
20136 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

A Methodology and Simulation-Based Toolchain
for Estimating Deployment Performance of Smart

Collective Services at the Edge
Roberto Casadei , Member, IEEE, Giancarlo Fortino , Fellow, IEEE, Danilo Pianini , Member, IEEE,

Andrea Placuzzi, Claudio Savaglio, Member, IEEE, and Mirko Viroli, Senior Member, IEEE

Abstract—Research trends are pushing artificial intelligence
(AI) across the Internet of Things (IoT)–edge–fog–cloud contin-
uum to enable effective data analytics, decision making, as well
as the efficient use of resources for QoS targets. Approaches
for collective adaptive systems (CASs) engineering, such as
aggregate computing, provide declarative programming models
and tools for dealing with the uncertainty and the complex-
ity that may arise from scale, heterogeneity, and dynamicity.
Crucially, aggregate computing architecture allows for “pulver-
ization”: applications can be decomposed into many deployable
micromodules that can be spread across the ICT infrastructure,
thus allowing multiple potential deployment configurations for
the same application logic. This article studies the deployment
architecture of aggregate-based edge services and its impli-
cations in terms of performance and cost. The goal is to
provide methodological guidelines and a model-based toolchain
for the generation and simulation-based evaluation of potential
deployments. First, we address this subject methodologically by
proposing an approach based on deployment code generators
and a simulation phase whose obtained solutions are assessed
with respect to their performance and costs. We then tailor this
approach to aggregate computing applications deployed onto an
IoT–edge–fog–cloud infrastructure, and we develop a correspond-
ing toolchain based on Protelis and EdgeCloudSim. Finally, we
evaluate the approach and tools through a case study of edge
multimedia streaming, where the edge ecosystem exhibits intelli-
gence by self-organizing into clusters to promote load balancing
in large-scale dynamic settings.

Index Terms—Cloud services, collective services, cyber–
physical systems, deployment methodology, edge intelligence,
mobile and ubiquitous systems, pulverizable architectures, service
middleware and platform, simulation.

I. INTRODUCTION

EDGE computing (EC) is a complementary paradigm to
cloud computing that provides computational resources

Manuscript received 2 March 2022; accepted 28 April 2022. Date
of publication 4 May 2022; date of current version 7 October 2022.
This work was supported in part by the Italian Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR) PRIN 2017 Project “Fluidware”
under Grant 2017KRC7KT, and in part by the EU/MUR FSE REACT-EU
PON R&I 2014–2022 under Grant CCI2014IT16M2OP005. (Corresponding
author: Danilo Pianini.)

Roberto Casadei, Danilo Pianini, Andrea Placuzzi, and Mirko Viroli
are with the Department of Computer Science and Engineering (DISI),
Alma Mater Studiorum–Università di Bologna, 47522 Cesena, Italy (e-mail:
danilo.pianini@unibo.it).

Giancarlo Fortino is with the Department of Informatics, Modeling,
Electronics and Systems, Università della Calabria, 87036 Rende, Italy.

Claudio Savaglio is with the Institute for High Performance Computing and
Networking (ICAR), National Research Council, 87036 Rende, Italy.

Digital Object Identifier 10.1109/JIOT.2022.3172470

and intelligence at the edge of the network, close to Internet
of Things (IoT) devices and users. So, it benefits communi-
cation latency and data rate and supports scalability through
decentralization and locality. Enriching the edge with artificial
intelligence (AI) capabilities [1]–[3] can be vital to unlocking
the potential of the IoT, enabling large-scale data processing
and reactivity in decision making. However, edge ecosystems
tend to be complex due to the heterogeneity of participating
devices and the high dynamicity of relationships and goals (as
induced, e.g., by mobility, failure, environmental changes, and
user activity). Prominent issues include defining efficient edge
structures [4], coordinating edge resource providers and con-
sumers [5], and supporting decision making for reconfiguration
and load balancing [6].

Recently, the aggregate paradigm has proved valuable as an
approach for engineering opportunistic services in IoT and
EC scenarios [7]–[9] and for programming collective edge
intelligence [3], [6]. A key benefit of aggregate computing is
that its architecture allows pulverizing (i.e., finely partitioning)
applications (which we call aggregate applications or aggre-
gate systems) into several logical components and deployment
units [10]. These units can be spread to available infrastruc-
ture for defining a particular deployment configuration. This
flexibility in deployment is critical to fully exploiting the
IoT-edge-fog-cloud infrastructural continuum opportunities.

This work focuses on predicting how the deployment affects
the performance and costs of smart edge services expressed
as aggregate applications. This is a significant issue since sub-
optimal deployments can negatively affect performance (e.g.,
system reactivity to change due to latencies, or unavailabil-
ity caused by energy depletion) and costs (e.g., in terms
of network capacity or energy consumption) associated with
these services. Therefore, for an effective engineering pro-
cess of complex systems [11], it is crucial to evaluate and
compare different target deployment configurations to miti-
gate the risk of ineffective deployments and reconfigurations
(which may cause further costs and temporary QoS reduc-
tion). This is a problem of methods and tools, which should
guide and support engineers across the various engineer-
ing phases. Therefore, this article delineates a methodology
and presents tools for assessing aggregate application deploy-
ments through simulation. Most specifically, we provide the
following contributions.

1) We propose a methodology applicable to pulverizable
(partitionable) systems, which leverages deployment

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0002-4039-891X
https://orcid.org/0000-0002-8392-5409

CASADEI et al.: METHODOLOGY AND SIMULATION-BASED TOOLCHAIN 20137

generators and simulators for assessing performance
and costs associated with a set of target deployment
configurations.

2) We implement the methodology specifically for aggre-
gate computing applications by mapping aggregate spec-
ifications to possible deployment configurations in a way
reminiscent of Infrastructure as Code (IaC) [12].

3) We develop a toolchain, integrating the Protelis aggre-
gate programming engine [13] with the EdgeCloudSim
simulator [14] for measuring metrics related to edge–
cloud deployments.

4) We apply the approach and toolchain to the edge
multimedia streaming case study presented in [6], which
represents a large-scale scenario where edge intelligence
is exploited for balancing the load on edge servers
through dynamic clustering.

The remainder of the article is organized as follows. In
Section II, we report an account of state-of-the-art approaches
for engineering and simulation of collective adaptive systems
(CASs) and provide background on the pulverizable archi-
tecture of aggregate computing applications. In Section III,
we present our methodology and toolchain. In Section IV,
we provide a quantitative evaluation of the approach. Finally,
Section V provides conclusive thoughts and discusses signifi-
cant directions for future work.

II. BACKGROUND AND RELATED WORK

A. Collective Adaptive Systems Development

In this section, we review the state of the art on CAS engi-
neering, which aims to analyze and design the emergent behav-
ior of large-scale situated cyber–physical systems. Example
applications include crowd engineering for safe navigation
and dispersal [15], smart mobility [16], situated problem solv-
ing [9], trust and reputation systems [17], robotics [18], [19],
and resilient management of ICT infrastructures [20]. A recent
survey of models, methods, and tools for rigorous CAS engi-
neering can be found in [21]. In the following, we review
programming and system specification approaches supporting
the development of CAS-based applications.

Techniques for CAS programming generally leverage one
or more of the following abstractions: ensembles, namely,
dynamic collections of devices; collective communication
interfaces, namely, abstractions enabling individual compo-
nents to communicate with groups; and field-like data struc-
tures, namely, mechanisms to address data belonging to an
entire group of components. Other approaches inspiring CAS
development techniques can be found among macroprogram-
ming and spatial computing contributions, as surveyed in [22].
In the following, we examine an approach to CAS program-
ming based on the computational field abstraction, deriving
from the spatial computing and coordination tradition [23].

1) Aggregate Computing: Aggregate computing [15] is
a full-fledged paradigm for CAS engineering. It formally
founds on field-based coordination [23] to compositionally
express collective adaptive behavior from a global perspective.
Field-based coordination is captured by field calculi [23]

and implemented through languages, such as the standalone
Protelis [13] and the Scala-internal ScaFi [24]. In field cal-
culi, the whole behavior of the system is specified in terms of
expressions manipulating computational fields, namely, maps
from system components to values. So, for instance, query-
ing a temperature sensor across a network yields a field of
floating-point values denoting temperatures, checking whether
the mean temperature across the neighbor’s contributions
exceeds a threshold yields a field of Boolean values denoting
potentially critical conditions, and so on.

From an operational perspective, each component (or
device) belonging to an aggregate system has some middle-
ware support for collaborating to the aggregate application,
which consists of an aggregate program plus configuration
related to connectivity and scheduling. From a logical point
of view, each device operates in computational rounds, each
of which is composed of the following steps.

1) Context Acquisition: Sensor information, messages from
neighbors, and state information are collected.

2) Computation: The aggregate program is applied against
the local context, yielding an output value and an
outbound coordination message.

3) Actuation: The output value can be used to drive
actuators.

4) Coordination: The outbound coordination message is
expected to be broadcasted to all the neighbors of the
device.

Rounds of different devices may be asynchronous. This exe-
cution protocol is independent of the concrete aggregate
program: different programs generate different outputs, and,
consequently, different messages for neighbors. The more
complex the program, the larger are the messages to be
exchanged with neighbors. Note that though the aggregate pro-
gram is the same for all the devices, the individual behaviors
would generally be different, as it would be evaluated against
a different context.

The complete coverage of the theory and practice of aggre-
gate computing is beyond the scope of this article: the
interested reader can refer to [23] for more details on the
approach and the main formal properties. For the sake of this
article and to provide a clue about how the aggregate paradigm
works, let us consider a simple but paradigmatic example:
the self-healing channel. This is a distributed, dynamic struc-
ture in a network that provides a hop-by-hop path from a
source device to a target device, represented as a Boolean
field mapping the devices comprised in the channel to true
and the devices outside the channel to false. This channel
can be programmed by composing other functions leverag-
ing gradients [25] to estimate 1) the distance from any node
to the source; 2) the distance from any node to the target;
and 3) the source-to-target distance. With these three pieces
of information available locally, each device can determine
whether it belongs to the channel or not by exploiting simple
geometry (the triangle inequality). Moreover, the above func-
tions can be reused for other algorithms as well. Crucially,
regarding the dynamics, note that as devices move in the
network, the fields from which the channel is computed

20138 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

self-adjust, eventually converging to their correct value, and
the same happens for the channel as well. We remark that
such a “global” computation (a channel spanning a network)
is executed in a fully decentralized way, in terms of local sens-
ing (distance to neighbors) and communication (as prescribed
by the aggregate program). The reusability of aggregate behav-
iors, modeled as functions from input to output fields, enables
the paradigm to scale with complexity and to discover high-
level coordination patterns [6]—one of these, implementing
clustered feedback loops, is especially convenient for edge
coordination and considered for the case study in Section IV.

2) Pulverizable Architecture of Aggregate Applications:
The execution and coordination protocol described in the
previous section is not a rigid schema: it is flexible and may
be adapted, both offline and online, to take into account var-
ious tradeoffs between performance and cost. For instance,
the frequency of operation of the devices can be adjusted
to closely match the rate of change of the phenomena under
monitoring. Moreover, the responsibilities of a component of
the aggregate (sensing, computation, actuation, and coordina-
tion) do not need to be deployed together. This notion, known
as pulverization [10], enables the partitioning [26] of aggre-
gate applications into several deployment units, which may be
deployed variously on a target ICT infrastructure, leading to
potentially different performance and costs [8], [10].

Fig. 1 summarizes the notion of pulverization for an
aggregate computing system. In this partitioning model, the
responsibilities corresponding to the activity of an individual
logical device are split into the following parts (Fig. 1).

1) Knowledge: This part keeps track of the software state,
which is also instrumental for coordinating the other
parts.

2) Sensor: This part is responsible for extracting data from
the local context/environment. Sensed data are stored in
the device state.

3) Actuator: This part is responsible for acting on the local
context/environment. Actuation is driven by the data
stored in the device state.

4) Behavior: This part is responsible for processing the
local context as represented in the device state to deter-
mine how the state should evolve, what actuations need
to be carried out, and what data are to be exchanged
with neighbors.

5) Communication: This part is responsible for exchang-
ing information with neighbors, as prescribed by the
behavior.

Then, an implementation would provide a different deployable
component (or service) for each of these parts, and a deploy-
ment would specify which components are put onto which
physical devices (Fig. 1).

In aggregate computing, the aggregate system that is pro-
grammed is, first, a logical entity, potentially decoupled from
an underlying physical system. Typically, a logical node
(Fig. 1) is associated with a concrete node of a networked
system (e.g., a robot, a smartphone, or a server in a cluster)—
its physical twin—and provides a “reasoning cycle” to turn
its sensor observations to actuation instructions (cf. Fig. 1).
However, certain responsibilities (e.g., computation, state, and

(a)

(b)

(d) (e)

(c)

Fig. 1. Pulverizable architecture in aggregate computing: device responsibil-
ity destruction and notable deployments (Figures adapted from [10]). Notation:
solid-border boxes denote hosts; bold-border boxes denote thick hosts; normal-
border boxes denote thin hosts; solid edges denote connections between hosts;
dashed-border boxes denote logical components, with letters indicating their
function (behavior, communication, knowledge, sensors, and actuators); dif-
ferently colored boxes denote (components of) different logical nodes; red
dashed edges denote logical connections, i.e., neighboring relationships (not
shown for co-located components). (a) Logical device, split into subcompo-
nents, and one of its neighbors. (b) Peer-to-peer architecture: no offloading,
1-to-1 mapping between logical and physical devices. (c) Communication
component offloaded. (d) Communication and state components offloaded.
(e) Full offloading: IoT hosts can be thin.

communication) can be, in principle, offloaded to other physi-
cal devices—e.g., edge, fog, or cloud nodes (cf. Fig. 1). These
responsibilities may be offloaded because of limitations of
the physical twin (e.g., it is a thin host with little storage,
energy, and computational capabilities) to enable neighboring
relationships that are not related to physical connectivity, or
in the context of a strategy to optimize the execution of the
aggregate computation [8], [10] (e.g., exploiting co-location

CASADEI et al.: METHODOLOGY AND SIMULATION-BASED TOOLCHAIN 20139

of the communication components to realize zero-latency and
zero-bandwidth interaction).

In the following sections, we show how pulverizable archi-
tectures can be considered in the context of a methodology-
supported engineering process and evaluate performance and
costs associated with different aggregate application deploy-
ments (Section IV).

B. Simulators for Collective Adaptive Systems on the Edge

Assessing how a collective adaptive application will per-
form before its actual deployment is paramount yet somewhat
tricky: the system it applies to comprises multiple and pos-
sible heterogeneous entities; as such, most classic testing
techniques do not apply straightforwardly; moreover, the cor-
rectness (or accuracy) of the system is usually measured with
multiple continuous metrics, which need to be evaluated for
many different situations. Moreover, many variables in real-
life applications come from experience and are most often
estimations. Simulation can be used robustly in these cases,
as solutions can be picked based not just on their outcome
with the expected value of the parameters, but considering
the reliability of the behavior across a wide range of sit-
uations. Consequently, simulation has a prominent role in
the overall system engineering procedure. Since even func-
tional requirements are generally defined in terms of global
behavior, simulation enters the game early, as it is the lean-
est way to verify if prototypes work as expected. Simulators
meant to support prototyping and development usually abstract
away network-level and nonapplication-level details, prioritiz-
ing scalability and debugging of the system behavior. Typical
simulators frequently leveraged in the software design phase
include Repast [27], NetLogo [28], and Alchemist [29], with
the latter featuring first-class support for aggregate computing
specifications defined in Protelis [13] or ScaFi [30].

Once the system is functionally verified, information con-
cerning low-level details, such as networking and power
consumption need to be assessed: a solution that was found
to provide the system with the required capabilities may be
unsustainable for the actual deployment, or show degraded
performance under some circumstances not captured by the
abstract simulated model. In such a case, two options are open:
searching for another implementation option at the application
level or finding a more efficient mapping of the application
logic on the deployed system (e.g., as proposed in [31]).
Systems supporting pulverization offer a principled way to
tackle the issue, generalizing the second option: the functional
logic is separated from its deployment details and several
configuration options can thus be explored.

Exploring these configurations requires dedicated tools that
expose deployment details and accurately capture information
regarding resource consumption. Traditionally, these tools
include network simulators (such as OMNeT++ [32]
and NS-3 [33]), operating-system-level simulators (such
as TOSSIM [34]), and cloud-oriented simulators (e.g.,
CloudSim [35], DEVS [36], and Recap [37]). Recently, sim-
ulators specifically conceived to provide comparative analy-
sis between the edge- and cloud-based deployments of an

IoT system are gaining attention. These technologies were
surveyed [38], [39] and classified with respect to the provided
Quality/Metrics Characteristics of ISO/IEC 25010/25023 [40]
(functional suitability, performance efficiency, compatibility,
reliability, maintainability, portability, etc.) and modeling fea-
tures (infrastructure, application, and resource management
modeling, scalability, and mobility models).

From both surveys, EdgeCloudSim [14] emerges as one of
the richest edge–cloud simulators. EdgeCloudSim is a Java-
written application distributed with an open-source licence,
based on CloudSim, and it has been exploited in dozens
of works and different application scenarios for evaluating
IoT applications performances, offloading strategies, resource
allocation schemes, etc. The simulator models a layered archi-
tecture composed of end devices, edge, and cloud. The base
simulated entity is the task, a process generated by end devices
with a predetermined resource and network consumption that
can be offloaded to upper layers (edge or cloud), through,
respectively, local (WLAN) or wide-area networks (WAN).
An orchestrator is in charge of implementing the rules and
policies for handling incoming devices’ tasks. EdgeCloudSim
focuses on three primary performance metrics: 1) service
time (by distinguishing between its two components, i.e.,
networking and computation time); 2) service failure rate
(which can be due to networking-, mobility- or computation-
related factors); 3) and resource utilization (in terms of CPU or
bandwidth overloads). Simulations are parameterized by simu-
lation time, device count, packet size, task length, and network
bandwidth through a set of declarative XML specifications,
respectively, devoted to the application, device, and scenario
modeling—thus relieving the end user from the need to tinker
with the simulator source code.

C. Other Deployment Methodologies

Several approaches dealing with the deployment of complex
systems and featured by different degrees of comprehensive-
ness have been proposed so far. Table I shows a qualitative
comparison of the main works by specifying their scope (gen-
eral or special), target (particular objectives and supported
deployment), contribution (i.e., from full-fledged methodolo-
gies to dedicated strategies and tools), and evaluation envi-
ronment (namely, network simulators, numerical frameworks,
or real testbeds). In particular, it can be immediately noticed
that they mainly focus on the allocation/placement of generic
resources, tasks, services, or applications by considering a
double-layer infrastructure (cloud plus edge/fog) supporting
the developers with a single contribution to be evaluated
through a network simulator. Conversely, the methodology we
propose and its associated toolchain are flexible enough to
open a larger design space (IoT–edge–fog–cloud continuum),
enabling the definition of the business logic of a distributed
software independent of any deployment constraint or con-
cern, assuming that the underlying software system can be
pulverized. In this sense, the methodology introduces a cleaner
separation of concerns; the main advantage with respect to the
traditional methods is the possibility to defer the choice of
which host will ultimately execute which part of the software.

20140 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

TABLE I
QUALITATIVE COMPARISON OF DEPLOYMENT APPROACHES ACCORDING

TO THEIR PURPOSE (GENERAL OR SPECIAL), GOAL, TARGET

INFRASTRUCTURE (IOT, EDGE, FOG, CLOUD), CONTRIBUTIONS

(METHODOLOGY, MODELS, (OPTIMAL) ALGORITHMS, STRATEGY, TOOL,
TOOLCHAIN), AND EVALUATION ENVIRONMENT (SIMULATOR, TESTBED,

NUMERICAL FRAMEWORK)

III. METHODOLOGY

This section presents our contribution, which consists of
a methodology for simulation-based deployment evaluation
(Section III), and an implementation of the methodology
to the aggregate computing paradigm, along with a pro-
totype toolchain providing support to its various phases
(Section III-B).

A. Methodology for Simulation-Based Deployment
Evaluation for Pulverizable IoT-Edge-Fog-Cloud Systems

As discussed in Section II-A2, pulverized systems provide
a clean separation between the application business logic and
its actual deployment. This section discusses how this feature
can be leveraged in a methodology, providing insights into
how combinations of different pulverization would behave on
different infrastructures The input information for the method
has two elements:

1) functional requirements for the application;
2) possible target infrastructures.

Functional requirements must be satisfied by creating an
appropriate specification in a pulverizable language or plat-
form (in our prototype implementation, we relied on the
aggregate programming language Protelis [13]), producing a
partitioned application. The available potential target infras-
tructures need to be captured into a formal machine-readable
model. This operation is similar to a “reverse” IaC [12]. In
IaC, computation resources (servers, virtual machines, and
their configuration) are managed and provisioned via machine-
readable declarative configuration files; in our case, configu-
ration files should be produced as descriptors of the possible
infrastructural configurations. Crucially, in the case the final
system’s target infrastructure was instanced via IaC (which is
likely for distributed systems using a modern DevOps automa-
tion pipeline), the IaC descriptor could easily play the role of
infrastructure descriptor for the proposed methodology as well.

Information on the infrastructure model and the parti-
tioned application is then provided to a deployment generator,
a configurable software component that finds all possible
valid deployments of pulverized components onto the pos-
sible infrastructures, generating the corresponding simulation

Fig. 2. Overview of the approach. (The blue boxes denote specific instan-
tiations of the corresponding methodology elements that have been exercised
in this article.)

files. Simulations are then executed, in our case, by relying on
EdgeCloudSim, and performance analysis is performed. The
methodology is summarized in Fig. 2.

Results can then be: 1) interpreted by the developers to
gain insights on the most suitable strategy for the pulveriza-
tion of the system; 2) used by the operations team to figure out
which deployment allows meeting the requirements while sav-
ing resources; and 3) even integrated into the quality assurance
automated pipeline. In this sense, the proposed methodology
also contributes to the evolution of the best practices for the
development of distributed systems by realizing a predeploy-
ment performance evaluation that could influence the IaC and
deployment phases, thus allowing to block the deployment in
case the system was found to have a relevant performance
regression.

B. Application to Aggregate Computing

We have created a prototype implementation of the tooling
required for applying the methodology [52]. In particular, we
have selected the Protelis aggregate programming language
as pulverizable behavior specification, and the EdgeCloudSim
platform for simulating the deployed system, framed in blue-
filled boxes in Fig. 2.

The deployment generator module is at the core of the
approach, representing the novel element introduced in the
toolchain. It works as an adapter between the high-level pul-
verized program specification and the network simulation tool,
and has the following responsibilities.

CASADEI et al.: METHODOLOGY AND SIMULATION-BASED TOOLCHAIN 20141

1) Given a behavioral specification (in our case, a Protelis
program), providing cost models compatible with the
low-level simulator (in our case, EdgeCloudSim).

2) Given a set of possible infrastructures, filtering those
compatible with the requirements of the pulverized
system.

3) For all the plausible combinations between infras-
tructures and deployments of pulverized components,
generating all the valid simulation configurations.

4) Analyzing all these configurations by exercising the
network simulator.

1) Complexity Estimation of Pulverized Aggregate
Programs: The first step of our analysis methodology
requires estimating the resources that are required to
run a pulverized system. In such directions, there exist
several options that capture the specification at differ-
ent levels of abstraction and provide differently grained
estimates.

One approach is the static analysis [53], which takes as input
the source code, the binaries it produces (if compiled), or some
intermediate product of compilation; builds an internal model
of the program; and then performs the analysis by search-
ing for known patterns, without actually executing the code.
Usually, static analysis tools are meant to intercept style incon-
sistencies, dodgy code snippets, bad practices, bugged patterns,
and security vulnerabilities; however, the same technique can
also be used to gain insights on the complexity and, espe-
cially by data-flow analysis (namely, static prediction of the
possible runtime values of some variables), on some bounds
of the size featuring the exchanged network messages. In our
prototype implementation, we rely on static analysis to esti-
mate the computation load required by Protelis programs, done
by intercepting the intermediate representation of the abstract
syntax tree produced by the Protelis interpreter before exe-
cution, and then by estimating the execution cost of each
subtree. Since Protelis is higher-order [54], we had to take into
account function references and lambda expressions, hijacking
the standard interpretation machinery to explore their body.
The peculiar Xtext-based implementation [55] of the language
has been relevant for simplifying the process and for driving
the choice of Protelis as target language for the analysis. On
the other hand, the lack of a static type-checker hindered our
data-flow analysis, so we expect other aggregate computing
implementations (such as the Scala-internal DSL ScaFi [24])
to be amenable of a more detailed analysis (although at a
higher implementation cost due to the complexity of the host
language).

Another approach to evaluating the expected performance
of code is (micro)benchmarking, which requires instrumented
execution of the software and measures (rather than estimates,
as it is done by static analysis) the cost of executing soft-
ware. Although this kind of measurement sounds attractive;
the measures may be affected by a very significant error and
the outcomes could be much less precise than expected [56].
This is due to the inherent complexity of modern computers
and software stacks: CPUs are equipped with several layers
of caches that heavily impact performance, e.g., even com-
paring different list implementations by timing their use can

generate astonishing results);1 the operating system scheduling
policies introduce additional variability; compiler tuning can
produce, from the same source, executables with different
performance; and, finally, language runtimes, such as the Java
Virtual Machine or the Common Language Runtime introduce
further layers of complexity due to internal caching, garbage
collection, just-in-time (de)optimization [57], and other mech-
anisms. Even though, in principle, (micro)benchmarking is a
viable option for a complexity estimator and should probably
be part of an all-round tool, the vast number of variables to
keep in check made it a technique unsuitable for a prototyp-
ical demonstrator as the one we are presenting for this work;
thus, we used static analysis.

As mentioned in Section II-B, usually a simulation step is
required during the design to understand whether the desired
behavior is being achieved. These high-level simulation tools,
although often not capturing enough of the low-level details,
can be leveraged to extract valuable information on the system.
For instance, the Alchemist Simulator [29] does run actual
aggregate code in simulations. We indirectly exploited this
capability by excerpting the small portion of code in charge
of executing the aggregate program and emulating the deliv-
ery of messages to other devices, configuring it manually using
the Protelis networking module, and interposing a serialiser in-
between: this way, we estimated message sizes rather precisely.
This is an instance of a more general practice where simula-
tors used in the design step are leveraged for obtaining insights
on the behavior of the system (in our case, the expected mes-
sage size), and this information is then used in the detailed
deployment evaluation.

2) Formal Deployment Specifications: As discussed in
Section III-A, the proposed approach requires a formal specifi-
cation of the actual target platform. The most likely reification
for a full-fledged tooling implementation would likely be a
translation directly made from the IaC definitions; however,
there is no physical target in our prototypical proof of concept.
For this reason and the sake of simplicity, we have developed
our own lightweight syntax, rather than implementing an ICT
infrastructure model translating existing tools’ definitions into
EdgeCloudSim-compatible environments descriptors. A rele-
vant factor in our decision has been the lack, at the time of
writing, of any widely accepted standard language for IaC. The
arguably most widespread syntax is the custom language used
by the Terraform tool [58], which would require a customized
parser.

Our descriptor is thus a standard YAML2 file captur-
ing hardware, networking, and infrastructure parameters. An
excerpt of such configuration is presented in Fig. 3. It is
possible to specify multiple values for most keys: every
combination of such values is then tested in simulation.

A second descriptor, exemplified in Fig. 4, defines the possi-
ble deployments of pulverized components. Omitted keys have
a default target; in particular, the state component is intended
to be deployed alongside the behavior component unless

1https://archive.is/BJAuq
2https://yaml.org/spec/1.2/spec.html

20142 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

Fig. 3. Infrastructure descriptor.

Fig. 4. Pulverized system descriptor.

otherwise specified, and sensors and actuators are intended
as deployed on end devices.

3) Automated Simulation Execution and Data Analysis:
Out tool performs three tasks in order to execute all the
required simulations: a generation task that compiles the input
descriptors and generates a set of EdgeCloudSim configura-
tion files, an execution task that runs all simulations, and an
analysis task producing graphs. The generation task:

1) performs the Cartesian product of hardware, networking,
and infrastructure parameters;

2) estimates the Protelis program complexity and related
message size;

3) generates EdgeCloudSim configuration files for each
combination of device count, edge server count, and (if
an interval is provided rather than a number) Protelis
program complexity and message size; and

4) finally produces a descriptor for the execution task with
instructions on all the combinations to be executed.

Once done, the execution task is in charge of launching
multiple repetitions of the simulation. Finally, the analysis
task executes on the produced results. The final part of the
evaluation depends on the nonfunctional requirements of the
application: unless a deployment configuration is strictly supe-
rior to another under all the metrics (which is pretty unlikely in
real-world situations), identifying the best one requires factor-
ing in the impact of any metric of interest. For instance, for a

social real-time distributed game, latency could be vastly more
important than data rate; on the contrary, if the application
business logic concerns streaming prerecorded high-definition
videos, the data rate is predominant over low latency. In our
case, the analysis task has been used to produce the charts
included in Section IV, along with many others that we have
used to interpret better the system behavior that was not
included for the sake of brevity (still, they are available on the
same repository hosting the prototype [52]). We have written
the former two tasks in Kotlin as part of the Gradle-based build
automation tooling of the prototype. Instead, charts have been
produced via a MATLAB script, executed via Octave through
a GitHub Action.

IV. EVALUATION

This section exercises our proposed methodology and
toolchain by performing a deployment analysis for a case
study from the literature. We have selected an existing imple-
mentation to show that the approach applies to existing code
without any impact on the specification; most specifically, we
have taken an implementation of the self-organizing coordi-
nation regions pattern [6] applied to the collection of local
user-generated multimedia streaming. Our goal is to demon-
strate that through the proposed methodology, a predeployment
analysis can be executed provided a specification of the tar-
get infrastructure and the pulverized behavior. Section IV-A
reports how the experiment is configured and Section IV-B
presents evaluation results.

A. Configuration

The behavior of the simulated system is obtained from the
experiments presented in [6]: we have our analyzer with the
Protelis source code found in [59], obtaining an estimation of
the millions of instructions required on average to compute
the behavior and an estimate of the message size.

We then created the infrastructure descriptor, trying to map
a reasonably realistic target platform. Our reference target
comprises nine edge servers with an associated Wi-Fi access
point that end devices can connect to. EdgeCloudSim mod-
els wireless data rate reduction due to environmental factors
and shared resources internally, provided a maximum data rate.
We selected such a maximum data rate by observing results in
the literature for 802.11ac Wave-1-certified [60] and Wave-2-
certified [61] devices (released in 2016). Although theoretical
performance tables show much higher performance,3 practical
studies suggest a maximum data rate of 123 Mb/s for Wave-
1 devices [60] and 282 Mb/s for Wave-2 devices [61]. We
decided to pick an intermediate value of 200 Mb/s as our
maximum expected data rate. Edge servers are equipped with
16 GB of RAM and are configured to mirror an existing ded-
icated edge server processor (Intel Xeon D4 model D-1540)5

featuring eight cores, 16 parallel threads, a base frequency of
2.00 GHz, and a thermal design power of 45 W. Edge servers
can communicate with the cloud via a WAN connection with

3https://mcsindex.net/
4https://archive.is/x8owH
5https://archive.is/JUoIG

CASADEI et al.: METHODOLOGY AND SIMULATION-BASED TOOLCHAIN 20143

TABLE II
AVAILABLE CHOICES FOR THE DEPLOYMENT OF PULVERIZED

COMPONENTS IN DIFFERENT DEPLOYMENT CONFIGURATIONS.
INDICATES THAT THE COMPONENT CAN BE DEPLOYED ON THE LOCAL

DEVICE DIRECTLY, THAT IT CAN GET DEPLOYED ON EDGE, AND

ON CLOUD. ACTUATOR AND SENSOR COMPONENTS ARE ALWAYS

DEPLOYED ON THE LOCAL DEVICE. THE STATE COMPONENT IS ALWAYS

DEPLOYED ON THE SAME HOST OF THE BEHAVIOR COMPONENT. IN

B � C, BEHAVIOR AND COMMUNICATION COMPONENTS ARE FORCED TO

BE HOSTED ON THE SAME HOST, IN B � C THEY CAN BE LOCATED ON

DIFFERENT HOSTS, AND IN C ONLY THE COMMUNICATION COMPONENT

IS HOSTED ON EITHER EDGE OR CLOUD

a stable data rate of 15 Mb/s, while end devices can do the
same via LTE at 10 Mb/s. We have simulated a typical mod-
ern (at the time of writing) cloud server system, featured by
128 GB of RAM and an AMD EPYC6 77027 processor with
64 cores, 128 parallel threads, a base clock of 2.00GHz and a
thermal design power of 200W. This configuration is affine to
large cloud instances available at the time of writing by sev-
eral well-known cloud service providers. We have tested with
three work modes for the infrastructure.

1) 1-tier: Only edge devices are enabled, the cloud is
unreachable.

2) 2-tier: Both edge devices and cloud are reachable, pul-
verized components of end devices are tied to run on
their closest edge server.

3) 2-tier With Edge Orchestrator: Same as 2-tier, but
pulverized components may run on any edge server.

In such an infrastructure, we have tested three different
pulverized deployments, which are visually summarized in
Fig. 5.

1) C, where the end devices host almost all computation
(they are thick nodes), only delegating the communica-
tion component to the cloud or the edge.

2) B � C, where devices only host sensors and actuators
(they are thin nodes), delegating the rest to the edge or
the cloud.

3) B � C, similar to B � C but with the additional con-
straint that behavior and communication components are
forced to be located on the same host.

In every case, components that are deployable (see Table II
for the available options) on edge and cloud have a probability
P of being hosted on the cloud instead of on edge. We
consider the following cases as baselines, as they could be
realized traditionally, without pulverization.

1) C With P = 0: An application designed from the
beginning to run on the end devices and communicate
through the edge.

2) C With P = 1: An application designed from the
beginning to run on the end devices and communicate
through cloud-mediated messages.

6https://archive.is/g7jN9
7https://archive.is/M0ChF

(a)

(b)

(c)

Fig. 5. Visual representation of the pulverized deployments under test. In
B � C, behavior and communication components are forced to be hosted on
the same host, in B � C they can be located on different hosts, and in C
only the communication component is hosted on either edge or cloud.

3) B � C With P = 0: An application designed from the
beginning to delegate to the edge servers everything but
sensing and actuation (end devices are considered thin)
and communicate through the edge.

4) B � C With P = 1: An application designed from
the beginning to delegate to the cloud everything but
sensing and actuation (end devices are considered thin)
and communicate through the cloud.

End devices move following a nomadic migration model:
they spend some time in the proximity of an edge server,
then they can migrate elsewhere. The time spent at each des-
tination depends on its attractiveness parameter (specified in
EdgeCloudSim configuration files), while all destinations have
the same probability of being reached.

20144 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

Fig. 6. Average network delay by deployment type (columns) and P (rows). The last two columns (B � Cand C) of the first (P = 0) and the last
(P = 1) rows, surrounded by black boxes, can be considered baselines, as these data could be generated and studied with classic approaches too.

The whole experiment has been documented, automated,
and published as opensource in a public repository8 [52]
to facilitate accessibility and reproduction. Unfortunately,
EdgeCloudSim does not allow for seeding simulations: results
obtained by re-executing the process will produce slightly
different results.

B. Results

Simulation results are summarized in Fig. 6 for network
delays and in Fig. 7 for the task failure rate. Data are the
mean over seven simulation runs.

First, the proposed methodology widens the design space
of the distributed application at hand: with traditional devel-
opment methodologies, the application should have been
designed from the start to work on either thick devices (C
deployments), or with thin end devices, but with behavior
and communication logics co-hosted (B � C deployments);

8https://github.com/aPlacuzzi/Experiment-2021-Pulverization-
EdgeCloudSim

since single application parts get designed with the commu-
nication machinery in mind, either the cloud (P = 1) or
the edge (P = 0) is used. The proposed methodology opens
the door to many further possible deployment schemes, as all
choices on how single components should communicate and
where they can be deployed are delayed until after the system
business logic design is complete.

Analysis of the data for the several deployment schemes
show no clear dominance. Figures depicting the average
network delay show a peak due to an increased rate of network
failures: these data are to be considered along with the prob-
ability that tasks complete successfully. We observe, in fact,
that in 2-tiered scenarios, most failures are cloud side, and, by
comparing failures with the corresponding relative network
delays, we see that decreasing average network delays match
the growth of the failure rate. In 1-tiered scenarios (edge
only), we observe a minor average network delay compared
to the other scenarios—as expected—but a higher percentage
of failed tasks, most likely due to saturation of edge servers’
computational resources. For the specific scenario (multimedia

CASADEI et al.: METHODOLOGY AND SIMULATION-BASED TOOLCHAIN 20145

Fig. 7. Percent of failed tasks by deployment type (columns) and P (rows). The last two columns (B � Cand C) of the first (P = 0) and the last
(P = 1) rows, surrounded by black boxes, can be considered baselines, as these data could be generated and studied with classic approaches too. Solid-filled
areas represent the quota of failed tasks that were assigned to the cloud.

streaming), unless the streaming is intended for real-time reuse
(e.g., augmented reality gaming), latency is likely more toler-
able than failure. Data show that for a relatively low count of
users (below 200) a 1-tiered architecture is a viable solution,
provided that a B � C deployment is performed, as B � C has
a more erratic behavior due to the components being migrated
separately, and C deployments stress the network too much.
To support larger systems, a 2-tiered architecture is necessary,
and in this case a B � C deployment with a low P seems
to be the most scalable solution. Adding an edge orchestrator
in this situation is not particularly helpful, as it provides better
performance only when the system is not under stress, while in
heavy load configurations, the performance of an architecture
with or without orchestrator tends to converge.

V. CONCLUSION

The development of collective, dynamic, heterogeneous and
scalable IoT systems in complex and uncertain scenarios is
an engineering task as important as challenging: from the

1) functional viewpoint, they require programming paradigms
that inherently support essential features of autonomy, decen-
tralization and adaptiveness and 2) deployment viewpoint, due
to the entanglement of different factors related to computa-
tion, networking, and mobility aspects, they can be mapped
in several, alternative, and suboptimal settings, with the risk
of ineffective deployments and reconfigurations. Therefore,
computing paradigms for expressing edge intelligence by sep-
arating logic and deployment planes as well as simulation tools
for preliminary and comprehensively evaluating different tar-
get deployment configurations are key enablers to effectively
and efficiently develop complex IoT systems.

Along this research direction, in this article, we have
presented a methodology and a toolchain for capturing can-
didate deployments of smart edge services and predicting,
by simulation, their performance and cost. In particu-
lar, we tailored this approach to aggregate computing,
since its architecture enables pulverization (namely, par-
titioning into logical components and deployment units),
spread on IoT-Edge-Fog-Cloud infrastructural continuum, and

20146 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

accordingly simulated on EdgeCloudSim. We have then
demonstrated the potential of our approach to an edge
multimedia streaming case study which mirrors the chal-
lenges and requirements of complex IoT systems (large scale,
dynamicity, and adaptivity) and demands edge intelligence
for load-balancing operations through dynamic clustering. In
particular, we showed that, starting from the same pulver-
ized specification, depending on the target deployment of our
components, we can obtain systems with different perfor-
mances. Each type of deployment works better under some
circumstances depending, for example, on the expected num-
ber of users and the availability of computational and network
resources. Since our methodology and the related prototype
tool enables an a priori estimation of the deployed system
performance, they can be exploited by operation teams to
select the most suitable target platform for the system deploy-
ment or can be integrated into an automated deployment
pipeline as an additional quality control step.

In the future, we plan to realize a variant of the presented
methodology where the simulation step is substituted with an
optimal method, similar to the ones proposed in [45], [47],
and [49]. Moreover, we intend to perform further evaluations
about both the methodology and other use cases.

REFERENCES

[1] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.
[Online]. Available: https://doi.org/10.1109/JPROC.2019.2918951

[2] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and
A. Y. Zomaya, “Edge intelligence: The confluence of edge
computing and artificial intelligence,” IEEE Internet Things J.,
vol. 7, no. 8, pp. 7457–7469, Aug. 2020. [Online]. Available:
https://doi.org/10.1109/JIOT.2020.2984887

[3] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani,
“Engineering collective intelligence at the edge with aggregate
processes,” Eng. Appl. Artif. Intell., vol. 97, Jan. 2021, Art. no. 104081.
[Online]. Available: https://doi.org/10.1016/j.engappai.2020.104081

[4] V. Karagiannis and S. Schulte, “Distributed algorithms based on prox-
imity for self-organizing fog computing systems,” Pervasive Mobile
Comput., vol. 71, Feb. 2021, Art. no. 101316. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574119220301437

[5] R. Casadei and M. Viroli, “Coordinating computation at the edge: A
decentralized, self-organizing, spatial approach,” in Proc. 4th Int. Conf.
Fog Mobile Edge Comput. FMEC, Rome, Italy, Jun. 2019, pp. 60–67.
[Online]. Available: https://doi.org/10.1109/FMEC.2019.8795355

[6] D. Pianini, R. Casadei, M. Viroli, and A. Natali, “Partitioned integration
and coordination via the self-organising coordination regions pattern,”
Future Gener. Comput. Syst., vol. 114, pp. 44–68, Jan. 2021. [Online].
Available: https://doi.org/10.1016/j.future.2020.07.032

[7] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio,
and M. Viroli, “Modelling and simulation of opportunistic IoT
services with aggregate computing,” Future Gener. Comput.
Syst., vol. 91, pp. 252–262, Feb. 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2018.09.005

[8] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, and
M. Viroli, “A development approach for collective opportunistic edge-
of-things services,” Inf. Sci., vol. 498, pp. 154–169, Sep. 2019. [Online].
Available: https://doi.org/10.1016/j.ins.2019.05.058

[9] R. Casadei, C. Tsigkanos, M. Viroli, and S. Dustdar, “Engineering
resilient collaborative edge-enabled IoT,” in Proc. IEEE Int. Conf.
Services Comput. (SCC), Milan, Italy, Jul. 2019, pp. 36–45. [Online].
Available: https://doi.org/10.1109/SCC.2019.00019

[10] R. Casadei, D. Pianini, A. Placuzzi, M. Viroli, and D. Weyns,
“Pulverization in cyber-physical systems: Engineering the
self-organizing logic separated from deployment,” Future
Internet, vol. 12, no. 11, p. 203, 2020. [Online]. Available:
https://doi.org/10.3390/fi12110203

[11] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of
Things as system of systems: A review of methodologies, frame-
works, platforms, and tools,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 51, no. 1, pp. 223–236, Jan. 2021. [Online]. Available:
https://doi.org/10.1109/TSMC.2020.3042898

[12] M. Artac, T. Borovsak, E. D. Nitto, M. Guerriero, and D. A. Tamburri,
“DevOps: Introducing infrastructure-as-code,” in Proc. 39th Int. Conf.
Softw. Eng. (ICSE), Buenos Aires, Argentina, May 2017, pp. 497–498.
[Online]. Available: https://doi.org/10.1109/ICSE-C.2017.162

[13] D. Pianini, M. Viroli, and J. Beal, “Protelis: Practical aggregate
programming,” in Proc. 30th Annu. ACM Symp. Appl. Comput.,
Salamanca, Spain, Apr. 2015, pp. 1846–1853. [Online]. Available:
https://doi.org/10.1145/2695664.2695913

[14] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environ-
ment for performance evaluation of edge computing systems,” Trans.
Emerg. Telecommun. Technol., vol. 29, no. 11, 2018, Art. no. e3493.
[Online]. Available: https://doi.org/10.1002/ett.3493

[15] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” Computer, vol. 48, no. 9, pp. 22–30, 2015. [Online].
Available: https://doi.org/10.1109/MC.2015.261

[16] A. Bucchiarone and M. Mongiello, “Ten years of self-adaptive
systems: From dynamic ensembles to collective adaptive systems,” in
From Software Engineering to Formal Methods and Tools, and Back
(LNCS 11865), M. H. ter Beek, A. Fantechi, and L. Semini, Eds.
Cham, Switzerland: Springer, 2019, pp. 19–39. [Online]. Available:
https://doi.org/10.1007/978-3-030-30985-5_3

[17] A. Aldini, “Design and verification of trusted collective adaptive
systems,” ACM Trans. Model. Comput. Simulat., vol. 28, no. 2, pp. 1–9,
2018. [Online]. Available: https://doi.org/10.1145/3155337

[18] D. B. Abeywickrama, N. Bicocchi, M. Mamei, and F. Zambonelli, “The
SOTA approach to engineering collective adaptive systems,” Int. J. Softw.
Tools Technol. Transf., vol. 22, no. 4, pp. 399–415, 2020. [Online].
Available: https://doi.org/10.1007/s10009-020-00554-3

[19] J. Beal, K. Usbeck, J. P. Loyall, M. Rowe, and J. M. Metzler,
“Adaptive opportunistic airborne sensor sharing,” ACM Trans. Auton.
Adapt. Syst., vol. 13, no. 1, pp. 1–6, 2018. [Online]. Available:
https://doi.org/10.1145/3179994

[20] S. S. Clark, J. Beal, and P. P. Pal, “Distributed recovery for Enterprise
services,” in Proc. IEEE 9th Int. Conf. Self Adapt. Self Org. Syst.,
Cambridge, MA, USA, Sep. 2015, pp. 111–120. [Online]. Available:
https://doi.org/10.1109/SASO.2015.19

[21] R. D. Nicola, S. Jähnichen, and M. Wirsing, “Rigorous engineering
of collective adaptive systems: Special section,” Int. J. Softw. Tools
Technol. Transf., vol. 22, no. 4, pp. 389–397, 2020. [Online]. Available:
https://doi.org/10.1007/s10009-020-00565-0

[22] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll. “Organizing
the aggregate: Languages for spatial computing.” 2012. [Online].
Available: http://arxiv.org/abs/1202.5509

[23] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and
D. Pianini, “From distributed coordination to field calculus
and aggregate computing,” J. Logic. Algebr. Methods Program.,
vol. 109, Dec. 2019, Art. no. 100486. [Online]. Available:
https://doi.org/10.1016/j.jlamp.2019.100486

[24] R. Casadei, M. Viroli, G. Audrito, and F. Damiani, “FScaFi:
A core calculus for collective adaptive systems programming,” in
Leveraging Applications of Formal Methods, Verification and Validation:
Engineering Principles, (LNCS 12477), T. Margaria and B. Steffen, Eds.
Cham, Switzerland: Springer, 2020, pp. 344–360. [Online]. Available:
https://doi.org/10.1007/978-3-030-61470-6_21

[25] G. Audrito, R. Casadei, F. Damiani, and M. Viroli, “Compositional
blocks for optimal self-healing gradients,” in Proc. 11th
IEEE Int. Conf. Self Adapt. Self Org. Syst. (SASO), Tucson,
AZ, USA, Sep. 2017, pp. 91–100. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18

[26] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi,
“Application partitioning algorithms in mobile cloud comput-
ing: Taxonomy, review and future directions,” J. Netw. Comput.
Appl., vol. 48, pp. 99–117, Feb. 2015. [Online]. Available:
https://doi.org/10.1016/j.jnca.2014.09.009

[27] M. J. North, N. T. Collier, and J. R. Vos, “Experiences creating three
implementations of the repast agent modeling toolkit,” ACM Trans.
Model. Comput. Simulat., vol. 16, no. 1, pp. 1–25, 2006. [Online].
Available: https://doi.org/10.1145/1122012.1122013

[28] E. Sklar, “NetLogo, a multi-agent simulation environment,” Artif.
Life, vol. 13, no. 3, pp. 303–311, 2007. [Online]. Available:
https://doi.org/10.1162/artl.2007.13.3.303

CASADEI et al.: METHODOLOGY AND SIMULATION-BASED TOOLCHAIN 20147

[29] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented
simulation of computational systems with ALCHEMIST,” J.
Simulat., vol. 7, no. 3, pp. 202–215, 2013. [Online]. Available:
https://doi.org/10.1057/jos.2012.27

[30] M. Viroli, R. Casadei, and D. Pianini, “Simulating large-scale aggregate
MASs with alchemist and scala,” in Proc. IEEE Feder. Conf. Comput.
Sci. Inf. Syst. (FedCSIS), vol. 8, Sep. 2016, pp. 1495–1504. [Online].
Available: https://doi.org/10.15439/2016F407

[31] D. Pianini, A. Elzanaty, A. Giorgetti, and M. Chiani, “Emerging
distributed programming paradigm for cyber-physical systems
over LoRaWANs,” in Proc. IEEE Globecom Workshops GC
Wkshps, Abu Dhabi, UAE, Dec. 2018, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/GLOCOMW.2018.8644518

[32] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation.
Berlin, Germany: Springer, 2010, pp. 35–59. [Online]. Available:
https://doi.org/10.1007/978-3-642-12331-3_3

[33] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and Tools for Network Simulation. Berlin, Germany: Springer,
2010, pp. 15–34. [Online]. Available: https://doi.org/10.1007/978-3-642-
12331-3_2

[34] P. Levis, N. Lee, M. Welsh, and D. E. Culler, “TOSSIM:
Accurate and scalable simulation of entire tinyOS applications,” in
Proc. 1st Int. Conf. Embedded Netw. Sensor Syst. (SenSys), Los
Angeles, CA, USA, Nov. 2003 pp. 126–137. [Online]. Available:
https://doi.org/10.1145/958491.958506

[35] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011. [Online].
Available: https://doi.org/10.1002/spe.995

[36] A. C. H. Chow and B. P. Zeigler, “Parallel DEVS: A parallel, hierarchi-
cal, modular, modeling formalism,” in Proc. 26th Conf. Winter Simulat.
(WSC), Lake Buena Vista, FL, USA, Dec. 1994, pp. 716–722. [Online].
Available: https://doi.org/10.1109/WSC.1994.717419

[37] J. Byrne et al., “RECAP simulator: Simulation of cloud/edge/fog
computing scenarios,” in Proc. Winter Simulat. Conf. (WSC), Las
Vegas, NV, USA, Dec. 2017, pp. 4568–4569. [Online]. Available:
https://doi.org/10.1109/WSC.2017.8248208

[38] M. Ashouri, F. Lorig, P. Davidsson, and R. Spalazzese, “Edge computing
simulators for IoT system design: An analysis of qualities and met-
rics,” Future Internet, vol. 11, no. 11, p. 235, 2019. [Online]. Available:
https://doi.org/10.3390/fi11110235

[39] S. Svorobej et al., “Simulating fog and edge computing scenarios: An
overview and research challenges,” Future Internet, vol. 11, no. 3, p. 55,
2019. [Online]. Available: https://doi.org/10.3390/fi11030055

[40] “Systems and software engineering—Systems and software
quality requirements and evaluation (SQuaRE)—Measurement
of system and software product quality,” Int. Org. Stand.,
Geneva, Switzerland, Rep. TR 25023, 2016. [Online]. Available:
https://www.iso.org/standard/35747.html

[41] M. Ayoubi, M. Ramezanpour, and R. Khorsand, “An autonomous
IoT service placement methodology in fog computing,” Softw. Pract.
Exp., vol. 51, no. 5, pp. 1097–1120, Dec. 2020. [Online]. Available:
https://doi.org/10.1002/spe.2939

[42] G. Tanganelli, L. Cassano, A. Miele, and C. Vallati, “A
methodology for the design and deployment of distributed cyber-
physical systems for smart environments,” Future Gener. Comput.
Syst., vol. 109, pp. 420–430, Aug. 2020. [Online]. Available:
https://doi.org/10.1016/j.future.2020.02.047

[43] S. Venticinque and A. Amato, “A methodology for deployment
of IoT application in fog,” J. Ambient Intell. Humanized Comput.,
vol. 10, no. 5, pp. 1955–1976, Apr. 2018. [Online]. Available:
https://doi.org/10.1007/s12652-018-0785-4

[44] C. Avasalcai, B. Zarrin, and S. Dustdar, “EdgeFlow—Developing and
deploying latency-sensitive IoT edge applications,” IEEE Internet Things
J., vol. 9, no. 5, pp. 3877–3888, Mar. 2022. [Online]. Available:
https://doi.org/10.1109/jiot.2021.3101449

[45] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal
workload allocation in fog-cloud computing towards balanced
delay and power consumption,” IEEE Internet Things J.,
vol. 3, no. 6, pp. 1171–1181, Dec. 2016. [Online]. Available:
https://doi.org/10.1109/jiot.2016.2565516

[46] A. da Silva Veith, M. D. de Assuncao, and L. Lefevre,
“Latency-aware strategies for deploying data stream process-
ing applications on large cloud-edge infrastructure,” IEEE Trans.
Cloud Comput., early access, Jul. 20, 2021. [Online]. Available:
https://doi.org/10.1109/tcc.2021.3097879

[47] B. Cao, Q. Wei, Z. Lv, J. Zhao, and A. K. Singh, “Many-objective
deployment optimization of edge devices for 5G networks,” IEEE Trans.
Netw. Sci. Eng., vol. 7, no. 4, pp. 2117–2125, Oct.–Dec. 2020. [Online].
Available: https://doi.org/10.1109/tnse.2020.3008381

[48] Y. Dong, G. Xu, Y. Ding, X. Meng, and J. Zhao, “A ‘joint-me’
task deployment strategy for load balancing in edge computing,”
IEEE Access, vol. 7, pp. 99658–99669, 2019. [Online]. Available:
https://doi.org/10.1109/access.2019.2928582

[49] A. Brogi, S. Forti, and A. Ibrahim, Predictive Analysis
to Support Fog Application Deployment. Hoboken, NJ,
USA: Wiley, Jan. 2019, pp. 191–221. [Online]. Available:
https://doi.org/10.1002/9781119525080.ch9

[50] M. Ficco, C. Esposito, Y. Xiang, and F. Palmieri, “Pseudo-dynamic
testing of realistic edge-fog cloud ecosystems,” IEEE Commun.
Mag., vol. 55, no. 11, pp. 98–104, Nov. 2017. [Online]. Available:
https://doi.org/10.1109/mcom.2017.1700328

[51] X. Chen et al., “iDiSC: A new approach to IoT-data-intensive
service components deployment in edge-cloud-hybrid system,”
IEEE Access, vol. 7, pp. 59172–59184, 2019. [Online]. Available:
https://doi.org/10.1109/access.2019.2915020

[52] A. Placuzzi and D. Pianini. “aPlacuzzi/experiment-2021-Pulverization-
EdgeCloudSim: Release 0.1.0-2021-04-29T163149.” 2021. [Online].
Available: https://zenodo.org/record/4727996

[53] P. Louridas, “Static code analysis,” IEEE Softw., vol. 23,
no. 4, pp. 58–61, Jul./Aug. 2006. [Online]. Available:
https://doi.org/10.1109/MS.2006.114

[54] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal,
“A higher-order calculus of computational fields,” ACM Trans.
Comput. Logic, vol. 20, no. 1, pp. 1–5, 2019. [Online]. Available:
https://doi.org/10.1145/3285956

[55] M. Eysholdt and H. Behrens, “Xtext: Implement your language
faster than the quick and dirty way,” in Proc. 25th Annu.
ACM SIGPLAN Conf. Object Orient. Program. Syst. Lang. Appl.
(SPLASH/OOPSLA), Oct. 2010, pp. 307–309. [Online]. Available:
https://doi.org/10.1145/1869542.1869625

[56] B. K. Bershad, R. P. Draves, and A. Forin, “Using microbench-
marks to evaluate system performance,” in Proc. IEEE 3rd
Workshop Workstation Oper. Syst., 1992, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/wwos.1992.275671

[57] K. Hoste, A. Georges, and L. Eeckhout, “Automated just-in-time com-
piler tuning,” in Proc. 8th Int. Symp. Code Gener. Optim. (CGO),
Toronto, ON, Canada, Apr. 2010, pp. 62–72. [Online]. Available:
https://doi.org/10.1145/1772954.1772965

[58] B. Campbell, “Terraform in-depth,” in The Definitive Guide to
AWS Infrastructure Automation. London, U.K.: Apress, Dec. 2019,
pp. 123–203. [Online]. Available: https://doi.org/10.1007/978-1-4842-
5398-4_4

[59] D. Pianini. “DanySK/experiment-2019-FGCS-self-integration: 1.0.0.”
2021. [Online]. Available: https://zenodo.org/record/4568197

[60] S. Narayan, C. Jayawardena, J. Wang, W. Ma, and G. Geetu,
“Performance test of IEEE 802.11ac wireless devices,” in Proc. IEEE
Int. Conf. Comput. Commun. Inf. (ICCCI), Jan. 2015, pp. 1–6. [Online].
Available: https://doi.org/10.1109/iccci.2015.7218076

[61] D. Newell, P. Davies, R. Wade, P. Decaux, and M. Shama, “Comparison
of theoretical and practical performances with 802.11n and 802.11ac
wireless networking,” in Proc. 31st Int. Conf. Adv. Inf. Netw. Appl.
Workshops (WAINA), Mar. 2017, pp. 710–715. [Online]. Available:
https://doi.org/10.1109/waina.2017.113

Roberto Casadei (Member, IEEE) received the
Ph.D. degree in computer science and engineering
from Alma Mater Studiorum–Università di Bologna,
Cesena, Italy, in 2020.

He is a Postdoctoral Researcher and an Adjunct
Professor with Alma Mater Studiorum–Università di
Bologna. He has over 35 publications in interna-
tional journals and conferences on topics, including
collective intelligence, aggregate computing, self-*
systems, and IoT/CPS. He also leads the develop-
ment of the opensource ScaFi aggregate program-

ming toolkit. His research interests revolve around software engineering and
distributed artificial intelligence.

Dr. Casadei has served as a Workshop Chair for the eCAS Workshop,
as an Organizing or PC Member of multiple conferences, including
COORDINATION and ACSOS, and as a reviewer for renowned international
journals.

20148 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

Giancarlo Fortino (Fellow, IEEE) received the
Ph.D. degree in computer and systems engineering
from the University of Calabria, Rende, Italy, in
2000.

He is a Full Professor of Computer Engineering
with the Department of Informatics, Modeling,
Electronics, and Systems, University of Calabria
(UniCal). He has authored 550+ papers in int’l jour-
nals, conferences and books. His research interests
include wearable computing systems, Internet of
Things, and cyber-security.

Prof. Fortino is Highly Cited Researcher 2002–2021 in Computer Science.
He is the (Founding) Series Editor of the IEEE Press Book Series on Human–
Machine Systems and of the Springer Internet of Things series and is AE of
premier IEEE Transactions. He is a cofounder and the CEO of SenSysCal
S.r.l., a Unical spinoff focused on innovative IoT systems. He is currently a
member of the IEEE SMCS BoG and the Chair of the IEEE SMCS Italian
Chapter.

Danilo Pianini (Member, IEEE) received the Ph.D.
degree in computer science and engineering from the
University of Bologna, Cesena, Italy, in 2015.

He is a Postdoctoral Researcher with the
Department of Computer Science and Engineering,
University of Bologna. He is the Lead Designer
of dozens of opensource software tools, including
the Alchemist simulation platform and the Protelis
aggregate programming language. His main research
interests include simulation, (self-organizing) coor-
dination, aggregate computing, pervasive systems,

software engineering, agile techniques, and DevOps. He has published over
50 articles in international journals and conferences on those subjects.

Andrea Placuzzi received the master’s degree
in computer science and engineering from the
University of Bologna, Cesena, Italy, in 2020.

His research topics include software engineering,
Internet of Things, self-organization, and simulation.

Open Access funding provided by ‘Università di Bologna’ within the CRUI-CARE Agreement

Claudio Savaglio (Member, IEEE) received the
Ph.D. degree in ICT from the University of Calabria,
Rende, Italy, in 2018.

He is a Researcher with ICAR-CNR Institute,
Arcavacata, Italy. He was a Visiting Researcher
with the University of Texas at Dallas, Richardson,
TX, USA, in 2013; New Jersey Institute of
Technology, Newark, NJ, USA, in 2016; and
Universitat Politècnica de València, Valencia, Spain,
in 2017. He has authored over 50 publications
in international journals, conferences, and books.

His research interests include Internet of Things, network simulation, edge
intelligence, and agent-oriented development methodologies.

Mirko Viroli (Senior Member, IEEE) received the
Ph.D. degree in electronics and computer engineer-
ing from the University of Bologna, Cesena, Italy,
in 2003.

He is a Full Professor of Computer Engineering
with the University of Bologna. He is an expert
in foundations of computer science and pro-
gramming, object-oriented programming, advanced
software development, software engineering, and
self-adaptive/self-organizing pervasive computing
systems. His Google Scholar h-index is 48 with more

than 8000 citations. He has authored more than 300 papers, of which more
than 70 are on international journals.

Prof. Viroli is a member of the editorial board of IEEE Software Magazine
and was a Program Chair of the ACM Symposium on Applied Computing
(SAC 2008 and 2009) and IEEE Self-Adaptive and Self-Organizing Systems
(SASO 2014) conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

