A representation of the dual of the Steenrod algebra

Maurizio Brunetti • Luciano A. Lomonaco

Received: 13 May 2014 / Revised: 16 June 2014 / Published online: 16 July 2014
© Università degli Studi di Napoli "Federico II" 2014

Abstract

In this paper we show how to embed A_{*}, the dual of the mod 2 Steenrod algebra, into a certain inverse limit of algebras of invariants of the general linear group. The prime 2 is fixed throughout the paper.

Keywords Steenrod algebra • Invariant theory
Mathematics Subject Classification (2010) \quad 55S10 • 55S 99

1 Background on the Steenrod algebra

The Steenrod algebra A is obtained from the free algebra T on generators $1, S q^{0}, S q^{1}, S q^{2}, \ldots$ (of dimension $0,1,2, \ldots$ respectively) by imposing the Adem relations

$$
S q^{a} S q^{b}=\sum_{j}\binom{b-1-j}{a-2 j} S q^{a+b-j} S q^{j} \quad(a<2 b)
$$

[^0]and the extra relation
$$
S q^{0}=1
$$
which makes A non-homogeneous. There is a coproduct
$$
\psi: A \longrightarrow A \otimes A
$$
defined, on generators, by setting
$$
\psi\left(S q^{k}\right)=\sum_{j} S q^{j} \otimes S q^{k-j}
$$

Such a coproduct makes A into a Hopf algebra. Its dual A_{*} is a polynomial algebra

$$
A_{*}=\mathbb{F}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right]
$$

on the indeterminates ξ_{1}, ξ_{2}, \ldots, where each ξ_{i} is assigned degree $1-2^{i}$. The powers $\xi_{1}^{2^{i}}$ are dual to the operations $S q^{2^{i}}$ and each indeterminate ξ_{k} is dual to the monomial $S q^{2^{k-1}} S q^{2^{k-2}} S q^{1}$, with respect to the basis of admissible monomials. The coproduct μ_{*} in A_{*}, dual to the product in A, is given, on the generators, by

$$
\mu_{*}\left(\xi_{k}\right)=\sum_{i} \xi_{i}^{2^{k-i}} \otimes \xi_{k-i}
$$

For more details, see, for instance, [5]. We will employ the following filtration of A_{*}.

Definition 1 For each non-negative integer k, set

$$
D_{k}=\mathbb{F}_{2}\left[\xi_{1}, \ldots, \xi_{k}\right]
$$

For $k=0$ we mean $D_{0}=\mathbb{F}_{2}$. Clearly, D_{k} is a Hopf sub-algebra of A_{*}, for each k.

2 Background on invariant theory

For each $s \in \mathbb{N}$, we consider the polynomial ring $P_{s}=\mathbb{F}_{2}\left[t_{1}, \ldots, t_{s}\right]$ on the indeterminates t_{1}, \ldots, t_{s}, which are assigned degree 1. P_{s} can be regarded as the mod 2 cohomology ring of the s-fold cartesian power of the real projective plane. The general linear group $G L_{s}=G L_{s}\left(\mathbb{F}_{2}\right)$ acts on P_{s} in a natural manner. We let $\Phi_{s}=P_{s}\left[e_{s}^{-1}\right]$, the localization of P_{s} obtained by formally inverting the Euler class e_{s}, i. e. the product of all the elements of degree 1 in $P_{s} . G L_{s}$ acts on Φ_{s}. Such action extends the action of $G L_{s}$ on P_{s}, and commutes with the action of the $\bmod 2$ Steenrod algebra A. Let T_{s} be the Borel sub-group of $G L_{s}$ consisting of all the non singular upper triangular
matrices. The rings of invariants of Φ_{s} under the $G L_{s}$ and T_{s} actions are well known. We have

$$
\Phi_{s}^{T_{s}}:=\Delta_{s}=\mathbb{F}_{2}\left[v_{1}^{ \pm 1}, \ldots, v_{s}^{ \pm 1}\right]
$$

where each v_{i} has degree 1 , and

$$
\Phi_{s}^{G L_{s}}:=\Gamma_{s}=\mathbb{F}_{2}\left[Q_{s, 0}^{ \pm 1}, Q_{s, 1}, \ldots, Q_{s, s-1}\right]
$$

where $Q_{s, j}$ has degree $2^{s}-2^{j}$, and in fact $Q_{s, 0}=e_{n}$. For more details, and in particular for the formulas which provide an expression of $Q_{s, j}$ and v_{j} in terms of the indeterminates t_{j}, see [3]. We point out explicitly that, by convention, $Q_{s, j}=0$ when $s<j, s<0$ or $j<0$ and $Q_{s, s}=1$ for each nonnegative s. As an example, we have $\Delta_{1}=\Gamma_{1}=\mathbb{F}_{2}\left[t_{1}^{ \pm 1}\right]$, as $Q_{1,0}=v_{1}=t_{1}$. We set

$$
\Delta:=\bigoplus_{s \geq 0} \Delta_{s} ; \Gamma:=\bigoplus_{s \geq 0} \Gamma_{s}
$$

where, by convention $\Delta_{0}=\Gamma_{0}=\mathbb{F}_{2}$. We remark that in the above direct sums we disregard the internal multiplication. We define, instead, a graded multiplication

$$
m: \Delta \otimes \Delta \longrightarrow \Delta
$$

by setting

$$
m\left(v_{1}^{i_{1}} \ldots v_{h}^{i_{h}} \otimes v_{1}^{j_{1}} \ldots v_{k}^{j_{k}}\right)=v_{1}^{i_{1}} \ldots v_{h}^{i_{h}} v_{h+1}^{j_{1}} \ldots v_{h+k}^{j_{k}}
$$

A comultiplication $v: \Delta \rightarrow \Delta \otimes \Delta$ is also defined as follows. For each h, k, s such that $h+k=s$, we define an isomorphism $\psi_{h, k}: \Delta_{s} \rightarrow \Delta_{h} \otimes \Delta_{k}$ by setting

$$
\psi_{h, k}\left(v_{1}^{j_{1}} \ldots v_{s}^{j_{s}}\right)=v_{1}^{j_{1}} \ldots v_{h}^{j_{h}} \otimes v_{1}^{j_{h+1}} \ldots v_{k}^{j_{s}}
$$

and

$$
v\left(v_{1}^{j_{1}} \ldots v_{s}^{j_{s}}\right)=\sum_{h+k=s} \psi_{h, k}\left(v_{1}^{j_{1}} \ldots v_{s}^{j_{s}}\right)
$$

Hence Δ has both an algebra and a coalgebra structure. It is not difficult to check that v restricts to a comultiplication $\Gamma \rightarrow \Gamma \otimes \Gamma$. In more details, we have

$$
\psi_{h, k}\left(Q_{s, j}\right)=\sum_{i \leq j} Q_{h, 0}^{2^{k}-2^{i}} Q_{h, j-i}^{2^{i}} \otimes Q_{k, i} \in \Gamma_{h} \otimes \Gamma_{k}
$$

So Γ is a subcoalgebra too. The graded objects $\left\{\Delta_{s}, s \geq 0\right\},\left\{\Gamma_{s}, s \geq 0\right\}$ have been considered in [2] as examples of coalgebras with products, as defined in [4].

We are particularly interested in the case when $h=s-1$ and $k=1$. We have

$$
\begin{aligned}
& \psi_{s-1,1}: \Gamma_{s} \longrightarrow \Gamma_{s-1,1} \otimes \Delta_{1} \\
& \psi_{s-1,1}\left(Q_{s, j}\right)=Q_{s-1,0} Q_{s-1, j} \otimes v_{1}+Q_{s-1, j-1}^{2} \otimes v_{1}^{0}
\end{aligned}
$$

For each $s \in \mathbb{N}$, we have a pairing (of degree $-s$)

$$
d^{s}: \Delta_{s} \otimes \Delta_{s} \longrightarrow \mathbb{F}_{2}
$$

defined by setting

$$
d^{s}\left(v_{1}^{i_{1}} \ldots v_{s}^{i_{s}} \otimes v_{1}^{j_{1}} \ldots v_{s}^{j_{s}}\right)=\delta_{i_{1},-j_{1}-1} \cdots \delta_{i_{s},-j_{s}-1}
$$

where, conventionally, we set $d^{0}=i d_{\mathbb{F}_{2}}$. Therefore Δ_{s} embeds into Δ_{s}^{*}.

3 The representation

For each s, k, with $k \leq s$, we define

$$
\Phi_{k, s}: D_{k} \longrightarrow \Gamma_{s}
$$

by setting $\Phi_{k, s}\left(\xi_{\ell}\right)=Q_{s, 0}^{-1} Q_{s, \ell}$. We look at the case $s=2 k$. The following diagram commutes.

This is a consequence of a more general result. Namely
Theorem 1 The following diagram commutes, for each $s \geq k$ and for each N such that $N-s \geq k$.

Proof Just notice that

$$
\psi_{s, N-s}\left(Q_{N, 0}^{-1} Q_{N, \ell}\right)=\sum_{0 \leq j \leq \ell} Q_{s, 0}^{-2^{j}} Q_{s, \ell-j}^{2^{j}} \otimes Q_{N-s, 0}^{-1} Q_{N-s, j}
$$

The statement easily follows.
We now extend $\Phi_{k, s}$ to a map

$$
\Phi_{s}: A_{*} \longrightarrow \Gamma_{s}
$$

with

$$
\xi_{k} \longmapsto Q_{s, 0}^{-1} Q_{s, k}
$$

Φ_{s} is, in fact, the map ω_{s} introduced in [1]. In order to get the announced representation, we want to study a certain inverse limit. For each s, we define $\beta_{s}: \Delta_{s} \rightarrow \Delta_{s+1}$ as the (vector space) homomorphism which takes the monomial $v_{1}^{i_{1}} \ldots v_{s}^{i_{s}}$ to $v_{1}^{i_{1}} \ldots v_{s}^{i_{s}} v_{s+1}^{-1}$. We observe that $\Delta_{k}^{*} \cong \mathbb{F}_{2}\left[\left[u_{1}^{ \pm 1}, \ldots, u_{k}^{ \pm 1}\right]\right]$. Under this isomorphism, $\left(v_{1}^{i_{1}} \ldots v_{k}^{i_{k}}\right)^{*}$ corresponds to $u_{1}^{-i_{1}-1} \ldots u_{k}^{-i_{k}-1}$. Hence we have an obvious map

$$
\alpha_{s}: \Delta_{s+1}^{*} \longrightarrow \Delta_{s}^{*}\left[\left[u_{s+1}^{ \pm 1}\right]\right] .
$$

Proposition 1 The following diagram commutes

Here coeff $\left(u_{s+1}^{0}\right)\left(u_{1}^{i_{1}} \ldots u_{s}^{i_{s}} u_{s+1}^{i_{s+1}}\right)$ is $u_{1}^{i_{1}} \ldots u_{s}^{i_{s}}$ when $i_{s+1}=0$, and vanishes otherwise.

Proof This is straightforward. Just use the pairing on Δ_{1}.
Composing the inclusion $\Gamma_{k} \hookrightarrow \Delta_{k}$ and the embedding of Δ_{k} into Δ_{k}^{*}, we get a map

$$
\Gamma_{k} \hookrightarrow \Delta_{k} \longrightarrow \Delta_{k}^{*} .
$$

Proposition $2 \beta_{s}^{*}$ maps Γ_{s+1} into Γ_{s}.
Proof A typical element in Γ_{s+1} is a sum of products of elements

$$
Q_{s+1, j}=Q_{s, 0} Q_{s, j} v_{s+1}+Q_{s, j-1}^{2} v_{s+1}^{0} \in \Gamma_{s}\left[\left[v_{s+1}^{ \pm 1}\right]\right] .
$$

Hence $\beta_{s}^{*}\left(Q_{s+1, j}\right)=Q_{s, j-1}^{2}$.
For short, we will write R^{*} to indicate the restriction of β_{s}^{*} to Γ_{s+1}.

Proposition 3 For each s, the following diagram commutes

Proof For each k, we have

$$
\begin{aligned}
\Phi_{s+1}\left(\xi_{k}\right) & =Q_{s+1,0}^{-1} Q_{s+1, k} \\
& =\left(Q_{s, 0}^{2} v_{s+1}\right)^{-1}\left(Q_{s, 0} Q_{s, k} v_{s+1}+Q_{s, k-1}^{2} v_{s+1}^{0}\right) \\
& =Q_{s, 0}^{-1} Q_{s, k} v_{s+1}^{0}+Q_{s, 0}^{-2} Q_{s, k-1}^{2} v_{s+1}^{-1}
\end{aligned}
$$

So $R^{*} \Phi_{s+1}\left(\xi_{k}\right)=\Phi_{s}\left(\xi_{k}\right)=Q_{s, 0}^{-1} Q_{s, k}$. In particular, notice that R^{*} is multiplicative on $\operatorname{im} \Phi_{s+1}$.

We can now produce the announced representation of A_{*}.
Theorem 2 The homomorphisms Φ_{s} induce a map

$$
\Phi: A_{*} \longrightarrow \Delta^{*}
$$

Proof As a consequence of the above proposition, the sequence $\left\{\Phi_{s}\right\}$ induces a map from A_{*} to inv $\lim \left\{\Gamma_{s}, R^{*}\right\}$. Moreover

$$
\operatorname{inv} \lim \left\{\Gamma_{s}, R^{*}\right\} \subset \prod_{s} \Gamma_{s} \subset \prod_{s} \Delta_{s} \subset \prod_{s} \Delta_{s}^{*}=\left(\bigoplus_{s} \Delta_{s}\right)^{*}=\Delta^{*}
$$

Acknowledgments The present work has been performed as part of "Programma STAR", financially supported by UniNA and Compagnia di San Paolo.

References

1. Lomonaco, L.A.: The iterated total squaring operation. Proc. Am. Math. Soc. 115, 1149-1155 (1992)
2. Lomonaco, L.A.: On Singer's algebra and coalgebra structures. Bollett. UMI 9-B(8), 611-617 (2006)
3. Singer, W.M.: Invariant theory and the lambda algebra. Trans. Am. Math. Soc. 280, 673-693 (1983)
4. Singer, W.M.: On the algebra of operations for Hopf cohomology. Bull. Lond. Math. Soc. 37, 627-635 (2005)
5. Steenrod, N.E., Epstein, D.B.A.: Cohomology operations. Ann. Math. Stud., vol. 50. Princeton Univ. Press, Princeton (1962)

[^0]: Communicated by Salvatore Rionero.
 M. Brunetti • L. A. Lomonaco (\boxtimes)

 Department of Mathematics and Applications, University of Naples,
 Federico II, via Cintia, Naples 80126, Italy
 e-mail: lomonaco@unina.it
 M. Brunetti
 e-mail: mbrunett@unina.it

