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a b s t r a c t 

Over half the world population relies on rice for energy, but being a carbohydrate-based crop, it offers limited 

nutritional benefits. To achieve nutritional security targets in Asia, we must understand the genetic variation in 

multi-nutritional properties with therapeutic properties and deploy this knowledge to future rice breeding. High 

throughput, VideometerLAB spectral imaging data has been effective in estimating total anthocyanin content, 

particularly bound anthocyanin content, using the high prediction power of partial least square (PLS) regression 

models. Multi-pronged nutritional properties of phenolic compounds and minerals, together with videometerLAB 

features, were utilized to develop models to classify a collection of black rice varieties into three distinct nutri- 

tional quality ideotypes. These derived models for black rice diversity panels were created utilizing videometer- 

LAB data (L, A, B parameters), selected phenolic types (total phenolics, total anthocyanins, and bound flavonoids), 

and minerals (Molybdenum and Phosphorous). Random forest and artificial neural network models depicted the 

multi-nutritional features of black rice with 85.35 and 99.9% accuracy, respectively. These prediction algorithms 

would help rice breeders strategically breed nutritionally valuable genotypes based on simple, high-through-put 

videometerLAB readings and a small number of nutritional assays. 
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. Introduction 

Rice is a primary carbohydrate source for over half of the
orld’s population, and global demand is steadily increasing. Con-

umption in Asia alone, is projected to increase by 67% by 2035
 https://ricepedia.org/challenges/food-security ). However, commer-
ial white rice lacks nutritional density and over-reliance on this
onocrop diet contributes to the double burden of malnutrition epi-
emic. With the recent COVID-19 pandemic exacerbating food and nu-
ritional insecurity issues it is important to bring the missing nutrition
nto popular food crops of cereals by tapping into the genetic wealth
otential for multi-nutritional properties ( Littlejohn & Finlay, 2021 ). 

Market demand for pigmented rice, distinguished by its red, pur-
le, or black pericarp, has grown due to its dietary and therapeuti-
al traits ( Samyor et al., 2017 ). Pigmented rice in the diet has shown
ultiple nutritional benefits, including antioxidant, anticancer, antidi-

betic, and anti-aging ( Mbanjo et al., 2020 ; Tiozon et al., 2021 ). These
ffects have been ascribed to the presence of phenolic compounds such
s phenolic acids, flavonoids, and anthocyanins ( Callcott et al., 2019 ).
∗ Corresponding author. 
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mportant phenolic compounds may exist in their free form in the cy-
oplasm or as conjugates of cell wall polysaccharides and lignin. More-
ver, these bioactive compounds in the rice grain are concentrated in the
ran layer and husk which contribute to pericarp coloration ( Huang &
ai, 2016 ). In particular, accumulation of anthocyanins gives rice grain
ts purple/ black color, whereas proanthocyanidins are responsible for
he red rice color ( Khoo et al., 2017 ). Consequently, the concentration
f bioactive components is higher in pigmented than in non-pigmented
ice ( Brotman et al., 2021 ; Goufo & Trindade, 2014 ). Potential health
enefits of pigmented rice and the genetics underlying the accumulation
f the bioactive compounds have been reviewed recently ( Mbanjo et al.,
020 ; Tiozon et al., 2021 ). Pigmented rice also has exceptional genetic
iversity for minerals such as iron (Fe), zinc (Zn), magnesium (Mg), cop-
er (Cu), potassium (K) and calcium (Ca) ( Jeng et al., 2011 ; Kang et al.,
011 ). Higher density of important macroelements (Na, P, S, Ca, K, and
g) and microelements (Mn, Mo, Zn, Cu, and Fe) have been identified

n some rice cultivars. These elements are crucial to human health as
hey aid in maintaining metabolic and energy homeostasis, proper fluid
alance, blood pressure regulation, and overall health of the immune
ystem ( Huang et al., 2020 ). As a result, more consumers have been
ber 2022 
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rawn to health-promoting food products, generating a growing market
or more nutritious staples like whole-grain pigmented rice. 

Color is an essential feature that consumers consider when selecting
arious food products. Multispectral phenotyping is a non-destructive
nd high throughput technique which can be used to measure color
hanges in fortified rice ( Tiozon et al., 2021 ) and monitor seed qual-
ty ( ElMasry et al., 2019 ). Since a relationship between the accumula-
ion of bioactive chemicals in the pericarp and aleurone is related to
nriched bioactives, multispectral phenotyping may be deployed to re-
ate the concentration of these phenolic compounds to the color of rice.
n our previous work, we have developed models to classify the cooking
nd eating quality ideotypes of indica, japonica, and hybrid rice varieties
 Buenafe et al., 2021 a, 2021 b). To date, however, no model has been
eveloped that utilizes multispectral imaging to predict the nutritional
uality of rice by inferring the content of bioactives and minerals. In
his study, we relate multispectral imaging data with dietary compo-
ents such as total phenolics, total flavonoids, total anthocyanins, and
icronutrients to predict the nutritional classes of diverse germplasms

f pigmented rice and identify rice varieties or accessions with superior
ietary composition and health benefits. 

. Methods 

.1. Rice material 

A set ( n = 385) of diverse germplasm comprising white ( n = 33) and
igmented rice composed of purple-colored ( n = 26), variable-purple-
olored ( n = 301), and red-colored ( n = 25) varieties were selected,
lanted, and grown during the dry season of 2019 at the International
ice Research Institute (IRRI), Los Baños, Laguna, the Philippines un-
er well-maintained, irrigated and rain-fed conditions. A subset of line
 n = 200) capturing the diversity of purple and variable purple rice were
lso planted and grown during the wet season of 2020. Both sets ( n = 385
nd n = 200) were planted in a 3-m 

2 effective area plots, excluding the
orders, using an augmented randomized complete block experimen-
al design. Both sets followed the same management protocols imposed
t IRRI. The grains were harvested and air-dried to 14% moisture con-
ent. Then, the grains were dehulled using a rice sheller THU-35A (Sa-
ake Corporation, Hiroshima, Japan) and ground to a fine powder (using
ixer Mill MM400, Germany) for biochemical analysis. 

.2. Determination of multispectral imaging properties of rice grain using 

ideometerLAB 

The multispectral phenotyping of pigmented rice grains was con-
ucted following the protocol described by Mbanjo et al. (2020) . Briefly,
wenty grains from each accession were placed evenly across a 90 mm
etri dish. The multispectral image of each grain was captured at 19
avelengths from 365 to 970 nm, each with a resolution of 2056 × 2056
ixels. The color difference metrics defined by the CIE ( Commission In-

ernational d’Eclairage ) in 1976 and color-appearance attributes, such as
 

∗ (green to red shade), b ∗ (blue to yellow shade), L (lightness, clarity of
he pericarp), intensity, saturation (i.e., the saturation of color describes
ts degree of purity in relation to neutral grey) and hue angle (H°, an-
ular specification of the color perceived as red, yellow, blue or green)
ere measured. 

.3. Extraction of free and bound phenolic, flavonoid, and anthocyanin 

ontent of rice grains 

The free and bound phenolic components of rice grains were ex-
racted according to the method described by Brotman et al. (2021) ,
ith minor modifications. Whole grain rice flour (1.0 g) was extracted

wice with 10 mL of 80% methanol solution. For each extraction, the
ixture was placed in an iced ultrasonic bath for 1 h. Samples were
2 
hen centrifuged at 12,500 rpm for 20 min. Supernatants from each ex-
raction procedure were pooled and adjusted to pH 4.5–5.0 using 1M
Cl or 1M NaOH. 

The residues from each centrifugation procedure were mixed with
0 mL of 4 M NaOH for 2 h and placed in an iced ultrasonic bath to
elease the ester- or ether-linked phenolic compounds. The mixture was
entrifuged at 12,500 rpm for 15 min. The supernatant was adjusted to a
H 4.5-5.0 and then, added with 10 mL of ethyl acetate twice to extract
he bound phenolics (phenolic acids, flavonoids, and anthocyanins). 

.4. Quantification of the nutritional components of rice grain 

.4.1. Estimation of phenolic compounds in rice grain 

The total phenolic content (TPC) and total flavonoid content (TFC)
ere determined using method described in Ti et al. (2014) . The total
nthocyanin content (TAC) was estimated based on the pH differential
ethod ( Lee et al., 2005 ). Absorbance was measured using a microplate

eader (BMG SPECTROstar Nano) at 765 nm for TPC, 510 nm for TFC
nd 520 and 700 nm for TAC. TAC = A x VM where A = (absorbance
t 520 nm - 700 nm) pH 4.5; V = volume of extract (mL) and M = fresh
ass of the sample (g). TPC was expressed as mg of gallic acid equivalent

GAE) per 100 g of sample. TFC was calculated using a standard cate-
hin curve and expressed as mg of catechin equivalent (CE) per 100 g
f sample. TAC was expressed as cyanidin-3-O-glucoside (Cyn-3-Glu)
quivalent. This was done in triplicates. 

.4.2. Mineral content measurement in rice grain 

The ground whole grain rice (0.600–0.625 g) were digested using
0 mL of 1% HNO 3 and subjected to Inductively Coupled Plasma-Optical
mission Spectrometry (ICP-OES) for mineral content determination fol-
owing the method ( Molina et al., 2019 ). Eleven minerals (Ca, Cu, Fe,
, Mg, Mn, Mo, Na, P, S, and Zn) were quantified. 

.5. Multivariate analyses and mathematical modeling 

.5.1. Partial least square regression (PLSR) models for predicting phenolic

ontents 

R (Version 3.3.2, released 2016) was used for all multivariate and
tatistical analyses. Principal component analysis (PCA) was used to re-
eal variability in multispectral imaging, phenolic, and micronutrient
ata. 

PLSR is a simple and accurate linear algorithm for modeling spec-
ral data. It is an extensively used approach for predicting the antioxi-
ant content and potential of various plant extracts ( Li & Huang, 2021 ;
ahin & Demir, 2016 ). To this end, PLSR was applied on the multispec-
ral data of the rice diversity panel ( n = 385) to predict the TAC, TFC,
nd TPC values and its free and bound components. The multispectral
maging data was used as inputs to the models to generate predicted
utputs, as mentioned previously. The data set ( n = 385) was divided
nto 70% training and 30% test sets, using the simple random sampling
ithout replacement method. Ten-fold cross-validation was applied to

ach model to ensure its stability and validity. The dimensionality of the
redictors was reduced using a correlation filter of r ≥ |0.70| and the
in-max normalization technique was used as spectra pre-processing

ool to ensure that they would have the same contribution to the model.
he performance of the developed model was evaluated using the root-
ean-square error (RMSE) and coefficient of determination (R 

2 ). 

.5.2. Nutritional quality classes and classification models for 

lack-colored rice 

In general black-colored rice could be distinguished with two unique
ericarp hues, purple and variable purple. The purple hue of the peri-
arp, perceptible to the human eye, distinguishes the rice as being pur-
le. In contrast, the variable purple is marked by the presence of addi-
ional colored streaks than purple. Neither multispectral imaging data
or nutritional factors, such as phenolic and micronutrient content, are
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ble to differentiate between these two types of black-colored rice. Thus,
eclassification was performed using the nutritional factors to provide
onsumers with a nutritional rationale for purchasing purple-colored
ice. To achieve the new classification, the phenolic and micronutri-
nt content data of all the black rice, which includes the purple- and
ariable-purple-colored rice ( n = 327, grown in 2019 dry season) from
he same pigmented rice collection, were subjected to Agglomerative
esting via Ward’s method (AGNES). The number of best clusters formed
rom the data set was identified using three internal validation measures
silhouette width, Dunn index, and connectivity) and four stability mea-
ures (average proportion of non-overlap, average distance, average dis-
ance between means, and figure of merit). 

The generated classes were predicted using the colorimetric data to
ee whether the videometerLAB instrument could be used as a one-stop
pproach to predict the phenolic content and nutritional value of black
ice. Random forest (RF) and artificial neural network (ANN) were uti-
ized as predictive classification models in this study, with the variable
nputs consisting of colorimetric data that had been trimmed using the
orrelation filter. RF models, which have been previously used to predict
ice cooking and eating quality classes ( Buenafe et al., 2021a ), were ap-
lied to predict and classify the nutritional quality. RF models used boot-
trap to distribute the input variables ( x i ) to a distinct class by choosing
he majority among all groups of tree-based classifiers ( h ( x i , Θk , k = 1) ),
here Θk are identically and independently distributed random vectors
 Tatsumi et al., 2015 ). 

ANN is a machine learning approach which has been shown to be
ffective in the regression prediction of rice yield ( Basir et al., 2021 ),
s well as the prediction of cooking and eating quality classes of hybrid
ice ( Buenafe et al., 2021b ). ANN was applied with a back-propagation
lgorithm with a three-layer architecture. The input layer comprised of
he colorimetric and nutritional data that had been previously trimmed
sing a correlation filter, whilst the output layer consisted of the classes
enerated by the cluster analysis. The best number of nodes in the hid-
en layer was identified through a trial-and-error process. For the fi-
al RF and ANN models, 10-fold cross-validation was performed for the
hole data set, and its accuracy was calculated based on the percentage
f correctly predicted classes. 

Both of the models (RF and ANN) were used to predict the nutritional
uality classes created through the AGNES clustering. The top five con-
ributing micronutrients and three multispectral imaging parameters (L,
, and B) were used as inputs to the models. Both models were applied

o a validation set ( n = 200) planted during wet season to check its
pplicability and validity to other conditions. 

. Results and discussion 

.1. Variation in the multispectral imaging and nutritional components of 

igmented rice 

The rice diversity panel ( n = 385) revealed a wide variation in mul-
ispectral imaging properties and nutritional content ( Fig. 1 ). In the
resent study, L, A, B, intensity, H°, and saturation comprised the multi-
pectral imaging data of rice grain gathered using videometerLAB. The L
arameter indicates the whiteness of the sample and ranged from 27.48
o 85.12, with a mean value of 52.74 ± 19.61. The A parameter, which
ndicates the sample’s redness (positive values) and greenness (negative
alue), ranged from 0.81 to 21.18, with a mean value of 6.59 ± 5.35.
he B parameter indicates the yellowness (positive values) and blue-
ess (negative values) of samples and ranged from -2.89 to 31.43, with
 mean value of 10.90 ± 8.03. The intensity, H°, and saturation of the
amples varied from 7.55 to 62.57, 122.13 to 203.37, and 1.14 to 26.68,
espectively, with mean values of 26.87 ± 19.08, 152.78 ± 16.59, and
0.29 ± 7.37. In terms of pericarp coloration (white, red, purple, and
ariable purple), data distribution showed variability in multispectral
maging properties and nutritional components ( Fig. 2 ). A Kruskall-

allis test followed by Wilcoxon–Mann–Whitney test for post hoc anal-
3 
sis showed a significant difference ( p > 0.05) among all rice colors
gainst the L, A, B, intensity, and saturation. For H°, the red and vari-
ble purple showed no significant difference from each other. Due to
hese observed correlations ( Fig. 3 ), the multispectral imaging evidently
ives a highly reliable measurement of pericarp coloration, as substan-
iated by the PCA bi-plots ( Fig. 2 ). PC1 explained 54.9% of the vari-
tion, while PC2 accounted for 37.3%. The results showed that most
urple and variable, purple-colored rice pericarp had lower L values,
ntensity, saturation, and B values, whereas white and red pericarps
xhibited the opposite. These results can be ascribed to high L values
hich indicate whiteness of the material and low (negative) B values
hich indicate the blueness ( Vieira et al., 2018 ). The white and red
ericarp colors are very well distinguished by the A and H° parameters,
herein the red pericarp has lower values of H° but higher values of A.
his is because the A parameter describes the redness of the material,
nd the H° is calculated as tan − 1 (B/A) ( Vieira et al., 2018 ). Most vari-
ble purple-colored rice had higher A and lower H° values than purple.
owever, there was still a number of variable purple-colored rice with

he same multispectral imaging properties as purple-colored rice. Gen-
rally, these results shows that videometerLAB parameters could differ-
ntiate between black (variable purple and purple), red, and white rice.
owever, it was unable to distinguish between the purple and variable
urple grains. These findings corroborate those reported for Philippine
igmented rice which were discriminated based on multispectral imag-
ng color parameters ( Mbanjo et al., 2019 ). 

The phenolic content of the rice collection showed different trends in
erms of variability ( Fig. 2 b). The TPC ranged from 32.31 to 1455.72 mg
AE/100 g DM with a mean value of 268.47 ± 210.33 mg GAE/100 g
M, while the TFC and TAC ranged from 16.06 to 359.43 mg CE/100 g
M and 0 to 494.46 mg Cyn-3-Glu/100 g DM, respectively, with mean
alues of 113.00 ± 70.67 mg CE/100 g DM and 102.67 ± 104.4 mg Cyn-
-Glu/100 g DM. In general, the colored rice showed greater levels of
otal phenolics, flavonoids, and anthocyanin than the non-colored rice
arieties ( Fig. 2 b). Among the colored rice, black rice (purple and vari-
ble purple) had higher TPC and TAC levels than red rice, as previously
hown ( Goufo et al., 2014 ; Shao et al., 2014 ). Although there was no sig-
ificant difference among the colored rice in terms of TFC levels, some
ariable purple rice varieties had lower TFC than white rice. Similar re-
ults were observed by Shen et al. (2009) . These high TFC in white rice
ould be due to the presence of flavonoids (e.g., flavones, flavanones,
avonols) other than anthocyanins. 

When comparing the free and bound forms of phenolic com-
ounds, the levels of free PC (phenolic content), FC (flavonoid con-
ent), and AC (anthocyanin content) were two to three-times higher
han the bound form. The free PC, FC, and AC (ranged from 26.98 to
427.23 mg GAE/100 g DM, 12.47 to 330.09 mg CE/100 g DM, and 0
o 471.82 mg Cyn-3-Glu/100 g DM, respectively, with mean values of
32.65 ± 208.09 mg GAE/100 g DM, 94.00 ± 64.08 09 mg CE/100 g
M, and 90.78 ± 99.20 mg Cyn-3-Glu/100 g DM. The bound forms of
C, FC, and AC ranged from 3.97 to 158.91 mg GAE/100 g DM, 2.29
o 71.06 mg CE/100 g DM, and 0 to 43.6 mg Cyn-3-Glu/100 g DM,
espectively, with mean values of 44.75 ± 33.42 mg GAE/100 g DM,
0.65 ± 15.01 mg CE/100 g DM, and 13.29 ± 11.36 mg Cyn-3-Glu/100 g
M. The lower levels of PC, FC, and AC detected in the bound form sup-
ort the findings of prior studies ( de Mira et al., 2009 ; Sumczynski et al.,
016 ). However, Shao et al. (2014) reported higher levels of bound phe-
olics in rice lines. Although phenolic content is primarily influenced
y genetics, the quantitative variation may be affected by a range of
nvironmental growth conditions, abiotic and biotic stresses, as well as
ultivation techniques ( Dey & Bhattacharjee, 2020 ). 

No significant differences were seen in purple and variable purple
ice in free or bound phenolic properties. There were also no significant
ariations in TAC, free AC, bound PC, or bound FC between red and
hite rice. However, purple rice could be differentiated from red rice
y TPC, TAC, free PC, free AC, bound FC, and bound AC. These differ-
nces were also observed between red and variable purple rice when
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Fig. 1. Distribution plots of pigmented rice collection ( n = 385) based on (A) multispectral imaging data obtained from videometer, (B) phenolics data and (C) 

minerals data. Abbreviated variables: L- whiteness, A- redness, B- yellowness, TPC – total phenolic content, TFC – total flavonoid content, TAC- total anthocyanin 

content, PC- phenolic content, FC- flavonoid content, AC- anthocyanin content, Mn - manganese content, Mo- molybdenum content, Na – sodium content, P –

phosphorus content, S- sulphur content, Zn- zinc content, Ca- calcium content, Cu- copper content, Fe- iron content, K- potassium content, Mg- magnesium content. 

c  

r  

p  

v  

i  

t  

i  

d  

p  

l  

t  

c  

c  

o  

c  

r  

n  

o  

o  

d  

t  

i  

m  

i
 

w  

s  

l  

S  

o  

q  

A  

T  

a  

(
 

(  

(  

f  

P  

0  

w  

4  

9
 

t  

p  

c  

d  

c  

b  

S  

(  

t  

g  

s  
omparing the levels of bound PC. Both the purple and variable purple
ice showed a significant difference in their TPC, and free and bound
henolic properties when compared with white rice. However, while
ariation was observed between the levels of these phenolic compounds
n different colored rice, the PCA bi-plots indicated that phenolic con-
ent could only distinguish between red and white rice. Interestingly,
t was observed that the white and red pericarp colors were seen to be
ispersed along regions of low TAC, TPC and TFC. Purple and variable
urple pericarps, on the other hand, were concentrated along high and
ow TAC, TPC and TFC regions, although a few values diverged from
his trend ( Fig. 2 b). These findings reveal that although the phenolic
ontent of rice could not make a distinction between the four pericarp
olors, it could distinctly distinguish black rice from other pericarp col-
rs. Based on the specific phenolic acids, anthocyanins, and proantho-
yanins, Shao et al. (2018) were able to discriminate between brown,
ed, and black rice. However, Zhang et al. (2008) demonstrated that
ear-infrared spectroscopy models could not determine the TFC based
n pericarp colors alone. In addition, the total metabolite content, based
n spectrophotometric methods (TPC, TFC, and TAC), failed to fully
istinguish between rice types ( Zhang et al., 2008 ). As phenolic con-
ent varies widely across colored rice samples ( Mbanjo et al., 2020 ),
t appears that identifying particular phenolic compounds would be a
ore efficient method of grouping rice samples using PCA than utiliz-

ng generic phenolic content. 
High correlations between the nutritional and spectral properties

ere observed in the rice collection ( Fig. 3 ). TPC, TFC, and TAC were
hown to have a very strong positive association with their free equiva-
ents, while their bound counterparts all showed negligible correlations.
4 
ince the concentrations in free form are higher than in bound, the levels
f free PC, FC, and AC, respectively, had a considerable impact on the
uantity of TPC, TFC, and TAC, while the levels of bound PC, FC, and
C had less of an impact. TFC and TAC are moderately correlated with
PC, indicating that varieties which accumulate higher flavonoid and
nthocyanins also develop greater levels of other phenolic compounds
 Muflihah et al., 2021 ; Shen et al., 2009 ). 

Six major minerals (Na, P, S, Ca, K, and Mg) and five trace elements
Mn, Mo, Zn, Cu, and Fe) were quantified across the rice collection
 Fig. 1 ). K and P were the most abundant elements, each accounting
or almost 40% of the total mineral content. The macro elements Na,
, S, Ca, K, Mg, had the following value ranges: 0 to 0.01%, 0.26 to
.41%, 0.08 to 0.16%, 0.44 to 7.5%, 0.17 to 0.37%, 0.11 to 0.17%,
hile micronutrients Mn, Mo, Zn, Cu, and Fe exhibit the range of 14 to
8 mg/kg, 0.23 to 3.5 mg/kg, 15 to 3 mg/kg, 0.009 to 0.01 mg/kg, and
.4 to 21 mg/kg. 

Significant differences were observed between red and purple rice in
erms of Na, S, Fe, K, and Mg content, and between red and variable pur-
le rice for Na, S, Fe, K, Mg, Mo, and Cu ( Fig. 2 c). S, Ca, Fe, K, and Mg
ontent between white and purple rice showed significant variations, as
id S, Fe, K, and Mg between white and variable purple rice. No signifi-
ant differences were observed between purple and variable purple, and
etween red and white rice, in terms of mineral composition. Only P and
, and P and Mg showed a strong positive correlation between minerals
 Fig. 3 ). Mg, P, and S are vital macronutrients required for plant func-
ions such as enzyme activation/deactivation, energy generation, nitro-
en fixation, carbohydrate and nucleic acid metabolism, photosynthe-
is, redox reactions, and signaling mechanisms ( Hörtensteiner, 2009 ).
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Fig. 2. PCA biplots and phenotypic distribution box plots of the pigmented rice collections ( n = 385) based on multispectral imaging data obtained from videometer, 

phenolics content and mineral content arranged according to pericarp color (purple, variable purple, red, and white). PCA biplot of colorimetric parameters obtained 

from videometerLAB showed that 64.0% of variation is explained by PC1 while 27.8% is explained by PC2. PCA biplot of phenolic content of pigmented rice showed 

that 50.1% of variation is explained by PC1 while 19.2% is explained by PC2. PCA biplot of mineral content of pigmented rice showed that 39.2% of variation is 

explained by PC1 while 14.0% is explained by PC2. Abbreviated variables: L- whiteness, A- redness, B- yellowness, TPC – total phenolic content, TFC – total flavonoid 

content, TAC- total anthocyanin content, PC- phenolic content, FC- flavonoid content, AC- anthocyanin content, Mn - manganese content, Mo- molybdenum content, 

Na – sodium content, P – phosphorus content, S- sulphur content, Zn- zinc content, Ca- calcium content, Cu- copper content, Fe- iron content, K- potassium content, 

Mg- magnesium content. 
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R  
ence, the strong correlation between Mg, P, and S in rice may be due
n part to their interactions in these activities. As with phenolic content,
he mineral content does not completely discriminate the rice lines with
espect to coloration ( Fig. 2 ). Pigmented rice genotypes with greater
e and Zn concentrations than non-pigmented rice have been reported
 Tiozon et al., 2021 ). While our data indicated that the concentration
f Fe varied by rice color, the concentrations of micronutrients Zn and
n did not differ substantially. In general, pigmented rice has been

ound to have higher total mineral content than white rice ( Goufo &
rindade, 2014 ). However, rice exhibits considerable ionomic variation
 Pinson et al., 2014 ), and unlike anthocyanins and proanthocyanidins,
he mineral content does not contribute to pericarp color ( Shao et al.,
018 ). All these factors contribute to the improbability of discriminating
he mineral content of whole grain rice based on grain color alone. 

Although the multispectral imaging variables have shown stronger
orrelations to distinguish the purple, variable purple, red and white
ice diversity collection, these multi-spectral parameters did not demon-
trate correlations with the nutritional components. For instance, L ex-
ibited a strong positive relationship with A, B, and saturation. Likewise,
ideometerLAB parameters A and B demonstrated strong, positive rela-
ionships with saturation, and strong negative relationships with H°. A
trong correlation was also observed between A and B, and between B
nd intensity. The broad range of nutritional component concentrations
5 
nd spectral features indicate that the collection of rice samples selected
or mathematical modeling is robust. 

.2. PLSR model of multispectral imaging to predict bioactive compounds 

n the pigmented rice 

On the basis that both the multispectral imaging parameters and phe-
olic content could partially distinguish between the black rice (purple
nd variable purple) and the other pericarp colors based on PCA, it was
ypothesized that there could be a direct relationship between the two
ets of parameters in rice. Various studies have used colorimetric pa-
ameters to predict anthocyanin and total phenolic content of a variety
f fruits and vegetables ( Vieira et al., 2018 ). To the best of our knowl-
dge, this approach has not been applied to colored rice. We, therefore,
pplied the PLS regression model to predict TAC, TPC, and TFC and
ts free and bound components in rice based on multispectral imaging
arameters. 

In order to preclude overfitting issues, dimensionality reduction was
erformed using a correlation filter prior to model calibration. It was
ound that only L, A, B, and H° were suitable variables to be used as
nput. Both saturation and intensity are derived quantities from A and
, and their high and positive correlations render them unsuitable. The
 

2 and RMSE values for both the training and test sets are shown in
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Fig. 3. Correlogram of all generated data for 

the pigmented rice collection ( n = 385). Ab- 

breviated variables: L- whiteness, A- redness, B- 

yellowness, TPC – total phenolic content, TFC –

total flavonoid content, TAC- total anthocyanin 

content, PC- phenolic content, FC- flavonoid 

content, AC- anthocyanin content, Mn - man- 

ganese content, Mo- molybdenum content, Na 

– sodium content, P – phosphorus content, S- 

sulphur content, Zn- zinc content, Ca- calcium 

content, Cu- copper content, Fe- iron content, 

K- potassium content, Mg- magnesium content. 

Table 1 

Results of partial least-square (PLS) models from multi-spectral imag- 

ing data to predict free, bound, and total phenolic content of black 

(variable purple and purple), red, and white rice diverse lines 

( n = 385) 

Predicted 

Variables 

Training ( n = 270) Testing ( n = 115) 

R 2 RMSE R 2 RMSE 

Free Phenolic Content 0.66 0.18 0.73 0.22 

Free Flavonoid Content 0.62 0.25 0.51 0.40 

Free Anthocyanin Content 0.36 0.58 0.28 0.89 

Bound Phenolic Content 0.61 0.55 0.63 0.42 

Bound Flavonoid Content 0.73 0.41 0.75 0.51 

Bound Anthocyanin Content 0.82 0.32 0.83 0.28 

Total Phenolic Content 0.71 0.60 0.79 0.63 

Total Flavonoid Content 0.79 0.52 0.80 0.61 

Total Anthocyanin Content 0.80 0.51 0.84 0.69 
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able 1 . Based on both the R 

2 and RMSE values, the models produced
avorable outcomes. The models demonstrated that the TPC, TFC, and
AC could be predicted using colorimetric parameters with high accu-
acy, indicating that the videometerLAB could be used as a fast and
ffective one-stop solution for estimating TPC, TFC, and TAC in colored
ice ( Table 1 ). Furthermore, bound AC, PC, and FC showed better R 

2 

nd RMSE values compared to their free counterparts. Even though free
C, PC, and FC are more highly correlated with TAC, TPC, and TFC, the
ultispectral imaging more accurately predicts the levels of bound AC,
C, and FC, rather than the free fractions. Although the results of the
6 
odels are optimum, these must be used in caution since environmen-
al factors and growing conditions might affect the values of phenolics,
avonoids and anthocyanins in plants. 

Bound phenolics are covalently bound to cell wall structural com-
onents, e.g., cellulose, hemicellulose, lignin and pectin ( Acosta-
strada et al., 2014 ). This model implies that the phenolics trapped in
he cellulosic materials of the rice bran can greatly influence the sur-
ace grain color of rice. Since TAC, TPC, and TFC are the sum of the
ree and bound components, it can be inferred that high levels of free
omponents will contribute to lower accuracies of TAC, TPC, and TFC
stimations using multispectral imaging data. To further establish the
ssociation between bound phenolics and the pigmentation of rice, fu-
ure modeling efforts might include the degree of milling as a variable.
ur findings also reveal that the models have higher prediction accuracy

or TAC, followed by TFC, and TPC. Although TPC and TFC may con-
ribute to the pigmentation, anthocyanins have a significant relationship
ith the dark pigmentation of black rice. Anthocyanin accumulates dur-

ng the grain developmental stage, reaching its peak at rice maturation
 Mackon et al., 2021 ). About 97% of TAC in black rice seed concen-
rated in the bran, including the pericarp, aleurone layer and seed coat,
hile trace amounts are found in the endosperm. Pericarp color can be
sed to predict TAC due to the ubiquitous presence of the auxochromic
roup in anthocyanins. The basic chromophore of anthocyanins is the
-hydroxyflavilyum ion. This chromophore has eight conjugated dou-
le bonds which possess a positive charge on the heterocyclic oxygen
ing resulting in an intense red-orange to blue-violet color under acidic
olutions ( Bueno et al., 2012 ). 
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Fig. 4. Nutritional quality biplot and RF model variable importance (a) PCA biplot of the three nutritional quality classes based on phenolic and micronutrient 

contents wherein PC1 explains 22.6% of the variation while PC2 explains 14.4% of the variation. Phenotypic distribution box plots of the pigmented rice collections 

based on (b) VideometerLAB parameters (c) phenolics content and (d) mineral content arranged according to cluster (1,2 and 3). Resulting variable importance of the 

random forest models generated using (f) multi-spectral imaging parameters, (e) the combinations of multi-spectral imaging, phenolic content and mineral content 

data (g) the top 5 important variable and multi-spectral imaging data, and (h) individual variable contributions per class. Abbreviated variables: L- whiteness, A- 

redness, B- yellowness, TPC – total phenolic content, TFC – total flavonoid content, TAC- total anthocyanin content, PC- phenolic content, FC- flavonoid content, AC- 

anthocyanin content, Mn - manganese content, Mo- molybdenum content, Na – sodium content, P – phosphorus content, S- sulphur content, Zn- zinc content, Ca- 

calcium content, Cu- copper content, Fe- iron content, K- potassium content, Mg- magnesium content. 
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.3. Nutritional quality classes and classification models for black-colored 

ice 

After demonstrating that the multispectral parameters captured by
he videometerLAB could be used to estimate the phenolic content of
lack rice, we sought out to determine the potential of multispectral
maging to predict the overall nutritional value of black rice. Also we
oted higher genetic variability for multi-nutritional properties (miner-
ls and bioactives) within the purple and variable rice’s ( Fig. 2 ) hence
e considered black rice collection for modeling to predict nutritional
uality of multiple nutrients. The nutritional quality of rice is a multidi-
ensional trait that is heavily influenced by the biochemical composi-

ion ( Mbanjo et al., 2020 ). In this study, only phenolic and micronutrient
ontent of rice were chosen to identify nutritional quality classes, as they
re responsible for numerous health benefits, including anti-aging, anti-
nflammatory, antioxidant and antiproliferative activities ( Lin et al.,
016 ). In addition, the identified quality classes would only describe
hose of black rice, since the PCA results, based on videometerLAB prop-
rties ( Fig. 2 a), showed distinctness among red and white rice when
ompared using phenolic and micronutrient content. Using the param-
ters derived from the process of dimensionality reduction, the cluster
nalysis uncovered three distinct quality classes ( Fig. 4 ). Class 1 com-
rised of black-colored rice with high micronutrient content, low total
henolics (TAC, TPC and TFC) and low bound phenolics. Class 2 were
ice varieties with low levels of micronutrients, high TPC, TAC, and TFC,
7 
nd low bound PC, AC, and FC. Class 3 consisted of rice varieties that
ad high levels of bound AC, FC, and PC, with moderate levels of mi-
ronutrients. The PCA biplot derived from phenolic and micronutrient
alues also demonstrated class distinctions ( Fig. 4 ). 

Models using RF and ANN were first created to predict the nutrient
lasses by deploying only the multispectral measurements produced by
he videometerLAB using 2019 dry season black rice collection. These
odels showed low accuracies of 29.41% and 35.29% for RF and ANN,

espectively, indicating that the multispectral parameters were unable to
ccurately characterize the nutritional quality. However, the RF model
howed that among the L, A, B, and H 

o parameters, the L parameter was
he most crucial variable as it contributes most to the model accuracy
 Fig. 4 ). To increase model accuracy, we included the micronutrient and
henolics data as inputs in addition to the multispectral parameters.
imensionality reduction by correlation filter was performed to avoid
verfitting, lowering the number of input variables to 19 (TPC, TFC,
AC, bound PC, bound FC, bound AC, L, A, B, Mn, Mo, Na, P, Zn, Al,
a, Cu, Fe, and K). All of these properties boosted the accuracy of the
F and ANN models to 78.47% and 85.3%, respectively ( Table 2 ), with

he optimal architecture for the neural network containing 23 nodes in
he hidden layer. 

Although high levels of accuracy were obtained, it is vital to deter-
ine the minimum number of parameters needed to predict the nutri-

ional value of a rice variety. This minimizes the number of biochemical
ests and maximizes experimental throughput, hence reducing the cost



R.J. Buenafe, R. Tiozon Jr., L.A. Boyd et al. Food Chemistry Advances 1 (2022) 100141 

Table 2 

Results of random forest and artificial neural network classification models to predict the multi-nutritional classes of black (variable purple and purple) rice. 

Abbreviated variables: L- whiteness, A- redness, B- yellowness, TAC – total anthocyanin content, TFC – total flavonoid content, TPC – total phenolic content, FC 

– flavonoid content, PC – phenolic content, AC – anthocyanin content. 

Model Predictors Number of Nodes in Hidden Layer Model Accuracy 

Artificial Neural Network (2019 Dry Season, n = 327) L, A, B, Hue, Intensity 8 36.42% 

Bound PC, TAC, Mo, P, Bound FC, Fe, Ca, TPC, 

TFC, K, Mn, L, Al, Zn, Cu, Na. A. B. Bound AC 

23 85.35% 

Bound PC, TAC, Mo, P, Bound FC, L, A, B 9 99.9% 

Random Forest (2019 Dry Season, n = 327) L, A, B, Hue, Intensity Not Applicable 30.21% 

Bound PC, TAC, Mo, P, Bound FC, Fe, Ca, TPC, 

TFC, K, Mn, L, Al, Zn, Cu, Na. A. B. Bound AC 

Not Applicable 78.47% 

Bound PC, TAC, Mo, P, Bound FC, L, A, B Not Applicable 85.3% 

Artificial Neural Network (2020 Wet Season Validation Set, 

n = 200) 

Bound PC, TAC, Mo, P, Bound FC, L, A, B 9 87.6% 

Random Forest (2020 Wet Season Validation Set, n = 200) Bound PC, TAC, Mo, P, Bound FC, L, A, B Not Applicable 75.43% 
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f chemicals and other resources. A total of eight variables were used
o derive the models: bound PC, TAC, and bound FC, Mo, and P lev-
ls and L, A, and B parameters from the videometerLAB data. These
ariables were chosen based on their contributions to the accuracy of
he RF model developed when 19 variables were used as inputs. These
ight variables were subsequently used to generate the RF and ANN
odels, which had accuracies of 85.35% and 99.9%, respectively. Evi-
ently, ANN is a stronger model than RF for predicting the nutritional
uality of black rice. Among these variables, the bound PC was a ma-
or contributor to the accuracy of the RF model ( Fig. 4 ). Moreover, the
mportance of the variables to the prediction of each nutritional class
iffered. For Class 1, P was the most important variable due to the abun-
ance of micronutrients within this class. For Class 2, TAC was the most
elevant variable, as this class had high total phenolics. Lastly, for Class
, bound PC was the most important variable as the rice samples within
his group have distinctly high levels of bound phenolic compounds. 

The applicability and validity of the created models were also tested
or reproducibility between independent seasons (dry season versus wet
eason). Data from black rice collection planted during wet season was
sed and a result of 87.6% and 75.43% accuracy for both ANN and
F models, respectively, were obtained ( Table 2 ). This shows that even
hen planted in different seasons, the models will still render accurate

esults. 

. Conclusion 

Multispectral imaging is a non-destructive and fast phenotyping
echnique that provides data on a number of spectral, color-related pa-
ameters. Using this technique, black (purple and variable purple) rice
ay be distinguished from other differently colored rice, i.e., red, and
hite. This work is the first to construct models that correlate the nutri-

ional components of rice with its pericarp color. The PLS models which
tilized videometerLAB data, accurately predicted TAC values based on
ericarp color, but TPC and TFC values were predicted with moder-
te accuracy. Comparing bound and free components, bound PC, FC,
nd AC produced higher accuracies, implying the importance of bound
henolics in rice bran pigmentation. In summary, it was observed that
olyphenols contribute to rice coloration and that these phenolic com-
ounds can be predicted using multispectral imaging parameters. Al-
hough color alone is insufficient to identify all nutritional character-
stics in rice, our mathematical models could deduce that black rice is
uperior in phenolic and micronutrient content. When selected phenolic
ompounds and minerals were used in conjunction with videometerLAB
ata, the derived ANN and RF models were able to predict the pheno-
ypic variability of multi-nutritional properties within the black rice core
ollection. Here, we determined that ANN models were comparatively
ore accurate at predicting the nutrient classes than the RF models.
NN models facilitate the generalization of input-output linkages and

he inference of associations on unseen data. The models generated in
8 
his work yielded three key nutritional classes for black rice based on its
icronutrient and phenolic content. Taken together, these models can

e useful for rice breeders as it may enable them to predict the phenolic
nd mineral content of rice based on its color and a few biochemical in-
icators. The use of the models created in this study is straight-forward.
ll the key predictors must be generated in the lab and data results
hould be fed to the models to predict nutritional quality classes. With
his information, breeders can strategically enhance the nutritional sta-
us of rice for consumers. 
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