 13163200 |
| н      | 0  | 7.64058600  | -2.66297100                | 0.10921600  |
| н      | â  | 9 36764000  | -0 01719400                | 0.10921000  |
| н      | 0  | 1.51834200  | -3.34412200                | 0.06413000  |
| 0      | ø  | 1.64008300  | -3.12298900                | -0.87869400 |
| 0      | -1 | -3.04342900 | 0.07880200                 | 1.81494400  |
| 0      | -1 | -0.55117900 | 0.70851800                 | 2.72849700  |
| c      | -1 | -2.70817500 | -0.22039600                | 3,18514500  |
| Н      | -1 | -3.60102700 | -0.14513500                | 3.81666500  |
| н      | -1 | -2.30320800 | -1.23328400                | 3.25965200  |
| С      | -1 | -1.68935700 | 0.79828100                 | 3.62643000  |
| н      | -1 | -1.36502000 | 0.59340000                 | 4.65122000  |
| н      | -1 | -2.10470100 | 1.81216300                 | 3.57510700  |
| Н      | -1 | -3.46660700 | -0.72998700                | 1.43186700  |
| Н      | -1 | -0.04002500 | 1.54342800                 | 2.82015200  |
| 0      | -1 | -2.40890200 | 0.46350200                 | -1.42674500 |
| 0      | -1 | -0.94722700 | 2.74842500                 | 0.45720300  |
| 0      | -1 | -1.27055200 | -1.93801800                | 0.21296900  |
| S      | -1 | -0.30535900 | 3.87100800                 | 1.24046000  |
| S      | -1 | -3.58276100 | 1.04229000                 | -2.18231500 |
| S      | -1 | -2.32853100 | -3.01193400                | 0.23931900  |
| 0      | -1 | 0.24133700  | 3.41194600                 | 2.53996600  |
| 0      | -1 | -1.09876500 | 5.10458700                 | 1.24981400  |
| 0      | -1 | -3.58793000 | -2.55313700                | 0.87822800  |
| 0      | -1 | -2.46344700 | -3.75799900                | -1.01845400 |
| 0      | -1 | -3.39934400 | 0.96217400                 | -3.64303900 |
| 0      | -1 | -4.05382700 | 2.32852400                 | -1.63799000 |
| С      | -1 | -4.92717700 | -0.17099200                | -1.79532600 |
| С      | -1 | 1.19795600  | 4.25078000                 | 0.21443700  |
| С      | -1 | -1.60018000 | -4.22260800                | 1.44516700  |
| F      | -1 | 1.84574500  | 5.29515500                 | 0.73561900  |
| F      | -1 | 2.01652000  | 3.19051100                 | 0.20071700  |
| F      | -1 | 0.83870300  | 4.53674700                 | -1.04109200 |
| F      | -1 | -4.53828400 | -1.40990000                | -2.11700000 |
| F      | -1 | -5.22133000 | -0.13269600                | -0.48914700 |
| F      | -1 | -6.02558200 | 0.13530600                 | -2.49384400 |
| F      | -1 | -2.46226600 | -5.22048200                | 1.66060000  |
| F      | -1 | -0.46252700 | -4.72355000                | 0.95485300  |
| F      | -1 | -1.33889400 | -3.61471800                | 2.61041400  |
| Н      | 0  | 1.52261100  | -3.97567200                | -1.34079700 |

Table S3. Orientation, charge and multiplicity for the transition state of 3,6-dehydration without Yb(OTf)<sub>3</sub>(EG) in a format of Gaussian input.

| 1 1 |             |             |             |
|-----|-------------|-------------|-------------|
| 0   | -1.72202100 | -2.13996000 | -0.03999300 |
| С   | -2.56814600 | -1.21458700 | -0.00393700 |
| N   | -2.21875600 | 0.07838800  | 0.11348600  |
| С   | -4.04081600 | -1.52680700 | -0.07732600 |
| С   | -0.85791400 | 0.61341300  | -0.09823200 |
| н   | -2.96024100 | 0.76227700  | 0.00384700  |
| Н   | -4.29390200 | -2.23763700 | 0.71621900  |
| н   | -4.67174900 | -0.63925200 | 0.01452500  |
| Н   | -4.24667300 | -2.01570800 | -1.03641800 |
| С   | 0.05843000  | 0.28479300  | 1.10761300  |
| Н   | -0.44237800 | 0.14896800  | -0.99910300 |
| С   | 1.49787600  | 0.82961900  | 1.13630200  |
| Н   | -0.45587700 | 0.59788300  | 2.02398700  |
| 0   | 0.32512500  | -1.12655900 | 1.18726900  |
| Н   | 1.90089500  | 0.54926200  | 2.11652400  |
| С   | 2.35072000  | 0.10133500  | 0.06265800  |
| Н   | -0.40044600 | -1.63112000 | 0.69839800  |
| С   | 2.05483100  | -1.36410400 | 0.06291400  |
| н   | 3.40525400  | 0.24064200  | 0.33668600  |
| 0   | 2.10058000  | 0.61654900  | -1.23640200 |
| н   | 1.42680300  | -1.79911100 | -0.69956200 |
| Н   | 2.41688700  | -1.98733800 | 0.86636800  |
| 0   | 3.65891000  | -1.87287300 | -1.02242700 |
| Н   | 2.12871700  | 1.58823400  | -1.15076000 |
| Н   | 3.53359400  | -1.42599000 | -1.88228100 |
| Н   | 3.54097800  | -2.82161200 | -1.22202200 |
| 0   | 1.56217400  | 2.22888800  | 0.95212600  |
| н   | 2.37263000  | 2.55605600  | 1.37914700  |
| С   | -1.00968900 | 2.12176600  | -0.33916200 |
| Н   | -1.25373300 | 2.63156800  | 0.60289500  |
| н   | -0.06582200 | 2.52195300  | -0.71484200 |
| 0   | -2.05693300 | 2.30459900  | -1.29409100 |
| н   | -2.25809400 | 3.25449500  | -1.32484600 |

Table S4. Orientation, charge and multiplicity for the transition state of 1,4-dehydration without Yb(OTf)<sub>3</sub>(EG) in a format of Gaussian input.

| 11 |             |             |             |
|----|-------------|-------------|-------------|
| 0  | 3.84754900  | 0.20634700  | -0.53424400 |
| С  | 3.09461600  | 1.08684000  | -0.07396400 |
| N  | 1.76681900  | 0.89291700  | 0.09732500  |
| С  | 3.63526200  | 2.43934600  | 0.31637400  |
| С  | 1.05313200  | -0.28452900 | -0.37847200 |
| Н  | 1.22580200  | 1.66648800  | 0.46569700  |
| Н  | 4.06205200  | 2.91387800  | -0.57442000 |
| Н  | 2.87668400  | 3.09960600  | 0.74398400  |
| Н  | 4.44714000  | 2.30208900  | 1.03809500  |
| С  | 1.06090400  | -1.44157200 | 0.59772200  |
| С  | -0.42334300 | 0.05314500  | -0.71822400 |
| Н  | 1.51144300  | -0.61960500 | -1.31195800 |
| Н  | 1.52738500  | -1.36133000 | 1.56750500  |
| Н  | 0.64948200  | -2.39098600 | 0.29227300  |
| С  | -1.17134900 | 0.16314900  | 0.61469500  |
| Н  | -0.45641300 | 1.01287800  | -1.25009000 |
| 0  | -0.89496000 | -0.99715500 | -1.54597700 |
| 0  | -0.68915600 | -0.98455200 | 1.36690200  |
| Н  | -0.87130200 | 1.08073400  | 1.13009000  |
| С  | -2.70481500 | 0.11795700  | 0.55155600  |
| Н  | -1.80708600 | -1.22268000 | -1.25681600 |
| Н  | -0.58122400 | -0.75163200 | 2.30923500  |
| С  | -3.29381800 | 1.27774400  | -0.24792800 |
| Н  | -3.09170900 | 0.16576300  | 1.57675300  |
| 0  | -3.17068400 | -1.08817500 | -0.07747000 |
| Н  | -2.97068500 | 1.20678900  | -1.29671600 |
| Н  | -2.93722200 | 2.22818100  | 0.15965000  |
| 0  | -4.71284800 | 1.29696100  | -0.15467800 |
| Н  | -3.02384600 | -1.83001800 | 0.53605800  |
| Н  | -5.03006400 | 0.44820200  | -0.50902700 |
| Н  | 3.40219500  | -1.41799100 | -0.22738600 |
| 0  | 2.92580900  | -2.25126100 | 0.04008200  |
| Н  | 2.75040700  | -2.71058200 | -0.80167900 |
|    |             |             |             |