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A representation of the dual of the Steenrod algebra
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Abstract In this paper we show how to embed A∗, the dual of the mod 2 Steenrod
algebra, into a certain inverse limit of algebras of invariants of the general linear group.
The prime 2 is fixed throughout the paper.
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1 Background on the Steenrod algebra

The Steenrod algebra A is obtained from the free algebra T on generators
1, Sq0, Sq1, Sq2, . . . (of dimension 0, 1, 2, . . . respectively) by imposing the Adem
relations

Sqa Sqb =
∑

j

(
b − 1 − j

a − 2 j

)
Sqa+b− j Sq j (a < 2b)
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and the extra relation

Sq0 = 1

which makes A non-homogeneous. There is a coproduct

ψ : A −→ A ⊗ A

defined, on generators, by setting

ψ(Sqk) =
∑

j

Sq j ⊗ Sqk− j .

Such a coproduct makes A into a Hopf algebra. Its dual A∗ is a polynomial algebra

A∗ = F2[ξ1, ξ2, . . . ]

on the indeterminates ξ1, ξ2, . . . , where each ξi is assigned degree 1 − 2i . The powers
ξ2i

1 are dual to the operations Sq2i
and each indeterminate ξk is dual to the monomial

Sq2k−1
Sq2k−2

Sq1, with respect to the basis of admissible monomials. The coproduct
μ∗ in A∗, dual to the product in A, is given, on the generators, by

μ∗(ξk) =
∑

i

ξ2k−i

i ⊗ ξk−i .

For more details, see, for instance, [5]. We will employ the following filtration
of A∗.

Definition 1 For each non-negative integer k, set

Dk = F2[ξ1, . . . , ξk].

For k = 0 we mean D0 = F2. Clearly, Dk is a Hopf sub-algebra of A∗, for each k.

2 Background on invariant theory

For each s ∈ N, we consider the polynomial ring Ps = F2[t1, . . . , ts] on the inde-
terminates t1, . . . , ts , which are assigned degree 1. Ps can be regarded as the mod 2
cohomology ring of the s-fold cartesian power of the real projective plane. The general
linear group GLs = GLs(F2) acts on Ps in a natural manner. We let �s = Ps[e−1

s ],
the localization of Ps obtained by formally inverting the Euler class es , i. e. the product
of all the elements of degree 1 in Ps . GLs acts on �s . Such action extends the action
of GLs on Ps , and commutes with the action of the mod 2 Steenrod algebra A. Let
Ts be the Borel sub-group of GLs consisting of all the non singular upper triangular
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matrices. The rings of invariants of�s under the GLs and Ts actions are well known.
We have

�Ts
s := �s = F2

[
v±1

1 , . . . , v±1
s

]

where each vi has degree 1, and

�GLs
s := �s = F2

[
Q±1

s,0, Qs,1, . . . , Qs,s−1

]

where Qs, j has degree 2s − 2 j , and in fact Qs,0 = en . For more details, and in
particular for the formulas which provide an expression of Qs, j and v j in terms of the
indeterminates t j , see [3]. We point out explicitly that, by convention, Qs, j = 0 when
s < j, s < 0 or j < 0 and Qs,s = 1 for each nonnegative s. As an example, we have
�1 = �1 = F2[t±1

1 ], as Q1,0 = v1 = t1. We set

� :=
⊕

s≥0

�s ; � :=
⊕

s≥0

�s

where, by convention �0 = �0 = F2. We remark that in the above direct sums we
disregard the internal multiplication. We define, instead, a graded multiplication

m : �⊗� −→ �

by setting

m
(
v

i1
1 . . . v

ih
h ⊗ v

j1
1 . . . v

jk
k

) = v
i1
1 . . . v

ih
h v

j1
h+1 . . . v

jk
h+k .

A comultiplication ν : � → �⊗� is also defined as follows. For each h, k, s such
that h + k = s, we define an isomorphism ψh,k : �s → �h ⊗�k by setting

ψh,k(v
j1
1 . . . v

js
s ) = v

j1
1 . . . v

jh
h ⊗ v

jh+1
1 . . . v

js
k

and

ν(v
j1
1 . . . v

js
s ) =

∑

h+k=s

ψh,k(v
j1
1 . . . v

js
s ).

Hence� has both an algebra and a coalgebra structure. It is not difficult to check that
ν restricts to a comultiplication � → � ⊗ �. In more details, we have

ψh,k(Qs, j ) =
∑

i≤ j

Q2k−2i

h,0 Q2i

h, j−i ⊗ Qk,i ∈ �h ⊗ �k .

So � is a subcoalgebra too. The graded objects {�s, s ≥ 0}, {�s, s ≥ 0} have been
considered in [2] as examples of coalgebras with products, as defined in [4].
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We are particularly interested in the case when h = s − 1 and k = 1. We have

ψs−1,1 : �s −→ �s−1,1 ⊗�1

ψs−1,1(Qs, j ) = Qs−1,0 Qs−1, j ⊗ v1 + Q2
s−1, j−1 ⊗ v0

1 .

For each s ∈ N, we have a pairing (of degree −s)

ds : �s ⊗�s −→ F2

defined by setting

ds(v
i1
1 . . . v

is
s ⊗ v

j1
1 . . . v

js
s ) = δi1,− j1−1 · · · · · δis ,− js−1,

where, conventionally, we set d0 = idF2 . Therefore �s embeds into �∗
s .

3 The representation

For each s, k, with k ≤ s, we define

�k,s : Dk −→ �s

by setting �k,s(ξ	) = Q−1
s,0 Qs,	. We look at the case s = 2k. The following diagram

commutes.

Dk

Φk,2k
Γ2k

Dk ⊗ Dk

μ∗

Φk,k ⊗ Φk,k
Γk ⊗ Γk

ψk,k

This is a consequence of a more general result. Namely

Theorem 1 The following diagram commutes, for each s ≥ k and for each N such
that N − s ≥ k.

Dk

Φk,N
ΓN

Dk ⊗ Dk

μ∗

Φk,s ⊗ Φk,N−s
Γs ⊗ ΓN−s

ψs,N−s

Proof Just notice that

ψs,N−s(Q
−1
N ,0 QN ,	) =

∑

0≤ j≤	
Q−2 j

s,0 Q2 j

s,	− j ⊗ Q−1
N−s,0 QN−s, j .
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The statement easily follows.

We now extend �k,s to a map

�s : A∗ −→ �s

with

ξk �−→ Q−1
s,0 Qs,k .

�s is, in fact, the mapωs introduced in [1]. In order to get the announced representation,
we want to study a certain inverse limit. For each s, we define βs : �s → �s+1 as the
(vector space) homomorphism which takes the monomial vi1

1 . . . v
is
s to vi1

1 . . . v
is
s v

−1
s+1.

We observe that �∗
k

∼= F2[[u±1
1 , . . . , u±1

k ]]. Under this isomorphism, (vi1
1 . . . v

ik
k )

∗

corresponds to u−i1−1
1 . . . u−ik−1

k . Hence we have an obvious map

αs : �∗
s+1 −→ �∗

s

[[
u±1

s+1

]]
.

Proposition 1 The following diagram commutes

β∗
s : Δ∗

s+1 Δ∗
s

Δ∗
s [[u

±1
s+1]]

αs

co
eff

(u
0
s+

1
)

Here coeff(u0
s+1)(u

i1
1 . . . u

is
s uis+1

s+1) is ui1
1 . . . u

is
s when is+1 = 0, and vanishes other-

wise.

Proof This is straightforward. Just use the pairing on �1.

Composing the inclusion �k ↪→ �k and the embedding of �k into �∗
k , we get a

map

�k ↪→ �k −→ �∗
k .

Proposition 2 β∗
s maps �s+1 into �s .

Proof A typical element in �s+1 is a sum of products of elements

Qs+1, j = Qs,0 Qs, jvs+1 + Q2
s, j−1v

0
s+1 ∈ �s

[[
v±1

s+1

]]
.

Hence β∗
s (Qs+1, j ) = Q2

s, j−1.

For short, we will write R∗ to indicate the restriction of β∗
s to �s+1.
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Proposition 3 For each s, the following diagram commutes

A∗
Φs

Γs

Γs+1

R∗Φ
s+

1

Proof For each k, we have

�s+1(ξk) = Q−1
s+1,0 Qs+1,k

= (Q2
s,0vs+1)

−1(Qs,0 Qs,kvs+1 + Q2
s,k−1v

0
s+1)

= Q−1
s,0 Qs,kv

0
s+1 + Q−2

s,0 Q2
s,k−1v

−1
s+1.

So R∗�s+1(ξk) = �s(ξk) = Q−1
s,0 Qs,k . In particular, notice that R∗ is multiplicative

on im�s+1.

We can now produce the announced representation of A∗.

Theorem 2 The homomorphisms �s induce a map

� : A∗ −→ �∗.

Proof As a consequence of the above proposition, the sequence {�s} induces a map
from A∗ to inv lim{�s, R∗}. Moreover

inv lim{�s, R∗} ⊂
∏

s

�s ⊂
∏

s

�s ⊂
∏

s

�∗
s = (⊕

s

�s
)∗ = �∗.

Acknowledgments The present work has been performed as part of “Programma STAR”, financially
supported by UniNA and Compagnia di San Paolo.

References

1. Lomonaco, L.A.: The iterated total squaring operation. Proc. Am. Math. Soc. 115, 1149–1155 (1992)
2. Lomonaco, L.A.: On Singer’s algebra and coalgebra structures. Bollett. UMI 9–B(8), 611–617 (2006)
3. Singer, W.M.: Invariant theory and the lambda algebra. Trans. Am. Math. Soc. 280, 673–693 (1983)
4. Singer, W.M.: On the algebra of operations for Hopf cohomology. Bull. Lond. Math. Soc. 37, 627–635

(2005)
5. Steenrod, N.E., Epstein, D.B.A.: Cohomology operations. Ann. Math. Stud., vol. 50. Princeton Univ.

Press, Princeton (1962)

123


	A representation of the dual of the Steenrod algebra
	Abstract
	1 Background on the Steenrod algebra
	2 Background on invariant theory
	3 The representation
	Acknowledgments
	References


