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PEGylated helper-dependent adenoviral vector expressing human
Apo A-I for gene therapy in LDLR-deficient mice

This article has been corrected since online publication and a corrigendum is also printed in this issue

E Leggiero1,2, D Astone1,2, V Cerullo1,2,3, B Lombardo1,2, C Mazzaccara2, G Labruna4, L Sacchetti1,2, F Salvatore1,4, M Croyle5,6

and L Pastore1,2

Helper-dependent adenoviral (HD-Ad) vectors have great potential for gene therapy applications; however, their administration
induces acute toxicity that impairs safe clinical applications. We previously observed that PEGylation of HD-Ad vectors strongly
reduces the acute response in murine and primate models. To evaluate whether PEGylated HD-Ad vectors combine reduced
toxicity with the correction of pathological phenotypes, we administered an HD-Ad vector expressing the human apolipoprotein
A-I (hApoA-I) to low-density lipoprotein (LDL)-receptor-deficient mice (a model for familial hypercholesterolemia) fed a
high-cholesterol diet. Mice were treated with high doses of HD-Ad-expressing apo A-I or its PEGylated version. Twelve weeks later,
LDL levels were lower and high-density lipoprotein (HDL) levels higher in mice treated with either of the vectors than in untreated
mice. After terminal killing, the areas of atherosclerotic plaques were much smaller in the vector-treated mice than in the control
animals. Moreover, the increase in pro-inflammatory cytokines was lower and consequently the toxicity profile better in mice
treated with PEGylated vector than in mice treated with the unmodified vector. This finding indicates that the reduction in toxicity
resulting from PEGylation of HD-Ad vectors does not impair the correction of pathological phenotypes. It also supports the clinical
potential of these vectors for the correction of genetic diseases.
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INTRODUCTION
Atherosclerosis is a complex multifactorial disorder ultimately
leading to coronary artery disease. Atherosclerosis is characterized
by the accumulation of inflammatory cells, lipoproteins and
fibrous tissues in the wall of large arteries.1 The etiology of this
disorder is highly heterogeneous, with numerous known and
unknown genetic and environmental factors influencing both
lipoprotein metabolism and inflammation.2 One of the major
predisposing factors is hypercholesterolemia. In fact, elevated low-
density lipoprotein cholesterol (LDL-C), due to environmental as
well as genetic factors, is frequently associated with the
development of atherosclerosis and a higher frequency of
coronary artery disease. Mutations in the LDL receptor gene
cause familial hypercholesterolemia (FH), an inherited metabolic
disorder characterized by an increase in LDL-C plasma levels and a
consequent increased risk of premature atherosclerosis and
coronary artery disease.3

Reduced levels of high-density lipoprotein cholesterol (HDL-C)
are also associated with a higher incidence of coronary artery
disease. Moreover, in some human disorders, premature athero-
sclerosis is associated with markedly reduced levels of HDL-C (for
example, Tangier disease and mutations in the human apolipo-
protein A-I (hApoA-I) gene).4,5 HDL particles transport excess
cholesterol from the periphery to the liver with a mechanism

known as ‘reverse cholesterol transport’ that mediates their
atheroprotective roles.6 In fact, cardiovascular risk can also be
reduced by increasing HDL-C levels.7 HDL and its components
(in particular, antioxidant enzymes) can reduce oxidized lipid
species in LDL particles, thus reducing their atherogenic
potential.8 Apolipoprotein A-I (ApoA-I) constitutes B70% of the
apolipoprotein content of HDL particles, and there is a strong
correlation between plasma ApoA-I and HDL-C levels.9 In addition,
the finding that ApoA-I has intrinsic antioxidant and anti-
inflammatory properties led to the development of ApoA-I
mimetic peptides and several other drugs that are currently
being tested for their potential to reduce atherosclerosis.10

A variety of viral vectors have been tested in the attempt to
elicit the overexpression of anti-atherogenic proteins.11 First-
generation adenoviral vectors are capable of inducing high levels
of ApoA-I;12 however, the duration of transgene expression
induced by these vectors is very short, hence they are not
suitable for clinical applications.13 Adeno-associated vectors have
been used to express ApoA-I; although these vectors have a more
favorable toxicity profile than the first-generation adenoviral
vectors, levels of expression were not sufficient to affect aortic
atherosclerosis development.14 Differently, helper-dependent
adenoviral (HD-Ad) vectors can induce prolonged high levels of
transgene expression that have a more favorable toxicity
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profile.13,15–18 We previously overexpressed human ApoA-I
(hApoA-I) in two different mouse models using HD-Ad vectors
and obtained long-term corrective levels of this transgene and a
consequent reduction of aortic atherosclerosis.13,17 Even though
HD-Ad vectors induce a milder liver toxicity compared with the
first-generation adenoviral vectors,19,20 the viral capsid responsible
for triggering the acute inflammatory response in a dose-
dependent manner is identical for both types of vectors.21,22

The possibility of mitigating the host response associated with
adenoviral vector administration was widely investigated mainly
after the death of a patient treated in a clinical trial with a high
dose of a recombinant adenoviral vector containing a functional
gene for ornithine transcarbamylase.23 HD-Ad vectors reduce the
long-term toxicity resulting from the accumulation of viral
proteins;13,19 however, innate immunity, with consequent
cytokine secretion, is still present due to the interaction of Ad
particles with Toll-like receptors at the plasma membrane24 and at
endosome level, where Toll-like receptor 9 interacts with the
vector genome.25

Several types of pretreatment, for example, corticosteroid
administration26 and tumor necrosis factor (TNF)-alpha
blockade,27 have been proposed to overcome innate immunity.
In this context, we have focused on the modification of HD-Ad
vector particles. Specifically, we chemically modified HD-Ad
vectors by PEGylation.28 PEGylated HD-Ad vectors have a better
toxicity profile than native vectors in both mice28 and non-human
primates.29 PEGylation with low-molecular weight PEG (mw 5000)
does not significantly influence transduction efficiency in murine
hepatocytes reducing Kupffer cell transduction and increasing
vector half-life in the systemic circulation;28,30,31 on the
other hand, PEGylation significantly reduces vector-mediated
production of inflammatory cytokines and protects vectors from
inactivation by complement and neutralizing antibodies.28

A reduction in transduction has been observed in non-human
primates;29 however, differences in transgenes and their
determinations together with alternative methods for vector
titration as well as possible species-specific responses may
account for this observation. In addition, non-human primate
data had been obtained by a single animal per dose and cannot
be considered representative.29 Adenoviral vectors PEGylated with
low-molecular weight PEG (5000) retain the ability to transduce
hepatocytes after binding with coagulation factor X;32 on the
other hand, higher-molecular weight PEG strongly reduces
hepatocyte expression, enabling vector retargeting.32 PEGylated
vectors show a more favorable toxicity profile because capsid
shielding avoids adenovirus hexon interaction with Kupffer-
cell-scavenger receptors and its subsequent capture; therefore,
using a low-molecular weight PEG modification makes it possible
to express transgenes at levels comparable to unmodified vectors
in the absence of innate response.33,34 Liver pathology after
PEGylated HD-Ad vectors administration has also been extensively
studied and is comparable to that observed using unmodified HD-
Ad vectors, presenting a favorable toxicity profile compared to
first-generation adenoviral vectors.28 PEGylated HD-Ad vectors
have also been previously used for a short-term rescue of a model
of propionic acidemia35 and as cancer vaccines;36 however, at the
moment, there is no proof-of-concept for long-term in vivo
efficacy of these vectors for therapeutic purposes.

In the attempt to evaluate whether the expression of different
transgenes could be influenced by vector PEGylation and to
determine the efficacy and safety of these vectors in a disease
model, we have evaluated a PEGylated HD-Ad vector expressing
hApoA-I in LDL receptor-deficient mice, which is the mouse model
of FH.37 These mice have only a modest hypercholesterolemia
when fed a normal diet, whereas they develop extensive
atherosclerotic lesions throughout the aorta when fed a high-fat
diet.38 This model has been previously shown to respond to an
HD-Ad-mediated increase in ApoA-I levels associated with a

significant reduction in aortic atherosclerosis.17 We therefore
evaluated whether we could reduce aortic atherosclerosis in LDLR-
deficient mice without eliciting an innate host response by using a
PEGylated HD-Ad vector expressing hApoA-I. To this aim, we
administered a high dose of PEGylated vector to LDLR-deficient
mice that were fed a high-fat diet and evaluated the effect of this
treatment on both lipoprotein profile and aortic atherosclerosis;
the data obtained were compared with those obtained in mice
treated with the unmodified form of the vector. Our results
support the clinical potential of PEGylated HD-Ad vectors for the
correction of genetic diseases.

RESULTS
PEG-HD-Ad vectors induce high-level persistent expression of
ApoA-I
To determine whether the PEGylated HD-Ad vector containing the
entire hApoA-I gene was able to transduce cells in culture, we
infected 1� 10E6 293 cells and 1� 10E6 W20-17 cells with 10 vp
per cell of the native (HD-Ad-AI) and 10 vp per cell of the
PEGylated (PEG-HD-Ad-AI) vectors, and determined ApoA-I levels
in the medium. As shown in Figures 1a and b, both 293 and W20-
17 cells constitutively secrete a small amount of ApoA-I (17±3.5
and 13±0.3 mg dl� 1 in untransfected media, respectively).
Infection with HD-Ad-AI led to a four-fold increase in Apo A-I in
293 (77±28 mg dl� 1) and two-fold increase in W20-17
(27±6 mg dl� 1) cells. There was a three-fold (54±8 mg dl� 1)
and a two-fold increase (32±6 mg dl� 1) in these cells, respec-
tively, when they were infected with the PEGylated version of
HD-Ad-AI. The lower levels of ApoA-I observed in W20-17 cells
may be either due to a resistance of these cells to Ad5 infection or
to a lower expression of the transgene driven by the endogenous
ApoA-I promoter. Importantly, there were no significant differ-
ences in the secretion of ApoA-I after infection with either
PEGylated or native vectors. This finding confirms the efficiency of

Figure 1. PEG-HD-Ad-AI and HD-Ad-AI vector treatment induce Apo
A-I expression in vitro and in vivo. 293 (a) and W20-17 (b) cells were
infected with HD-Ad-AI (10 vp per cell) and PEG-HD-Ad-AI (10 vp per
cell), and human Apo A-I secreted in the medium was determined.
Uninfected 293 and W20-17 cells served as negative controls.
Infection with both vectors led to a significant increase (*Po0.01) in
human Apo A-I levels in the medium in both cell lines. Groups of five
LDLR-deficient mice were treated systemically with 1� 10E13
vp kg� 1 of HD-Ad-AI (’) or PEG-HD-Ad-AI (m); a third group of
five mice was treated with the same volume of PBS as control (K, c).
Human Apo A-I levels were determined in blood samples 1, 2, 4, 8
and 12 weeks after treatment. Groups of five LDLR-deficient mice
treated with HD-Ad-AI or PEG-HD-Ad-AI showed significantly higher
levels of human Apo A-I expression that lasted throughout the
experiment significantly different from untreated mice (*Po0.01).
No significant differences were observed between treatments with
the different vectors. Data are expressed as mean±s.d.
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both vectors in vitro and that PEGylation does not significantly
influence vector transduction efficiency and transgene expression
in cell lines.

To assess whether PEG-HD-Ad-AI administration leads to the
persistent expression of hApoA-I in vivo, we administered
1� 10E13 vp kg� 1 of either PEG-HD-Ad-AI or HD-Ad-AI to two
groups of LDLR-deficient mice (n¼ 5 per treatment group) fed a
high-fat diet; a third group was treated with phosphate-buffered
saline (PBS) as control (n¼ 5). Administration of PEG-HD-Ad-AI or
HD-Ad-AI vectors led to the expression of human ApoA-I for the
entire duration of the experiment (12 weeks, Figure 1c). One week
after treatment, hApoA-I reached its highest levels in both groups
(250±3 and 210±2 mg dl� 1). Thereafter, hApoA-I levels slowly
decreased in vector-treated animals, although they remained
within levels able to give therapeutic benefits according to our
previous work.

PEGylation of HD-Ad vectors reduces host response in the
presence of high transgene expression
To evaluate host response to vector administration, we assessed
cytokine activation profiles in LDLR-deficient mice treated with
HD-Ad-AI, PEG-HD-Ad-AI or PBS. Eight-week-old LDLR-deficient
mice (n¼ 5) were fed a high-cholesterol diet for 4 weeks and then
treated with 1� 10E13 vp kg� 1 of either HD-Ad-AI or PEG-HD-Ad-AI;
control animals (n¼ 5) were treated with an equal volume of
PBS. Six hours after treatment, blood samples were collected to
determine interleukin (IL) 12p40, IL-12p70, IL-6 (one of the main
markers of adenovirus-induced innate response), TNF-alpha,
monocyte chemotactic protein-1 (MCP-1) and keratinocyte-
derived cytokine (KC) levels. IL-6, IL-12p40, IL-12p70 and TNF-a
are markers commonly associated with the activation of the innate
immune response against recombinant adenoviral vectors.39

Moreover, a large body of evidence indicates that administration
of adenoviral vectors induces the secretion not only of cytokines
but also of chemokines (MCP-1 and KC); the levels of both proteins
increase upon the activation of Kupffer cells after vector
transduction.24,40–42 We determined cytokines levels 6 h after
vector administration (Figure 2), as prior data28,41 showed that
activation of the cytokine response is highest at this time, and
usually returns to baseline within 24–48 h.

Levels of IL-12 p70, KC, MCP-1 and TNF-alpha were significantly
lower in mice treated with the PEGylated vector compared with
those observed in mice treated with the unmodified vector
(Figure 2a, d–f); only IL-12p40 levels did not differ significantly
between mice treated with PEGylated vectors and those treated
with native vectors (Figure 2b). Mice treated with HD-Ad-AI
showed a significantly larger increase in serum levels of IL-6
compared with animals receiving PEG-HD-AI (1300±300 and
400±61 pg ml� 1, respectively, Figure 2c). Thus, PEGylated vectors
induced a milder inflammatory response; in fact, levels of all the
cytokines were significantly lower in mice treated with PEGylated
vectors than in mice treated with native vectors. Taken together,
these data further confirm that PEGylation of HD-Ad vectors
reduces the innate host response in the presence of high levels of
transgene expression.

Overexpression of hApo A-I after PEGylated-vector administration
modifies the lipid profile and reduces aortic atherosclerosis
To evaluate the effects of overexpression of hApoA-I on
cholesterol metabolism, we measured the levels of triglycerides,
total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-cholesterol
(HDL-C) at different time points (0, 1, 2, 4, 8 and 12 weeks) in the
three groups of mice treated with 1� 10E13 vp kg� 1 of HD-Ad-AI,
PEG-HD-Ad-AI or PBS and fed an atherogenic diet for 12 weeks
(n¼ 5 per treatment). As shown in Figure 3a, baseline levels of
plasma triglycerides were 85±5 and 89.5±2 mg dl� 1 in HD-Ad-
AI-treated mice, and 84.6±1 mg dl� 1 in the control, HD-Ad-Al and

PEG-HD-Ad-AI groups of mice, respectively, and remained
essentially unchanged after treatment. Basal levels of TC were
549.4±1, 569.06±1 and 554±1 mg dl� 1 in the control, HD-Ad-AI
and PEG-Hd-Ad-AI groups, respectively. However, already 1 week
after administration, the two vectors induced a significant
decrease in TC levels: 500.78±1 and 512.94±1 mg dl� 1 in
HD-Ad-AI-treated- and PEG-Hd-Ad-AI-treated mice, respectively,
versus 565.46±1 mg d� 1 in control mice (Figure 3b). TC levels
were significantly different between mice treated with either
native or PEGylated vector and untreated animals. Mice treated
with the PEGylated vector had slightly higher levels of TC, but the
difference with the animals treated with the unmodified vector
was not statistically significant.

To evaluate the effect of hApoA-I on reverse transport of
cholesterol, we also evaluated serum levels of LDL-C and HDL-C.
Basal levels of HDL-C were also similar in the three groups
(112.2±1, 115.2±1 and 113.6±2 mg dl� 1 in the PBS, HD-Ad-AI
and PEG-HD-Ad-AI groups, respectively). However, 1 week after
treatment, HDL-C values increased in the mice treated with
HD-Ad-AI or PEG-HD-Ad-AI (Figure 3c) and remained significantly
higher than in control mice for the entire duration of the
experiment. The basal LDL-C level was similar in the three groups
(420±2, 436 ±2 and 423.5±1 mg dl� 1 in the PBS, HD-Ad-AI and
PEG-HD-Ad-AI groups, respectively). In HD-Ad-AI- and PEG-HD-Ad-
AI-treated mice, LDL-C started to decrease 1 week after vector
administration and levels remained significantly lower for the
entire duration of the experiment (Figure 3d). Taken together,
these data suggest that treatment with the PEG-HD-Ad-AI vector
induces persistent modifications of lipid metabolism.

Lastly, we evaluated whether changes in lipid metabolism
affected the development of atherosclerotic lesions. We killed the

Figure 2. Administration of PEG-HD-Ad-AI in LDLR� /� mice is
associated to a lower toxicity compared with unmodified vector.
Groups of five LDLR-deficient mice were treated systemically with
1� 10E13 vp kg� 1 of PEG-HD-Ad-AI or HD-Ad-AI; a third group of
mice (n¼ 5) was treated with the same volume of PBS as negative
control. Six hours after the treatment, blood samples were
collected and cytokine levels were determined. Levels of IL-12p70
(a), IL-12p40 (b), IL-6 (c), KC (d), MCP-1 (e) and TNF-alpha (f ) were
compared in the three groups to evaluate vector toxicity. All the
cytokines evaluated except IL-12p40 differed significantly between
mice treated with PEGylated vectors and those treated with native
vector. Statistically significant differences are expressed as **Po0.01.
Data are expressed as mean±s.d.
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mice 12 weeks after treatment and dissected the aortas from the
heart to iliac branching. In a macroscopic analysis, we observed fat
deposits as expected at the level of three branches of the aorta: in
the intimal layer of brachiocephalic trunk, left common carotid
artery and left subclavian artery (Figure 4a). Other lesions were
present throughout the abdominal aorta, upstream the bifurcation
of kidney arteries. Fat deposits were more evident in mice treated
with PBS than in mice treated with either HD-Ad-AI or PEG-HD-Ad-AI.
In fact, fat deposits in PBS-treated animals were larger at the level
of both the aortic arch and abdominal aorta than in the other two
groups of mice. PBS-treated mice showed an occlusion of the
aorta associated with dilatation of the vessel at the sites of larger
fat deposits. This pattern was not observed in mice treated with
HD-Ad-AI or PEG-HD-Ad-AI vector.

To quantify the atherosclerotic lesions that were directly
correlated with fat deposits, we stained the aortas en-face with
Oil Red-O after the removal of external fat and residual tissues. The
area of fat deposits was quantified in the experimental animals to
determine the efficacy of vector treatment. As shown in Figure 4b,
lesion areas were significantly smaller (Po0.01) in mice treated
with either HD-Ad-AI or PEG-HD-Ad-AI (1.09±0.48 and
1.74±0.67 mm2, respectively) than in the PBS-treated mice

(4.22±0.53 mm2). These results strongly suggest that PEGylated
HD-Ad-induced overexpression of hApo A-I leads to persistent
transgene expression and modification of cholesterol metabolism,
which ultimately reduces aortic atherosclerosis development.

DISCUSSION
The aim of our study was to evaluate whether PEG-HD-Ad vectors
could be used to correct a disease in an animal model. In fact, very
few data are available about the expression of transgenes other
than LacZ after transduction with PEGylated HD-Ad vectors, as
previously mentioned in the Introduction. In addition, to the best
of our knowledge, there is no proof-of-concept that PEGylated
HD-Ad vectors are able to achieve long-term correction of a
pathological phenotype. In the present work, we tested this
hypothesis in a mouse model of FH for a number of reasons: firstly,
LDLR-deficient mice have been extensively studied and are known
to develop high basal levels of LDL-C and extensive athero-
sclerotic lesions under a regimen of a high-cholesterol diet;17 in
addition, we have previously found that the administration of
HD-Ad vector expressing hApoA-I reduced atherosclerosis
development in this model.13 We also found that the delay in

Figure 3. Administration of PEG-HD-Ad-AI increases Apo A-I levels and modifies cholesterol metabolism in LDLR� /� mice. Two groups of
five LDLR-deficient mice were treated systemically with 1� 10 E13 vp kg� 1 of HD-Ad-AI (’) or PEG-HD-Ad-AI (m). A third group of mice
(n¼ 5) was treated with the same volume of PBS as control (K). Samples were collected before treatment and 1, 2, 4, 8 and 12 weeks after
treatment. Triglyceride (a), TC (b), HDL-C (c) and LDL-C (d) levels were determined in the three groups of mice. TC, HDL-C and LDL-C levels
differed significantly between HD-Ad-AI- or PEG-HD-Ad-AI-treated mice and the control group (*Po0.05). Data are expressed as mean±s.d.

Figure 4. PEG-HD-Ad-A-I treatment reduces aortic atherosclerosis development. Two groups of five LDLR-deficient mice were treated
systemically with 1� 10E13 vp kg� 1 of HD-Ad-AI or PEG-HD-Ad-AI; a third group (n¼ 5) of mice was treated with the same volume of PBS as
control. Twelve weeks after treatment, mice were killed and their aortas were dissected. Fat deposits in the aortic arch and abdominal aorta
were lower in mice treated with PEG-HD-Ad Apo AI or HD-Ad Apo AI than in the control group (a). Aortas were then stained with Oil Red-O to
identify fat deposits in LDLR-deficient mice treated with HD-Ad-AI (’), PEG-HD-Ad-AI (m) or PBS (K). Stained areas were measured and
compared with the area of the entire aorta as index of atherosclerotic lesions (b); statistically significant differences are expressed as *Po0.01.
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atherosclerosis progression and remodeling of the lesions was due
to the overexpression of hApoA-I and the consequent increase in
HDL and, therefore, in reverse transport of cholesterol. In the
present study, we treated LDLR-deficient mice with high doses of
the same hApoA-I-expressing HD-Ad vector and its PEGylated
version, and monitored, for 12 weeks, changes in cholesterol
metabolism in terms of TC, LDL-C and HDL-C to determine
whether the PEGylated vector was also able to affect the lipid
profile and aortic atherosclerosis. In addition, we evaluated
whether the extremely favorable toxicity profile observed with
the LacZ-expressing PEGylated HD-Ad vectors28,29 were confirmed
in this vector.

We found that the hApoA-I-expressing PEGylated HD-Ad vector
induced a smaller increase in pro-inflammatory cytokines than the
native version. IL-6 and TNF-alpha are associated with a severe
inflammatory reaction to Ad vectors and are therefore direct
markers of toxicity. Six hours after the administration of PEG-HD-AI,
the increase in both cytokines was significantly lower than after
administration of the native form. Moreover, the levels of the
other cytokines and chemokines that we assessed (IL-12 p70, KC
and MCP-1) were significantly lower than those observed with the
native version; only IL-12 p40 was moderately increased after
treatment with both PEGylated and native vectors versus mice
treated with PBS. These data demonstrate that treatment with a
high dose of a PEGylated HD-Ad vector does not induce a
significant host response, thereby increasing the therapeutic
window for these vectors.

The favorable safety profile of the PEGylated vector is even
more surprising, as the very high dose administered is usually
toxic in mice; indeed, in our previous study, 1� 10E13 vp kg� 1 of
HD-Ad-AI was the only dose that significantly altered the lipid
profile and reduced aortic atherosclerosis in LDLR-deficient
mice.17 In the present study, the more favorable safety profile of
the PEGylated vector compared with the unmodified version was
relevant only if phenotype correction was maintained; in mice
treated with either HD-Ad-AI or PEG-HD-Ad-AI, levels of TC, LDL-C
and HDL-C were significantly different compared with mice
treated with PBS in a similar manner. This observation is
mirrored by the analysis of the accumulation of fat deposits in
the aortic arch and abdominal aorta. In fact, fat deposits were
larger in PBS-treated mice than in HD-Ad-AI- or PEG-HD-Ad-AI-
treated mice. This is the first demonstration that vector PEGylation
reduces host response irrespective of the transgene used and that
this modification does not affect the expression or efficacy of the
expressed transgene.

In summary, this study demonstrates that administration of a
PEGylated HD-Ad vector expressing hApoA-I induces a milder host
response than unmodified vectors, without affecting efficacy.
PEGylation should be considered as an improvement of HD-Ad
vectors, which, together with pretreatment26 and safer
administration routes,43,44 can support their clinical application.
Reduced hepatocyte transduction has been observed in non-
human primates and may reduce the utility of this approach;29

however, primate experiments have been performed on a single
animal per dose and may not be representative. In addition,
differences in transgenes and vector titration methods may also
contribute to this observation. In this study, we used a very high
dose of vector in order to obtain ApoA-I levels that would
significantly reduce aortic atherosclerosis; however, lower doses,
which are more readily applicable to clinical settings, may be used
when PEGylated vectors are administered to treat other inherited
errors of metabolism that require correction of a lower number
of hepatocytes.45 As also demonstrated previously, ApoA-I
overexpression has the advantage of reducing aortic
atherosclerosis development regardless of the under-
lying genetic cause.13,17 Therefore, PEG-HD-Ad-mediated
overexpression of hApoA-I may become a valid therapeutic
alternative, especially in subgroups of FH patients in whom

other therapies are poorly effective and the genetic causes are
poorly characterized. In these patients, a single administration of
PEG-HD-Ad may exert a long-lasting favorable effect on lipid
metabolism.

MATERIALS AND METHODS
Production of HD-Ad vectors
The HD-Ad adenoviral vector (HD-Ad-AI) used in this study contains 10 kb
of the hApo A-I gene, including the promoter region.17 Rescue and
amplification of the vector were performed using the HV-Ad-NG163R-2
helper virus as described elsewhere.46,47 Briefly, a 60-mm dish of 116 cells
at 80% confluence was transfected with 20mg of PmeI-digested parental
plasmid. Next day, the cells were infected with AdNG163R-2 at a
multiplicity of infection of 1000 vp per cell. The vector was amplified by
serial co-infections of 60-mm dishes of 116 cells at 90% confluence with
10% of the crude lysate from the previous passage and AdNG163R-2 at a
multiplicity of infection of 200 vp per cell. After three infections in a 60-mm
dish (P1, P2, P3), for P4 one 150-mm dish of 116 cells at 90% confluence
was co-infected with 10% of the crude serial passage 2 lysate and
Ad-NG163R-2 at an multiplicity of infection of 200 vp per cell. Large-scale
HD-Ad production was performed in 3 l of 116 cells (3–4� 10E5 cells ml� 1)
co-infected with 100% of the crude lysate from the 150-mm dish of serial
passage 3 and Ad-NG163R-2; 48 h later, co-infected cells were harvested
and resuspended in TM solution (10 mM Tris-HCl pH 8.0 and 2 mM MgCl2).
The harvested cells were lysed by using three freeze-thaw cycles and
incubated with 2 M MgCl2 and DNaseI for 1 h at 37 1C. After incubation, the
cellular debris was spun down and the lysate was subjected to
ultracentrifugation, as described elsewhere.48 Vector concentration was
measured as particle number and determined using the absorbance at
260 nm. Helper virus contamination and vector characterization were
obtained as described previously.46

PEGylation of HD-Ad vectors
The aliquots of vectors were desalted on Econo-Pac 10DG disposable
chromatography columns (Bio-Rad, Hercules, CA, USA) and equilibrated
with 0.2 M sodium phosphate (pH 7.2) buffer for optimal conjugation. Viral
concentrations were determined using the absorbance at 260 nm. The
protein content of each viral preparation was determined with Bio-Rad DC
Protein assay reagents using bovine serum albumin as standard. A total of
10 mg of monomethoxypoly (ethylene) glycol activated with succinimidyl
succinate (SSPEG, mw 5000) was added for each microgram of proteins
present in each preparation. Conjugation reactions were performed at
25 1C with gentle agitation for 2 h. Reactions were stopped by addition of a
10-fold excess of L-lysine with respect to the amount of PEG added.
Unreacted PEG, excess lysine and reaction products were eliminated using
buffer exchange over a second Econo-Pac 10DG disposable chromato-
graphy column equilibrated with 100 mM KPBS (pH 7.4). A separate aliquot
of virus was treated and processed in the same manner as the conjugated
virus in the absence of SSPEG and served as unPEGylated control.
PEGylated and unPEGylated adenoviral vectors were characterized using
capillary zone electrophoresis as previously described.28

Immunoturbidimetric assay
hApo A-I levels were determined using immunoturbidimetric analysis.
293 and W20-17 cells were infected with 200 vp per cell of HD-Ad-AI and
PEG-HD-Ad-AI. Uninfected cells were used as negative controls. Forty-eight
hours after infection, the medium was collected and a detergent solution
was added at 37 1C for 2 min. Absorbance was read at 610 nm (Abs1) and
goat serum containing anti-human Apo A-I was added. The absorbance at
610 nm was read again (Abs2) and the concentration of human Apo A-I
was calculated as DAbs¼Abs2�Abs1 on the calibration curve. Human
sera with high and low concentrations of hApoA-I were used as controls.

Animal studies
All experimental procedures were conducted in accordance with institu-
tional guidelines for animal care and use. Food and water were provided
ad libitum. The mice used in the toxicity experiment were 8-week-old
female LDL receptor-deficient (LDLR� /� ) mice on a C57BL/6 back-
ground. Mice were fed a diet supplemented with 0.2% (wt/wt) cholesterol
and 10% coconut oil (vol/wt) for 4 weeks. HD-Ad was diluted in sterile PBS,
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prewarmed at 37 1C and injected into the tail vein as described.13

Injections were performed in a total volume of 200ml.
Mice were anesthetized with Avertine before blood was collected from

the retroorbital plexus. For cytokine analyses, blood was collected 6 h after
injection. For triglycerides, TC, LDL-C and HDL-C analyses, blood was
collected at 0, 1, 2, 4, 8 and 12 weeks after vector administration from 12-h
fasting mice. Serum was frozen immediately and stored at � 20 1C until
further processing. Mice were terminally killed using carbon dioxide
inhalation 12 weeks after treatment and aortas were taken for the
assessment of atherosclerotic lesions.

Evaluation of acute toxicity
Mouse IL-6, IL-12p40, IL-12p70, TNF-alpha, MCP-1 and KC levels were
determined using the Bio-Rad Bioplex cytokine multiplex and analyzed
using a Bioplex instrument, according to the manufacturer’s instructions
(Bio-Rad).49 Sera were tested on an Ortho Clinical Vitros 250 Chemistry
System (Ortho Clinical Diagnostics, Johnson & Johnson Co, Rochester, NY,
USA) using a dry chemistry approach. Samples were run at Bio-Plex
Readers and data were analyzed using the Bioplex Software (Bio-Rad).
Briefly, beads coated with antibodies against the selected cytokines were
mixed with 10ml of serum and incubated at room temperature for 1 h.
After incubation with streptavidin-PE detection reagent for 30 min and
subsequent bead resuspension, the plate was read on the Bioplex
instruments.

Quantification of atherosclerotic lesions
After killing, aortas were dissected from the heart to iliac branching, with
particular attention to the external fat in order to stain exclusively
sub-intimal aortic fat. Aorta staining was performed as previously
described.17 Images were acquired using Nikon Coolscope (Nikon, Tokyo,
Japan), and the fat amount was quantified with NIS elements program
(Nikon).

Statistics
Results were statistically analyzed using GraphPad Prism (GraphPad
Software) and Po0.05 was considered statistically significant. Differences
among groups were analyzed using analysis of variance with Bonferroni
correction. All data are expressed as mean±s.d.
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