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Given an arrangement of subtori of arbitrary codimen-
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INTRODUCTION

The cohomology ring of the complement of an arrangement of affine hyperplanes in a complex
vector space admits a renowned combinatorial presentation in terms of the poset of intersections
of the arrangement, due to Orlik and Solomon [21]. For a toric arrangement, that is, a collection of
1-codimensional subtori in a complex algebraic torus, a similar presentation was recently provided
by [5].

A different way of generalizing arrangements of hyperplanes is considering a family of affine
subspaces, not necessarily of codimension 1. The complement of such a subspace arrangement was
studied by several authors (see [10, 13, 14, 17, 25, 26]; see also [2] and the bibliography therein).
In particular, Goresky and MacPherson provided the following description of the cohomology
groups.

Theorem A [17, IIL.1.5, Theorem A]. Let A be a subspace arrangement in R%, and let M 4= R4\
UA be its complement. The reduced cohomology of the complement is given by

A*M;2)= @ Heg, w-i—2(A0,W); 2),
WeL,

where L_ is the poset of intersections L without the minimum 0 = R%, cdp (W) is the real codimen-
sion of W, and A(0, W) is the order complex of the open interval (0, W) in L.

Later, De Concini and Procesi constructed in [10] a wonderful model for subspace arrange-
ments, that is, a smooth projective variety Y that contains M 4 as an open subset whose comple-
ment is a simple normal crossing divisor. They also applied a result of Morgan [20] to present
the rational cohomology ring of M 4 as the cohomology of a differential graded algebra explicitly
constructed from the combinatorial data only.

In 1996, Yuzvinsky simplified the differential graded algebra (see [26]) by using the order com-
plex of the poset of intersections. He also showed a connection between the results of [17] and
of [10]. A further simplification was obtained in [25] by replacing the order complex with the
atomic complex.

Yuzvinsky also conjectured an integral version of this presentation. This conjecture was proven
in [13, 14]: Deligne, Goresky, and MacPherson proved their result using diagram of spaces, de
Longueville and Schultz by showing that the isomorphism of Theorem A is canonical.

In this paper, we consider arrangements of subtori of arbitrary codimension in a complex alge-
braic torus. Given the complement of such an arrangement, we determine its cohomology groups
in terms of the poset of layers L, that is, the set of connected components of intersections of subtori,
ordered by reverse inclusion.

Theorem B (Theorem 2.8). Let A be an arrangement of subtori of a torus T and L be its poset of
layers. Then the cohomology groups of the complement M 4 are

H M) =@ @ HW;2) ®, Hyeqom)—2—qg(AT, W)),
WeL p+q=k

where cd(W) is the complex codimension of the layer W.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI | 2001

Our proofis based on a suitable embedding of a d-dimensional complex algebraic torus T in the
Alexandroff compactification of C¢, that is, the sphere $*?. The embedding is chosen so that the
complement of T in S?¢ does not intersect the toric subspaces; hence the arrangement decomposes
in a wedge of two simpler ones, given, respectively, by the compactifications of the coordinate
hyperplanes and of the subtori in the original arrangement (Proposition 1.4). Then we apply some
results on homotopy colimits [24], following a strategy outlined by Deshpande in [12]. In that
paper, the same result was announced, but the proof therein does not seem to be correct, as several
steps fail if the compactification is not chosen carefully.

Moreover we describe the multiplicative structure on the associated graded of the cohomol-
ogy, by using the Leray spectral sequence for the inclusion map j: M, — T. We show, by using
results of the previous section, that the second page of the spectral sequence is a finitely gener-
ated Z-module isomorphic to the cohomology as a module. It follows that the spectral sequence
degenerates at the second page and this gives the isomorphism

Eg’q =~ grlLHq HPY(M 4;7)
(Theorem 3.2).

Furthermore, we provide a model for the cohomology of M 4: we use the wonderful model
for toric arrangements introduced by De Concini and Gaiffi (see [7, 8]) to construct a differential
graded algebra (D, d) (Definition 4.5) whose cohomology is isomorphic to the rational cohomology
ring of the complement:

H'(D,d) ~ H'(M,; Q)

(Theorem 4.9). Since our methods are based on the aforementioned Morgan algebra, this d.g.a.
codifies also the rational homotopy type of the complement.

Finally we focus on the case of an arrangement of subtori of codimension 1. Given such a toric
arrangement, and chosen its maximal building set, we find a subalgebra of the Morgan model iso-
morphic to the cohomology ring. This subalgebra, explicitly presented by generators and relations
in Theorem 5.12, yields an analogue of the Orlik-Solomon algebra for toric arrangements. This
new presentation depends on the oriented arithmetic matroid only (see [22]) and, compared to the
previous result of [5], exhibits more clearly the dependence from the orientation. Furthermore, it
seems more suitable to be generalized to arrangement of subtori of arbitrary codimensions. We
also conjecture that a similar presentation holds for cohomology with integer coefficients (Con-
jecture 5.18).

1 | POSITIVE SYSTEMS AND EMBEDDING OF SUBTORI
A d-dimensional complex torus T is an algebraic group isomorphic to (C*)4. A character is a mor-
phism of algebraic groups T — C*. The group A of all characters is a lattice of rank d, that is, it is

isomorphic to Z%. A subtorus of T is a translate of a subgroup isomorphic to (C*)¥, 0 < k < d.

Definition 1.1. An arrangement of subtori is a finite collection A = {S;, ..., S,,} of subtori of T
such that S; € S; for all i # j.
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2002 | MOCI AND PAGARIA

We denote by M , the complement of this arrangement, that is,
T\ (S;U--US)).

The set of characters that are constant on a subtorus S; is a subgroup of A, that we denote by
Ag.LetB be a basis (over Z) of A and, for every i = 1, ..., n, let B; be a basis (over Z) of Asg,.

Definition 1.2. We say that (B, B,, ..., B,,) is a positive system if the coordinates of all the elements
of every B, in the basis B are non-negative.

The above definition is inspired by similar (and indeed stronger) notions introduced by De
Concini and Gaiffi in [7, 8].

Lemma 1.3. Every arrangement of subtori admits a positive system.

Proof. For each S; € A choose a basis B; of Ag, and a basis B of A. Consider the matrix A that rep-
resent the elements bi’j €B,;,fori=1,..,nand j = 1,...,|B;| in the basis B. Hence, the columns
of the matrix are indexed by couples (i, j), with i = 1,...,n and j = 1, ..., |B;|. By changing b; ;
with —b; ; we suppose that the last non-zero entry of the (i, j)th column of A is a positive integer:
we call this entry the pivot of the column. We perform a sequence of elementary row operation in
order to make A a non-negative matrix. The columns with pivot in the first row are already non-
negative. We proceed by induction, suppose that all columns with pivot in the first k — 1 rows are
non-negative. By adding a suitable multiple of the kth row to the previous rows, we can make all
the columns with pivot in the kth row non-negative. This operation does not change the columns
with pivot in the first k — 1 rows. By repeating the procedure for every k = 2, ...,d, we obtain a
non-negative matrix. The elementary row operations correspond to a change of basis from B to a
new basis B’ that form a positive system (B’, By, ..., B,). O

We denote by S¢ the d-dimensional real sphere, and by B, the Boolean arrangement, that is,
the set of the coordinate hyperplanes in C¢.

Given a topological space X, its Alexandroff compactification X is defined as the pointed topo-
logical space on the set X U {oo} (with base point co) whose basis of open sets is given by the open
sets of X and the sets (X \ C) U {o0}, where C ranges over all the closed and compact sets of X.
For instance, the Alexandroff compactification of C¢ is isomorphic to the sphere $*¢. The wedge
sum of two pointed topological spaces (X, x), (Y,y) is X VY, that is, the disjoint union of X and
Y with the base points identified.

Proposition 1.4. Let A be a arrangement of subtori in a d-dimensional torus T. Then there exists
an embedding M , < S such that

s\ M, = 0A v OB,

Proof. We choose a positive system (B, By, ..., B,)). The basis B defines an isomorphism T' 2 (C*)d,
and consider the composition

M,cT=() cclccdxs,
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2003

Note that C¢ \ M 4 is the disjoint union of UA and UJ3; because the system

ny n, ng _
{Z1 Z2 Zd =cC
Zj =0

for n; e Ny, c € C*, and j < d, has no solutions. The condition of positive system ensures that
each subtorus S; € A is contained in a hypertorus of the form

{ze ("] z:“z;lz ...de =c}

for some ¢ € C* and some n; € N, not all equal to zero. Now, $?¢ \ M , is the Alexandroff com-
pactification of C¢ \ M 4> hence

—_
o — o~ ———

SM\M, 2CI\ M, xUALUB; = UAV UBy.

2 | COHOMOLOGY GROUPS OF ARRANGEMENTS OF SUBTORI

Let P be a poset. We recall that the order complex A(P) is the simplicial complex whose simplices
are the totally ordered subsets of P. For any W, L € P with W > L we denote A(L, W) the order
complex of the sub-poset

XeP|W>X>L}

Definition 2.1. Given two pointed CW-complexes (X, x) and (Y, y), we define:

* thewedgesumXvYasXUY/x~y;
* the smash product X A'Y as the topological quotient X X Y/X VY;
¢ thejoinX *YasX AY ASL.

Let £., be the poset obtained from the poset of layers £ by removing the minimum 0 = T
and adding a maximum 1. We think of £. , as a category, having one morphism p — g for every
p.q € L., such that p < q.

Given a poset P, a P-diagram is a functor from the category P to the category Top,, of pointed
topological spaces.

Definition 2.2. We define two L. -diagrams D and £ as follows.
For every object W € L,

D(W) = EW) =W and D(1) = £(1) = {co};
for every map W > L (W # 1), D is defined by the natural inclusions:

DW>L) =W TLandDA > L) ={co} o L
while £ by the constant maps at the point oco:

EW>L)=W - Land €d > L) = {0} — L.
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2004 | MOCI AND PAGARIA

The colimit of a P-diagram F is the union of all topological spaces F(p) for all p € P with the
identification given by the maps between them (that is, x = F(p — q)(x) for all maps p — g in
P and all x € F(p)).

The homotopy colimit of F can be constructed by replacing all the maps F(p — q) with homo-
topy equivalent cofibrations and then taking the colimit of the resulting diagram.

We recall the following results of Welker, Ziegler and Zivaljevi¢:

Lemma 2.3 (Projection Lemma [24, Lemma 4.5]). Let D be a P-diagram such that all maps are
inclusions and closed cofibrations. Then the natural map hcolim D — colim D from the homotopy
colimit to the colimit of D is a homotopy equivalence.

Lemma 2.4 (Homotopy Lemma [24, Lemma 4.6]). Let D and £ be P-diagrams and h: D — &
be a morphism of P-diagrams (that is, a natural transformation between the two functors). Suppose
that for all W € P the map hy, : D(W) — E(W) is a homotopy equivalence, then the induced map
hcolim D — hcolim € is a homotopy equivalence.

Lemma 2.5 (Wedge Lemma [24, Lemma 4.9]). Let P be a poset with a maximal element and let £
be a P-diagram. Suppose that all maps in € are constant morphisms of pointed spaces, then

hcolim € =~ \/ (A(P.p) * E(p)).
DEP

We now prove the following result on compactifications of subtori.

Lemma 2.6. Let A be an arrangement of subtori. For each W € L there exists a homotopy equiva-
lence hyy, : W — W such that, for all L > W, the following diagram commutes.

L—yWw
[

{o} — W
Proof. Consider a positive system B, B; for the restricted arrangement in W
AY ={L | L is a connected component of SN W, S € A},

that is, a basis B of Ay, and a basis B; of Ag, for each atom S; € AY . The basis B gives an isomor-
phism between W and (C*)4™W  Lete € R* be the minimum of the distance between 0 € c4imW
and S; for all atoms S; € AY.
Each layer L € L.y, of the restricted arrangement .A" is contained in a hypertorus
dim W n Ndimw _
{zecC | z; ...zdimW—c}

for some n; € N and some ¢ € C*. Hence, ¢ is positive and each layer L is disjoint to the ball
D, c c4imW c §2dimW of center 0 and radius e.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI | 2005

Choose a continuous, increasing and surjective function f: [0,€) — [0,00) and define
]:l . SZdimW - SZdime
w - Yy

r {f(lxl)x ifx € D,

) otherwise,

where |x| is the distance of x from 0 and oo is the unique point in $24mW \ c2dmW Tt easy to
see that h;;, induces a homotopy equivalence hy, : W — W. The commutativity of the diagram
above follows from L N D, = @. O

The previous results now allow us to describe the Alexandroff compactification of the union of
the subtori of the arrangement.

Lemma 2.7. There exists a homotopy equivalence
A=~ \/ (W=AT,w)).

wel,,

Proof. Consider the maps hy, given by Lemma 2.6 and let h; : {oo} — {oo} be the only map. These
data define a morphism h: D — & of L, -diagrams. We have

UA =~ colim D ~ hcolim D ~ hcolim € =~ \/ (17[7 * AT, W)),

wel,,

where the first isomorphism follow by the definition of colim, the others by the projection
Lemma 2.3, the homotopy Lemma 2.4 applied to h, and the wedge Lemma 2.5, respectively. []

Theorem 2.8. Let A be an arrangement of subtori of a torus T and L be its poset of layers. Then the
cohomology groups of the complement M 4 are

HM;2) 2@ @ H(W:;2) ®; Hyeqw—o—g(AT, W)).
WeL p+q=k

Proof. Consider the embedding M 4, C 524 of such that S2¢ \ M A= UA Vv B, provided by Propo-
sition 1.4. We use the Alexander duality (see, for instance, [18, Theorem 3.44]) to obtain

AWM ) = Hyy  ((OAVBy) = Ay g (OA) @ Hyy i, (By).

Again Alexander duality for the embedding B, c $*¢ gives the isomorphism H,;_,_;(By) =
H,(T). Now, Lemma 2.7 implies

Hyy 1 (QA) = Hyy gy \/ (W = AT, W))

wel,,

@ HZd—k—l (W\ * A(T, W))

wely,

IR

UONIPUOD PUe SULLB | 38U 89S *[220Z/0T/8T] U0 Akeiqiauliuo A8 wewnood 7 Hedid IweisIS Baly Ag 9T9ZT SW(/ZTTT 0T/I0p/LI0D" A5] 1M Ale.q1jpulU0"D0SURUWIPUO|//SANY WO Papeo|umod ‘€ ‘220e ‘0S2L697T

oA

3SUB0 |7 SUOLULLIOD dARERID 3|gedtjdde au} Aq pausenob ae sajoiie YO '8sN J0'Sa|nJ 10§ Ariq 1T BUIUQ AB|IAA UO (SUORIPLOD-pI



2006 MOCI AND PAGARIA

IR

@ Hyy_jo (W AAT, W)

wely,

@ @ H i w—p (W) ®2 Hycqw—q2 (AT, W))),

wel,, p+q=k

IR

where the last isomorphism is the Kunneth isomorphism for reduced cohomology applied to the
smash product. We conclude the proof by the Poincareé duality on W between Borel-Moore homol-
ogy and cohomology (see [4, Theorem 9.2]):

Hygimw—p(W) = HYYL (W) = HP(W).

O

3 | GRADED OF THE COHOMOLOGY RING

In this section, we study the Leray spectral sequence for the inclusion map j: M4 — T to give a
description of the graded cohomology ring gr H*(M ; Z). We refer to [4, section 6] as a general
reference on this spectral sequence.

Let R7j, be the higher direct image functor of j. In our case, the Leray spectral sequence

EPY = HPYI(M 4;7)
converges to HPt9(M 4; Z); the second page of this spectral sequence is
EY? = HP(RYj,Zy ),
where Z M, 1S the constant sheaf and the Leray filtration L' on H*(M 4; Z) is defined by
LY = Im (HY(T;7,_4Rj,Z2) —» HY(T;R}j,2) = H"(M 4; 2)),

where 7;_Rj,Z is the truncation at position k — g of the complex R}, Z.
Foreach W € L, let e€v be the sheaf on T defined by

e%/ = (ip)Zw ®z Hycqw—q—2(A(T, W)

where iy, is the closed embedding of W in T. We set

q _ q
=@,

weL

The following lemma generalizes [1, Lemma 3.1].

Lemma 3.1. Let A be an arrangement of subtori. Then

EYY = HP(R1j,Zy ) = @D HP(W;2) @ Hy g o(A(T, W); 2).
wecL

Proof. First we prove that €7 = R1j. 7, : for each point x € T there exists an open set U, iso-
morphic to an open subset V. of the tangent space T, T (containing the origin). We also take a
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI | 2007

neighborhood basis U given for every x € T by the inverse image of all open balls in V', centered
in0 € T, T. Note that the arrangement of subtori A defines a central arrangement of subspaces

Alx] ={T,S|x €S e A}

inT, Tforallx eT.
We define a morphism of sheaves f: €1 - RYj. 7 M, On the neighborhood basis U as follow.
For all U € U centered in x, let f(U) : e(U) —» R9j,Z(U) be the composition

eU) = @ Z®, Hyeqw—q-o(AT, W) = HI(M 4,)) = H(U N M ) = R}, Z(U),
Wox

where the first isomorphism is given by Theorem A and the second one is given by the composi-
tion

MA[x] [~ Vx \ UA[X] ~U \ UA.

Since f(U) is an isomorphism for all U € U then f is an isomorphism of sheaves. Now, the iso-
morphism

HP(e%) = @) HP(W;2) ® iy eqyy—g—o(AT, W); Z)
weL

completes the proof. O

The minimum of the poset £ (and of Ly for all W € £) is 0 = T. Let EJ? c ED? be the
Z—module HP(W;Z) ® H, qy—q—>(A(T, W); Z): this module depends only on the cohomology
of W and on the poset £y, .

The multiplication in E, is induced by the maps

e / !
My By @ Bh T — EPTPATE
where 775, o =0ifcdL # cdW + cd W’ orif L is not a connected component of W n W', other-
wise ’

o @®b®ad ®b) = (-1 a—a)® b b,

where « : H (A0, W) ® Hyy (A0, W) = Hyjo42(A0, L)) is the map of [26, Theorem 6.6(ii)].
Under the isomorphism of Theorem A the map « corresponds to the cup product in the cohomol-
ogy of the subspace arrangement .A[x] (for any x € L).

Theorem 3.2. The Leray spectral sequence Ef 4 for the inclusion M 4 < T degenerates at the second
page, that is,

EPY ~

: HPYI(M 4; 2).

L
Bl p12q

Proof. We know that E2? is a subquotient of Ef’q and that the last page is E57 =~
grz +2g HP*4(M ;7). By Theorem 2.8 and Lemma 3.1, E5? and Eé’ ‘I are isomorphic and finitely

generated; hence Ef 4 = Efo’q. O
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4 | AMODEL FOR THE COMPLEMENT

As in the previous sections, we denote by .A an arrangement of subtori in T and by A the character
group of T. For any layer W € L, Ay, is the set of characters that are constant on W. Let A* be the
dual lattice of A. We refer to [6] for a general introduction to fans and toric varieties. Let A be a
smooth and complete fan in A*. Every ray of A is generated by a (uniquely determined) primitive
vector in A*: we denote by R, C A* the set of primitive vectors corresponding to the rays of A.
Let P(R,) be power set of R ,; we denote by C, C P(R,) the collection of the sets of primitive
vectors that span a cone in A. Thus, from now on we identify a cone in A with the set of its extremal
primitive vectors.

Definition 4.1. A fan A in A* describes a good toric variety X, (with respect to .A) if A is complete
and smooth and each maximal cone C € C, can be completed to a positive system (C, Cy, ..., C,,)
(where C is the dual basis of C and C; a basis of Ag, for each S; € A).

The second condition in the above definition can be reformulated as follows: for each W &
A, there exists a basis ,, ..., B.qw of Ay, such that for each maximal cone C € C, and each i =
1,...,cd W the natural pairing (B;, c) is non-negative (or non-positive) for all ¢ € C. In this case, we
say that the basis 31, ... , B.qw of Ay has the equal sign property with respect to A (see [7, Definition
3.2)).

Let G C L., be awell-connected building set in the sense of [8, Definition 4.1] and A a good toric
variety. These data define a smooth projective variety Y (A, G) obtained from X, by subsequently
blowing up (the strict transform of) W for all W € G in any total order refining the partial order
given by inclusion (so that smaller layers are blown up first). The variety Y(A, G) is the wonderful
model for M 4 described in [8], that is, a smooth projective variety containing M 4 such that the
complement Y (A, G) \ M 4 is a simple normal crossing divisor. The irreducible components of the
divisor Y(A, G) \ M 4 are indexed by G LI R, indeed these components are:

* the exceptional divisor Dy, associated to the blowup along W for each W € G,
* the strict transform D of the torus equivariant divisor for each ray j € R 4.

We want to describe the Morgan algebra (cf. [20]) for the pair (Y (A, G), M 4). For the conve-
nience of the reader, we will briefly recall here the definition of this algebra. Consider a smooth
complete algebraic variety Y and a simple normal crossing divisor D = | J,; D; with complement
M. The Morgan algebra (see [20]) is the vector space

& (M)

ACI i€A

iel

with HP(();c4 D;) of bi-degree (p, |A]). The multiplication is given by

HP (ﬂ Di> Q HY ( N Di) — HPP ( N Di>,
i€EA ieA’ ieAuA’

that is, the composition of the restriction maps and the cup product. The differential is induced
by the Gysin morphisms HP((;c, D;) — HP*2(();c5 D;) for every B = A \ {a}.
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Let E be the graded commutative algebra over Q on generators sy, ty,, b;, ¢ for W € Gand j €
R 5, where the bi-degree of sy, and b; is (0,1) and the bi-degree of ¢y, and c; is (2,0). Consider the
differential d on E defined on generators by d(sy,) = ty, by d(b;) = ¢;, and by d(ty,) = d(c;) =0
forall W € Gand j € R,, so that (E, d) is a differential graded commutative algebra.

To understand what relations should put on E, we start by recalling the definition of some poly-
nomials P}/’V(t), which were introduced in [8, section 8] as good lifting of the Chern polynomials’.

For each pair V < W in L, and for each tuple §,, ..., B.qy € Ay With the equal sign property

with respect to A such that 8.4 w_cqv 41, - » Bed v form an integral basis of Ay, define

cdW—cdV
Pro= ] (t— > min(o,<ﬁi,j>)c,~). M

i=1 JERA
The polynomial P“fv(t) depends on the choice of B4, ..., Beqaw—cdv-

Definition 4.2. A set A C Gis nested if the irreducible components of the normal crossing divisor
of Y(A, @) that correspond to the elements of A have non-empty intersection. When we want to
emphasize the dependence on G we will say that A is G-nested.

The property of being nested does not depend on the choice of A, and can be expressed in a
purely combinatorial way (see [8, Definition 2.7]). Foreach AL B C G LI R, we denote with Y 4, 5
the intersections of all divisors associated to A and B. We recall the following result of De Concini
and Gaiffi.

Theorem 4.3. [8, Theorem 9.1] Let A C G and B C R . The intersection Y 4 is non-empty if and
only if A is G-nested, B is contained in ﬂWeA Ann Ay, and B is a cone in A. In this case the cohomol-
ogy ring H* (Y 4 ) is the algebra on generators {ty, }y < and{c;};cr, of degree two with relations:

(TD) TTjecc; ifC & Ca,
(T2) ZjeRA (B, j)c; for every B € A (or equivalently for 8 in a fixed basis of A),
(WD) [1jecc;ifCUBisnotaconein AorC ¢ (e, Ann Ay, '
(W2) tyc;if j & Ann Ay,
(W3a) forall W € Gand all C C G_yy, the relations

Py, Z —t; HtL,

LECoy LeC

where V is the connected component of (), < Ay UC L containing W,
(W3b) [Tyec tw if C U Ais not G-nested or B ¢ (| Ann Ayy,.

The authors of [8] forgot to specify that, in order to define a good lifting, the basis of Ay must have the equal sign property
with respect to A.

1In [8], these relations are stated only for |C| = 1; however they hold, before performing blow-ups, for any set C, by the
well-known theory of toric varieties. Thus, by adding the relations with |C| > 1 to the presentation given in [8], we get a
correct presentation.
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Although the polynomials P{’V(t) in (W3a) depend on the choice of a basis, the ideal generated
by all the relations is independent from this choice, as shown in [8, Proposition 6.3].

Remark 4.4. Another possible choice of P{/V(t) consist of taking the polynomials:

cdW—cdV
edW=edV e T D) —min(o, (B;, j)e;. @)
i=1  jER,

Indeed, the difference between the polynomials (1) and (2) evaluated at t = ZLGG>W —t; isin the
ideal generated by the relations of type (W2). }

To simplify the notations, in the definition above we denoted by [],., the exterior product
taken in the order of A C {1, ..., n}. The same notation will be used from now on. Let A be a nested
set, W be any element in G, and B C G be such that each L € B is smaller than W (L < W in L).
We define the element F(A, W, B) in E by

FAw,B) =Py | > —t|[]s ][]

LeGyy LeA LeB
where V' is the connected component of (), ¢, _, 5 L containing W (so V' < W).

Definition 4.5. Let (D, d) be the differential graded algebra given by E with relations:

(1) xyy;if j & Ann Ay, where xy, = sy, or ty, and y; = b; orc,

2 Ilweasw [Twes tw if AU B is not a G-nested set,

?3) HjeA b; HjeB cjif AUBisnotaconein A (thatis, AUB € P(R,) \ Cp),

@ X jeRA( X, J)cj for every y € A (or equivalently for y in a fixed basis of A),

(5) F(A,W,B) for A G-nested set, W € G, and B C ¢ be such that each L € B is smaller than W
(thatis, B C G_y),

and differential d induced by the one of E, that is, defined on generators by d(sy,) = ty;,, d(b j) =cj,
and by d(ty,) = d(c;) = 0.

Lemma 4.6. The ideal generated by (1)-(5) is stable with respect to d, so (D, d) is a differential
graded algebra.

Proof. 1t is obvious that the ideal generated by (1)—(4) is d-stable. The relation

dF(A,W,B)= Y +FA\{LLW,BULLY+ Y +t,F(A\{LLW,B)
LEA .y LeA,w

show that the ideal generated by (5) is d-stable. O

Let M be the Morgan algebra associated to the pair (Y(A, G), M 4). The complement Y (A, G) \
M , is a simple normal crossing divisor (Jy, <, Dy U U D, whose irreducible components
are indexed by GLI R 4.

JERA

UONIPUOD PUe SULLB | 38U 89S *[220Z/0T/8T] U0 Akeiqiauliuo A8 wewnood 7 Hedid IweisIS Baly Ag 9T9ZT SW(/ZTTT 0T/I0p/LI0D" A5] 1M Ale.q1jpulU0"D0SURUWIPUO|//SANY WO Papeo|umod ‘€ ‘220e ‘0S2L697T

oA

3SUB0 |7 SUOLULLIOD dARERID 3|gedtjdde au} Aq pausenob ae sajoiie YO '8sN J0'Sa|nJ 10§ Ariq 1T BUIUQ AB|IAA UO (SUORIPLOD-pI



ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI | 2011

For each A € GU R, we denote with Y, the intersections of all divisors associated to A. The
graded differential algebra M is the direct sum of vector spaces

P v,

ACGUR 5

on which:

* the total degree of the elements in HP(Y ,) is |A| + p;
* the multiplication is induced by the restriction maps and the cup product

HP(Y ) @ HP (Yg) = HP*P (Y 4p);

« the differential is defined from the Gysin map HP(Y ,) — HPT2(Y A\{a}).

The cohomology of each stratum Y 4 is computed in [8, Theorem 9.1] in terms of some generators
tw,s; € HA(Y 4).
We define a morphism f : E — M on generators by

sy = 1 € H(Dy,), ty >ty € HX(Y(A,Q)),

bj » 1€ HD)), ¢cj > c; € H(Y(A,0)).

Lemma 4.7. The map f is a surjective morphism of differential graded algebras.

Proof. As shown in [8, Theorem 9.1], the restriction maps H*(Y ,) - H'(Y}) for A C B are sur-
jective. Since Im f contains H*(Y (A, §)) and the elements 1 € H°(D) for all divisors D, the mor-
phisms f is surjective. By construction of the cohomology algebra, the elements t;;, and cj of
H2(Y(A,Q)) are ty, = (iy),(1) and ¢ i = (i;),(1), where i, is the Gysin morphism for the regular
embeddingi: D & Y(A, G). Therefore, f is a morphism of differential graded algebras. 1

The map f factors through f : D — M, indeed we have the following lemma.
Lemma 4.8. The map f is well-defined and is an isomorphism.

Proof. We first check that (1)-(5) belong to ker f.

(1) There are four cases to check:
« f(syb ;) is zero since Dy, and D; do not intersect for j & Ann Ay;
* f(swc;)is zero since ¢; = 0 in H*(Dy,) by (W1);
* f(twb;) =ty € H'(D;) is zero by (W3b);
* tyc; =0in H'(Y(A, G)) by (W2).
(2) We have f(ITywea Sw [wes tw) = [Tweg tw = 0 in H(Y4) by (W3b) since A U B is not G-
nested set.
(3) The element f(HjeA b; HjeB ¢j)= HjeB ¢j is zero in H*(Y 4) by (W1).
(4) The vanishing of the linear relation follows from (T2).

UONIPUOD PUe SULLB | 38U 89S *[220Z/0T/8T] U0 Akeiqiauliuo A8 wewnood 7 Hedid IweisIS Baly Ag 9T9ZT SW(/ZTTT 0T/I0p/LI0D" A5] 1M Ale.q1jpulU0"D0SURUWIPUO|//SANY WO Papeo|umod ‘€ ‘220e ‘0S2L697T

oA

3SUB0 |7 SUOLULLIOD dARERID 3|gedtjdde au} Aq pausenob ae sajoiie YO '8sN J0'Sa|nJ 10§ Ariq 1T BUIUQ AB|IAA UO (SUORIPLOD-pI



2012 | MOCI AND PAGARIA

(5) We have

FE@w.By =Pyl ¥ - |[]u

LECyy LeB

that is zero by (W3a).

We have proven that f is well-defined and surjective, since f is. Let I be the ideal in E generated
by (1)-(5) and note that I is a monomial ideal in the variable sy, and b g forWegGandje R,. It
is enough to prove that

f(H sWHbjz) = 0 implies H SWHijZO

WEA  jeB

in D for all subsets A C G, B C R, and all polynomials z in the variables {ty, }y ¢ and {¢;} ez, -

The monomials [ ]y 4 sw []ep bj With A a non-nested set belong to I by (2), the ones with B
not a cone belong to I by (3), and the ones with B ¢ (1,4 Ann Ay, are in I by ().

Now, let A be a G-nested set and B € C, be a cone contained in ﬂWe 4, Ann Ay,. We define a
map H*(Y 4, 5) — D by using the presentation of Theorem 4.3: the morphism is defined by z
ITwea sw [1ep bjz for all z in the exterior algebra on generators {ty }y c¢ and {c;}jcr, - It is well-
defined:

(T1) holds by relation (3),

(T2) holds by relation (4),
(W1) holds by relations (1) and (3),

(W3a) holds by relation (5),
(W3b) holds by relations (2) and (1).

The composition

H' (Y 3 > D—>M->»H (Y,5)

is the identity, therefore if f([Tyecasw[ljepbjz)=0 then z=0 in H'(Y,u) and
[Tweasw I[1jepbjz = 0inD. U

Lemma 4.8 together with the main result of [20] imply the following result.

Theorem 4.9. The differential graded algebra (D, d) built in Definition 4.5 is a model for the com-
plement M 4. Therefore, H*(D,d) = H* (M 4; Q). O

Remark 4.10. Since our methods are based on the Morgan algebra, the d.g.a. (D, d) also codifies

the rational homotopy type of the complement, which was studied also in [9]. Unlike the d.g.a.
introduced therein, our d.g.a. is finite-dimensional.

5 | DIVISORIAL CASE

In this section, we consider arrangements of subtori of codimension 1, usually known in the lit-
erature as toric arrangements. Given such an arrangement A = {S,, ..., S,,} we consider the toric
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wonderful model Y(A, G) where G = L_ is the maximal building set. In this case, the G-nested
subsets coincide with the chainsin L.

Inspired by Yuzvinsky [25, 26], we introduce a different set of generators oy, Ty, for the differen-
tial graded algebra (d.g.a. for short) D and we determine the relations between them (Lemma 5.2).
By using these generators we define some elements Ey, 4 of D (Definition 5.3) that belongs to the
kernel of d (Lemma 5.4). We study the multiplication between them in Lemma 5.8 and their rela-
tion with the cohomology of the ambient torus (Lemma 5.9). The linear relation between Ey, 4
are rather complicated to prove (Lemmas 5.5, 5.10 and 5.11 and Corollary 5.6). In the main result
of this section, Theorem 5.12, we introduce a Orlik—-Solomon type algebra R and we prove that the
composition

R — H(D,d) 2 HM(A); Q)

is an isomorphism. The map R — H(D, d) is well-defined by all the lemmas preceding the main
theorem, is injective by Lemmas 5.1, 5.14 and 5.15, and surjective by dimensional argument
(Lemma 5.14).

Although the d.g.a. D depends on the choice of a good fan A, the algebra R and its isomorphic
image in D are independent from the choice of the fan.

In this section, we will use basic notions of matroid theory: a set of subtori I C A is an inde-
pendent set if the codimension of the intersection Ng<;S is equal to the cardinality of I, and a
dependent set otherwise. A circuit is a minimal dependent set. We fix a order of the subtori, that is,
a total order < on .A. We recall that a broken circuit is a circuit with the maximum (with respect to
the fixed order <) removed, and that a no broken circuit is a set that does not contain any broken
circuits.

Define the elements oy, = 3,y s, and 7y, = ¥,y £, in D for all W € L. Moreover, for
every y € A define

By == Y min(0,(x,j)b;, B =, max(0,{x,j)b;

JERA JERY

and

By =By —B,  vy=— D, min0,{xj)e;.
JERA
As in the previous section, we consider the bi-gradation of D given by deg(sy ) = deg(b;) =
(0,1) and deg(ty,) = deg(c;) = (2,0), so that the differential d has bi-degree (2, —1).

Lemma 5.1. The set {][c 4 Sw [1jec bj}ac. where A runs over all the G-nested sets and C € C,
over all the cones contained in Ny 4, Ann Ay, is a linear basis of D%

Moreover, the set {[ [y e 0w [1;ec bj}ac (Where A and C runs over the range described above) is
a linear basis of D",

Proof. Note that D% is the exterior algebra on generators sy, and b ; with relations:

(') swb;if j € Ann Ay,
(2) [lwea sw if Ais not G-nested,
(3) HjeC b; if Ais nota cone in A.
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These relations generate a monomial ideal and so the monomials not divisible by the rela-
tions form an basis B of the vector space D®*. Thus, it can be easily seen that the set
{I[Iwea sw [1jec bj}ac is the basis B.

For the second basis, we choose a total order on the set G that refines the partial order on it. This
total order induces a lexicographical order on the set of G-nested sets. The matrix that represents

the elements {[[yc 4 ow []jec bjtac inthebasis{[ [y c 4 sw [1jec bj}ac is upper triangular with
ones on the diagonal entries. This proves the claim. O

For a subset A of the poset of layers £, we denote by sup(A) the set of all minimal upper bounds
of N, that is, sup(A) is the set of connected components of the intersection (4, W. To simplify
notations, we write sup(A4,, ..., A,,) for sup({A4,, ..., A4,.}).

Lemma 5.2. In D, we have the following relations:

D) oyop =y —o)Qye sup(W,L) oy)forall W,L € L,
(2) if x € Ay then x,y, = 0 where x = B,B~,Btory andy =ocorr,
Q) if W » V and y € Ay, is an element that generates Ay, /Ay, then:

oy(=ty + 7;) = —OwTw, Ty(=ty + 7’;{) = —1"2)[,.

Proof.
(1) Letx; = Yvsw Sy, X5 = Y. vsL Sy and x3 = Yysw sy. The claimed equality can be rewritten
VL VW V>L

as (x; + x3)(x, + x3) = (x; — x,)x3. Since x; has degree one we have xg = 0 and we need to
prove that x,x, = 0. This follows from x;x, = Y s;,s; where the sum runs over all V > W,
V#Land U # W, U > L: we have s;,5;; = 0 because V and U do not form a chain.

(2) Note that for y € Ay, we have min(0, ()(,j))aer =0fora=bora=candr=sorr=t,
by relation (1) of Definition 4.5. Since W > V implies Ay, 2 Ay, we have

X,y == Y min(0,(x, j)ary =0,
wzv
JERA

that proves the statement for x = 87, y~. Analogously, the relations max(0, (x, j)a;ry =0
imply the statement for x = §*. Finally, we have §,y,, = /B;yv — B yv =0.

(3) If L > W, we have that s;(—ty, + y;) = —5; Ty since y € A;. On the other hand, if L > V,
L # W, we will show that s; (ty, +y7,) = 0. Indeed, we have

SL(—TW + y)_() = _< z SLTU> + SL‘J/);.

Uesup(L,W)

SincecdV =cdW +1landU > L,thencdL = cd U + 1. Letn € Ay be anelement that gener-
ates Ay /A;.By[15, Lemma3.4],wehave LN W| = |Ay /(AL + Ayl and weseta = |[LNW]|.
Moreover, A; + Ay, = A + Zy, so there exists )’ € A, such that an =5’ + y. Observe that

s = Y, —min(0,(x, j)e;s;
JERA

= Z —min(0, (an — 7', j))c;s,
JERA
JEANn A

UONIPUOD PUe SULLB | 38U 89S *[220Z/0T/8T] U0 Akeiqiauliuo A8 wewnood 7 Hedid IweisIS Baly Ag 9T9ZT SW(/ZTTT 0T/I0p/LI0D" A5] 1M Ale.q1jpulU0"D0SURUWIPUO|//SANY WO Papeo|umod ‘€ ‘220e ‘0S2L697T

oA

3SUB0 |7 SUOLULLIOD dARERID 3|gedtjdde au} Aq pausenob ae sajoiie YO '8sN J0'Sa|nJ 10§ Ariq 1T BUIUQ AB|IAA UO (SUORIPLOD-pI



ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2015

= Z —amin(0, (n, j))c;s,
JERA
JEANn A

= 2 —a min(0, (UJ))CJ'SL = ay;SL

JERy
and so
s-tw+r) = ), sty+y)= ), FALLUM=0
Uesup(L,W) Uesup(L,W)
by relation (5) of Definition 4.5. The proof of 7, (—ty, + y;) = —T‘Z/V is analogous. O

Let A C {1,...,n} be an independent set and W a connected component of N, 4S,. Following
[19], we denote by m(A) the number of connected components in such intersection. Let E}f be
the subposet of Ly, = {L € L | L < W} generated by the atoms in A.

A flag adapted to A and W is a sequence of layers T = F, < F; < -+ < F; in the lattice EK’
such that F, = T and each F, covers F;_;. Since [13’ is Boolean, for every i = 1, ..., k there exists
a unique g; € A such that F; = S, N F;_;. Therefore, each flag adapted to A and W is uniquely
determined by the sequence F = (a;, a,, ..., a; ) of k distinct elements of A.

Foraflag F = (a;,a,, ..., a;) adapted to A and W, we denote by m(F) the number of connected
components in the intersection nk S,

For every i € {1,...,n} we choose a character X that generates Ag . For each flag 7 and each
a € A, we define the elements x(F,a) = —0p, ifa =a;and x(F,a) = ,8 Y otherwise. Analogously
we set y(F,a) = —TF, ifa=aq;and y(F,a) = Y otherwise.

Definition 5.3. For each independent set A C {1, ...,n} and each connected component W of
NgeaS, we define the following element of D:

(F)
WA Z’"(A)H x(F, a),

acA

[1]

where the sum is taken over all the flags adapted to A and W.

In the previous definition we use the notation defined above: by [] ., we indicate the exterior
product taken in the order of A C {1, ..., n}.

Lemma 5.4. For each independent set A C {1, ..., n} and each connected component W of Ny 4S,
we have d(Ey, 4) = 0.

Proof. We have that

= 2 5 N4yl
d(HW,A>—;m( A)2< DMolyr,b) [ xF.a),

beA acA\{b}

so define Z(F, b) = y(F, b) HGGA\{b} x(F,a).
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Let F = (a, ay, ..., a;) be a flag adapted to A and W. For i > 1, let us denote by Z(F, q;) be the
same product defining Z(¥, a;) but with —o._ replaced by —oy (in position labeled by a;_,, that
is, the |A_,_ |-th position in the product). We analyze the elements Z(F, a;) for i € F dividing in

cases:

k>1,i=1:

i#1,k:

i=k>1:

We have

Z(F,a;) =0 3)
because 7y o, = —(=7p, +7, )or, = —F(@,F,,#)op, = 0.

ar
We have
Z(F,aq;) = Z(F, a;)
because oy, Ty 0p, = —0p_ (=Tp +V} )OF, =0pTk0F, . Consider the flag
1— 1 1 1— 1 ai L L 1 1

-
F'=(ay,..,q;_5,0;,0;_1,0;1, ..., ) and note that

20 ) = () T2 a),

because F i =F ; forall j # i — 1 and the factor —0p, appears in the |A <a_, |th posi-
tion in Z(F, a;) and in the | A, th position in Z(F',a;_;). Therefore,
_ [Acq;! X _ [Acq, ;| ! . —
(=D <4'Z(F,a;) + (1) <41 Z(F', a;_;) = 0. 4
. We have
1
Z(ay),a))+ ——ZB,a,) =0 5
((a),ay) m(a) @, a,) ©)
because rf(zl ) generates Ap, where F is the connected component of S, containing
1
1 .- - _ —
W and so —7p + @ e = TR T ey, = F(@,F,0) =0.
m(ay)
We have
m(F \ a;) .
Z(F,a,)+ ———Z(F \a,a,)=2(F,a 6
(F, ar) m(F) (F\ ag, a) = Z(F, ar) (6)
F _ _
because o (—7p, + %yxak) =0p, (=Tp, +7}) = —0Og,Tp, Where y €

A, is any element such that m(F)x — m(F \ ai)x,, € Ap,_,. Moreover, for F =
(a;,a,, ..., a;) we have defined 7/ = (ay, ..., x5, 4, @) and we have

[—lA

Z(F,a,_ ) = (=)A<~ H 7P g, (7

Finally, we have:

m(A)d(Ey 1) = Y. m(F) Y (-)M<¢IZ(F,b)
F

beA

k
= X YD lmE)ZF.a) + Y Y (D A<lmF)Z(F, a).

[F|>0 i=1 F agF
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By Equations (3) and (4), the terms with i < k cancel with each other, hence the sum above is
equal to

> CoalmEP)zzF a) + Y, Y (~DA<lm(P)Z(F, a).

|F|>0 F agF

By formula (5), the terms with k = 0 vanish, thus we obtain

Y CoalmPzZE a) + Y, Y (DA<l m(PZ(F, a).

IFI>1 F£0 a¢F

Equation (6) allows us to rewrite the above sums using the monomials Z:

Y )l mPZF, @)

[F|>1

and finally we apply formula (7) to obtain

Y A+ DHmP)ZF, ) =0.
|F|>1

This completes the proof. Cl
Lets € {+,—}and y € A, we define the open half space H j( C A* as
Hj( ={ve A" |{(uv,sy) >0}

Recall that C, is the collection of all cones in A. We denote C’A the set of all cones in A of dimension
L

Lemma 5.5. Let A be an independent set and s, € {+,—} for a € A. Let Z be the set [
Consider the projection w : A* — A*/ Ann A 4. We have that

[8: =ma) . vol®) [] b

acA KeC'AA‘ cek
Kcz

S,
acA H}(a'

where the last product is taken in any order such that the two bases (S, X 4)qea and (7(c)).cx are
both positive or both negative.
Moreover, if A is dependent then [] ,c 4 ‘Bj(“a =0.

Proof. LetK € C'AAI be a |A|-dimensional cone not contained in Z: then there exists ¢ € K such
that ¢ ¢ Z. So, for some a € A, we have min(0, (s, x,,c’)) = 0 for all ¢’ € K by using the equal

sign property. It easy to see that the monomial []..x b. does not appearin [], .4 6;‘2

Now suppose that a K = (ky,..., k) € ClA is contained in Z, the coefficient of H§:1 by, in

Sq s
[Meea ﬁ){a 1S
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l

Z (—1)%"° H(Si)fi’ ks iy)-

O‘E@[ i=1

Now note that (s; x;, ks;)) = (sixi> T(ko(;))) for all i and o.
The equality

l
> 0 s, ko)) = det(s;x;) det((k;))

0ce@, i=1

follows from the multilinearity in the entries s; y; and z(k;).
If A is dependent then dim A*/ Ann A4 = rk(A) < |A[, so det(7(k;)) = 0 and [],c4 Bj(“a =0.
Otherwise, the two bases (s,x,)qea and (m(k)),cx are both positive (respectively, negative)
then det(s; x;) det(rr(k;)) is positive and equals to m(A) Vol(r(K)). O

The proof of this corollary follows from the proof of Lemma 5.5 by omitting some steps.

Corollary 5.6. Let A be an independent set, then:

[15.,. =m@ > vola®)]] be.

acA KEC'AA‘ ceK

where the last product is taken in any order such that the two bases (¥ )qec4 and (7(c)).cx are both
positive or both negative. O

Corollary 5.7. Let V€L, ACE and s, €{+,—} for a € A. Let Z be the set (\,c, Hj(“a and

7w A" — A"/ Ann A . If the vectors x, for a € A are dependent in A/Ay then oy [[,ca 6;‘; =0,
otherwise

oy 11 B = aym(A) Zm Vol(7(K)) 1‘1[< b.,
ae KeC ce
KcZnAnn Ay

where the last product is taken in any order such that the two bases (5, X4)qea and (7(c)).cx are
both positive or both negative.

Proof. We use Lemma 5.5 and then we multiply both sides by oy. If K € AnnA, then
oy [1.cx be = 0 and the second claim follows. Since we can assume K C Ann A, the map 7
restricts to the canonical projection AnnAy, — Ann A,/ Ann(A, + A,). As in the proof of
Lemma 5.5, it follows that det(zz(k;)) = 0 because they are |A| vectors in a vector space of strictly
less dimension. O

We recall that, given two positive integers k, h, a (k, h)-shuffle is an element p of the symmetric
group on the elements {1, ..., k + h} such that p(i) < p(j) for every couple i < j such that either
i,jel{l,..,.k}ori,je{k+1,..,k+h}.
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Lemma 5.8. For all independent set A and B, and for all connected components W of N, 4S, and
L of NyepSy, we have By, 4B g = 0if AN B is not empty or if A LI B is not independent. Otherwise

e
=
—

2 — (_1)(AB) =
w.aBrp = (=1) Z =V,AUB>
Vesup(W,L)

where (A, B) is the sign of the permutation reordering (A, B).

Proof. LetF = (a, ..., a;)beaflagadapted to Aand W,and H = (a;,;, ..., a,) be aflagadapted
toBand L. Let C = {ay, ..., a;,} and suppose that C is not independent. Then using Equation (1)
of Lemma 5.2, we can write the product HI 19F, H'Hl oy, as linear combination of monomi-

als Hk+h og, forG; <G, <+ <Gy, < Fh V H,. Since C is dependent, rk(G ;) < k + h and so

there exists i such that G; = Gl +1- Since oG. = 0, all such monomial are zero and so the product
L

H!F oF, H'Hl oy, vanishes. If C is independent of cardinality k + h, then for each (k, h)-shuffle
p and each element V € sup(Fy, Hy,) we have a flag F s, H 1= (a,q), ---» Apc+n)) adapted to C
and V. By using only Equation (1) of Lemma 5.2, we have

k h k+h
= (—1)4,B)
o ITon =04 3 3 [ewm
i=1 j=1 Vesup(Fy,Hj,) p shuffle i=1

where the products are taken in increasing order of the corresponding a;.

Now we prove that Ey 45, 5 =0 if tk(AUB) < |A| +|B|. It is enough to verify that
[Hoca x(F,a) [ 1,5 x(H,b) = 0 for all flags 7 and H as above. If C is dependent then we have
already prove that the product is zero, so suppose C to be independent. Let aj 1, - » @j4)45 D€
the list of the elementsin A \ 7 and in B \ H. By Corollary 5.7, we have oy, Hl’:ll:rlhBJ'r ) ﬁ;ﬂi = O for
all V € sup(Fy, Hp,).

It remains to prove the case A LI B an independent set. The number of connected components
of W N L contained in V is equal to

m(A U B) m(F)m(H)
m(A)mB) m(FUH)

Finally,

[1]
[1]

5= 2 ) mPmID T x(7, @) [ 201, b)

m(A)m(B) acA beB

= (=1)lAB) Z m(F)m(H) Z Z H x(F %, M, a)

m(A)m(B) Vesup(Fy,Hy,) p shuffle a€ALB

= (- 1)’(”)2"”1((237;)) > oY I xF s, na

Vesup(W,L) p shuffle a€ALIB

= (—1)/@B Z Z —r;((ztg)) Z H x(F #, H,a)

Vesup(W,L) F,H p shuffle acALIB
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NS 2% I xx.a

Vesup(W,L) K a€ALB

= (-D)/AB) Z Ey aups
Vesup(W,L)

where we used the fact that flags K adapted to A LB and V are in bijection with flags 7 %, H
where p runs over all the (k, h)-shuffles, F over all flags adapted to A and W, and H over all flags
adapted to B and L. So, the claim follows. O

Lemma 5.9. Let A be an independent set and W a connected component of N,c4S,. If x € Ay,
ﬂ’len EW,AE}( =0.

Proof. Let F be a flag adapted to A and W, we show that ﬁj( [lica x(F,a) = 0for s € {+,—}. The
element § o, 1. A\F 5;‘1 is zero by Corollary 5.7, because the vectors y, xy, fora € A\ F are
linearly dependent in A/Ay, . The Lemma follows. O

Recall that by definition of a circuit C, there exists a minimal relation ), . n;x; with n; #
0 for all i € C and this coefficients n; are unique up to scalars. Moreover, we can choose n; as
¢;m(C \ {i}), where m is the multiplicity function of the arithmetic matroid and ¢; is the orientation
of the oriented matroid.

Lemma 5.10. Let X be a subset such that |X| = rk(X) + 1, C C X be the unique circuit, A C X
be an independent set, F be a connected component of N,c4S,. There exists a minimal relation
Yiec em(C \{iDx; = 0 for some c¢; € {+,—}. Suppose that C' := C \ A has cardinality at least 2,
then

) (- il gD Z g
T mX\{j}) G

where §(i, j) = ¢;c; ifi < jand (i, j) = — ifi > j.

Proof. For the sake of simplifying the notation, let us suppose C’ = {0, 1, ..., [}. The first step of the

proof is to reduce to the case ¢; = — fori < k and ¢; = + for i > k for some k € C'. Let u € &/,
be the unique shuffle that reorders C’ in such a way that¢; = — fori < kand ¢; = + fori > k. We
have

(-1)/ 8Gij) _ (=1 8(i.())
2 gy AL P = X a1 A

jec’ 1eC\{j} jec’ ieu(C"\{jh)

where we use sgn(u) = (—1)/—H0) sgn(,uw/\{j}). Moreover, note that §(i, j) = d(u(i), u(j)) since
(i, J) is an inversion of u only if ¢;c; = —. Thus, from now on we assume ¢; = — for i <k and
¢ =+forizk.
CiC;
Define Z; = (nijX‘l_ "N j H;i) NANnAgp, X; =Z; nH;;j andY; =Z; nH;j. The following
properties follows easily from the definition:
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X =0 Y1 =0
X, =Y, X; =Y, forall j #k.

Note that opb, = 0 if c € Ann A by Definition 4.5. By Lemma 5.5, we have

H 65(1 J) m(C \{J}) 2 VOl(ﬂj(K)) H bc

m(X \ {J}) ieC\{j} m(X \{ }) Kecl ceK
KcZ;
m(C )
1 b,,
e KZCI Vol(r, <K)>C1€l e
I(ch

where in the last equality we used the property (P) of arithmetic matroids (see [3]).

The map 7; restricted to AnnAp does not depend on j € C’. Indeed the restriction of
7t A" — A"/ Ann Ac g, is the canonical projection Ann Ap — Ann Ap/ Ann Ay, and it does
not depend on j because Ay = Ay, forall j € C.

For j # k the bases (5(i,j))(i)i¢j and (8(i, j — 1)9(1')1‘#—1 have the same orientation. The bases
(=x1)i>0 and (8(i, k) x;);, have the same orientation if and only if (=Dk1=1.

Since

(—1)|C,<f| a,p _ m(C’)

VRN ﬁi = ( 1)] VOI(”(K)) bca
E jél m(X \ {J}) 16&{}} m(X) Fjé/ Kél Cgf
KCZj

it is enough to consider the following:

> (1) Volr(®)) [ be+

) JEC! KCX; cek
> Y i vol@®) [ be = .
jec Kz, cek + Y (=1 Vol®) [ ] be
JEC' KCY; ceK
= Y D Volr®) [T be + D, Volx®) [ b =0,
KCX ceK KCY, cek
so the claim follows. O

Let C C{1,...,n} be a circuit oriented by the signs (c;);cc. We recall the following definition,
which was introduced by Postnikov in [23]. For each A C {1, ..., n}, we say that C /A is a positroid
if¢; =c;foralli, j € C\ A. Since the orientation is defined up to a global sign, we can assume c;
is positive for alli € C \ A.

Lemma 5.11. Consider X C {1, ...,n} such that |X| = rk(X) + 1, let C C X be the unique circuit
and L be a connected component of N;cx S;. There exists a minimal relation ) ;. ¢;m(C \ {iDyx; = 0
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forsome c; € {+,—}. Then, we have

1y l+laB) __M(A) _
eV o\ P =

[1]

X\CCAGX
C /A positroid

where j = max(X \ A), B=C \ (AU{j}), W is the connected component of NS, containing L
and I(A, B) is the sign of the permutation that reorders (A, B).

Proof. We may assume that X = {0, 1, ...,tk(X)} and C = {0, 1, ...,rk(C)}. Let R = X \ C, we can
rewrite the left-hand side as follows:

_yyian_MA g g
o Y A
C/A pos.

7|

_ _1VHIFIH(AB)+HI(F,A\ m(F)
= 2 Z( 1)+ IHUABIH(F,A F)m(X\{]})H H Hﬁb

RCAGX FCA aeA\F  beB

C/A pos.

Y Y (pprranaean M7 m(F) lﬂ 1 5:11#
= —_ 2 ” b

FCX FURCAGX mX A\ i aeA\F beB

C/A pos.

where we applied the definition of £y, 4, and then we exchanged the two sums. By setting D =
A\ (FUR)sothat A=DUFU(R\ F), we rewrite the above equation as

Z (_1)j+l(A,B)ﬂw Bs =

RCACX mXx \{jh
C/A pos.
= z ﬂ z (_1)j+IF|+l(A,B)+l(F,A\F)ﬁo_ H ,B_H,B ®
FCX mX \ {j} DeCAE 11 F, Al - 11 A
# /Do) pos. i=1  aeDUR\F)  be

LetC'=C\F,j=max(C\ A)and C(j)={i € C.j\ F | ¢; = ¢;}, we need the following equal-
ity:

PIREVCACREEN | B | I

BCC,\F aeC/\(BU{j})  beB
BU{j} pos.
Z 2 (_1)IB\D|+1(C’\(DU{j}),D) H ﬁ(; H ‘3;
BCC(j) DCB aeC’\(DU{j}) beD
2 ’ i _
= Z (=1)/C\PU{.D) H B H 5; z (=1)/F! )
DCC(j) aeC’\(DU{j}) beD ECC(j)\D
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(€) N (C(HULD.CO —
= (—1)HCENCDUDLCUD H B H ‘3;

aeC’\(C(HUjh  beC(j)

In equality (1), we used 3, = ﬁ; — B, and expanded the product. In equality (2) we set E = B\ D
and we exchanged the two sums. Equality (3) follows from the fact that ) ECC( j)\D(—1)|E = 0if
C(j) \ D # @. Equality (4) follows from the fact that, for b < j, ¢,c; = — if b € C" \ (C(j) U {j})
and ¢¢; = +if b € C(j).

We also need, for |C’| > 1 the following:

(1)',| I(C"\(BU{j}).B) - =
Fk ZVYI(X\{]}) B;C, ( 1)C BUUD.B H ﬁa Hﬁb_

jec’! aeC’\(BU{j}) beB
BU{j} POS
ICL |
(=1)"< ChCj _
=0F, - .3 B,
2 NG H H

=0,

by Equation (9) and Lemma 5.10. This proves that all summands in eq. (8) such that [C \ F| > 1
cancel each other. Therefore,

T copran 1A o

C/A pos.
=Y Y pmrmrxeon M) m(F) lﬁl M &
JEC e\icFex mXNUD i senuy
Recall also that m(m)((@}) = m(mr(;’j)] D by property (P) of arithmetic matroids. Thus, we have:

_pyHan_MA) o g
W& Y A
C/A pos.

= Z Z (- 1)J+|r|+l(PJ<\(Fu{J}))m(FU{J})H H -

JEC C\{jICFEX m(X) i=1 an\(Fu{J})

We prove that the terms in the above sum cancels in pairs: consider j € C, a flag 7 with last
element k and define 7 the flag obtained from F substituting k with j. This gives a pairing
between (j, F) and (k, 7). We prove that the summands associated with (j, F) and (k, ) cancel
each other. Note that 7 U {j} = F U {k} and that (—1)!7>X\(7Ulih) H'Fl or, [aex\rugp B ditfer
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from (—1)/FX\(FUik) Hllzll or, [aex\Fumy Ba BY (=1)7J71, because the element o, appears
in position k in the first element and in position j in the second one. Therefore, the two monomials
associated with (j, ) and (k, F) are the same but with opposite sign. O

Let w be the generator of H(C*; Z).

Theorem 5.12. Let A be a toric arrangement. The rational cohomology algebra H*(M(A); Q) is
isomorphic to the graded commutative algebra

H(T; Qlew.al

where A ranges over all the independent subsets of {1, ... ,n} and W ranges over all connected com-
ponents of N, 4S,. The degree of the generator ey, 4 is |A|. The ideal I is generated by the following
elements.

» For any two generators ey, 4, ey ar,
eW’Aewl’A/

ifANA" # @or Au A’ is a dependent set, and otherwise

!/
eW’Aewl’Al - (_1)I(A’A ) 2 €L,AuA/ . (10)
Lery(WnW’)

» Foranyy € H'(T; Q) such that Yw =0,
ey aY- (1)
* Forevery X C {1,...,n} such that rk(X) = |X| — 1 write X = C U F with C the unique circuit in

X. Consider the associated linear dependency Y.~ h; x; = O with n; € Z, and for every connected
component L of N;cx S; a relation

ieC

. m(A
Z (_1)|X<j|+l(A’B)(—).eW,A¢B’ (12)
X\Coacx mX \ {j})
C /A positroid

where j = max(C \ A), B=C\ (AU {j}). ¥p = [[pep )(g(co) an element in H*(T), and W is the
connected component of N;c 4S; containing L.

Remark 5.13. Compared to the previous result of [5], this new presentation exhibits more clearly its
dependence on the orientation. Different choices of the orientation give rise to different presenta-
tions of the same algebra. Furthermore, our presentation depends only on the oriented arithmetic
matroid associated with the set of characters defining the toric arrangement. The notion of of ori-
ented arithmetic matroid was defined in [22], by refining the notion of arithmetic matroid intro-
duced in [3, 15]. Since, by [22, Theorem 6.1], all the orientations are equivalent, the isomorphism
class of the cohomology algebra only depends on the arithmetic matroid.
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We also remark that the presentation provided by Theorem 5.12 seems more suitable to be gen-
eralized to arrangement of subtori of arbitrary codimensions.

Before proving the above theorem, we need a couple of lemmas. We denote the ring
H*(T; Q)[ey 41/1 by R.

Lemma 5.14. There exists a filtration F, of H*(T; Q)[ey, 41/1 such that

grrR= @ H (W; Q) ® Hogyw_o (AT, W)).
werL

In particular, the set ey, 4 with A a no broken circuit set in Ly, generates R as H(T; Q)-module.
Moreover, R and H* (M (A); Q) have the same dimension.

Proof. Let F, be the filtration defined by

FhR = Z eW,AH.(T;@).
cd(W)<h
A

The graded ring gry R is isomorphic to H*(T; Q)[ey, 41/I’, where I’ is the ideal generated by Equa-
tions (10), (11) and

2Dl gy (12)
jec

for all X such that rk(X) = |X| — 1 and all L connected components of N,cyS,. Note that gr R is
L-graded and isomorphic to

H(W;
@ ( @)[eW,A]A/IW

weL

as H(T)-module, where Iy, is the ideal generated by Equation (12”) for all X such that rk(X) =
|X| — 1 and W is a connected component of N,cxS,. Finally, we have

H'(T:@lew al; ~ gr. R

~ @ HW; @)[eW,A]A/IW

weL

= P H W;0) ® Hyy o (AT, W),
weL

where we use the Brieskorn isomorphism for the Orlik—-Solomon algebra associated to the geo-
metric lattice £y, .

From Theorem 2.8, we deduce that R = H*(M(.A); Q) as Q-vector space and so they have the
same dimension. O
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We want to construct a bijection for any geometric lattice £y, between no broken circuit
sets and certain maximal flags. For any maximal flag of layers ¥ = (T =Fy, < F; < - < F =
W) we define the edge labeling e(F) as the list (by, ..., b;) where b, = max{i € {1,...,n}| Fy €
sup(F_y,5;)}. We say that F is increasing if b; < b; for all i < j (where e(F) = (by, ..., by)).

Note that if 7 is a maximal flag adapted to A and W, €(F) may not be a subset of A.

Lemma 5.15. We fix a layer W of rank k and consider the geometric lattice L .. If A = {a; < a, <
-+ < ai} is a no broken circuit set, then a maximal flag T adapted to A and W is increasing in L _y,
ifand only if F = (a;, ay, ..., Qy).

Proof. The key observation is the following: if b > a; then A U {b} is an independent set (since A
is a no broken circuit set). We prove that every maximal, increasing flag adapted to A and W is
F =(ay,ay, ..., q;) = €(F) by induction on k; the base case is trivial. Let ' = (a5(1), Ag(2)s - » Ag(k))
be a maximal increasing flag adapted to A and W, by inductive step we assume that the flag
F' = (a5(1), Q5(2)> -+ » Agk—1)) = (@15 e, Ao i) - » @) has labeling e(F') = (ay, ..., Ty - » ak)- The
labeling e(F) = (ay, ..., %, ..., 0y, b) for some b € {1, ..., n}is increasing but from the key obser-
vation we have b < a;.. By definition of the labeling b > q;, so b = aq; and o(k) = k.

Again by induction, we prove that the flag F = (ay,a,,..,q;) has labeling e(F) =
(ay,a,, ..., a;) and so is increasing. By inductive step e((a;, ay, ..., ax_1)) = (ay, Ay, ... , 1), SO
F has labeling e(F) = (ay, ..., a5_;, b) with b > a;, by definition and with b < g, by the key obser-
vation. We have proven that the flag (a;, a,, ..., a;) is increasing. O

Proof of Theorem 5.12. Let g: H(T;Q)[ey 4] — D be the map defined by g(x*(w)) = g, for all
X € A and by g(ey 4) = Ey 4. It is well-defined since B, .1, = aB, + b, forall a,b € Z. The
ideal I is contained in ker g by Lemmas 5.8, 5.9 and 5.11, so g : H(T;Q)[ey, 41/I — D is well-
defined.

We will show the injectivity of g considering it as morphism of H*(T)-module. Consider the
monomial base of D%* provided in the second part of Lemma 5.1. Note that in the expansion of
g(ew 4) = By 4, for A no broken circuit set in £y, appears only one monomial []; . o; with
F increasing chain (in £y, ) by Lemma 5.15. For each W € £ and A no broken circuit set in £y,
we choose a set B(A) such that A LI B(A) is a basis and a cone C(A) € A contained in Ann A, of
maximal dimension. Let us suppose that

g Z Z Ay alw aAPw.a|=0

WeL Anb.c. in Ly

for some ¥y, 4, € H*(W;Q) and some ay, 4 € Q with at least one ay, 4 different from zero.
Let (W, A) such that |A| is maximal among all (W, A) with ay, 4 # 0. Let ) € H(T) such that
Y 2Pl = zpB(Z). Let F be the list of all elements in A ordered increasingly. By Lemma 5.15, in

g Z 2 Ay alw aPw ¥ | = Z 2 Ay ABw 49w a¥)

WeL Anb.c.in Ly WeL Anb.c.

-y Y ¥ aW,A%<Hx<r,a)>g<¢W,Aw)
a€A

WeL Anb.c. F adap. AW
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the monomial z = [, 5 —o;, Hj ec@) b; associated to the increasing flag F, can appear only in

the addendum T g(z,bw,zz,b). In particular, z appears only in the expansion of

H oL g(z‘bw,zlp) = H —0r g(lbe(Z))

LeF LEF

=H_UL H By

LeF beB(A)

=mBA) [[-o. D, Vol=®)[]b.

7 a K
LeF  geclP® ce

The coefficient of z in (HLeF —01)9(%z%) must be zero, but it is (up to a sign) equal to

awzm(B(Z)) VOI(T[(C(Z))) (cf. Corollary 5.6). The volume Vol(7(C(A))) is different from zero
because AZ RQD AB(Z) ®Q=A® Q. We have Az = 0 contradicting the assumption, hence
g is injective.

Note that the range of g is contained in kerd by Lemma 5.4 and in the subalgebra D%*. The
map ¢ induces an injective map

g: HT:Dlewal, & g (D,d) = H'(M(A); @)

since d is of bi-degree (2, —1). Itis also surjective because H*(T; Q)[ey, 41/T and H*(M(A); Q) have
the same dimension (see Lemma 5.14). We have proven the theorem. O

Remark 5.16. Theorem 5.12 is a generalization of [11, Theorem 5.2] and analogous to [5, Theorem
6.13]. Indeed, if A is totally unimodular and the circuit C = {0, 1, ..., n} is oriented with ¢, = —,
¢; = + for i > 0, we obtain [11, eq. 20].

We have chosen the generator associated with an hypertorus S, as Eg_(,; = —0g + ,6’;& that
depends on the choice of one between y, and —y,. Another possible choice of generators were
B, ja) = —205, + ,8;0 + ﬁ;a, this would be lead to the same presentation of [5, Theorem 6.13].

Remark 5.17. Theorem 5.12 gives another proof of the rational formality of toric arrangements,
previously proven in [5, 16].

m(A) . |B| — .
0D Ppwith [[,Z ¥, where (%;); form a basis
of Ac /A, with the same orientation of (x},),cp, the cohomology ring with integer coefficients have a
presentation analogous to the one in Theorem 5.12.

Conjecture 5.18. Substituting in Equation (12)

Furthermore, our approach to the computation of cohomology ring for toric arrangements
seems suitable to be extended to the non-divisorial case. We hope to develop this line of research
in a future paper.
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