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Abstract

In plants, the study of belowground traits is gaining momentum due to their importance on yield formation and the uptake of water and
nutrients. In several cereal crops, seminal root number and seminal root angle are proxy traits of the root system architecture at the mature
stages, which in turn contributes to modulating the uptake of water and nutrients. Along with seminal root number and seminal root angle,
experimental evidence indicates that the transpiration rate response to evaporative demand or vapor pressure deficit is a key physiological
trait that might be targeted to cope with drought tolerance as the reduction of the water flux to leaves for limiting transpiration rate at high
levels of vapor pressure deficit allows to better manage soil moisture. In the present study, we examined the phenotypic diversity of semi-
nal root number, seminal root angle, and transpiration rate at the seedling stage in a panel of 8-way Multiparent Advanced Generation
Inter-Crosses lines of winter barley and correlated these traits with grain yield measured in different site-by-season combinations. Second,
phenotypic and genotypic data of the Multiparent Advanced Generation Inter-Crosses population were combined to fit and cross-validate
different genomic prediction models for these belowground and physiological traits. Genomic prediction models for seminal root number
were fitted using threshold and log-normal models, considering these data as ordinal discrete variable and as count data, respectively,
while for seminal root angle and transpiration rate, genomic prediction was implemented using models based on extended genomic best
linear unbiased predictors. The results presented in this study show that genome-enabled prediction models of seminal root number, semi-
nal root angle, and transpiration rate data have high predictive ability and that the best models investigated in the present study include
first-order additive � additive epistatic interaction effects. Our analyses indicate that beyond grain yield, genomic prediction models might
be used to predict belowground and physiological traits and pave the way to practical applications for barley improvement.

Keywords: seminal root angle; seminal root number; transpiration rate; MAGIC; barley; genomic prediction; threshold GBLUP; MPP;
Multiparental Populations; Multiparent Advanced Generation Inter-Cross (MAGIC)

Introduction
Despite their importance for the uptake of water and nutrients,
belowground traits have been largely neglected for crop improve-
ment as breeding efforts have predominantly targeted above-
ground traits related to yield formation. Nevertheless, there is
evidence that thousands of years of empirical selection have also
indirectly reshaped the root system architecture of domesticated
species, corroborating the importance of belowground traits for
crop yield and the existence of a correlation between these traits
(de Dorlodot et al. 2007; Herder et al. 2010; Jia et al. 2019). In cere-
als, experimental results and crop simulation models (CSMs)
have pointed out that genotypes with a deeper root system archi-
tecture can cope with drought and heat stresses, increasing grain

yield (GY) in dry environments (Manschadi et al. 2008; Mu et al.

2015; Liu et al. 2017; Tao et al. 2017). For instance, in durum

wheat, contrasting root system architectures correlate with

drought-intolerant and drought-tolerant genotypes showing

higher GY under sub-optimal water regimes (El Hassouni et al.

2018). In this species, it has been shown that deeper root system

architectures can increase GY from 16% to 35% in environments

with limited soil moisture and from 9% to 24% in irrigated sites

(El Hassouni et al. 2018). Similarly, in bread wheat narrower and

deeper root system architectures with more branching at depth

allow to provide greater access to soil moisture in environments

experiencing terminal drought (Manschadi et al. 2008). In maize,

it has been shown that the increase of root size improves nitrogen
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absorption and GY (Mu et al. 2015) and that a more efficient root
system is more important than canopy architecture for determin-
ing plant growth rate and biomass accumulation (Hammer et al.
2009). Consequently, the improvement of crops targeting the root
system architecture and belowground traits is high desirable to
enhance productivity and cope with climate change (Tracy et al.
2020).

In cereals, the root system architecture of seedlings can be dis-
sected into primary or seminal roots and nodal or secondary
roots. While seminal roots develop first from the primordia of the
embryo and grow out from the coleorhizae, the development of
nodal roots begins at the tillering stage from the basal nodes of
the crown (Wahbi and Gregory 1995). In bread and durum wheat,
it has been shown that the seminal root number (SRN) and the
seminal root angle (SRA), that is the angle measured between the
first pair of seminal roots or between the 2 outmost seminal roots
at the seedling stage, are 2 proxy traits that can predict the root
system architecture at the adult stages (Manschadi et al. 2008; El
Hassouni et al. 2018; Alahmad et al. 2019). For instance, reduced
SRA and higher SRN in bread wheat seedlings correlate with
drought-tolerant genotypes (e.g. Baxter, Babax, and Dharwar Dry,
SeriM82), which exhibit a deeper and more compact root system
architecture at the adult stages (Manschadi et al. 2008). In barley,
the assumption that SRA and SRN measured in seedlings are
proxies of the root system architecture of mature plants has not
been directly assessed, although in spring, genotypes moderate
correlations between these belowground traits and GY have been
observed in field trials organized in 20 rainfed and irrigated site-
by-season combinations (Robinson et al. 2018). Recently, pheno-
typic variation for SRA and SRN has been assessed in a large
panel of spring barley and exploited to map loci that underlie
these traits using genome-wide association studies (Jia et al.
2019). Although phenotyping platforms and technologies to ana-
lyze the whole root system architecture at mature stage of devel-
opment are progressively becoming widespread, the
incorporation of belowground traits in actual breeding programs
is still in its infancy and might benefit from using SRA and SRN,
which can be easily scored.

The evaporative demand or vapor pressure deficit (VPD) points
out the difference between the saturated and the actual vapor
pressure of air at a given temperature and drives the transpira-
tion rate (TR) of crops (Kholová et al. 2012). In field conditions, ei-
ther soil drought or atmospheric drought, that is the combination
of high temperatures and low humidity, does not allow crops to
satisfy the required evaporative demand and climate change is
expected to exacerbate this phenomenon (Lobell and Gourdji
2012; Medina et al. 2019). CSMs have pointed out that, beyond the
root system architecture, the TR response to VPD is an important
physiological trait that might be targeted to cope with high evap-
orative demand and increase GY (Tao et al. 2009, 2017). In fact,
the reduction of water flux to leaves for limiting TR at high levels
of VPD is a water-saving strategy that imposes physiological
trade-offs in leaf dehydration and senescence and allows crops to
better manage soil moisture to overcome drought stress. While
this water-saving strategy might cause yield penalty when soil
moisture is not a limiting factor, in sorghum and maize, experi-
mental evidence has shown that limiting TR at high evaporative
demand can allow to increase GY in dry environments (Sinclair
et al. 2005). As substantiated for belowground traits, TR response
to VPD is a key physiological trait that can serve as proxy trait for
drought tolerance (Schoppach and Sadok 2012, 2013; Schoppach
et al. 2016). In durum wheat, the variation of TR response has
allowed to identify at least 2 different sets of genotypes showing

linear and segmented trends of TR in response to VPD and inter-
estingly, these different responses have been correlated with dif-
ferent GY performances and biomass production in rainfed and
irrigated field trials (Medina et al. 2019). In sorghum and chick-
peas, closing of stomata for limiting TR has been correlated with
genotypes that have a better ability to retain soil moisture and
contribute to yield formation under drought stress (Devi et al.
2015; Sivasakthi et al. 2017; Medina et al. 2019). While phenotypic
diversity in TR response to VPD has been widely assessed in bread
and durum wheat (Schoppach and Sadok 2012; Schoppach et al.
2017), the knowledge of this trait in barley has lagged behind and
to date its natural variation has been assessed in a limited panel
of 25 wild barley and in 1 cultivar, which corroborate the exis-
tence of untapped diversity for TR in barley germplasm (Sadok
and Tamang 2019) that might be exploited for barley improve-
ment and development of more drought-tolerant genotypes.

Genomic prediction (GP) aims to regress genome-wide single
nucleotide polymorphisms (SNPs) or other types of DNA markers
on phenotypes of individuals to simultaneously predict their
effects (Meuwissen et al. 2001). The population of individuals hav-
ing both phenotypic and genotypic information is known as train-
ing population (TP) and is used for constructing predictive
models, which allow to compute “Genomic Estimated Breeding
Values” (GEBVs) in individuals for which only genotyping infor-
mation is available (Desta and Ortiz 2014). Typically, the predic-
tive models used in GP require to regress a number of predictors
(DNA markers) that greatly exceeds the number of observations
or phenotypes and several parametric and nonparametric mod-
els have been proposed to deal with overfitting and the “large p,
small n” problem (Meuwissen et al. 2001; Jannink et al. 2010; P�erez
and de los Campos 2014b) as in these conditions, the estimation
of marker effects using the ordinary least squares method is not
practicable. Unlike methods based on whole genome regression
of markers, the genomic best linear unbiased prediction (GBLUP)
method treats genomic values of individuals as random effects in
a linear mixed model and uses a genomic relationship matrix
based on DNA marker data to compute GEBVs (VanRaden 2008;
Wang et al. 2018). Interestingly, under certain assumptions, it has
been demonstrated that GBLUP and ridge regression of markers
are actually equivalent models (Habier et al. 2007). To date, in
plant breeding, GP has been mainly applied for improving GY
(Crossa et al. 2017), but this methodology offers the possibility to
predict other traits of agricultural interest that cannot be easily
scored (e.g. belowground and physiological traits correlated with
abiotic stress tolerances). For instance, GP models have been fit-
ted to seed size (Nielsen et al. 2016), thousand grain weight, num-
ber of grains per m2, grain plumpness (Bhatta et al. 2020), root
vigor (Biscarini et al. 2014), straw breaking and lodging (Tsai et al.
2020), beta-glucan and grain protein content (Bhatta et al. 2020),
and starch (Tsai et al. 2020).

In the present study, we examined the diversity and distribu-
tion of belowground (SRA and SRN) and physiological (TR re-
sponse to increasing VPD) traits at the seedling stage in an 8-way
Multiparent Advanced Generation Inter-crosses (MAGIC) popula-
tion of winter barley and in its founder parents (Puglisi et al.
2021). We correlated phenotypic data of SRA, SRN, and TR scored
in controlled conditions with GY obtained in different site-by-
season combinations to re-assess the relevance of belowground
and physiological traits of seedlings for the uptake of nutrients
and water. Leveraging on phenotypic and genotypic information,
we fitted and cross-validated different GP models including dif-
ferent sets of linear predictors and showed that these models can
successfully predict SRA, SRN, and TR and might pave the way
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for incorporating these traits in actual breeding programs, under-
pinning ideotype breeding and characterizing large plant collec-
tions.

Materials and methods
Plant materials and genotyping
The MAGIC population examined in this study and used for
genome-enabled predictions has been extensively described else-
where (Puglisi et al. 2021). Particularly, the set of 89 MAGIC lines
used in the present study (Supplementary Tables 1 and 2) corre-
sponds to the TP previously assembled for fitting multienviron-
ment GP models and genotyped using the barley 50K SNP chip
(Puglisi et al. 2021). In the present study, 20,426 polymorphic SNPs
were used for fitting GP models (Supplementary File 1).

Phenotyping of plant material
The set of MAGIC lines was phenotyped in the following site-by-
season combinations to examine GY and heading date:
Fiorenzuola d’Arda (Italy, 2016, 2017, 2018, 2019) at CREA-Centro
di Genomica e Bioinformatica (44�55’39.00 0N 9�53’40.60 0E, 78 m
above sea level), Marchouch (Morocco, 2016, 2019) at ICARDA
Experimental station (33�36’43.50 0N 6�42’53.00 0W, 390 m above sea
level), Adana (36�59052.90 0N 35�20028.00 0E, 24 m above sea level),
and Konya (37�53037.90 0N 32�37026.00 0E, 1,005 m above sea level)
(Turkey, 2019). These data, excluding phenotypic data collected
in Marchouch during the growing season 2018–2019, are part of
the data set previously analyzed (Puglisi et al. 2021). All these
experiments were conducted following local management practi-
ces, except for field trials organized in Fiorenzuola d’Arda during
2017–2018 and 2018–2019 growing seasons as they were con-
ducted using 2 different levels of nitrogen fertilization as previ-
ously described (Puglisi et al. 2021). The detailed procedure for
analyzing field trial data and deriving the adjusted means of GY
is described in the Supplementary text 1 “Procedure for deriving
the adjusted means of grain yield.”

SRA and SRN were phenotyped using the clear pot method
(Richard et al. 2015; Robinson et al. 2016) at ICARDA’s physiology
laboratory under controlled temperature and humidity according
to the original protocol (Richard et al. 2015) and using transparent
ANOVApot pots (Anovapot Pty Ltd, Brisbane, QLD, Australia,
www.anovapot.com/php/anovapot.php) with a diameter of 200
mm, height of 190 mm, and a volume of 4 L. The detailed proce-
dure and the experimental design to phenotype SRA and SRN
and for computing the adjusted means of SRA is described in the
Supplementary text 2 “Procedure for phenotyping SRA and SRN
and deriving the adjusted means of SRA.”

The TR response under progressive VPD was examined at
ICARDA’s physiology laboratory under controlled conditions.
This experiment was designed randomizing the 90 MAGIC lines
using 3 biological replicates per genotype, using 2 L pots with di-
ameter and height of 104 and 200 mm, respectively. In each pot,
plants were sown at a depth of circa 2 cm and were uniformly ir-
rigated every 2 days. At Zadoks stage 14 (Zadoks et al. 1974),
which was reached after 4–5 weeks after sowing, depending on
the genotype, pots were irrigated until reaching the maximum
water holding capacity of the substrate. The day after, pots were
subsequently closed with plastic bags and balls in order to limit
evaporation. TR was measured under increasing VPD ranging
from 0.4 to 5.4 kPa in a greenhouse under controlled conditions
(temperature and humidity) accurately monitored with data log-
gers (Type TGU-4550, Gemini Data Loggers, UK). Phenotyping of
plants and the computation of TR under increasing VPD

conditions was carried out following published protocols

(Fletcher et al. 2007; Sadok and Sinclair 2009a, 2009b; Schoppach

and Sadok 2012; Schoppach et al. 2017; Tamang and Sadok 2018;

Sadok and Tamang 2019) and described in detail in the

Supplementary text 3 “Procedure for estimating the TR at differ-

ent values of VPD.”

Descriptive statistics and correlation analyses
Variation in GY and SRA in the panel MAGIC lines was investi-

gated computing maximum and minimum values, mean, me-

dian, and standard deviation (SD). This descriptive analysis was

computed using “metan” package (Olivoto and Lúcio 2020) imple-

mented in R 4.0.3 statistical (R Core Team 2019). The adjusted

means of GY and SRA, along with SRN and TR measured at a VPD

of 2.7 kPa were analyzed and correlated each other. Two different

types of correlations were applied on the basis of variable type:

Pearson’s correlation coefficient was applied to compute correla-

tion between continuous traits (GY, SRA, and TR measured at a

VPD of 2.7 kPa), while polyserial correlations were computed to

measure correlations between continuous and categorical varia-

bles (Drasgow 2006). These latter set of correlation analyses was

computed using “polycor” package (Fox 2010) implemented in R

4.0.3 statistical (R Core Team 2019).

GP models fitted to SRN
In the present study, 2 different GP models were fitted to SRN

combining phenotypic data with genotypic information obtained

with the Barley 50 k SNP chip (Puglisi et al. 2021). For this trait, GP

models were fitted following 2 different hypotheses. First, we as-

sumed that SRN varies as an ordinal discrete variable that indi-

cates the performance of plants at the adult stage under nitrogen

or water deficiency and for this aim, threshold genomic best lin-

ear unbiased predictor (TGBLUP) models and extended TGBLUP

models were fitted.
Formal presentation of the model theory of GP for ordinal dis-

crete data was disserted elsewhere (Montesinos-López et al.

2015a). Here, we shortly introduce the TGBLUP models used in

the present study for implementing GP. For SRN, we assumed

that the ordinal response variable yik, that is the number of ob-

served seminal roots, can take C¼7 mutually exclusive c values,

where i indicates the genotype, k points out the number of repli-

cates, and c takes values equal to the number of observed semi-

nal roots observed in the MAGIC population, that is

c ¼ 2; 3; 4; 5; 6; 7; 8. Moreover, we supposed that the ordinal re-

sponse variable yik follows a multinomial distribution with

parameters Nik and pik c¼2ð Þ; pik c¼3ð Þ; pik c¼4ð Þ; pik c¼5ð Þ; pik c¼6ð Þ;

pik c¼7ð Þ; pik c¼8ð Þ, that is (yik c¼2ð Þ; yik c¼3ð Þ; yik c¼4ð Þ; yikðc¼5Þ; yikðc¼6Þ;

yikðc¼7Þ; yikðc¼8ÞÞ � MULTINOMIALðNik; pik c¼2ð Þ; pik c¼3ð Þ; pik c¼4ð Þ; pik c¼5ð Þ;

pik c¼6ð Þ; pik c¼7ð Þ; pik c¼8ð ÞÞ
where Nik points out the number of observation and

pik c¼2ð Þ; pik c¼3ð Þ; . . . pik c¼8ð Þ point out the probabilities of getting val-

ues c ¼ 2; 3; . . . 8 in the ithgenotype in the kthreplicate. Threshold

models assume that yik is generated from an underlying continu-

ous random variable lik, having a normal distribution, which is

called latent “liability” variable (Sorensen et al. 1995; Montesinos-

López et al. 2015a) and imply that for C ordinal and mutually ex-

clusive categories the existence of C� 1 ¼ 6 unknown c

thresholds that must be estimated such as cmin < c1

< c2 < c3: < cmax, with cmin ¼ �1 and cmax ¼ þ1. In threshold

models, values of lik are mapped to the ordinal categorical re-

sponse according to the following conditions:
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yik ¼

2 if cmin < lik < c1
3 if c1 < lik < c2
4 if c2 < lik < c3
: . . . :: . . . . . . . . . . . . . . . . . .
8 if c6 < lik < cmax

:

8>>>><
>>>>:

In these models, the link function relating linear predictors
with the probability of observing data is the cumulative probit
Uð:Þ, that is the cumulative distribution function of a standard
normal distribution and U�1 is the corresponding inverse func-
tion. Consequently, threshold models are specified with C� 1 lin-
ear predictors gikc as follows:

gikðc¼2Þ ¼ U�1
�
pikðc¼2Þ

�
¼ c1 � XT

ikb� ZT
iku

gikðc¼3Þ ¼ U�1
�
pikðc¼2Þ þ pikðc¼3Þ

�
¼ c2 � XT

ikb� ZT
iku

gikðc¼4Þ ¼ U�1
�
pikðc¼2Þ þ pikðc¼3Þ þ pikðc¼4Þ

�
¼ c3 � XT

ikb� ZT
iku

gikðc¼5Þ ¼ U�1
�
pikðc¼2Þ þ pikðc¼3Þ þ pikðc¼4Þ þ pikðc¼5Þ

�

¼ c4 � XT
ikb� ZT

iku

gikðc¼6Þ ¼ U�1
�
pikðc¼2Þ þ pikðc¼3Þ þ pikðc¼4Þ þ pikðc¼5Þ þ pikðc¼6Þ

�

¼ c5 � XT
ikb� ZT

iku

gikðc¼7Þ ¼ U�1
�
pikðc¼2Þ þ pikðc¼3Þ þ pikðc¼4Þ þ pikðc¼5Þ þ pikðc¼6Þ þ pikðc¼7Þ

�

¼ c6 � XT
ikb� ZT

iku

where XT
ik is a known row incidence vectors of fixed effects, ZT

ik is
a known row incidence vectors of random effects, b points out
the vector of fixed effects, and b is the vector of random effects.
The probabilities pikc are linked to the linear predictors gikc as
follows:

pikðc¼2Þ ¼ U
�
pikðc¼2Þ

�

pikðc¼3Þ þ pikðc¼2Þ ¼ U
�
pikðc¼3Þ

�
. . . ::
pikðc¼7Þ þ pikðc¼6Þ þ pikðc¼5Þ þ pikðc¼4Þ þ pikðc¼3Þ þ pikðc¼2Þ ¼ U

�
pikðc¼7Þ

�
:

As mentioned above, threshold models assume that the latent
and normally distributed variable lik generates the observed C
categories as follows:

lik ¼ XT
ikbþ ZT

ikuþ eik (1)

where the error terms eik are independent and identically distrib-
uted and follow a normal distribution with mean 0 and SD equals
to 1, that is eik � Nð0; 1Þ. In the present study, different combina-
tions of linear predictors, including replicates, lines, markers, and
first-order epistatic effects, were incorporated in XT

ik and ZT
ik for

fitting 5 extended threshold models (Table 1), which were already
substantiated and described in other studies (Jarqu�ın et al. 2014;
Montesinos-López et al. 2015a).

The resulting 5 models include the following sets of linear pre-
dictors:

SRN�Model 1 : lik ¼ Rk þ Li þ eik (2)
SRN�Model 2 : lik ¼ Rk þ gi þ eik (3)

SRN�Model 3 : lik ¼ Rk þ gi þ gAi þ eik (4)
SRN�Model 4 : lik ¼ Rk þ Li þ gi þ eik (5)

SRN�Model 5 : lik ¼ Rk þ Li þ gi þ gAi þ eik (6)

where lik is the latent “liability” variable of kth replicates in the
ith line. SRN-Model 1 includes Rk, which is the fixed effect of kth

replicates and Li that is the random effect of the ith line

supposed to be independent and normally distributed as

Li � N 0; r2
L

� �
. SRN-Model 2 includes gi, which points out the ad-

ditive genetic value of the ith line, that is gi ¼
Pp

n¼1 xinbn, where

xin is the genotype of the ith line at marker n and bn is the corre-

sponding effect of marker n. The vector of additive genetic

value g ¼ ðg1; g2; g3 . . . . . . giÞ is supposed to be normally distrib-

uted as g � N 0;Gr2
g

� �
with mean 0 and variance–covariance

structure Gr2
g, where r2

g points out the additive genetic variance

r2
g and G is the genomic marker relationship matrix (VanRaden

2008). SRN-Model 3 extends SRN-Model 2 including first-order

multiplicative epistatic effects gA ¼ ðgA1; gA2; . . . gAiÞ, which are

assumed to be distributed as gA � N 0;GAr2
gA

� �
, that is the vec-

tor of epistatic effects follows a normal distribution with mean

0 and epistatic additive � additive genetic variance r2
gA

(Montesinos-López et al. 2015a). Finally, SRN-Model 4 includes

Rk; Li; and gi as linear predictors, while SRN-Model 5 extends

SRN-Model 4 including gAi effects. In the present study, the

aforementioned threshold models were implemented in a

Bayesian framework using BGLR package (P�erez and De Los

Campos 2014a) in R 4.0.3 statistical (R Core Team 2019) using

default prior distributions and modifying codes published in

other studies (Montesinos-López et al. 2015a).
Second, we handled SRN as count data for predicting this trait

per se, fitting 5 log-normal GP models based on GBLUP and indi-

cated as SRN-log-Model 1–5 (Table 1) (Montesinos-López et al.

2015b). In SRN-log-Model 1–5, the response variable is the loga-

rithm of SRN, that is logðykj þ 1Þ, and was fitted using the same

sets of linear predictors (Rk, Lj, gj, gAj) described for the 5 extended

TGBLUP models [Table 1; Equations (2–6)]. In these models, Rk,

Lj, gj, gAj follow the same distributions defined for the extended

TGBLUP models except for the error terms eik of Kth replicates in

ith line, which in these models is distributed as eik � N 0; r2
e

� �
, that

is the residuals are independent and normally distributed with

mean 0 and variance r2
e . Like TGBLUP models, log-normal models

were implemented using BGLR package (P�erez and De Los

Campos 2014b) in R 4.0.3 statistical (R Core Team 2019).

Table 1. Summary of the linear predictors incorporated in the
GBLUP and TGBLUP models used to analyze SRN, SRA, and TR.

Model Main effects Interaction

R L G G � G

SRN-Model 1
SRN-log-Model 1
SRA-Model 1
TR-Model 1

� �

SRN-Model 2
SRN-log-Model 2
SRA-Model 2
TR-Model 2

� �

SRN-Model 3
SRN-log-Model 3
SRA-Model 3
TR-Model 3

� � �

SRN-Model 4
SRN-log-Model 4
SRA-Model 4
TR-Model 4

� � �

SRN-Model 5
SRN-log-Model 5
SRA-Model 5
TR-Model 5

� � � �

G, marker covariates; G � G, first-order additive � additive epistasis; L, line; R,
replicate.
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GP models fitted for SRA and TR
The 5 sets of linear predictors used in the extended TGBLUP mod-

els (Table 1) were used for predicting SRA and TR measured at a

VPD of 2.7 kPa, using the following models:

SRA�Model 1 : yi ¼ Li þ ei (7)
SRA�Model 2 : yi ¼ gi þ ei (8)

SRA�Model 3 : yi ¼ gi þ gAi þ ei (9)
SRA�Model 4 : yi ¼ Li þ gi þ ei (10)

SRA�Model 5 : yi ¼ Li þ gi þ gAi þ ei (11)
TR�Model 1 : yi ¼ Li þ ei (12)
TR�Model 2 : yi ¼ gi þ ei (13)

TR�Model 3 : yi ¼ gi þ gAi þ ei (14)
TR�Model 4 : yi ¼ Li þ gi þ ei (15)

TR�Model 5 : yi ¼ Li þ gi þ gAi þ ei (16)

where yi is the adjusted mean of SRA [Equations (7–11)] or TR

[Equations (12–16)], �i is the error term of the ith measurement

with �i � N 0; r2
e

� �
, that is that the errors are independent and

identically distributed with mean 0 and variance r2
e . In these

models, the linear predictors Lj, gj, and gAj follow the same dis-

tribution defined for TGBLUP models. These extended GBLUP

models (SRA-Models 1–5, TR-Model 1–5) were implemented us-

ing BGLR package (P�erez and De Los Campos 2014a) in R 4.0.3

statistical (R Core Team 2019) as censored data described with

the following interval

ai < yi < bi ;

where yi is the adjusted mean of SRA or TR computed as best

linear unbiased estimator (BLUE), ai is the lower bound esti-

mate of yi computed as the difference between yi and 2 SD, and

bi is the upper bound estimate of yi computed as the sum of yi

with 2 SD.

Cross-validation of GP models
For the extended TGBLUP models, leave-one-out (LOO) cross-vali-

dation was carried out and predictive ability was estimated using

both Brier Score (BS) and the proportion of cases correctly classi-

fied (PCCC) (Brier 1950; Montesinos-López et al. 2015a, 2020). BS

was computed as follows:

BS ¼ n�1
Xn

i¼1

Xg

c¼1
p̂ic � dicð Þ 2 ; (17)

where p̂ ic � dicð Þ 2 is the average square difference between p̂ ic

predictions and dic classes for observation i into category c. BS

obtained with Equation (17) was divided by 2 in order to have a

range that varies from 0 to 1 (Brier 1950; Montesinos-López

et al. 2015a). For the other models used in the present study (ex-

tended GBLUP and log-normal models), the predictive accuracy

of GP models was calculated as the Pearson’s correlation coef-

ficient between GEBVs and the corresponding adjusted means

of the trait (SRA, TR measured at a VPD of 2.7 kPa). Unlike the

Pearson’s correlation coefficient used for the extended GBLUP

models for SRA and TR, lower values of BS point out higher pre-

dictive ability of the models, while higher values of BS point

out lower predictive ability of models.

Results
Phenotypic distribution and analysis of
belowground and physiological traits in the
barley MAGIC population
To assess the variability of SRA and SRN, the panel of MAGIC
lines was phenotyped at the seedling stage under controlled con-
ditions. This analysis showed that SRN varies greatly in the
MAGIC population as it ranges between 2 and 8 with a mean of 5
seminal roots and a SD of 0.84 (Fig. 1a; Supplementary Table 1).
The adjusted means of SRA and the corresponding 95% confi-
dence intervals of estimates were computed using BLUEs, analyz-
ing the adopted experimental design with a linear mixed model,
which was fitted to the raw measurements of SRA. This analysis
indicated that the phenotypic distribution of SRA ranges from
57.75� (genotype “M18”) to 106.40� (genotype “M324”) with an
average value of 86.61� (Fig. 1b; Supplementary Table 2). Both
belowground traits exhibit a bell-shaped distribution (Fig. 1, a
and b) and particularly, Shapiro–Wilk normality test showed
that, for SRA, the null hypothesis, that is that the adjusted means
of SRA follow a normal distribution, cannot be rejected
(P-value¼ 0.1844).

The whole-plant TR was measured in the set of MAGIC lines at
the seedling stage using increasing VPD values ranging from 0.4
to 5.4 kPa. Regression of whole-plant TR on VPD values was car-
ried out using linear and segmented models and R-squared was
used as goodness-of-fit measure for model selection. Regression
of whole-plant TR on VPD values showed a segmented response
in a large fraction of genotypes, while in 28 MAGIC lines model
fitting and selection indicated a linear response of TR to increas-
ing levels of VPD (Supplementary Table 2). The breakpoint values
of genotypes showing a segmented trend of TR to increasing VPD
ranged from 2.3 to circa 2.5 kPa, in agreement with the results
presented in previous studies (Sadok and Tamang 2019).
Consequently, we investigated the variability of whole-plant TR
at a VPD of 2.7 kPa, which is a VPD value higher than the break-
points of genotypes showing a segmented TR response. This
analysis showed that the panel of MAGIC exhibits circa a 5-fold
variation of TR as measured values range from 4.05 (genotype
“M382”) to 13.6 (genotype “M150”) mgH2Om�2s�1 (Fig. 1c;
Supplementary Table 2).

Correlation of belowground and physiological
traits with GY
A genotype � environment (GGE) biplot analysis was carried
out using the adjusted means of GY to assess the level of corre-
lation among site-by-season combinations and identify envi-
ronments with peculiar bio-climatic parameters (Fig. 2a). This
analysis indicated that AdaIN and FioIN show the highest envi-
ronmental similarities, while compared to the remaining envi-
ronments, MarIN is the most dissimilar one as already
substantiated in other studies (Puglisi et al. 2021) owing to the
dryer and hotter conditions of this site. For assessing whether
belowground and physiological traits might contribute to de-
termining yield formation under limiting nitrogen (FioLN) and
water conditions (MarIN), we correlated GY with SRN, SRA, and
TR measured at a VPD of 2.7 kPa, computing Pearson’s correla-
tion coefficient for pairs of continuous traits (GY, SRA, and TR)
and polyserial correlation coefficient for pairs of continuous
and discrete (SRN) traits (Fig. 2b). This pairwise correlation
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analysis indicated that SRN shows a positive and moderate cor-

relation with SRA (r¼ 0.22, P-value¼ 0.07) (Fig. 2b;

Supplementary Fig. 1), while GY in FioLN exhibited positive cor-

relations with SRN, showing a value of 0.28 (P-value¼ 0.02)

(Fig. 2b; Supplementary Fig. 1). Unexpectedly, no significant

correlations were observed between GY measured in MarIN

with belowground and physiological traits. Overall, GY showed

positive correlations among KonIN, AdaIN, and FioIN, while no

significant correlations were observed between MarIN and the

remaining sites (KonIN, AdaIN, FioIN, and FioLN) (Fig. 2b).

Fig. 1. Phenotypic distribution of SRA, SRN, and whole-plant TR measured at a VPD of 2.7 kPa in the panel of MAGIC lines: a) histogram of SRN counted
in the MAGIC lines; b) histogram of the adjusted means of SRA measured in sexagesimal degrees; c) bar plot of TR measured at a VPD of 2.7 kPa. Error
bars point out the 95% confidence interval of TR values.

Fig. 2. GGE biplot of GY and pairwise correlations of SRA, SRN, GY, and TR at a VPD of 2.7 kPa. a) The environment-vector view of the GGE biplot
indicates similarities among test environments in discriminating the genotypes. b) Depending on the trait distribution type (discrete or continuous),
values indicate pairwise Pearson’s correlation or polyserial correlation between GY, SRA, SRN, and TR measured under high evaporative demand of
VPD (2.7 kPa). Correlation values showing P-values larger than 0.05 are marked by a cross.
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Using SRN as proxy trait to predict GY under
limiting nitrogen conditions
Here, following the moderate correlation observed between GY
obtained under limiting nitrogen conditions and the number of
seminal roots in FioLN (Fig. 2b), we assumed that SRN might
serve as a proxy trait for predicting GY of MAGIC lines under ni-
trogen or nutrient deficiency and consequently the number of
seminal roots was analyzed as an ordinal categorical phenotype,
that is we supposed that genotypes exhibiting less seminal roots
are more sensitive to nitrogen deficiency and vice versa.
Genotyping data of MAGIC (Puglisi et al. 2021) were combined
with SRN counted in seedlings for fitting 5 TGBLUP GP models
fitted with different sets of linear predictors, which include the
fixed effect of replicates (all models), the effect of lines (SRN-
Model 1), the effect of molecular markers (SRN-Model 2), the ef-
fect of molecular markers and epistasis (SRN-Model 3), the ef-
fect of lines and molecular markers (SRN-Model 4), and the
effect of lines, markers, and epistasis (SRN-Model 5) [Table 1;
Equations (2–6)] (Montesinos-Lopes et al. 2015b). SRN-Model 2
represents a standard TGBLUP, while SRN-Model 3, SRN-Model
4, and SRN-Model 5 extend TGBLUP models for including line
effects and first-order additive � additive epistasis [Table 1;
Equations (2–6)]. The estimates of fixed effects and their 95%
confidence intervals, that is the effects of the 12 replicates
implemented for phenotyping SRN, showed similar values in the
5 threshold models (Fig. 3a; Supplementary Table 3). Similarly,
the estimates of the 6 model thresholds (c1; c2; . . . c6Þ indicated
similar values across the 5 threshold models (Fig. 3b;
Supplementary Table 4). Overall, the fitting of SRN-Models 1–5
showed similar posterior means of fixed effects and thresholds
(Fig. 3; Supplementary Tables 3 and 4).

The probabilities for each ordinal categorical phenotype esti-
mated in the 5 TGBLUP models for the whole data set are shown
in Fig. 4. These boxplots showed that the average probabilities for
category 5 (5 seminal roots) are circa 0.50 in the whole data set
for all 5 models followed by categories 6 and 4 (Fig. 4). Unlike the
distribution estimated from raw data, these probability estimates

consider the effect of replicates but, overall, show similar trends
from the distributions obtained based on raw frequencies
(Fig. 1a).

The analysis of the estimated variance components in the 5
TGBLUP models fitted to SRN data shows that overall, the total
variance explained in SRN-Models 1–5 varies from 1.05 to 1.07
(Table 2). Molecular markers explain circa 4.76% of the total vari-
ance in SRN-Model 2, and circa 1.8% in SRN-Model 3, 4, and 5
(Table 2). Similarly, the first-order additive � additive epistasis
explains 4.76% of the total variance for SRN-Model 3 and 1.88%
for SRN-Model 5.

To assess the predictive ability of SRN-Models 1–5, LOO cross-
validation was implemented to compute BS between predicted
and observed categorical values and the PCCC (Gianola and
Schon 2016; Montesinos-López et al. 2020). Cross-validation
analysis pointed out the PCCC is circa 50% for the 5 models con-
sidered in the present study (Fig. 5a; Supplementary Table 5).
Similarly, BS points out a high predictive ability as a value of circa
0.3 was estimated for SRN-Models 1–5 (Fig. 5b).

GP of SRN using log-normal transformation of
count data
Beyond using SRN as a proxy trait for predicting GY under nu-
trient scarcity, GP models for count data were fitted to predict
this trait independently from its association with drought tol-
erance and GY under nitrogen deficiency at the mature stage,
using log-normal models (SRN-log-Models 1–5) incorporating
the same combinations of linear predictors included in SRN-
Models 1–5 (Table 1). The analysis of variance components of
these 5 log-normal models showed that “SRN-log-Model 5,”
which incorporates line (L), marker (G), and first-order additive
� additive epistasis (G � G), has a lower error variance com-
pared to the other models considered in the present study, and
allows to better fit the data (Fig. 6a; Supplementary Table 6).
The variance of G � G is 27.52% for SRN-log-Model 3 and
19.83% for SRN-log-Model 5 (Fig. 6a; Supplementary Table 6).
LOO cross validation pointed out that the predictive ability

Fig. 3. Bar plots of the estimated parameters and thresholds in SRN-Models 1–5. a) Posterior mean and 95% confidence interval of the 12 fixed effects (b1,
b2,. . . b12) estimated in the 5 TGBLUP models. b) Posterior mean and 95% confidence interval of threshold parameters (c1; c2; :c6). In both graphs, the
error bars point out the posterior 95% confidence interval of parameter values.
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Fig. 5. Predictive ability of SRN-Models 1–5. a) Proportion of cases correctly classified using the LOO cross-validation of the 5 TGBLUP models. b) Brier
scores obtained from LOO cross-validation of the 5 TGBLUP models.

Fig. 4. Boxplots of the estimated probabilities of SRN in SRN-Models 1–5. Each boxplot summarizes the distribution of the estimated probability in each
category in the 5 TGBLUP models.

Table 2. Estimated variance components of SRN-Models 1–5.

Model L G G � G Error variance Total variance

SRN-Model 1 0.07 (6.54%) 1 1.07
SRN-Model 2 0.05 (4.76%) 1 1.05
SRN-Model 3 0.02 (1.86%) 0.04 (4.76%) 1 1.07
SRN-Model 4 0.04 (3.77%) 0.02 (1.88%) 1 1.06
SRN-Model 5 0.02 (1.88%) 0.02 (1.88%) 0.02 (1.88%) 1 1.06

L, estimated variance of line effects; G, estimated variance of marker effects; G � G points out the variance of first-order additive � additive epistasis. Numbers
between brackets point out percentage of explained variance of each model predictor.

8 | G3, 2022, Vol. 12, No. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/12/3/jkac022/6517783 by guest on 16 D

ecem
ber 2022



values of these models, measured using Pearson’s correlation
coefficient between predicted and observed data, range from
0.35 (SRN-log-Model 2) to 0.79 (SRN-log-Model 1), while SRN-
log-Model 3, SRN-log-Model 4, and SRN-log-Model 5 show pre-
dictive ability values of 0.54, 0.60, and 0.65, respectively
(Fig. 6b; Supplementary Table 6). Overall, model comparison
indicated that for SRN, log normal models that explicitly incor-
porate markers and first-order additive � additive epistatic
interactions capture a larger fraction of the total phenotypic
variability and have better predictive ability.

Prediction of SRA in barley seedlings
As with log-normal models, the GBLUP counterpart of the 5
TGBLUP models used for predicting SRN were fitted to SRA. These
5 models incorporate the main effects and interactions used for
SRN [Table 1; Equations (7–11)] but assume that the response var-
iable, that is SRA, is continuous and follows a normal distribu-
tion. The adjusted means of SRA were combined with 20,426
polymorphic SNPs detected in this panel of MAGIC population to
fit these extended GBLUP models. The analysis of variance com-
ponents of these 5 models showed that “SRA-Model 5,” which
incorporates line, marker, and first-order additive � additive epi-
static interaction effects, has a lower error variance compared to
the other models considered in the present study and allows to
better fit data (Fig. 7a; Supplementary Table 7). The variance of
first-order additive � additive epistatic interaction was 27.79%
for SRA-Model 3 and 17.81% for SRA-Model 5 (Fig. 7a;
Supplementary Table 7). LOO cross validation pointed out that
the predictive ability values of these models, measured using
Pearson’s correlation coefficient between predicted and observed
data, range from 0.19 (SRA-Model 2) to 0.73 (SRA-Model 1), while
SRA-Model 3, SRA-Model 4, and SRA-Model 5 show predictive
ability values of 0.37, 0.49, and 0.53, respectively (Fig. 7b;
Supplementary Table 7). As observed for log-normal models

(SRN-log-Models 1–5), models that predict SRA incorporating
marker and first-order epistatic effects in the linear predictors
show higher predictive ability and better model fitting.

Models for predicting TR under high
evapotranspiration demand
The 5 combinations of linear predictors incorporated in GP mod-
els fitted to SRA and SRN data [Table 1; Equations (12–16)] were
used to predict TR at a VPD of 2.7 kPa. The analysis of variance
components of these 5 models showed that “TR-Model 5,” which
incorporates line, marker, and first-order additive � additive epi-
static interaction effects as linear predictors, has a lower error
variance compared to the other models considered in the present
study and allows to better fit the data (Fig. 8a; Supplementary
Table 8). The analysis of variance components showed that first-
order additive � additive epistatic interaction effects explain
21.93% and 15.69% of the total variance for TR-Model 3 and TR-
Model 5, respectively (Fig. 8a; Supplementary Table 8). LOO cross
validation pointed out that the predictive ability values of these
models, measured using Pearson’s correlation coefficient be-
tween predicted and observed data, range from 0.68 (TR-Model 2)
to 0.96 (TR-Model 1), while TR-Model 3, TR-Model 4, and TR-
Model 5 show predictive ability values of 0.89, 0.95, and 0.95, re-
spectively (Fig. 8b; Supplementary Table 8). Like observed for GP
models fitted to belowground traits, this analysis demonstrated
that models that explicitly incorporate marker and interaction
effects fit better the TR data and have better predictive ability.

Discussion
In the present study, the phenotypic variability of SRN, SRA, and
TR under increasing evaporative demand was surveyed in a panel
of MAGIC lines of barley (Supplementary Tables 1 and 2). The
results showed that, in this genetic material, SRN can vary from 2

Fig. 6. Estimated variance components and predictive ability of SRN-log-Models 1–5. a) Bar plots indicate the explained variance of each component,
expressed as percentage of the total model variance. L indicates the estimated variance of line effects; G is the estimated variance of marker effects
while G � G and “Error” point out the variance of first-order additive � additive epistatic effects and the residual variance, respectively. Error bars point
out the 95% confidence interval of the estimated variances. b) Bar plots of predictive ability values computed as Pearson’s correlation between
estimated and observed data using LOO cross validation strategy.
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to 8 (Fig. 1a), consistently with other studies carried out on popu-
lations of mostly unrelated accessions of barley (Robinson et al.
2016; Jia et al. 2019).

In the scientific literature, protocols for SRA phenotyping pro-
pose to examine the first pair of seminal roots (Robinson et al.

2016) or the 2 outmost seminal roots (Jia et al. 2019). Following
the first protocol, in the present study, SRA between the first pair
of seminal roots has been measured, and the comparison of our
results with those obtained in other works carried out following
the same methodology (Robinson et al. 2016, 2018) points out that

Fig. 8. Estimated variance components and predictive ability of the TR-Models 1–5: a) bar plots indicate the variance of each component, expressed as
percentage of the total model variance. L indicates the estimated variance of line effects; G is the estimated variance of marker effects, while G � G and
“Error” point out the variance of additive � additive epistatic effects and the residual variance, respectively. Error bars point out the 95% confidence
interval of the estimated variances; b) bar plot of predictive ability values expressed as Pearson’s correlation between estimated and observed TR under
high evaporative demand (2.7 kPa).

Fig. 7. Estimated variance components and predictive ability of the SRA-Models 1–5. a) Bar plots indicate the variance of each component, expressed as
percentage of the total model variance. L indicates the estimated variance of line effects; G is the estimated variance of marker effects while G � G and
“Error” point out the variance of additive � additive epistatic effects and the residual variance, respectively. Error bars point out the 95% confidence
interval of the estimated variances; b) bar plot of predictive ability values computed using Pearson’s correlation between estimated and observed SRA.
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the SRA has a wider phenotypic distribution in MAGIC lines. On
the other side, the lack of common genotypes between these
experiments hampers our ability to compare results across differ-
ent studies and does not allow to attribute the wider distribution
of SRA detected in our genetic material to confounding or genetic
effects. Unlike the findings reported in other studies (Robinson
et al. 2016), SRA and SRN measured in barley seedlings showed a
moderate correlation (r¼ 0.22; Fig. 2b), slightly above the thresh-
old of significance (P-value¼ 0.07; Supplementary Fig. 1).
Nevertheless, this comparison is not exhaustive as in other stud-
ies SRN was handled as a continuous trait and the phenotypic
variability was presented using the adjusted means (BLUE or
BLUP), while in this research work SRN was analyzed as a discrete
trait. The analysis of SRN as continuous or discrete phenotypic
trait implies different assumptions, which in turn hamper the
comparisons of trait correlations; as in our analysis, SRN was
considered as a discrete trait and consequently the polyserial cor-
relation between SRA and SRN was computed instead of using
Pearson’s correlation coefficient. Interestingly, the present study
indicated a moderate and positive and significant correlation of
SRN (r¼ 0.28; P-value¼ 0.02) with GY measured in FioLN, which
was managed with reduced amount of nitrogen (Fig. 2b;
Supplementary Fig. 1). As highlighted for other cereal crops, this
correlation suggests a link between the root architecture system
and the ability of barley to grow in soils with a reduced nitrogen
fertilization without experiencing yield penalty. Anyway, the
sample size of this analysis along with the inclusion of only 2
site-by-season combinations organized with this nitrogen man-
agement impose to carry out other studies to definitively under-
pin the tie between these belowground traits measured at the
seedling stage and the ability to promote yield formation under
limiting nitrogen conditions.

In recent years, TR has been widely targeted in different crops
to exploit its correlation to drought tolerance (Schoppach and
Sadok 2012, 2013; Schoppach et al. 2016). Nevertheless, in barley,
the analysis of TR in response to high evaporative demand has
lagged behind and to date has been investigated on a limited
panel of 25 wild barley and in 1 cultivar (Sadok and Tamang
2019), which showed that at a VPD of circa 2.7 kPa, TR ranges
from circa 25 to 75 mgH2Om�2s�1 depending on the genotype. Our
study confirms that in barley, the TR at high evaporative
demands is significantly lower than the values observed in other
cereal crops (Schoppach and Sadok 2012; Sinclair et al. 2017;
Tamang and Sadok 2018) and that the TR measured in our
MAGIC population exhibits lower values of TR compared to other
results obtained in barley at the same VPD values (Sadok and
Tamang 2019). As substantiated with SRA and SRN analyses,
technical causes and the lack of common genotypes hamper
cross-study comparison of TR in different barley germplasm, but
it is plausible that, in general, our MAGIC population has a lower
TR response to high evaporative demand compared to the barley
genotypes investigated in other studies (Sadok and Tamang
2019).

Unexpectedly, our analyses did not detect significant correla-
tion between TR and GY measured in MarIN, which is the hottest
and driest environment investigated in this study pointing out
that, in barley, this trait might exhibit correlation with GY under
harsher conditions. In field trials, GY depends on the genotypic
values of plants and environmental factors that exert their influ-
ence from sowing to harvest and consequently it is not surprising
to detect inconsistent correlations with the belowground and
physiological traits examined in the present study. The present
study does not address the correlations between SRN, SRA, and

TR measured at the juvenile stage and the root architecture of
mature barley, which remain still unclear and deserve additional
analyses.

In the present study, genomic-enabled prediction of SRA, SRN,
and TR measured at a VPD of 2.7 kPa was carried out, leveraging
on prediction models for different types of data (continuous,
count, and ordinal) and we showed that these traits can be mod-
eled with high predictive ability. These findings are relevant for
barley improvement and ideotype breeding as can pave the way
to exploit untapped plant collection minimizing phenotyping
costs. For standard, log normal, and TGBLUP GP models, we used
5 sets of linear predictors, which differ for the types of effects
considered (Table 1). Using TGBLUP models, we observed that the
inclusion of additive � additive epistatic interaction (G � G) in
the set of linear predictors (SRN-Model 3 and SRN-Model 5)
increases the total variance that models account for (Table 2).
These results are corroborated in log-normal GP models, as also
these models benefit of the inclusion of additive � additive epi-
static interaction in the set of linear predictors (Figs. 6–8). Overall,
for all traits examined in the present study, we found that the in-
clusion of interaction effects brings advantages both in model fit-
ting and predictive ability, as already substantiated in several
studies (Varona et al. 2018). Despite being called additive � addi-
tive epistatic interactions, the functional interpretation of these
effects and of the variance component counterpart may be mis-
leading as their existence in nonadditive GP models and genome-
wide association studies does not prove the role of epistasis in
the actual genetic architecture of these traits (de los Campos
et al. 2019; Schrauf et al. 2020). Particularly, the low marker den-
sity used in the present study to fingerprint the panel of MAGIC
and the incomplete linkage disequilibrium of markers (Puglisi
et al. 2021) favor the detection of phantom epistasis in nonaddi-
tive GP models, that is the portion of additive effects that is not
captured in the models due to incomplete linkage disequilibrium
generates apparent epistasis, which is in turn detected in our
models including additive � additive epistatic interactions (de los
Campos et al. 2019; Schrauf et al. 2020). While the functional in-
terpretation of first-order additive � additive effects might be
questionable, the inclusion of epistatic effects in GP should be
considered in conditions that foster the emergence of apparent
epistasis to improve predictive ability of models (Schrauf et al.
2020).

Several traits that are relevant for plant breeding are not nor-
mally distributed and need to be analyzed using special statisti-
cal techniques (Montesinos-López et al. 2015a). Traits that fall in
this category are proportion of plants that overcome a stress, dis-
ease resistance scored using discrete scales, and SRN. In the pre-
sent study, we used TGBLUP models assuming that SNR varies as
an ordinal discrete variable indicating the ability of plants to
grow under water or nutrient scarcity. (Montesinos-López et al.
2015a). Despite the low values of variance explained by molecular
markers (Table 2), the TGBLUP models fitted to SRN showed high
predictive ability values (Brier Score equals to 0.36) (Fig. 5),
highlighting that GP can be successfully applied to traits showing
low heritability as already substantiated in other studies carried
out in plants (Zhang et al. 2017; Kláp�st�e et al. 2020) and animals
(Guo et al. 2014; Iheshiulor et al. 2016).

Count data arise in plant breeding when the trait of interest is
the sum of discrete quantities that can take only integer values
(e.g. the number of tillers per plant or the number of seminal
roots in seedlings). Currently, for this type of data, GP models are
fitted using standard GBLUP along with log transformed data or
specific generalized mixed linear models that use a link function
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based on Poisson or Negative Binomial distributions (Montesinos-

López et al. 2016). This latter group of models have been recently
formalized, implemented in a Bayesian framework, and com-

pared with log-normal models for count data (Montesinos-López

et al. 2016). In the present study, GP for SRN was modeled as

count data fitting log-normal GP models as preliminary tests

showed that the computational demand of these models does

not counterbalance the higher predictive ability of these models.

Multitrait GP might be a natural approach to exploit SRA, SRN,

and TR response at high VPD as multivariate GP has been shown,

using either real or simulated data sets, to have superior predic-

tive ability compared to univariate GP. While the use of traits
varying on a continuous scale is straightforward in multivariate

GP, count data still pose several challenges that currently ham-

per our ability to exploit this trait in multivariate analyses.
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Kholová J, Nepolean T, Tom Hash C, Supriya A, Rajaram V,

Senthilvel S, Kakkera A, Yadav R, Vadez V. Water saving traits co-

map with a major terminal drought tolerance quantitative trait

locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Mol Breeding.

2012;30(3):1337–1353. doi:10.1007/s11032-012-9720-0.
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