A representation of the dual of the Steenrod algebra

Maurizio Brunetti · Luciano A. Lomonaco

Received: 13 May 2014 / Revised: 16 June 2014 / Published online: 16 July 2014 © Università degli Studi di Napoli "Federico II" 2014

Abstract In this paper we show how to embed A_* , the dual of the mod 2 Steenrod algebra, into a certain inverse limit of algebras of invariants of the general linear group. The prime 2 is fixed throughout the paper.

Keywords Steenrod algebra · Invariant theory

Mathematics Subject Classification (2010) 55S10 · 55S99

1 Background on the Steenrod algebra

The Steenrod algebra A is obtained from the free algebra T on generators $1, Sq^0, Sq^1, Sq^2, \ldots$ (of dimension $0, 1, 2, \ldots$ respectively) by imposing the Adem relations

$$Sq^{a}Sq^{b} = \sum_{j} {\binom{b-1-j}{a-2j}} Sq^{a+b-j}Sq^{j} \quad (a < 2b)$$

Communicated by Salvatore Rionero.

M. Brunetti · L. A. Lomonaco (⊠) Department of Mathematics and Applications, University of Naples, Federico II, via Cintia, Naples 80126, Italy e-mail: lomonaco@unina.it

M. Brunetti e-mail: mbrunett@unina.it and the extra relation

 $Sq^{0} = 1$

which makes A non-homogeneous. There is a coproduct

$$\psi: A \longrightarrow A \otimes A$$

defined, on generators, by setting

$$\psi(Sq^k) = \sum_j Sq^j \otimes Sq^{k-j} \; .$$

Such a coproduct makes A into a Hopf algebra. Its dual A_* is a polynomial algebra

$$A_* = \mathbb{F}_2[\xi_1, \xi_2, \dots]$$

on the indeterminates ξ_1, ξ_2, \ldots , where each ξ_i is assigned degree $1 - 2^i$. The powers $\xi_1^{2^i}$ are dual to the operations Sq^{2^i} and each indeterminate ξ_k is dual to the monomial $Sq^{2^{k-1}}Sq^{2^{k-2}}Sq^1$, with respect to the basis of admissible monomials. The coproduct μ_* in A_* , dual to the product in A, is given, on the generators, by

$$\mu_*(\xi_k) = \sum_i \xi_i^{2^{k-i}} \otimes \xi_{k-i}.$$

For more details, see, for instance, [5]. We will employ the following filtration of A_* .

Definition 1 For each non-negative integer k, set

$$D_k = \mathbb{F}_2[\xi_1, \ldots, \xi_k].$$

For k = 0 we mean $D_0 = \mathbb{F}_2$. Clearly, D_k is a Hopf sub-algebra of A_* , for each k.

2 Background on invariant theory

For each $s \in \mathbb{N}$, we consider the polynomial ring $P_s = \mathbb{F}_2[t_1, \ldots, t_s]$ on the indeterminates t_1, \ldots, t_s , which are assigned degree 1. P_s can be regarded as the mod 2 cohomology ring of the *s*-fold cartesian power of the real projective plane. The general linear group $GL_s = GL_s(\mathbb{F}_2)$ acts on P_s in a natural manner. We let $\Phi_s = P_s[e_s^{-1}]$, the localization of P_s obtained by formally inverting the Euler class e_s , i. e. the product of all the elements of degree 1 in P_s . GL_s acts on Φ_s . Such action extends the action of GL_s on P_s , and commutes with the action of the mod 2 Steenrod algebra A. Let T_s be the Borel sub-group of GL_s consisting of all the non singular upper triangular

matrices. The rings of invariants of Φ_s under the GL_s and T_s actions are well known. We have

$$\Phi_s^{T_s} := \Delta_s = \mathbb{F}_2\left[v_1^{\pm 1}, \dots, v_s^{\pm 1}\right]$$

where each v_i has degree 1, and

$$\Phi_s^{GL_s} := \Gamma_s = \mathbb{F}_2\left[\mathcal{Q}_{s,0}^{\pm 1}, \mathcal{Q}_{s,1}, \dots, \mathcal{Q}_{s,s-1}\right]$$

where $Q_{s,j}$ has degree $2^s - 2^j$, and in fact $Q_{s,0} = e_n$. For more details, and in particular for the formulas which provide an expression of $Q_{s,j}$ and v_j in terms of the indeterminates t_j , see [3]. We point out explicitly that, by convention, $Q_{s,j} = 0$ when s < j, s < 0 or j < 0 and $Q_{s,s} = 1$ for each nonnegative *s*. As an example, we have $\Delta_1 = \Gamma_1 = \mathbb{F}_2[t_1^{\pm 1}]$, as $Q_{1,0} = v_1 = t_1$. We set

$$\Delta := \bigoplus_{s \ge 0} \Delta_s \; ; \; \Gamma := \bigoplus_{s \ge 0} \Gamma_s$$

where, by convention $\Delta_0 = \Gamma_0 = \mathbb{F}_2$. We remark that in the above direct sums we disregard the internal multiplication. We define, instead, a graded multiplication

$$m: \Delta \otimes \Delta \longrightarrow \Delta$$

by setting

$$m(v_1^{i_1} \dots v_h^{i_h} \otimes v_1^{j_1} \dots v_k^{j_k}) = v_1^{i_1} \dots v_h^{i_h} v_{h+1}^{j_1} \dots v_{h+k}^{j_k}.$$

A comultiplication $\nu : \Delta \to \Delta \otimes \Delta$ is also defined as follows. For each *h*, *k*, *s* such that h + k = s, we define an isomorphism $\psi_{h,k} : \Delta_s \to \Delta_h \otimes \Delta_k$ by setting

$$\psi_{h,k}(v_1^{j_1}\dots v_s^{j_s}) = v_1^{j_1}\dots v_h^{j_h} \otimes v_1^{j_{h+1}}\dots v_k^{j_s}$$

and

$$\psi(v_1^{j_1}\dots v_s^{j_s}) = \sum_{h+k=s} \psi_{h,k}(v_1^{j_1}\dots v_s^{j_s}).$$

Hence Δ has both an algebra and a coalgebra structure. It is not difficult to check that ν restricts to a comultiplication $\Gamma \rightarrow \Gamma \otimes \Gamma$. In more details, we have

$$\psi_{h,k}(Q_{s,j}) = \sum_{i \le j} Q_{h,0}^{2^k - 2^i} Q_{h,j-i}^{2^i} \otimes Q_{k,i} \in \Gamma_h \otimes \Gamma_k.$$

So Γ is a subcoalgebra too. The graded objects $\{\Delta_s, s \ge 0\}, \{\Gamma_s, s \ge 0\}$ have been considered in [2] as examples of coalgebras with products, as defined in [4].

We are particularly interested in the case when h = s - 1 and k = 1. We have

$$\psi_{s-1,1}: \Gamma_s \longrightarrow \Gamma_{s-1,1} \otimes \Delta_1 \psi_{s-1,1}(Q_{s,j}) = Q_{s-1,0}Q_{s-1,j} \otimes v_1 + Q_{s-1,j-1}^2 \otimes v_1^0.$$

For each $s \in \mathbb{N}$, we have a pairing (of degree -s)

$$d^s:\Delta_s\otimes\Delta_s\longrightarrow\mathbb{F}_2$$

defined by setting

$$d^{s}(v_{1}^{i_{1}}\ldots v_{s}^{i_{s}}\otimes v_{1}^{j_{1}}\ldots v_{s}^{j_{s}})=\delta_{i_{1},-j_{1}-1}\cdots \delta_{i_{s},-j_{s}-1},$$

where, conventionally, we set $d^0 = i d_{\mathbb{F}_2}$. Therefore Δ_s embeds into Δ_s^* .

3 The representation

For each *s*, *k*, with $k \leq s$, we define

$$\Phi_{k,s}: D_k \longrightarrow \Gamma_s$$

by setting $\Phi_{k,s}(\xi_{\ell}) = Q_{s,0}^{-1}Q_{s,\ell}$. We look at the case s = 2k. The following diagram commutes.

$$D_{k} \xrightarrow{\Phi_{k,2k}} \Gamma_{2k}$$

$$\downarrow \mu_{*} \qquad \qquad \downarrow \psi_{k,k}$$

$$D_{k} \otimes D_{k} \xrightarrow{\Phi_{k,k} \otimes \Phi_{k,k}} \Gamma_{k} \otimes \Gamma_{k}$$

This is a consequence of a more general result. Namely

Theorem 1 *The following diagram commutes, for each* $s \ge k$ *and for each* N *such that* $N - s \ge k$.

$$\begin{array}{c} D_k & \xrightarrow{\Phi_{k,N}} & \Gamma_N \\ & \downarrow \\ \mu_* & & \downarrow \\ D_k \otimes D_k & \xrightarrow{\Phi_{k,s} \otimes \Phi_{k,N-s}} & \Gamma_s \otimes \Gamma_{N-s} \end{array}$$

Proof Just notice that

$$\psi_{s,N-s}(Q_{N,0}^{-1}Q_{N,\ell}) = \sum_{0 \le j \le \ell} Q_{s,0}^{-2^j} Q_{s,\ell-j}^{2^j} \otimes Q_{N-s,0}^{-1} Q_{N-s,j} .$$

Deringer

The statement easily follows.

We now extend $\Phi_{k,s}$ to a map

$$\Phi_s: A_* \longrightarrow \Gamma_s$$

with

$$\xi_k \longmapsto Q_{s,0}^{-1} Q_{s,k}.$$

 Φ_s is, in fact, the map ω_s introduced in [1]. In order to get the announced representation, we want to study a certain inverse limit. For each *s*, we define $\beta_s : \Delta_s \to \Delta_{s+1}$ as the (vector space) homomorphism which takes the monomial $v_1^{i_1} \dots v_s^{i_s}$ to $v_1^{i_1} \dots v_s^{i_s} v_{s+1}^{-1}$. We observe that $\Delta_k^* \cong \mathbb{F}_2[[u_1^{\pm 1}, \dots, u_k^{\pm 1}]]$. Under this isomorphism, $(v_1^{i_1} \dots v_k^{i_k})^*$ corresponds to $u_1^{-i_1-1} \dots u_k^{-i_k-1}$. Hence we have an obvious map

$$\alpha_s:\Delta_{s+1}^*\longrightarrow \Delta_s^*\left[\left[u_{s+1}^{\pm 1}\right]\right].$$

Proposition 1 The following diagram commutes

Here $coeff(u_{s+1}^0)(u_1^{i_1} \dots u_s^{i_s} u_{s+1}^{i_{s+1}})$ is $u_1^{i_1} \dots u_s^{i_s}$ when $i_{s+1} = 0$, and vanishes otherwise.

Proof This is straightforward. Just use the pairing on Δ_1 .

Composing the inclusion $\Gamma_k \hookrightarrow \Delta_k$ and the embedding of Δ_k into Δ_k^* , we get a map

$$\Gamma_k \hookrightarrow \Delta_k \longrightarrow \Delta_k^*$$
.

Proposition 2 β_s^* maps Γ_{s+1} into Γ_s .

Proof A typical element in Γ_{s+1} is a sum of products of elements

$$Q_{s+1,j} = Q_{s,0}Q_{s,j}v_{s+1} + Q_{s,j-1}^2v_{s+1}^0 \in \Gamma_s\left[\left[v_{s+1}^{\pm 1}\right]\right].$$

Hence $\beta_{s}^{*}(Q_{s+1,j}) = Q_{s,j-1}^{2}$.

For short, we will write R^* to indicate the restriction of β_s^* to Γ_{s+1} .

S23

Proposition 3 For each s, the following diagram commutes

Proof For each k, we have

$$\Phi_{s+1}(\xi_k) = Q_{s+1,0}^{-1} Q_{s+1,k}$$

= $(Q_{s,0}^2 v_{s+1})^{-1} (Q_{s,0} Q_{s,k} v_{s+1} + Q_{s,k-1}^2 v_{s+1}^0)$
= $Q_{s,0}^{-1} Q_{s,k} v_{s+1}^0 + Q_{s,0}^{-2} Q_{s,k-1}^2 v_{s+1}^{-1}.$

So $R^* \Phi_{s+1}(\xi_k) = \Phi_s(\xi_k) = Q_{s,0}^{-1} Q_{s,k}$. In particular, notice that R^* is multiplicative on im Φ_{s+1} .

We can now produce the announced representation of A_* .

Theorem 2 The homomorphisms Φ_s induce a map

$$\Phi: A_* \longrightarrow \Delta^*.$$

Proof As a consequence of the above proposition, the sequence $\{\Phi_s\}$ induces a map from A_* to inv lim $\{\Gamma_s, R^*\}$. Moreover

$$\operatorname{inv} \operatorname{lim} \{ \Gamma_s, R^* \} \subset \prod_s \Gamma_s \subset \prod_s \Delta_s \subset \prod_s \Delta_s^* = \big(\bigoplus_s \Delta_s \big)^* = \Delta^*.$$

Acknowledgments The present work has been performed as part of "Programma STAR", financially supported by UniNA and Compagnia di San Paolo.

References

- 1. Lomonaco, L.A.: The iterated total squaring operation. Proc. Am. Math. Soc. 115, 1149-1155 (1992)
- 2. Lomonaco, L.A.: On Singer's algebra and coalgebra structures. Bollett. UMI 9-B(8), 611-617 (2006)
- 3. Singer, W.M.: Invariant theory and the lambda algebra. Trans. Am. Math. Soc. 280, 673–693 (1983)
- Singer, W.M.: On the algebra of operations for Hopf cohomology. Bull. Lond. Math. Soc. 37, 627–635 (2005)
- Steenrod, N.E., Epstein, D.B.A.: Cohomology operations. Ann. Math. Stud., vol. 50. Princeton Univ. Press, Princeton (1962)