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Over half the world population relies on rice for energy, but being a carbohydrate-based crop, it offers limited
nutritional benefits. To achieve nutritional security targets in Asia, we must understand the genetic variation in
multi-nutritional properties with therapeutic properties and deploy this knowledge to future rice breeding. High
throughput, VideometerLAB spectral imaging data has been effective in estimating total anthocyanin content,
particularly bound anthocyanin content, using the high prediction power of partial least square (PLS) regression
models. Multi-pronged nutritional properties of phenolic compounds and minerals, together with videometerLAB
features, were utilized to develop models to classify a collection of black rice varieties into three distinct nutri-
tional quality ideotypes. These derived models for black rice diversity panels were created utilizing videometer-
LAB data (L, A, B parameters), selected phenolic types (total phenolics, total anthocyanins, and bound flavonoids),
and minerals (Molybdenum and Phosphorous). Random forest and artificial neural network models depicted the
multi-nutritional features of black rice with 85.35 and 99.9% accuracy, respectively. These prediction algorithms
would help rice breeders strategically breed nutritionally valuable genotypes based on simple, high-through-put

videometerLAB readings and a small number of nutritional assays.

1. Introduction

Rice is a primary carbohydrate source for over half of the
world’s population, and global demand is steadily increasing. Con-
sumption in Asia alone, is projected to increase by 67% by 2035
(https://ricepedia.org/challenges/food-security). However, commer-
cial white rice lacks nutritional density and over-reliance on this
monocrop diet contributes to the double burden of malnutrition epi-
demic. With the recent COVID-19 pandemic exacerbating food and nu-
tritional insecurity issues it is important to bring the missing nutrition
into popular food crops of cereals by tapping into the genetic wealth
potential for multi-nutritional properties (Littlejohn & Finlay, 2021).

Market demand for pigmented rice, distinguished by its red, pur-
ple, or black pericarp, has grown due to its dietary and therapeuti-
cal traits (Samyor et al., 2017). Pigmented rice in the diet has shown
multiple nutritional benefits, including antioxidant, anticancer, antidi-
abetic, and anti-aging (Mbanjo et al., 2020; Tiozon et al., 2021). These
effects have been ascribed to the presence of phenolic compounds such
as phenolic acids, flavonoids, and anthocyanins (Callcott et al., 2019).
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Important phenolic compounds may exist in their free form in the cy-
toplasm or as conjugates of cell wall polysaccharides and lignin. More-
over, these bioactive compounds in the rice grain are concentrated in the
bran layer and husk which contribute to pericarp coloration (Huang &
Lai, 2016). In particular, accumulation of anthocyanins gives rice grain
its purple/ black color, whereas proanthocyanidins are responsible for
the red rice color (Khoo et al., 2017). Consequently, the concentration
of bioactive components is higher in pigmented than in non-pigmented
rice (Brotman et al., 2021; Goufo & Trindade, 2014). Potential health
benefits of pigmented rice and the genetics underlying the accumulation
of the bioactive compounds have been reviewed recently (Mbanjo et al.,
2020; Tiozon et al., 2021). Pigmented rice also has exceptional genetic
diversity for minerals such as iron (Fe), zinc (Zn), magnesium (Mg), cop-
per (Cu), potassium (K) and calcium (Ca) (Jeng et al., 2011; Kang et al.,
2011). Higher density of important macroelements (Na, P, S, Ca, K, and
Mg) and microelements (Mn, Mo, Zn, Cu, and Fe) have been identified
in some rice cultivars. These elements are crucial to human health as
they aid in maintaining metabolic and energy homeostasis, proper fluid
balance, blood pressure regulation, and overall health of the immune
system (Huang et al., 2020). As a result, more consumers have been
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drawn to health-promoting food products, generating a growing market
for more nutritious staples like whole-grain pigmented rice.

Color is an essential feature that consumers consider when selecting
various food products. Multispectral phenotyping is a non-destructive
and high throughput technique which can be used to measure color
changes in fortified rice (Tiozon et al., 2021) and monitor seed qual-
ity (ElMasry et al., 2019). Since a relationship between the accumula-
tion of bioactive chemicals in the pericarp and aleurone is related to
enriched bioactives, multispectral phenotyping may be deployed to re-
late the concentration of these phenolic compounds to the color of rice.
In our previous work, we have developed models to classify the cooking
and eating quality ideotypes of indica, japonica, and hybrid rice varieties
(Buenafe et al., 2021a, 2021b). To date, however, no model has been
developed that utilizes multispectral imaging to predict the nutritional
quality of rice by inferring the content of bioactives and minerals. In
this study, we relate multispectral imaging data with dietary compo-
nents such as total phenolics, total flavonoids, total anthocyanins, and
micronutrients to predict the nutritional classes of diverse germplasms
of pigmented rice and identify rice varieties or accessions with superior
dietary composition and health benefits.

2. Methods
2.1. Rice material

A set (n = 385) of diverse germplasm comprising white (n = 33) and
pigmented rice composed of purple-colored (n = 26), variable-purple-
colored (n = 301), and red-colored (n = 25) varieties were selected,
planted, and grown during the dry season of 2019 at the International
Rice Research Institute (IRRI), Los Bafios, Laguna, the Philippines un-
der well-maintained, irrigated and rain-fed conditions. A subset of line
(n =200) capturing the diversity of purple and variable purple rice were
also planted and grown during the wet season of 2020. Both sets (n = 385
and n = 200) were planted in a 3-m? effective area plots, excluding the
borders, using an augmented randomized complete block experimen-
tal design. Both sets followed the same management protocols imposed
at IRRIL The grains were harvested and air-dried to 14% moisture con-
tent. Then, the grains were dehulled using a rice sheller THU-35A (Sa-
take Corporation, Hiroshima, Japan) and ground to a fine powder (using
Mixer Mill MM400, Germany) for biochemical analysis.

2.2. Determination of multispectral imaging properties of rice grain using
videometerLAB

The multispectral phenotyping of pigmented rice grains was con-
ducted following the protocol described by Mbanjo et al. (2020). Briefly,
twenty grains from each accession were placed evenly across a 90 mm
Petri dish. The multispectral image of each grain was captured at 19
wavelengths from 365 to 970 nm, each with a resolution of 2056 x 2056
pixels. The color difference metrics defined by the CIE (Commission In-
ternational d’Eclairage) in 1976 and color-appearance attributes, such as
a* (green to red shade), b* (blue to yellow shade), L (lightness, clarity of
the pericarp), intensity, saturation (i.e., the saturation of color describes
its degree of purity in relation to neutral grey) and hue angle (H°, an-
gular specification of the color perceived as red, yellow, blue or green)
were measured.

2.3. Extraction of free and bound phenolic, flavonoid, and anthocyanin
content of rice grains

The free and bound phenolic components of rice grains were ex-
tracted according to the method described by Brotman et al. (2021),
with minor modifications. Whole grain rice flour (1.0 g) was extracted
twice with 10 mL of 80% methanol solution. For each extraction, the
mixture was placed in an iced ultrasonic bath for 1 h. Samples were
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then centrifuged at 12,500 rpm for 20 min. Supernatants from each ex-
traction procedure were pooled and adjusted to pH 4.5-5.0 using 1M
HCl or 1M NaOH.

The residues from each centrifugation procedure were mixed with
20 mL of 4 M NaOH for 2 h and placed in an iced ultrasonic bath to
release the ester- or ether-linked phenolic compounds. The mixture was
centrifuged at 12,500 rpm for 15 min. The supernatant was adjusted to a
pH 4.5-5.0 and then, added with 10 mL of ethyl acetate twice to extract
the bound phenolics (phenolic acids, flavonoids, and anthocyanins).

2.4. Quantification of the nutritional components of rice grain

2.4.1. Estimation of phenolic compounds in rice grain

The total phenolic content (TPC) and total flavonoid content (TFC)
were determined using method described in Ti et al. (2014). The total
anthocyanin content (TAC) was estimated based on the pH differential
method (Lee et al., 2005). Absorbance was measured using a microplate
reader (BMG SPECTROstar Nano) at 765 nm for TPC, 510 nm for TFC
and 520 and 700 nm for TAC. TAC = A x VM where A = (absorbance
at 520 nm - 700 nm) pH 4.5; V = volume of extract (mL) and M = fresh
mass of the sample (g). TPC was expressed as mg of gallic acid equivalent
(GAE) per 100 g of sample. TFC was calculated using a standard cate-
chin curve and expressed as mg of catechin equivalent (CE) per 100 g
of sample. TAC was expressed as cyanidin-3-O-glucoside (Cyn-3-Glu)
equivalent. This was done in triplicates.

2.4.2. Mineral content measurement in rice grain

The ground whole grain rice (0.600-0.625 g) were digested using
20 mL of 1% HNO4 and subjected to Inductively Coupled Plasma-Optical
Emission Spectrometry (ICP-OES) for mineral content determination fol-
lowing the method (Molina et al., 2019). Eleven minerals (Ca, Cu, Fe,
K, Mg, Mn, Mo, Na, P, S, and Zn) were quantified.

2.5. Multivariate analyses and mathematical modeling

2.5.1. Partial least square regression (PLSR) models for predicting phenolic
contents

R (Version 3.3.2, released 2016) was used for all multivariate and
statistical analyses. Principal component analysis (PCA) was used to re-
veal variability in multispectral imaging, phenolic, and micronutrient
data.

PLSR is a simple and accurate linear algorithm for modeling spec-
tral data. It is an extensively used approach for predicting the antioxi-
dant content and potential of various plant extracts (Li & Huang, 2021;
Sahin & Demir, 2016). To this end, PLSR was applied on the multispec-
tral data of the rice diversity panel (n = 385) to predict the TAC, TFC,
and TPC values and its free and bound components. The multispectral
imaging data was used as inputs to the models to generate predicted
outputs, as mentioned previously. The data set (n = 385) was divided
into 70% training and 30% test sets, using the simple random sampling
without replacement method. Ten-fold cross-validation was applied to
each model to ensure its stability and validity. The dimensionality of the
predictors was reduced using a correlation filter of r > |0.70| and the
min-max normalization technique was used as spectra pre-processing
tool to ensure that they would have the same contribution to the model.
The performance of the developed model was evaluated using the root-
mean-square error (RMSE) and coefficient of determination (R2).

2.5.2. Nutritional quality classes and classification models for
black-colored rice

In general black-colored rice could be distinguished with two unique
pericarp hues, purple and variable purple. The purple hue of the peri-
carp, perceptible to the human eye, distinguishes the rice as being pur-
ple. In contrast, the variable purple is marked by the presence of addi-
tional colored streaks than purple. Neither multispectral imaging data
nor nutritional factors, such as phenolic and micronutrient content, are
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able to differentiate between these two types of black-colored rice. Thus,
reclassification was performed using the nutritional factors to provide
consumers with a nutritional rationale for purchasing purple-colored
rice. To achieve the new classification, the phenolic and micronutri-
ent content data of all the black rice, which includes the purple- and
variable-purple-colored rice (n = 327, grown in 2019 dry season) from
the same pigmented rice collection, were subjected to Agglomerative
nesting via Ward’s method (AGNES). The number of best clusters formed
from the data set was identified using three internal validation measures
(silhouette width, Dunn index, and connectivity) and four stability mea-
sures (average proportion of non-overlap, average distance, average dis-
tance between means, and figure of merit).

The generated classes were predicted using the colorimetric data to
see whether the videometerLAB instrument could be used as a one-stop
approach to predict the phenolic content and nutritional value of black
rice. Random forest (RF) and artificial neural network (ANN) were uti-
lized as predictive classification models in this study, with the variable
inputs consisting of colorimetric data that had been trimmed using the
correlation filter. RF models, which have been previously used to predict
rice cooking and eating quality classes (Buenafe et al., 2021a), were ap-
plied to predict and classify the nutritional quality. RF models used boot-
strap to distribute the input variables (x;) to a distinct class by choosing
the majority among all groups of tree-based classifiers (h(x;, ®, k=1)),
where 0, are identically and independently distributed random vectors
(Tatsumi et al., 2015).

ANN is a machine learning approach which has been shown to be
effective in the regression prediction of rice yield (Basir et al., 2021),
as well as the prediction of cooking and eating quality classes of hybrid
rice (Buenafe et al., 2021b). ANN was applied with a back-propagation
algorithm with a three-layer architecture. The input layer comprised of
the colorimetric and nutritional data that had been previously trimmed
using a correlation filter, whilst the output layer consisted of the classes
generated by the cluster analysis. The best number of nodes in the hid-
den layer was identified through a trial-and-error process. For the fi-
nal RF and ANN models, 10-fold cross-validation was performed for the
whole data set, and its accuracy was calculated based on the percentage
of correctly predicted classes.

Both of the models (RF and ANN) were used to predict the nutritional
quality classes created through the AGNES clustering. The top five con-
tributing micronutrients and three multispectral imaging parameters (L,
A, and B) were used as inputs to the models. Both models were applied
to a validation set (n = 200) planted during wet season to check its
applicability and validity to other conditions.

3. Results and discussion

3.1. Variation in the multispectral imaging and nutritional components of
pigmented rice

The rice diversity panel (n = 385) revealed a wide variation in mul-
tispectral imaging properties and nutritional content (Fig. 1). In the
present study, L, A, B, intensity, H°, and saturation comprised the multi-
spectral imaging data of rice grain gathered using videometerLAB. The L
parameter indicates the whiteness of the sample and ranged from 27.48
to 85.12, with a mean value of 52.74 + 19.61. The A parameter, which
indicates the sample’s redness (positive values) and greenness (negative
value), ranged from 0.81 to 21.18, with a mean value of 6.59 + 5.35.
The B parameter indicates the yellowness (positive values) and blue-
ness (negative values) of samples and ranged from -2.89 to 31.43, with
a mean value of 10.90 + 8.03. The intensity, H°, and saturation of the
samples varied from 7.55 to 62.57, 122.13 to 203.37, and 1.14 to 26.68,
respectively, with mean values of 26.87 + 19.08, 152.78 + 16.59, and
10.29 + 7.37. In terms of pericarp coloration (white, red, purple, and
variable purple), data distribution showed variability in multispectral
imaging properties and nutritional components (Fig. 2). A Kruskall-
Wallis test followed by Wilcoxon-Mann-Whitney test for post hoc anal-
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ysis showed a significant difference (p > 0.05) among all rice colors
against the L, A, B, intensity, and saturation. For H°, the red and vari-
able purple showed no significant difference from each other. Due to
these observed correlations (Fig. 3), the multispectral imaging evidently
gives a highly reliable measurement of pericarp coloration, as substan-
tiated by the PCA bi-plots (Fig. 2). PC1 explained 54.9% of the vari-
ation, while PC2 accounted for 37.3%. The results showed that most
purple and variable, purple-colored rice pericarp had lower L values,
intensity, saturation, and B values, whereas white and red pericarps
exhibited the opposite. These results can be ascribed to high L values
which indicate whiteness of the material and low (negative) B values
which indicate the blueness (Vieira et al., 2018). The white and red
pericarp colors are very well distinguished by the A and H° parameters,
wherein the red pericarp has lower values of H® but higher values of A.
This is because the A parameter describes the redness of the material,
and the H° is calculated as tan~1(B/A) (Vieira et al., 2018). Most vari-
able purple-colored rice had higher A and lower H® values than purple.
However, there was still a number of variable purple-colored rice with
the same multispectral imaging properties as purple-colored rice. Gen-
erally, these results shows that videometerLAB parameters could differ-
entiate between black (variable purple and purple), red, and white rice.
However, it was unable to distinguish between the purple and variable
purple grains. These findings corroborate those reported for Philippine
pigmented rice which were discriminated based on multispectral imag-
ing color parameters (Mbanjo et al., 2019).

The phenolic content of the rice collection showed different trends in
terms of variability (Fig. 2b). The TPC ranged from 32.31 to 1455.72 mg
GAE/100 g DM with a mean value of 268.47 + 210.33 mg GAE/100 g
DM, while the TFC and TAC ranged from 16.06 to 359.43 mg CE/100 g
DM and 0 to 494.46 mg Cyn-3-Glu/100 g DM, respectively, with mean
values of 113.00 + 70.67 mg CE/100 g DM and 102.67+104.4 mg Cyn-
3-Glu/100 g DM. In general, the colored rice showed greater levels of
total phenolics, flavonoids, and anthocyanin than the non-colored rice
varieties (Fig. 2b). Among the colored rice, black rice (purple and vari-
able purple) had higher TPC and TAC levels than red rice, as previously
shown (Goufo et al., 2014; Shao et al., 2014). Although there was no sig-
nificant difference among the colored rice in terms of TFC levels, some
variable purple rice varieties had lower TFC than white rice. Similar re-
sults were observed by Shen et al. (2009). These high TFC in white rice
could be due to the presence of flavonoids (e.g., flavones, flavanones,
flavonols) other than anthocyanins.

When comparing the free and bound forms of phenolic com-
pounds, the levels of free PC (phenolic content), FC (flavonoid con-
tent), and AC (anthocyanin content) were two to three-times higher
than the bound form. The free PC, FC, and AC (ranged from 26.98 to
1427.23 mg GAE/100 g DM, 12.47 to 330.09 mg CE/100 g DM, and O
to 471.82 mg Cyn-3-Glu/100 g DM, respectively, with mean values of
232.65 + 208.09 mg GAE/100 g DM, 94.00 + 64.08 09 mg CE/100 g
DM, and 90.78 + 99.20 mg Cyn-3-Glu/100 g DM. The bound forms of
PC, FC, and AC ranged from 3.97 to 158.91 mg GAE/100 g DM, 2.29
to 71.06 mg CE/100 g DM, and O to 43.6 mg Cyn-3-Glu/100 g DM,
respectively, with mean values of 44.75 + 33.42 mg GAE/100 g DM,
20.65 + 15.01 mg CE/100 g DM, and 13.29 + 11.36 mg Cyn-3-Glu/100 g
DM. The lower levels of PC, FC, and AC detected in the bound form sup-
port the findings of prior studies (de Mira et al., 2009; Sumczynski et al.,
2016). However, Shao et al. (2014) reported higher levels of bound phe-
nolics in rice lines. Although phenolic content is primarily influenced
by genetics, the quantitative variation may be affected by a range of
environmental growth conditions, abiotic and biotic stresses, as well as
cultivation techniques (Dey & Bhattacharjee, 2020).

No significant differences were seen in purple and variable purple
rice in free or bound phenolic properties. There were also no significant
variations in TAC, free AC, bound PC, or bound FC between red and
white rice. However, purple rice could be differentiated from red rice
by TPC, TAC, free PC, free AC, bound FC, and bound AC. These differ-
ences were also observed between red and variable purple rice when
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Fig. 1. Distribution plots of pigmented rice collection (n = 385) based on (A) multispectral imaging data obtained from videometer, (B) phenolics data and (C)
minerals data. Abbreviated variables: L- whiteness, A- redness, B- yellowness, TPC - total phenolic content, TFC - total flavonoid content, TAC- total anthocyanin
content, PC- phenolic content, FC- flavonoid content, AC- anthocyanin content, Mn - manganese content, Mo- molybdenum content, Na — sodium content, P —
phosphorus content, S- sulphur content, Zn- zinc content, Ca- calcium content, Cu- copper content, Fe- iron content, K- potassium content, Mg- magnesium content.

comparing the levels of bound PC. Both the purple and variable purple
rice showed a significant difference in their TPC, and free and bound
phenolic properties when compared with white rice. However, while
variation was observed between the levels of these phenolic compounds
in different colored rice, the PCA bi-plots indicated that phenolic con-
tent could only distinguish between red and white rice. Interestingly,
it was observed that the white and red pericarp colors were seen to be
dispersed along regions of low TAC, TPC and TFC. Purple and variable
purple pericarps, on the other hand, were concentrated along high and
low TAC, TPC and TFC regions, although a few values diverged from
this trend (Fig. 2b). These findings reveal that although the phenolic
content of rice could not make a distinction between the four pericarp
colors, it could distinctly distinguish black rice from other pericarp col-
ors. Based on the specific phenolic acids, anthocyanins, and proantho-
cyanins, Shao et al. (2018) were able to discriminate between brown,
red, and black rice. However, Zhang et al. (2008) demonstrated that
near-infrared spectroscopy models could not determine the TFC based
on pericarp colors alone. In addition, the total metabolite content, based
on spectrophotometric methods (TPC, TFC, and TAC), failed to fully
distinguish between rice types (Zhang et al., 2008). As phenolic con-
tent varies widely across colored rice samples (Mbanjo et al., 2020),
it appears that identifying particular phenolic compounds would be a
more efficient method of grouping rice samples using PCA than utiliz-
ing generic phenolic content.

High correlations between the nutritional and spectral properties
were observed in the rice collection (Fig. 3). TPC, TFC, and TAC were
shown to have a very strong positive association with their free equiva-
lents, while their bound counterparts all showed negligible correlations.

Since the concentrations in free form are higher than in bound, the levels
of free PC, FC, and AC, respectively, had a considerable impact on the
quantity of TPC, TFC, and TAC, while the levels of bound PC, FC, and
AC had less of an impact. TFC and TAC are moderately correlated with
TPC, indicating that varieties which accumulate higher flavonoid and
anthocyanins also develop greater levels of other phenolic compounds
(Muflihah et al., 2021; Shen et al., 2009).

Six major minerals (Na, P, S, Ca, K, and Mg) and five trace elements
(Mn, Mo, Zn, Cu, and Fe) were quantified across the rice collection
(Fig. 1). K and P were the most abundant elements, each accounting
for almost 40% of the total mineral content. The macro elements Na,
P, S, Ca, K, Mg, had the following value ranges: 0 to 0.01%, 0.26 to
0.41%, 0.08 to 0.16%, 0.44 to 7.5%, 0.17 to 0.37%, 0.11 to 0.17%,
while micronutrients Mn, Mo, Zn, Cu, and Fe exhibit the range of 14 to
48 mg/kg, 0.23 to 3.5 mg/kg, 15 to 3 mg/kg, 0.009 to 0.01 mg/kg, and
9.4 to 21 mg/kg.

Significant differences were observed between red and purple rice in
terms of Na, S, Fe, K, and Mg content, and between red and variable pur-
ple rice for Na, S, Fe, K, Mg, Mo, and Cu (Fig. 2¢). S, Ca, Fe, K, and Mg
content between white and purple rice showed significant variations, as
did S, Fe, K, and Mg between white and variable purple rice. No signifi-
cant differences were observed between purple and variable purple, and
between red and white rice, in terms of mineral composition. Only P and
S, and P and Mg showed a strong positive correlation between minerals
(Fig. 3). Mg, P, and S are vital macronutrients required for plant func-
tions such as enzyme activation/deactivation, energy generation, nitro-
gen fixation, carbohydrate and nucleic acid metabolism, photosynthe-
sis, redox reactions, and signaling mechanisms (Hortensteiner, 2009).
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Fig. 2. PCA biplots and phenotypic distribution box plots of the pigmented rice collections (n = 385) based on multispectral imaging data obtained from videometer,
phenolics content and mineral content arranged according to pericarp color (purple, variable purple, red, and white). PCA biplot of colorimetric parameters obtained
from videometerLAB showed that 64.0% of variation is explained by PC1 while 27.8% is explained by PC2. PCA biplot of phenolic content of pigmented rice showed
that 50.1% of variation is explained by PC1 while 19.2% is explained by PC2. PCA biplot of mineral content of pigmented rice showed that 39.2% of variation is
explained by PC1 while 14.0% is explained by PC2. Abbreviated variables: L- whiteness, A- redness, B- yellowness, TPC - total phenolic content, TFC - total flavonoid
content, TAC- total anthocyanin content, PC- phenolic content, FC- flavonoid content, AC- anthocyanin content, Mn - manganese content, Mo- molybdenum content,
Na - sodium content, P — phosphorus content, S- sulphur content, Zn- zinc content, Ca- calcium content, Cu- copper content, Fe- iron content, K- potassium content,

Mg- magnesium content.

Hence, the strong correlation between Mg, P, and S in rice may be due
in part to their interactions in these activities. As with phenolic content,
the mineral content does not completely discriminate the rice lines with
respect to coloration (Fig. 2). Pigmented rice genotypes with greater
Fe and Zn concentrations than non-pigmented rice have been reported
(Tiozon et al., 2021). While our data indicated that the concentration
of Fe varied by rice color, the concentrations of micronutrients Zn and
Mn did not differ substantially. In general, pigmented rice has been
found to have higher total mineral content than white rice (Goufo &
Trindade, 2014). However, rice exhibits considerable ionomic variation
(Pinson et al., 2014), and unlike anthocyanins and proanthocyanidins,
the mineral content does not contribute to pericarp color (Shao et al.,
2018). All these factors contribute to the improbability of discriminating
the mineral content of whole grain rice based on grain color alone.
Although the multispectral imaging variables have shown stronger
correlations to distinguish the purple, variable purple, red and white
rice diversity collection, these multi-spectral parameters did not demon-
strate correlations with the nutritional components. For instance, L ex-
hibited a strong positive relationship with A, B, and saturation. Likewise,
videometerLAB parameters A and B demonstrated strong, positive rela-
tionships with saturation, and strong negative relationships with H’. A
strong correlation was also observed between A and B, and between B
and intensity. The broad range of nutritional component concentrations

and spectral features indicate that the collection of rice samples selected
for mathematical modeling is robust.

3.2. PLSR model of multispectral imaging to predict bioactive compounds
in the pigmented rice

On the basis that both the multispectral imaging parameters and phe-
nolic content could partially distinguish between the black rice (purple
and variable purple) and the other pericarp colors based on PCA, it was
hypothesized that there could be a direct relationship between the two
sets of parameters in rice. Various studies have used colorimetric pa-
rameters to predict anthocyanin and total phenolic content of a variety
of fruits and vegetables (Vieira et al., 2018). To the best of our knowl-
edge, this approach has not been applied to colored rice. We, therefore,
applied the PLS regression model to predict TAC, TPC, and TFC and
its free and bound components in rice based on multispectral imaging
parameters.

In order to preclude overfitting issues, dimensionality reduction was
performed using a correlation filter prior to model calibration. It was
found that only L, A, B, and H® were suitable variables to be used as
input. Both saturation and intensity are derived quantities from A and
B, and their high and positive correlations render them unsuitable. The
R? and RMSE values for both the training and test sets are shown in
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Table 1

Results of partial least-square (PLS) models from multi-spectral imag-
ing data to predict free, bound, and total phenolic content of black
(variable purple and purple), red, and white rice diverse lines

(n = 385)

Predicted Training (n = 270)  Testing (n = 115)
Variables R? RMSE R? RMSE
Free Phenolic Content 0.66 0.18 0.73 0.22
Free Flavonoid Content 0.62 0.25 0.51 0.40
Free Anthocyanin Content 0.36 0.58 0.28 0.89
Bound Phenolic Content 0.61 0.55 0.63 0.42
Bound Flavonoid Content 0.73 0.41 0.75 0.51
Bound Anthocyanin Content ~ 0.82  0.32 0.83 0.28
Total Phenolic Content 0.71 0.60 0.79 0.63
Total Flavonoid Content 0.79 0.52 0.80 0.61
Total Anthocyanin Content 0.80 0.51 0.84 0.69

Table 1. Based on both the R2 and RMSE values, the models produced
favorable outcomes. The models demonstrated that the TPC, TFC, and
TAC could be predicted using colorimetric parameters with high accu-
racy, indicating that the videometerLAB could be used as a fast and
effective one-stop solution for estimating TPC, TFC, and TAC in colored
rice (Table 1). Furthermore, bound AC, PC, and FC showed better R2
and RMSE values compared to their free counterparts. Even though free
AC, PC, and FC are more highly correlated with TAC, TPC, and TFC, the
multispectral imaging more accurately predicts the levels of bound AC,
PC, and FC, rather than the free fractions. Although the results of the

models are optimum, these must be used in caution since environmen-
tal factors and growing conditions might affect the values of phenolics,
flavonoids and anthocyanins in plants.

Bound phenolics are covalently bound to cell wall structural com-
ponents, e.g., cellulose, hemicellulose, lignin and pectin (Acosta-
Estrada et al., 2014). This model implies that the phenolics trapped in
the cellulosic materials of the rice bran can greatly influence the sur-
face grain color of rice. Since TAC, TPC, and TFC are the sum of the
free and bound components, it can be inferred that high levels of free
components will contribute to lower accuracies of TAC, TPC, and TFC
estimations using multispectral imaging data. To further establish the
association between bound phenolics and the pigmentation of rice, fu-
ture modeling efforts might include the degree of milling as a variable.
Our findings also reveal that the models have higher prediction accuracy
for TAC, followed by TFC, and TPC. Although TPC and TFC may con-
tribute to the pigmentation, anthocyanins have a significant relationship
with the dark pigmentation of black rice. Anthocyanin accumulates dur-
ing the grain developmental stage, reaching its peak at rice maturation
(Mackon et al., 2021). About 97% of TAC in black rice seed concen-
trated in the bran, including the pericarp, aleurone layer and seed coat,
while trace amounts are found in the endosperm. Pericarp color can be
used to predict TAC due to the ubiquitous presence of the auxochromic
group in anthocyanins. The basic chromophore of anthocyanins is the
7-hydroxyflavilyum ion. This chromophore has eight conjugated dou-
ble bonds which possess a positive charge on the heterocyclic oxygen
ring resulting in an intense red-orange to blue-violet color under acidic
solutions (Bueno et al., 2012).
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Fig. 4. Nutritional quality biplot and RF model variable importance (a) PCA biplot of the three nutritional quality classes based on phenolic and micronutrient
contents wherein PC1 explains 22.6% of the variation while PC2 explains 14.4% of the variation. Phenotypic distribution box plots of the pigmented rice collections
based on (b) VideometerLAB parameters (c) phenolics content and (d) mineral content arranged according to cluster (1,2 and 3). Resulting variable importance of the
random forest models generated using (f) multi-spectral imaging parameters, (e) the combinations of multi-spectral imaging, phenolic content and mineral content
data (g) the top 5 important variable and multi-spectral imaging data, and (h) individual variable contributions per class. Abbreviated variables: L- whiteness, A-
redness, B- yellowness, TPC — total phenolic content, TFC - total flavonoid content, TAC- total anthocyanin content, PC- phenolic content, FC- flavonoid content, AC-
anthocyanin content, Mn - manganese content, Mo- molybdenum content, Na — sodium content, P — phosphorus content, S- sulphur content, Zn- zinc content, Ca-
calcium content, Cu- copper content, Fe- iron content, K- potassium content, Mg- magnesium content.

3.3. Nutritional quality classes and classification models for black-colored
rice

After demonstrating that the multispectral parameters captured by
the videometerLAB could be used to estimate the phenolic content of
black rice, we sought out to determine the potential of multispectral
imaging to predict the overall nutritional value of black rice. Also we
noted higher genetic variability for multi-nutritional properties (miner-
als and bioactives) within the purple and variable rice’s (Fig. 2) hence
we considered black rice collection for modeling to predict nutritional
quality of multiple nutrients. The nutritional quality of rice is a multidi-
mensional trait that is heavily influenced by the biochemical composi-
tion (Mbanjo et al., 2020). In this study, only phenolic and micronutrient
content of rice were chosen to identify nutritional quality classes, as they
are responsible for numerous health benefits, including anti-aging, anti-
inflammatory, antioxidant and antiproliferative activities (Lin et al.,
2016). In addition, the identified quality classes would only describe
those of black rice, since the PCA results, based on videometerL.AB prop-
erties (Fig. 2a), showed distinctness among red and white rice when
compared using phenolic and micronutrient content. Using the param-
eters derived from the process of dimensionality reduction, the cluster
analysis uncovered three distinct quality classes (Fig. 4). Class 1 com-
prised of black-colored rice with high micronutrient content, low total
phenolics (TAC, TPC and TFC) and low bound phenolics. Class 2 were
rice varieties with low levels of micronutrients, high TPC, TAC, and TFC,

and low bound PC, AC, and FC. Class 3 consisted of rice varieties that
had high levels of bound AC, FC, and PC, with moderate levels of mi-
cronutrients. The PCA biplot derived from phenolic and micronutrient
values also demonstrated class distinctions (Fig. 4).

Models using RF and ANN were first created to predict the nutrient
classes by deploying only the multispectral measurements produced by
the videometerLAB using 2019 dry season black rice collection. These
models showed low accuracies of 29.41% and 35.29% for RF and ANN,
respectively, indicating that the multispectral parameters were unable to
accurately characterize the nutritional quality. However, the RF model
showed that among the L, A, B, and H° parameters, the L parameter was
the most crucial variable as it contributes most to the model accuracy
(Fig. 4). To increase model accuracy, we included the micronutrient and
phenolics data as inputs in addition to the multispectral parameters.
Dimensionality reduction by correlation filter was performed to avoid
overfitting, lowering the number of input variables to 19 (TPC, TFC,
TAC, bound PC, bound FC, bound AC, L, A, B, Mn, Mo, Na, P, Zn, Al,
Ca, Cu, Fe, and K). All of these properties boosted the accuracy of the
RF and ANN models to 78.47% and 85.3%, respectively (Table 2), with
the optimal architecture for the neural network containing 23 nodes in
the hidden layer.

Although high levels of accuracy were obtained, it is vital to deter-
mine the minimum number of parameters needed to predict the nutri-
tional value of a rice variety. This minimizes the number of biochemical
tests and maximizes experimental throughput, hence reducing the cost
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Results of random forest and artificial neural network classification models to predict the multi-nutritional classes of black (variable purple and purple) rice.
Abbreviated variables: L- whiteness, A- redness, B- yellowness, TAC - total anthocyanin content, TFC - total flavonoid content, TPC - total phenolic content, FC

- flavonoid content, PC — phenolic content, AC — anthocyanin content.

Model Predictors Number of Nodes in Hidden Layer Model Accuracy
Artificial Neural Network (2019 Dry Season, n = 327) L, A, B, Hue, Intensity 8 36.42%
Bound PC, TAC, Mo, P, Bound FC, Fe, Ca, TPC, 23 85.35%
TFC, K, Mn, L, Al, Zn, Cu, Na. A. B. Bound AC
Bound PC, TAC, Mo, P, Bound FC, L, A, B 9 99.9%
Random Forest (2019 Dry Season, n = 327) L, A, B, Hue, Intensity Not Applicable 30.21%
Bound PC, TAC, Mo, P, Bound FC, Fe, Ca, TPC, Not Applicable 78.47%
TFC, K, Mn, L, Al, Zn, Cu, Na. A. B. Bound AC
Bound PC, TAC, Mo, P, Bound FC, L, A, B Not Applicable 85.3%
Artificial Neural Network (2020 Wet Season Validation Set, Bound PC, TAC, Mo, P, Bound FC, L, A, B 9 87.6%
n = 200)
Random Forest (2020 Wet Season Validation Set, n = 200) Bound PC, TAC, Mo, P, Bound FC, L, A, B Not Applicable 75.43%

of chemicals and other resources. A total of eight variables were used
to derive the models: bound PC, TAC, and bound FC, Mo, and P lev-
els and L, A, and B parameters from the videometerLAB data. These
variables were chosen based on their contributions to the accuracy of
the RF model developed when 19 variables were used as inputs. These
eight variables were subsequently used to generate the RF and ANN
models, which had accuracies of 85.35% and 99.9%, respectively. Evi-
dently, ANN is a stronger model than RF for predicting the nutritional
quality of black rice. Among these variables, the bound PC was a ma-
jor contributor to the accuracy of the RF model (Fig. 4). Moreover, the
importance of the variables to the prediction of each nutritional class
differed. For Class 1, P was the most important variable due to the abun-
dance of micronutrients within this class. For Class 2, TAC was the most
relevant variable, as this class had high total phenolics. Lastly, for Class
3, bound PC was the most important variable as the rice samples within
this group have distinctly high levels of bound phenolic compounds.

The applicability and validity of the created models were also tested
for reproducibility between independent seasons (dry season versus wet
season). Data from black rice collection planted during wet season was
used and a result of 87.6% and 75.43% accuracy for both ANN and
RF models, respectively, were obtained (Table 2). This shows that even
when planted in different seasons, the models will still render accurate
results.

4. Conclusion

Multispectral imaging is a non-destructive and fast phenotyping
technique that provides data on a number of spectral, color-related pa-
rameters. Using this technique, black (purple and variable purple) rice
may be distinguished from other differently colored rice, i.e., red, and
white. This work is the first to construct models that correlate the nutri-
tional components of rice with its pericarp color. The PLS models which
utilized videometerLAB data, accurately predicted TAC values based on
pericarp color, but TPC and TFC values were predicted with moder-
ate accuracy. Comparing bound and free components, bound PC, FC,
and AC produced higher accuracies, implying the importance of bound
phenolics in rice bran pigmentation. In summary, it was observed that
polyphenols contribute to rice coloration and that these phenolic com-
pounds can be predicted using multispectral imaging parameters. Al-
though color alone is insufficient to identify all nutritional character-
istics in rice, our mathematical models could deduce that black rice is
superior in phenolic and micronutrient content. When selected phenolic
compounds and minerals were used in conjunction with videometerLAB
data, the derived ANN and RF models were able to predict the pheno-
typic variability of multi-nutritional properties within the black rice core
collection. Here, we determined that ANN models were comparatively
more accurate at predicting the nutrient classes than the RF models.
ANN models facilitate the generalization of input-output linkages and
the inference of associations on unseen data. The models generated in

this work yielded three key nutritional classes for black rice based on its
micronutrient and phenolic content. Taken together, these models can
be useful for rice breeders as it may enable them to predict the phenolic
and mineral content of rice based on its color and a few biochemical in-
dicators. The use of the models created in this study is straight-forward.
All the key predictors must be generated in the lab and data results
should be fed to the models to predict nutritional quality classes. With
this information, breeders can strategically enhance the nutritional sta-
tus of rice for consumers.
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