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Abstract

As recently observed by the second author, the mod2 universal
Steenrod algebra Q has a fractal structure given by a system of nested
subalgebras Qg, for s € N, each isomorphic to Q. In the present paper
we provide an alternative presentation of the subalgebras Qg through
suitable derivations J5, and give an invariant-theoretic description of
them.
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1 Preliminaries

The mod 2 universal Steenrod algebra Q is the Fs-algebra generated by xy,
k € Z, together with 1 € [Fy, subject to the so-called generalized Adem relations:

n-1-3
R(ka n) = Xok-1-nTk + Z ( j j) L2k-1-j Th-n+j, (1~1)
J
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for k € Z and n € Nj.

First appeared in [16], such algebra is isomorphic to the algebra of co-
homology operations in the category of He-ring spectra (see [7], Ch. 3 and
8). Together with its odd p analogue Q(p), the universal Steenrod algebra @
has been extensively studied, among others, by the authors ([I]-[6], [8]-[L0],
isikie))

Let A: @ - Q be the algebra homomorphism defined by

A(1)=1 and M(zp) = x9p1.

Its s-th iterated map A® maps x; onto Zas(p-1y+1. In [§], the second author
proved that A is a monomorphism of algebras. Furthermore, the subalgebras
Q. = A*(Q) have the following presentation:

Qs =( {zosns1tnez | R(2°t+1,2°n)=0 ). (1.2)

2 A derivation on 9,

Let d: Q - Q be the derivation given by d(xy) = 1.

In [T1], Lomonaco proved that Q is isomorphic to the algebra generated by
the set 1 U {xy }rez with relations d™(xox_121) = 0 for n € Ny, where d° is the
identity, and

d"=do---od for n > 0.
—_———
n times

To compute the action of some particular d*’s on monomials of length 2, we
need the following Lemma.

Lemma 2.1. Let p be any prime. For any non-negative integers a, b and s,
the following congruential identity holds:

pia a
= d p.
(psb) (b) ety
Proof. Once you write a and b as Y1y a;p* and Y1 b;p?, (0 < a;,b; < p) respec-
tively, then
b\ & (b
( )EH( ) mod p (2.1)

a i=0 CLZ

see [18], I 2.6). From (2.1]), where, as usual, (°) = 1, our Lemma follows quite
(see | 0
easily. O

Proposition 2.2. For any (h,k) € Z xZ and (s,n) € Ng x N,

s “(n
d2 n(g;hajk) = Z (j)xhgsj T-25(n—j)- (22)
=0
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Proof. Being d a derivation, a straightforward argument shows that
C(l
de(xhxk) = Z ( ,).CEh_j Th—l+j- (23)
j=0 \J
When ¢ = 2°n, Equation ([2.3) becomes

oo 0 (2%n
d (ZL’hI‘k) = Z I Th-i Tk-25n+1- (24)
1=0
By Equation ({2.1)), it also follows that

25
( ln) =0mod 2 for any [ # 0 mod 2°.

Thus the non-zero coefficients in the sum [2.4] possibly occur when [ = 255 for
some 0 < 7 <n. Hence

2 "o (2%n

Sn _

d” " (xpay) = g (25 ,)xhgsj Th-2sp425
j=0 \&"]

We now invoke Lemma for p =2 to end the proof. O
For any s € Ny we set 0, = d2°. We get
8s(xn) = Thogs = d¥ (z1), (2.5)
and, according to Proposition for n =1,
ds(Tpxy) = Tp_osy + TpTp_os = Os(xp) ) + 2pds (k). (2.6)

Equation ([2.6)) shows that d, is another derivation on Q. Its n-iterated 07 acts
as follows.

O 1 xp € Q> xp_osy, € Q, (2.7)
and
s “(n
0 (wpwy) = d* ™(apwy) = ) (]) Th-2sj Th-25(n-j), (2.8)
=0

by Proposition [2.2]

Equations and tell us that the restriction of d, to Q, yields to
a derivation on Q. Such restriction (that, abusing notation, will be again
denoted by d,) allows us to get a new presentation of the algebra Q.

Proposition 2.3. For any (s,n) € Nx Ny, the following diagram commutes

0o L5 9
[E
o

Qs—>Qs
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Proof. The statement is trivial for n = 0. When n = 1, note that \* o d and
ds o A* both map the monomial x;,---x; —onto

T25(i1-2)+1025 (ig-1)+1""" L2 (ipy—1)+1 T *° T L25(3;-1)+1L25 (i9-1)+1""" L25 (i, —2)+1>
hence A\$od =d, 0 A%. We now use induction on n:

)\SOan/\SOdOdn_l:530)\50dn_1=65052_10>\5.

Theorem 2.4. A full set of generating relations for Q, is
{ Puil(n,t)eNgxZ},

where P, ; is the polynomial on the right side of Equation (2.8)) obtained by
setting h = 25"t + 1 and k = 25t + 1.

Proof. 1t has been proved in [I1] that the set
{Pl, | (6;t) eNox Z},

of polynomials on the right side of Equation ({2.3)) obtained by setting h = 2¢t-1
and k =t is a set of generating relations for Q.
Since A* is a monomorphism (see [§]), a set of generating relations in Q) is

{X(F) [ (1) eNox Z },
We now use Proposition [2.3
A (Py,) = M (d(wa-1m1)) = 05( N (w20-124)) = Prygon.-

3 Invariant-theoretic description

Let T',, = Fo[ j;,lo, Qn1,---,Qnn-1] be the Dickson algebra with the Euler class
Qn,o inverted. The generators (),; can be defined inductively in terms of
elements in Ay = Fy[vf!, ... v¥!], which is also a ring of invariants (see [15] and
[17]). In particular,

Q2,0 = U%"Uz, Q21 = U% + V102 (3.1)

In [11], Lomonaco proved that Q is isomorphic to A/(T'y), where A is the
algebra obtained by taking the graded vector space @,.9As (here Ay = Fy),
and endowing it with the following multiplication

A S I 73 Ji. .., Jk i1, a0k, J1 Tk
ot @ vt vt € Ap @ Ay = vt vyt vk € Ay
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An isomorphism is given by
fragy -y, € Qs [0 il e AJ(T),

where [v] stands for the coset represented by v € A . One of the key points is
that f maps the polynomial P, , (which is 0 in Q) onto

n

Z N\ ot 94 t-n+i-1
. K Uy

i=0 \ 7

which is represented by Q%' Q5 €'y,
As explicitly shown in [I5], the following diagram
A

Q — Q
lf lf (3.2)
P
Al(T2) —— A/(I2)
is commutative. In diagram (3.2)), zﬂ is induced on the quotient by
Yol v € A pP e A

It follows that f o \® is equal to ¢ o f for any positive integer s.
Our aim is to identify f(Qs) inside A/(T'y). The element

(f o A )(d"(wan-121)) = (V° 0 f)(d" (z2n-12))
is represented by ng’(}("‘”‘”ng{a Further,

(f o X)(d" (z2n-121)) = f(07 (N (z2n-121))) = [(0F (@251 (ho1) 4125 (h-1)+1))-
Set
A*= @A =DF[vi*,v”, ... 0" ] T5=TF[Q57,03],
k>0 k>0
and note that ¢*(Q20) = Q3 and ¥*(Q21) = Q3 (it immediately follows from
B1).
Theorem 3.1. O, = As/(I).
Proof. Since A* is a monomorphism, by the commutativity of the diagram
(3-2), ¢* is a monomorphism as well, and Im(y*) = A*/(T's). So 1* sets an

isomorphism between A/(I'z) and A$/(T'5). By the commutative diagram,
Qs 2 Im(A%) 2 Im(y*) = As/(T%). O

We could reword Theorem by saying that the map f establishes a
correspondence between the descending chain of subalgebras

0=0p2912-29,;29,>...
and the chain
A/(T9) > AYJ(T) 5 5 AH(T5H) 5 A%/(T5) o -+
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