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Abstract

A growing body of evidence suggests that hydrogen sulfide (H2S) is a signaling molecule in mammalian cells. In the
cardiovascular system, H2S enhances vasodilation and angiogenesis. H2S-induced vasodilation is hypothesized to occur
through ATP-sensitive potassium channels (KATP); however, we recently demonstrated that it also increases cGMP levels in
tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H2S-induced vasorelaxation. The effect
of H2S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were
determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil
attenuated NaHS-induced relaxation, confirming previous findings that H2S is a phosphodiesterase inhibitor. In addition,
vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice.
Treatment of aortic rings with NaHS, a fast releasing H2S donor, enhanced phosphorylation of vasodilator-stimulated
phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after
exposure to H2S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation.
Interestingly, vasodilatory responses to a slowly releasing H2S donor (GYY 4137) were unaffected by DT-2, suggesting that
this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate
for H2S production) were reduced in vessels of PKG-I knockout mice (PKG-I2/2). Moreover, glibenclamide inhibited NaHS-
induced vasorelaxation in vessels from wild-type animals, but not PKG-I2/2, suggesting that there is a cross-talk between
KATP and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic
deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation.
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Introduction

Hydrogen sulfide is a small gaseous compound that together

with nitric oxide and carbon monoxide comprises the gasotrans-

mitter family [1,2]. Initially viewed as environmental pollutants

and biohazardous compounds gasotransmitters are now widely

accepted for their important roles in physiology and disease

[3,4,5,6]. Hydrogen sulfide is the newest and least studied

gasotransmitter. However, recently there has been a surge of

interest in hydrogen sulfide biology leading to important

observations regarding its role in mammalian cells. H2S has been

proposed to modulate inflammatory responses, participate in

neurotransmission and affect smooth muscle and heart function

[7,8]. In the body, hydrogen sulfide is produced by both enzymatic

and non-enzymatic sources. The enzymes implicated in H2S

generation include cystathionine beta synthase (CBS), cystathio-

nine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransfer-

ase (3MST) [5,9]. It is believed that CSE is the primary source of

H2S in the vasculature, while CBS exists in higher levels in the

nervous system [8]. While 3MST has been shown to be present in

endothelial cells [10], this enzyme is relatively less studied and its

role in cardiovascular biology is unclear.

Hydrogen sulfide has been shown to exhibit a variety of

biological effects in the cardiovascular system. It exerts anti-

apoptotic and cardioprotective effects in cardiomyocytes, stimu-

lates the angiogenic properties of endothelial cells and alters vessel

tone [6,11,12,13]. Although constrictor effects have been observed

in response to H2S, H2S is mostly viewed as a vasorelaxing agent

[11,14,15]. The antihypertensive role of endogenously produced

H2S is corroborated by observations that pharmacological
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inhibition of H2S production [16,17,18], as well as targeted

disruption of the CSE locus leads to an increase in blood pressure

in animals [19]. Moreover, administration of H2S reduces mean

arterial blood pressure and causes vasorelaxation of conduit and

resistance vessels [11,19,20,21]. Several mechanisms have been

proposed to contribute to the effects of H2S on vessel tone.

Initially, H2S was shown to enhance vasorelaxation by promoting

KATP channel opening [21]. However, additional pathways

contribute to vasorelaxation in response to H2S, as KATP channel

blockers fail to inhibit or do not completely abolish H2S-induced

relaxations in some tissues [15,22]. These additional vasodilatory

pathways might include other ion channels, as well as cGMP-

nucleotide regulated pathways [15,22]. With respect to the latter,

we have recently observed that H2S increases cGMP levels in

smooth muscle cells [23]. Unlike nitric oxide (NO) that enhances

cGMP synthesis by activating soluble guanylyl cyclase, elevations

in cGMP in response to H2S result from phosphodiesterase (PDE)

inhibition. The aim of the present study was to further analyze the

role of cGMP in H2S-stimulated vasorelaxation and to determine

the contribution of cGMP-dependent protein kinase in H2S

responses.

Results

PDE regulates H2S-induced relaxation
We have previously demonstrated that exposure of smooth

muscle cells to NaHS increases cGMP by inhibiting PDE [23]. To

test whether our biochemical observations are functionally

relevant, we pre-incubated rat aortic rings with a low concentra-

tion of the PDE5 inhibitor sildenafil (1 nM) and then contracted

them with phenylephrine. Such pre-treatment did not have a

significant effect on the ability of phenylephrine to cause tissue

contraction, but differentially affected NO-induced vs H2S-

induced vasorelaxation. Incubation of rings with sildenafil led to

a potentiation of NO-induced relaxation as evidenced by the

leftward shift of the SNAP dose-response curve (661027 M vs.

1.461027 M vehicle vs sildenafil, p,0.001; Fig. 1A). In contrast to

the findings with the NO donor, pre-treatment with sildenafil

attenuated the relaxing effect of NaHS in rat aorta (Fig. 1B). The

observed rightward shift of the NaHS dose-response in the

presence of sildenafil (2.861024 M vs. 8.561025 M vehicle vs

sildenafil p,0.001) is consistent with the notion that NaHS-

stimulated vasodilation is at least in part mediated by PDE5

inhibition.

To provide proof that endogenously produced H2S acts as a

PDE inhibitor, we measured cGMP levels in the plasma and

vascular tissues of CSE2/2 mice. In these experiments we

observed cGMP levels in the plasma (9.8160.75 pmole/ml), aorta

(9.5560.80 pmole/mg protein), and mesenteric artery

(0.4260.04 pmole/mg protein) from CSE2/2 mice were signif-

icantly lower than those in the plasma (20.7461.97 pmole/ml),

aorta (23.4061.44 pmole/mg protein) and mesenteric artery

(1.5760.05 pmole/mg protein) from CSE+/+ mice (Fig. 2). In

addition, stimulation of vascular tissues with sodium nitroprusside

increased cGMP levels in a statistically significant manner only in

the vessels of wild-type, but not in the vessels of CSE2/2 animals.

The above observations taken together are consistent with the idea

that H2S is an inhibitor of PDE activity in vascular tissues.

H2S activates PKG in vascular tissues
To elucidate the downstream signalling pathways activated in

response to increased intracellular cGMP, we evaluated the ability

of NaHS to stimulate cGMP-dependent protein kinase. To this

end, we determined VASP phosphorylation on Ser239, as an

index of PKG activation [24]. Indeed, exposure of aortic tissue to

NaHS enhanced vasodilator stimulated phosphoprotein (VASP)

phosphorylation in a time-dependent manner (Fig. 3A). Moreover,

incubation of rings with DT-2, a PKG-I inhibitor, attenuated

NaHS-induced vasorelaxation while TAT (control peptide) had no

effect (Fig. 3B); these findings provide evidence that PKG-I

participates in H2S-stimulated dilatation. To study the role of

PKG-I in the hypotensive effect of H2S in vivo, mice we pre-treated

with DT-2 prior to being treated with the NaHS (Fig. 3C). DT-2

administration led to an increase in systolic blood pressure (SBP).

Subcutaneous injection of NaHS resulted in a fall in SBP that

reached a trough, 5 min after the injection, with a complete

recovery within 15 minutes. In contrast, NaHS did not alter SBP

in mice treated with the PKG-I inhibitor.

In a different set of experiments we utilized GYY4137, a slow

releasing H2S donor. It should be noted that incubation of aortic

smooth muscle cells with GYY4137, unlike NaHS, resulted in only

minor increases in cGMP content (Fig. 4A&B). In agreement to

what has been published, relaxation in response to GYY4137 took

longer to manifest compared to the fast relaxations brought about

by NaHS [20]. Moreover, GYY-4137-stimulated relaxations were

PKG-independent, as DT-2 failed to block the effects of this H2S

donor (Fig. 4C).

Figure 1. The PDE5 inhibitor sildenafil differentially affects NO and H2S-regulated vascular tone. (A) Incubation of isolated aortic rings
with sildenafil (1 nM) significantly inhibited NaHS-induced vasodilatation. (B) Incubation of isolated aortic rings with sildenafil (1 nM) significantly
enhanced SNAP-induced vasodilatation. *** p,0.001 vs vehicle (dH2O), n = 6 for each group.
doi:10.1371/journal.pone.0053319.g001

H2S Dilates Vessels through PKG
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Genetic evidence for the role of PKG-I in H2S-induced
vasorelaxation

Although DT-2 is the most selective PKG-I inhibitor available,

questions regarding its specificity have surfaced [25]. To confirm

that H2S uses PKG-I-regulated pathways to reduce vascular tone,

we utilized blood vessels from PKG-I2/2 mice. In these

experiments we found that relaxations to NaHS were significantly

hampered in PKG-I2/2 vessels (Fig. 5A); however a significant

residual response was observed, suggesting that complementary

vasodilator pathways do exist. Importantly, glibanclamide, a KATP

channel inhibitor, blocked NaHS-induced dilation in vessels from

wild-type, but not PKG-I 2/2 mice, suggesting that PKG-I and

KATP work on the same effector pathway to trigger vasodilation.

To study whether PKG-I is important for the dilatation in

response to endogenously produced H2S, rings were exposed to L-

cysteine, the substrate for H2S generation, and reduction in vessel

tone was measured. L-cysteine promoted vasorelaxation in the

vessels of wild-type mice; this response was greatly reduced in

PKG-I2/2 vessels (Fig. 5B). The diminished relaxation to L-

cysteine observed in the PKG-I2/2 mice was not due to lower

levels of the H2S producing enzyme CSE in PKG-I 2/2 aortic

tissue (Fig. 5D). It should be noted that relaxations in response to

L-cysteine were of smaller magnitude in the 129/Sv mice (wt mice)

compared to those observed in CD1 used in the first series of our

experiments (max relaxation 3064.89 vs. 2362.14 in CD1 and

129/Sv respectively). This difference can be attributed to the lower

levels of CSE expression in the aortas of 129/Sv mice (Fig. 5C).

H2S stimulates relaxations in both endothelium intact
and denuded aortic rings

To test the relative contribution of each cell type (endothelium

vs smooth muscle) to the relaxing effect of H2S, endothelium intact

or endothelium denuded mouse (CD 1) vessels were exposed to

either a H2S donor or a H2S substrate (L-cysteine). While the

vasodilatory response to NaHS was identical irrespective of

whether endothelium was present or not (Fig. 6B), responses to

L-cysteine were reduced in endothelium-denuded vessels (Fig. 6A).

Staining of aortic tissue with an antibody against CSE revealed

that although small amounts of the enzyme are present in the

endothelium, the majority of CSE is expressed in the smooth

muscle layer (Fig. 6C).

Discussion and Conclusions

Relaxation to H2S is reported to occur through KATP channel

activation [21], leading to the hypothesis that H2S is an

endothelium-derived hyperpolarizing factor [11,26]. The effect

of H2S on these channels has been proposed to result from

sulfhydration of Cys 43 of the pore-forming Kir6.1 subunit and/or

interactions with Cys6 and Cys26 of the regulatory subunit SUR1

[26,27]. Despite the large number of publications proving KATP

channel involvement in the dilatory responses to H2S, H2S-

induced vascular relaxation is only partially inhibited by gliben-

clamide [6,15,21,28]. There are also instances where KATP

channel inhibition does not attenuate H2S-induced vasorelaxation

[29,30]. Based on the ability of H2S to increase cGMP levels in

vascular tissues, herein we investigated the role of this cyclic

nucleotide in H2S-induced vasorelaxation and the interaction

between cGMP-regulated pathways and KATP channels in

mediating the effects of H2S.

As we have previously shown that H2S inhibits PDE activity

[23], initially, we sought to determine whether H2S-triggered

relaxation is mediated by inhibition of PDE. Inhibition of PDE5

by sildenafil blocks cGMP breakdown and leads to a reduction in

vascular tone [31]. PDE5 blockade has been shown to potentiate

the vasodilatory action of NO donors in the aorta [31]. In our

experimental setup we confirmed that pre-treatment of mouse

aortic rings with sildenafil potentiated the dilatory response to

SNAP. In contrast, pre-incubation with sildenafil lead to a

rightward shift and reduced the maximal response to NaHS,

suggesting that H2S, at least in part, relaxes vascular tissue by

inhibiting PDE5. To obtain additional evidence that H2S regulates

cGMP levels we used tissues from CSE2/2 mice. Under basal

conditions cGMP levels in the aorta and mesenteric artery were

lower in CSE2/2 compared to wild-type controls. In addition,

Figure 2. CSE deficiency reduces cGMP levels. cGMP levels in
the aorta (A), mesenteric artery (B) and plasma (C) of CSE2/2
mice were significantly lower than those from CSE+/+ mice.
Sodium nitroprusside (SNP, 10 mM) significantly increased cGMP levels
in aorta (B) and mesenteric artery (C) from CSE+/+ mice but not CSE2/
2 mice; * p,0.05 vs CSE+/+ mice, #p,0.05 basal, n = 5 for each group.
doi:10.1371/journal.pone.0053319.g002

H2S Dilates Vessels through PKG
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although a significant increase in cGMP levels was observed after

exposure to a NO donor in vessels from wt animals, no such

increase was seen in CSE2/2 Taken together this data suggest

that H2S relaxes blood vessels by modulating cGMP levels.

We next sought to determine the signalling pathways down-

stream of cGMP that become activated after H2S exposure and

lead to vasodilation. cGMP is known to activate cGMP-dependent

protein kinases and to modulate the activity of cGMP-gated ion

channels and phosphodiesterases [32]. To evaluate the ability of

NaHS to activate PKG we used VASP phosphorylation on

Ser239, a site that is preferentially phosphorylated by PKG.

Phosphorylation of this VASP residue in vascular extracts is widely

used as an index of NO/cGMP pathway activity [24]. Exposure of

aortic rings to NaHS resulted in a time-dependent phosphoryla-

Figure 3. H2S activates PKG and triggers vasodilatation. (A) Mouse aorta was incubated with NaHS (50 mM) for the indicated time and VASP
phosphorylation on Ser239 was determined. Left: representative blot; right: quantitation of scanned autoradiograms, *p,0.05 vs vehicle, n = 3. (B)
Incubation of aortic rings with the selective inhibitor of PKG, DT-2 (1, 3 mM) significantly inhibited NaHS-induced vasodilatation. TAT peptide (3 mM)
was used as a control; *** p,0.001 vs. vehicle (dH2O), n = 6 for each group. (C) Mice were injected with vehicle or DT-2 (100 nmoles, ip); after 15 min
NaHS (1 mmol/kg) was administered subcutaneously. Systolic blood pressure (SBP) was monitored in conscious mice; *** p,0.001 vs vehicle, n = 4 for
each group.
doi:10.1371/journal.pone.0053319.g003

H2S Dilates Vessels through PKG
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tion of VASP, suggesting that NaHS activates PKG. Our

observations are in line with those of Hu et al. who reported

that ischemic myocytes to NaHS exhibited increased PKG activity

[33].

To investigate the contribution of PKG to NaHS-induced

vasodilation, vessel rings were pre-treated with DT-2 [34] prior to

exposure to NaHS. Such pre-treatment attenuated the vasorelax-

ation brought about by NaHS, indicating that NaHS-induced

relaxation is PKG-I-dependent.. One of the mechanisms through

which PKG elicits vasorelaxation is activation of myosin

phosphatase (PP1M) MLCP, than in turn inhibits MLC

phosphorylation [32]. In agreement with our findings, relaxation

in response to H2S in the mouse gastric fundus is partially blocked

by a MLCP inhibitor [35]. So far, studies designed to evaluate the

role of cGMP in H2S-induced relaxation have reported mostly

negative results. In many cases authors were unable to inhibit

NaHS-stimulated relaxation by inhibiting soluble guanylyl cyclase

activity (sGC) [21,29,36,37]. cGMP levels might still rise in

response to H2S donors in ODQ-treated tissues, as PDE rather

than sGC is the target for H2S; cGMP in vascular tissues

incubated with ODQ can be synthesized by the basal sGC activity

(ODQ does not inhibit basal sGC activity [38]), as well as through

natriuretic peptide receptors.

In our next series of experiments we utilized GYY4137, a slow

releasing H2S donor and determined the contribution of cGMP/

PKG pathway to vasorelaxation. In line with previous findings,

GYY4137 relaxed pre-contracted aortic rings [20], but elicited a

smaller dilatory response with slower kinetics; maximal relaxation

to GYY4137 was 46% and took 90–120 min to occur, while

NaHS relaxed aortic rings .80% within 30 min. Another striking

difference between the two donors was their differential sensitivity

to PKG inhibition. Unlike what was observed with NaHS,

GYY4137-induced relaxation was not inhibited by DT-2. Also,

exposure of smooth muscle cells to GYY4137 at concentrations

below 0.3 mM failed to enhance cGMP levels in smooth muscle

cells. The difference in the rate of H2S release and thus the

concentrations of H2S achieved after administration of a given

dose of each H2S donor could explain the difference in their ability

to inhibit PDE and enhance cGMP levels in cells. Although it is

frequently claimed and intuitively makes sense that slow H2S

release from donors is more physiologically relevant, endogenous

H2S production has never been compared to the rate of H2S

release from this slow H2S donor, neither has the half-life of

GYY4137 been determined in any biological system, in vitro or in

vivo. The time required for GYY4137 to elicit vasorelaxation,

compared to the fast responses triggered by L-cysteine, indicates

that it might require bioactivation or that GYY4137 releases H2S

at a much slower rate than that produced endogenously. In line

with the minimal amounts of H2S liberated from this donor, when

high GYY4137 concentrations are used, PDE inhibition becomes

apparent. Thus, one might hypothesize that lower GYY4137

concentrations that trigger sub-maximal vasodilation occur

through cGMP-independent pathways (this would represent the

50% residual dilation seen in PKG-I2/2 animals after NaHS),

while at higher H2S concentrations cGMP pathways become

important. In addition to the herein presented finding that the fast

H2S donor NaHS increases cGMP levels in smooth muscle cells,

we have demonstrated that slow releasing H2S donors (thioglycine,

thiovaline) are also capable of increasing cGMP in this cell type

[39]. Taken together our findings suggest that researchers utilizing

different H2S donors with varying half-lives and modes of H2S

release, should not assume the participation of cGMP/PKG

pathways in the observed responses, but should rather determine

cGMP levels and PKG activation after application of the donor in

their system.

DT-2 is a peptide inhibitor that was originally described as

being highly selective for the PKG isoform expressed in vessels,

PKG-I [34]. It is 1000-foldmore selective for PKG vs. PKA and

exhibits a 100-fold selectivity for PKG-I vs. PKG-II. However,

questions regarding the behaviour and specificity of this inhibitor

in intact cells have emerged [25]. Gambaryan et al., reported that

DT-2 modulated the activity of ERK, p38, PKB and PKC. To

prove the involvement of PKG-I in H2S-induced vasodilation we

used a genetic model. Mice with targeted disruption of the PKG-I

locus exhibited a reduced maximal relaxing response to NaHS. To

Figure 4. GYY4137-induced relaxation is independent of PKG.
Aortic smooth muscle cells were exposed to the indicated concentra-
tion of NaHS (A) or GYY4137 (B) and cGMP levels were determined after
5 min. *p,0.05 control, n = 4 for each group. (C) Incubation of isolated
aortic rings with PKG selective inhibitor DT-2 (3 mM) did not affect
GYY4137-induced vasodilatation; n = 6 for each group.
doi:10.1371/journal.pone.0053319.g004

H2S Dilates Vessels through PKG
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test if endogenously produced H2S also reduces vessel tone

through PKG-I activation, vessels were exposed to L-cysteine and

vascular tone determined. Similarly to what was observed with

NaHS, relaxations to L-cysteine were reduced in the PKG-I2/2

animals, providing genetic evidence that relaxation in response to

both exogenously applied H2S (NaHS) and endogenously

produced H2S are mediated in part through PKG-I. Moreover,

inhibition of KATP channels with glibenclamide led to an

inhibition of NaHS-induced vasorelaxation in rings from wild-

type mice, that was of similar magnitude to that observed in PKG-

I2/2 animals. It should be emphasized that glibenclamide did

not exhibit an additional inhibitory effect on NaHS dilations in

PKG-I2/2 mice, suggesting that KATP and PKG-I work in

tandem to promote vasorelaxation. Evidence that PKG activates

KATP channels in the cardiovascular system has been previously

reported [40,41,42,43]. It should however be noted that a

substantial relaxation (approximately 50%) was still observed in

the vessels of PKG2/2 mice, providing proof that additional

pathways become activated by NaHS and allow H2S to reduce

vessel tone. The KATP-insensitive dilatory response to NaHS

might occur through voltage-dependent K+ channels [15], and

intracellular acidification through activation of Cl-/HCO3
2 [33].

The relative contribution of cGMP/PKG pathways vs alternative

pathways in H2S vasorelaxation are expected to vary with the

vascular bed and species studied. In addition to the relaxing effect

of NaHS on pre-contracted rings, we also observed that NaHS

administration in vivo reduced systolic blood pressure in a DT-2

sensitive manner. However, since the requirement for PKG-I in

the drop in blood pressure elicited by NaHS was only shown using

a pharmacological inhibitor for which concerns have been raised

[25], ultimate proof that PKG-I mediates the reduction in mean

arterial blood pressure triggered by H2S will have to await

conformation by a genetic model.

In the course of our experiments we noticed that L-cysteine

exerted a somewhat smaller effect in the aortic rings of the control

mice (wt) compared to the dilation we routinely get in response to

this H2S synthesis substrate. As the PKG-I2/2 mice have been

generated on a 129/Sv genetic background, we compared L-

cysteine-induced relaxation in CD-1 and 129/Sv mice. Indeed, we

observed that L-cysteine-induced relaxations were attenuated in

Figure 5. PKG contributes to the relaxing effect of exogenous and endogenous H2S. (A) Mouse aortas from wild-type or PKG-I2/2 animals
were pre-treated with vehicle or glibenclamide (10 mM, 30 min) and then incubated with the indicated concentration of NaHS (n = 6 rings harvested
from 3–4 animals); dashed lines are used for wild-type animals, while solid lines are used for knockouts. (B) L-cysteine-induced vasodilatation of aortic
rings pre-contracted with phenylephrine from wild-type and PKG-I2/2 mice. Note that cumulative concentration-response curves to L-cysteine were
significantly different among the different strains of mice used CD1 vs 129/Sv (WT); uuu p,0.001 vs. CD1, *** p,0.001 vs WT, n = 8 rings harvested
from 3–4 animals for each group (C) Representative blot and quantitation depicting aortic CSE expression in 129/Sv vs CD-1; n = 3 for each group,
*p,0.05. (D) Representative blot showing expression of CSE in aortic homogenates in wild-type and PKG-I2/2 mice. Experiments were performed
twice with similar results.
doi:10.1371/journal.pone.0053319.g005
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129/Sv mice compared to CD-1 and this reduced response

correlated with a lower expression of CSE in the vessels of 129/Sv

animals. It should also be noted that relaxation of aortic rings from

C57BL/6J mice are even smaller (approximately 15%, data not

shown). These observations taken together confirm that strain

differences in H2S responses do exist, adding another level of

complexity when comparing data from different studies.

Zhao et al [21] have previously shown that CSE, but not CBS,

is expressed in the endothelium-free rat pulmonary artery,

mesenteric artery, tail artery and aorta; they also proposed that

CSE localizes to the smooth muscle cell layer of blood vessels. It

later became apparent that cultured endothelial cells, as well as the

endothelium in native vessels express CSE [13,19,44]. To

determine the relative functional importance of each layer in

H2S dilation, we tested the ability of endothelium-intact and

endothelium-denuded aortic rings to relax to L-cysteine. Removal

of the endothelium resulted in a significant decrease of L-cysteine-

stimulated relaxation without affecting that ability of NaHS to

dilate the vessels. On the other hand, we observed that in the

mouse aorta, CSE is primarily expressed in the smooth muscle cell

layer; however, lower CSE levels are present in the endothelium.

The significant effect of endothelial denudation in L-cysteine

dilation could be attributed to the fact that removal of the

endothelial lining results in loss of NO production. Lack of NO is

expected to inhibit H2S responses as the action of the two

gasotransmitters on vascular tone and angiogenesis has been

shown to be interdependent [45].

In summary, we have provided pharmacological and genetic

evidence for the existence of a cGMP/PKG pathway downstream

of H2S that regulates vascular tone. The two vasodilatory

gasotransmitters, H2S and NO, regulate contractility by acting

on the degradation and synthesis of cGMP, respectively.

Convergence of the two pathways on the same effector (PKG) in

the vessel wall, would allow for the fine-tuning of vascular tone,

but also provide the redundancy needed to maintain vascular

homeostasis and prevent disease development.

Methods

Ethics statement
All animal procedures were in compliance with the European

Community guidelines for the use of experimental animals and

approved by the Committee Centro Servizi Veterinari of the

University of Naples ‘‘Federico II’’; institutional regulations do not

require the use of animal protocol numbers for approved

protocols.

Animals
Male and female mice CD-1 6 to 8 weeks old and 129/Sv were

purchased from Harlan Laboratories (Italy). Mice carrying a null

mutation of the gene encoding PKG-I (PKG-I2/2 mice, also

termed cGKIL2/L2 mice) and CSE2/2 mice were generated as

previously described [19,46]. PKG-I2/2 mice were on a 129/Sv

genetic background and analyzed at an age of 10 to 16 weeks.

Animals were housed in our animal facility having free access to

water and food.

Figure 6. Role of endothelium in H2S induced-vasodilatation. (A) L-cysteine-induced vasodilatation was significantly impaired in aortic rings
without endothelium (–end). (B) NaHS-induced vasodilatation is not affected by endothelium removal; *** p,0.001 vs –end, n = 6 for each group. (C)
Representative photomicrographs of aortas stained with a CSE antibody and counter-stained for von-Willebrant factor, smooth muscle a-actin (SMA)
and DAPI, showing localization of CSE.
doi:10.1371/journal.pone.0053319.g006
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Reagents
Cell culture media and serum were obtained from Life

Technologies GIBCO-BRL (Paisley, UK). All cell culture plastic

ware was purchased from Corning-Costar Inc. (Corning, NY).

West Pico chemiluminescent substrate was purchased from Pierce

Biotechnology (Rockford, Illinois); DC Protein assay kit, Tween 20

and other immunoblotting reagents were obtained from Bio-Rad

Laboratories (Hercules, CA); penicillin and streptomycin were

purchased from Applichem (Darmstadt, Germany). GYY4137,

DT-2 and TAT were purchased from Cayman Chemical (Ann

Arbor, Michigan), Biolog (Bremen, Germany) and Genscript

(Piscataway, USA), respectively. The GAPDH, pVASP and

secondary Abs were purchased from Cell Signaling Technologies

(Beverly, MA), while the CSE antibody was obtained from Abnova

Novus Biologicals (Littelton, CO). The PKG-I Ab used has been

generated as previously described [47]. The anti-von Willebrand

factor was obtained from Dako (Glostrup, Denmark), and the

secondary anti-mouse and anti-rabbit antibodies used for the

immunofluorescence studies were obtained from Life Technolo-

gies (Darmstadt, Germany). The cGMP EIA kit was obtained from

Assay Designs (Ann Arbor, MI). Sildenafil, sodium hydrosulfide

(NaHS), L-cysteine (L-cys), S-nitroso-N-acetylpenicillamine

(SNAP), phenylephrine, protease/phosphatase inhibitors and all

other chemicals used in solutions and buffers were purchased from

Sigma Chemical Co (Milan, Italy). All drugs were dissolved in

distilled water.

Ex vivo studies
Animals were sacrificed with CO2 and thoracic aortas were

rapidly harvested, dissected, and cleaned of adherent connective

and fat tissue. Rings of about 1 mm length were denuded of the

endothelium, cut and placed in organ baths (2.5 ml) filled with

oxygenated (95% O2 -5% CO2) Krebs solution maintained at

37uC. The rings were connected to an isometric transducer (type

7006, Ugo Basile, Comerio, Italy) and changes in tension were

recorded continuously with a computerized system (Data Capsule

17400, Ugo Basile, Comerio, Italy). Exclusively in the set of

experiments performed on aortic rings harvested from PKG2/2

and their respective background 129/Sv the endothelium was

preserved. The composition of the Krebs solution was as follow

(mM): NaCl 118, KCl 4.7, MgCl2 1.2, KH2PO4 1.2, CaCl2 2.5,

NaHCO3 25, and glucose 10.1. The rings were stretched until a

resting tension of 1.5 g was reached and allowed to equilibrate for

at least 45 min, during which time tension was adjusted, as

necessary, to 1.5 g and bathing solution was periodically changed.

In each experiment, rings were first challenged with PE (1 mM)

until the responses were reproducible. The rings were then washed

and contracted with PE (1 mM) and, once a plateau was reached, a

cumulative concentration-response curve of the following drugs

was performed: SNAP (100 pM–3 mM); NaHS (1 mM–300 mM);

L-cys (1 mM–300 mM); GYY4137 (1 mM–300 mM). Rings were

treated with the PKG inhibitor DT-2 or its control peptide TAT

(1–3 mM; 20 minutes), or with PDE5 inhibitor sildenafil (1 nM;

15 minutes). After incubation time, cumulative concentration-

response curve to SNAP; NaHS; L-cys; GYY4137 were per-

formed. A preliminary study on the optimal incubation time and

concentration of the drug treatments was carried out (data not

shown). In another set of experiments, a cumulative concentration-

response of NaHS and L-cys were carried out on aortic rings from

PKG-I 2/2 and 129/Sv strains.

Conscious systemic blood pressure measurement
Systolic blood pressure (SBP) was measured in conscious mice

using the pneumatic tail-cuff method (W+W Blood pressure

reporter, model 8006, Ugo Basile). Before the measurement,

animals were preheated in a room at 30uC for 30 min, then they

were placed in a plastic chamber. A cuff with a pneumatic pulse

sensor was attached to the tail. This procedure was performed

every day for 1 week before starting the experiments in order to

habituate the animals to this procedure. During the entire

measurement period, the temperature was maintained at 30uC.

Two consecutive measurements were always recorded. SBP was

measured and, once basal SBP was assessed, intraperitoneal

injection of (D)-DT2 (100 nmoles) was performed. A more stable

form of DT-2 [(D)-DT-2] that is composed of D-aminoacids was

chosen for the in vivo experiments. SBP was then evaluated twice

every 5 minutes. Fifteen minutes after the (D)-DT2 injection,

NaHS (1 mmol/kg) was administered subcutaneously. SBP was

then monitored every 5 minutes for three times. (D)-DT2 volume

injected was 50 ml i.p., NaHS volume injected was 30 ml s.c. Both

drugs were dissolved in saline.

Cell culture
Rat aortic smooth muscle cells (RASMCs) were isolated from

12- to 14-wk-old male Wistar rats, five rats per isolation, as

previously described [48]. Animals were anesthetized with

pentobarbital sodium (40 mg/kg ip). Once fully anesthetized as

judged by the lack of reaction to a noxious stimulus, animals were

exsanguinated; thoracic aortas were then removed. More than

95% of cells isolated stained positive for smooth muscle a-actin.

Cells between passages 2 and 5 were used for all experiments.

RASMCs were routinely cultured in DMEM containing 4.5 g/l

glucose and supplemented with 10% FBS and antibiotics.

Western Blotting
Aortic tissues of CD-1 and 129/Sv were homogenized in

modified RIPA buffer (Tris HCl 50 mM, pH 7.4, TritonX-100

1%, Sodium-deoxycholate 0.25%, NaCl 150 mM, EDTA 1 mM,

phenylmethanesulphonylfluoride 1 mM, aprotinin 10 mg/ml, leu-

peptin 20 mM, NaF 50 mM) using a polytron homogenizer (two

cycles of 10 s at maximum speed). In experiments performed to

determine the expression of CSE in wild-type and PKG-I2/2

animals, aortas from three animals were pooled and then

homogenized. After centrifugation of homogenates at 12000

r.p.m for 15 min, protein concentration was determined by

Bradford assay using BSA as standard. 40 mg of the denatured

proteins were separated on 10% SDS/PAGE and transferred to a

PVDF membrane. Membranes were blocked in PBS-Tween 20

(0.1%, v/v) containing 3% non fat dry milk for 1 hour at room

temperature, and then incubated with the primary antibody

overnight at 4uC. The filters were washed with PBS-tween 20

(0.1%, v/v) extensively for 30 min, before incubation, for 2 hours

at 4uC, with the secondary antibody (1:5000) conjugated with

horseradish peroxidase anti-mouse IgG. The membranes were

then washed and immunoreactive bands were visualized using a

chemiluminescence substrate.

cGMP measurements
Rat aortic smooth muscle cells were incubated for 5 min with

the indicated concentration of the H2S donors. After the

treatment, cells were washed with Hanks’ balanced salt solution

and cGMP was extracted using 0.1 N HCl. cGMP content was

measured in the extracts using a commercially available enzyme

immunoassay kit following the manufacturer’s instructions.

For cGMP measurements in tissue and plasma of CSE knockout

mice (CSE2/2), eight-week male CSE2/2 and wild-type mice

(CSE+/+) were used in this experiments. Animals were anesthe-

tized with pentobarbital sodium (40 mg/kg ip) and exsanguinated.
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Blood plasma was prepared by spinning a tube of fresh blood

containing EDTA (15006 g for 15 min at 4uC). The aorta and

mesenteric artery tissues were dissected and cleaned for immediate

cGMP measurement. First, aortic rings were placed in Krebs

solution at 37uC and incubated for 30 min. After that, rings were

stimulated with sodium nitroprusside (10 mM) for 2 min and then

tissues were rapidly blotted weighted and quick frozen in liquid

nitrogen. Tissues were snap frozen and homogenized in 1–3

volumes of buffer (containing 5% trichloroacetic acid) per gram of

tissue and centrifuged at 1,5006 g for 10 min. The supernatant

was carefully removed and used in the next step. Residual TCA

acid was removed by extraction into five volumes of water-

saturated diethyl ether (repeated twice for a total of 3 extractions).

Any residual ether was removed by warming the samples at 70uC
for 5 min. The samples were then processed according to the

instructions provided with commercially available enzyme immu-

noassay kit following the manufacture’s instruction.

Fluorescence Immunohistochemistry
To preserve tissue morphology and retain the antigenicity of the

target molecules tissues were fixed in 4% paraformaldehyde in

PBS for 1 hour and embedded in paraffin blocks. Subsequently,

tissue sectioning was performed using a rotate microtome (5 mm

thick) and sections were mounted on gelatin-coated histological

slides. For the immunohistochemistry protocol, sections were

rehydrated by immersion in xylene for 30 minutes, followed by

immersion of slides in 100% ethanol for 3 minutes and

sequentially in 95% ethanol, 70% ethanol, 50% ethanol for

2 minutes. The slides are rinsed with deionized H2O, rehydrated

in PBS and incubated in proteinase K (20 mg/ml) in proteinase K

buffer (100 mM Tris-HCl, pH 8.0; 50 mM EDTA) for 10 min at

RT. After thorough washing with PBS, blocking of non-specific

staining was performed, by incubation in blocking buffer (10%

normal goat serum in PBS) for 60 minutes at RT, followed by

application of primary antibodies (1:200 rabbit polyclonal anti-von

Willebrand Factor, Dako; 1:500 anti-CSE diluted in blocking

buffer overnight at 4uC. Slides are washed 3 times for 15 minutes

each in PBS and incubated with secondary antibodies (1:400 anti-

mouse Alexa 488; 1:400 anti-rabbit Alexa 568) for 2 hours at RT.

Then, slides are washed 3 times for 15 minutes each and mounted

using mounting medium with DAPI and coverslips. The staining

was visualized using a confocal microscope with a digital camera

attached (Leica) at a 2006magnification.

Statistical analysis
Data were expressed as mean 6 s.e.m. Statistical analysis was

determined by using one or two way ANOVA and Dunnett’s or

Bonferroni as a post-test or t-test analysis when appropriate.

Differences were considered statistically significant when P-value

was less than 0.05. GraphPad Prism software (version 4.02,

GraphPad Software, San Diego, CA) was used for all the statistical

analysis.
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