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Control of Nonprehensile Rolling Manipulation:
Balancing a Disk on a Disk

Ji-Chul Ryu, Fabio Ruggiero, and Kevin M. Lynch

Abstract— This paper presents stabilization control of a linear beam. The beam rotates in a vertical plane and the
roIIingtmar;i{)ulagip?(systerﬂcr?lltﬁd the diS'é-_OE-(diEK 'g“? s%ystetm ball rolls under gravity. To solve the stabilization prahble
consists of two disks in which the upper disk (object) is free to ; ; ; ot :
roll on the lower disk (hand) under the ifluence of gravity. The gﬁ)‘gglxé':;t:p'tgg‘ét;t’;‘gﬂﬁ; 'i':‘;i;:izeité%”b'; ;i:‘ulrgt[ii]ﬁtgﬁ
goal is to stabilize the object at the unstable upright position A )
directly above the hand. We use backstepping to derive a control 1aw which uses state-dependent saturation levels. A elate
law yielding global asymptotic stability. We present simulation problem is balancing a ball on a plate. In [6], a gimbal-
as well as experimental results demonstrating the controller.  suspended plate is actuated by two independent motors to
control the position of a ball rolling on the plate. Another
) ) , o . type of ball and plate system is discussed in [7], where a

‘Nonprehensile manipulation primitives such as rollingp| captured between two horizontal plates rolls in respon
sliding, pushing, and throwing are commonly used by hug, the motion of one of the plates. The ball's configuration
mans.but are oft(_an avoided by.robots,. Who.seem- 10 prefegoives according to the rolling kinematics (no dynamics).
grasping. Dynamlc nonprghensne manipulation ralse_s—chal For multi-fingered manipulation in [8], the rolling con-
lenges in high-speed sensing and control, as the manipulagaint s exploited in order to control both the pose of the
object is not in static equ"'b““m thrqughout the prof:es’smanipulated object and the paths of contact points along the
An advantage, however, is that dynamics can be exploited iy s surface. The roles of the shape and motion of the
help the robot control object motions that would otherwise,aninylator on the motion of the rolling object were studied
be impossible [1], [2]. . in the context of the “butterfly” contact juggling trick in]3

Our long-term goal is to develop a unified framework fory, analysis is provided of feedback stabilization of rajlin

planning and control of dynamic robotic manipulation. Ayaiectories or balanced configurations, however.
typical manipulation plan consists of a sequence of maaipul - |, gection |11, the kinematic and dynamic equations of the

tion primitives chosen from a library of primitives, with@&a disk-on-disk system are derived. In Section II, a globally

primitive equipped with its own feedback controller. Theasymptotically stabilizing controller is designed based o

primitive under study in this paper is nonprehensile rallin oo\ stenning. Simulation and experimental results are pro
manipulation, where a single object rolls on the surface Of\ﬂded in Sections IV and V, respectively.

controlled manipulator. Problems of interest include plag
the motion of the manipulator to achieve the desired rolling Il. DYNAMICS OF THE DISK-ON-DISK

motion of the object (e.g., [2], [3]) and feedback control 10 | this section, we derive the kinematic and dynamic

stabilize the desired trajectory. o _ equations of a smooth planar object rolling on a smooth,
In this paper we study feedback stabilization of a canonic),qtion-controlled planar manipulator, referred to as the

rolling example: balancing a disk-shaped object on top of §,3n4» we then restrict to the special case of the disk-on-
disk-shaped manipulator in a vertical plane. We constraiisk in Section II-C.

the motion of the manipulator to rotation about its center. \ya gefine a coordinate frame,-uy, attached to the hand
Using backstepping and assuming rolling contact at allsime 5,4 letz, € R? be the position and, be the orientation

we derive a control law that asymptotically stabilizes they ihe frame in a world reference framey (Fig. 1). The

object to the balanced position from any initial state. Th%osition and orientation of the frame,-v, attached to the
basin of attraction is necessarily reduced, but still lavgeen .o hiar of mass of the object are given by € R? and 6,

the contact is modeled according to Coulomb friction. W‘?espectively.

conclude by demonstrating a successful implementation of 1o curve of the hand is parameterized by an arclength

the rolling controller using high-speed vision feedback. parameters, € R, and the shape of the hand is given by

Several examples of control of rolling have been studiegh(sh) € R? in the un-vn frame. The parametes, increases

@n the_ literature. Among them is the ball and beam systeny nterclockwise along the hand. The object is parame-
in which a ball rolls with one degree of freedom along ggi,eq by the arclength parametes, where s, increases
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neering, Northwestern University, Evanston, IL, 60208 AU&. M. Lynch  ¢o(so). With this choice, the pure rolling assumption yields
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{i cryu, knlynch}@orthwestern. edu. Fabio Ruggiero is h h ° y_ PP ”p. duri li £ h.‘g’ '
with the Dipartimento di Informatica e Sistemistica, Univexsilegli Studi we havesh = s, at all times during rolling. For this reason,
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Fig. 1. A schematic of a general planar rolling manipulatiostesn. The Fig. 2. A schematic of the disk-on-disk system. Both the hardiabject

up-vn frame is attached to the hand afig denotes its orientation with gre circular disks, and the hand is constrained to rotatetdt®center.
respect to thec-y world frame. Similarly, theuo-vo frame is attached to

the object and denotes the frame's orientation. To determine the relationship af, and its derivatives on

Assuming the two disks maintain rolling contact at allg and its derivatives, we start with the condition that the
times, the system’s configuration is fully specified py= ~ contact point on the hand and object are coincident,
[zl 6, sn)T.
zh + R(6h)cn(sh) = o + R(0o)co(sn), (6)
A. Kinematic Equations

: i . where the rotation matri®(6) € SO(2) is given by
As the whole configuration of the system can be described

by ¢ = [z],60n sn|T, in this subsection we express the cosl —sinh
object’s positionz, and orientatiort,, and their derivatives, R(0) = {sin@ cos 6 ] :
in terms ofg and its derivatives.
At a contact pointen(sp), the tangent vector is expressedNoticing that%R(G) — 9'3(9 4 g) and plugging in (4), we
ast = ¢, = [uf,,v}]T at an anglep = atanZv},, up,) in the  obtain
up-vn frame, where the symbalindicates a derivative with
respect to the parameter. Using the prop¢|r§g§|| =1 of To = oh + R(On)cn — R(65)co, @)
arclength parameterizations, the signed curvature oféaine h o= dn + (R(Hh + T)en — R(fo + %)Co) b

can be written as , N
dé + (R(Hh)ch — ke R(0o + 5 )co — R(Go)co) $h.  (8)
h / " " /
—— = up(Sh) vy (Sh) — up (Sh)vR(sh), 1 . ) )
dsn h(sn)vh (sn) n(sn)vh(sn) ) The expression foi, is omitted due to length.
wherer;, > 0 means the hand is convex at the contact point. When the relative motion between the hand and the object
Similarly, the signed curvature of the object is given by 1S of interest, the contact kinematics derived in [9] can be
used if the relative curvature is invertible.
dgo

Ko(sn) = dsn ug(sn)vg (sh) — g (sn)vg(sh).  (2)

Due to the opposite sense of the parameterizatign< 0
indicates convexity. The relative curvaturesgtis

kh(sh) =

B. Dynamic Equations

The dynamic equations are derived from Lagrange’s equa-
tions
doL 0L

Kr(sh) = Kn(sh) — Ko(Sh), =T
q q

©)

wherek, > 0 is required to guarantee a single contact point ) o
locally. with LagrangianL = K — U, where the kinetic energy
The angle of the tangent vector measured in the worf@nd potential energy/ are given by

reference frame is written as 1 ] )

K= (mha’:hT i+ In62 + moilio + Ioag) . (10)
‘9h + ¢h = 90 + Qbo 0

— T T

Jcing 0 = gtmaf + o) |{]. 1)

0o = On + atanZuvy, uy,) — atanvy, ug), (8) wheremy, I, andmy, I, are the mass and moment of inertia

b0 = b1+ $nre (sn) (4) of the hand and object, respectively, ani$ the gravitational

o ) nens o acceleration. Inserting the expressions (4), (7), andn®) i

0o = bn + nkir(sn) + Sprr(sn)- (%) Lagrange’s equations (9) yields the dynamic equations.



C. Equations for the Disk-on-Disk System constraint can be expressed abstractly as a constrainteon th

We now derive the specific equations for the disk-on-disRtat€(¢; ¢) and controlv:
shown in Fig. 2. The radii of the hand and object disksrare 0< F(q,q,v) < .

andr,, respectively, and the hand is constrained to rotation o o
only, i.e.,zn = 0. The larger the friction coefficient, the larger the volume

Given a contact point expressed in v, and theug-vo of the state-control space that satisfies the friction dosms
frames respectively as for rolling. Outside of this volume, the object slips or all
from the hand.

en(sn) = —rpsin(sn/rn) colsh) = —rosin(sn/ro)
h{sh) = rhcos(sn/mn) |7 h) = —rocos(sn/ro) | ’ I1l. STABILIZATION CONTROL
_ 2) In this section we propose a stabilizing controller based
from (1) and (2) we obtain on backstepping.
T+ To The system described by (18) can be expressed in state-
kh=1/rh, ko= —1/ro, kr= T (13)  space form with the state variable = [0y, 6p, sn, sn|7 as
Consequently, using (3)—(5), we obtain
6o = 6 o = Gt i, o = Gt e, (14 b= (202)
o = Oh + KrSh, Go = Oh + KrSh, 0o = Oh + KrSh. ( ) Sy =, (ZOb)
Substituting (12) into (7) and (8) and rearranging, we have 23 = za, (20c)
_ | (rn+ 7o) sin(fh + sn/rn) . he(2) s 20d
To = [ (rh + 10) cos(On + sn/rh) |’ (15) Z4 M2 Mo " (20d)

) —(rh + 7o) cos(6n + Sh/rh)(éh + 4p/7h) The job of the controller is to drive both velocities and
o= . ; . (16) ; . .
—(rh 4 7o) sin(Bn + sn/rn)(0n + én/rh) z4 to zero with the center of mass of the object directly
) ) . ’ ) above the center of the hand (the balanced position). It
Inserting these expressions into Lagrange’s equations, We ot possible to independently control both and =,

solve for the dynamics however; they couple to determine the location of the center
M1 0n + myodh + hi(q) = (17a) of mass of thg objept. For thl§ reason, we proleqt away one
. i of the state dimensions and introduce the following change
ma16h + Mmazn + ha(q) =0, (170) " of coordinates:
wheremy; = In+Io+mo(Th+70)%, miz2 = mai = mo(Th+ _ : j
o, LT AT e 5’( h 20) e R o(rh m = Mmaash + ma2bh, (21a)
70)”/Th+ Iokr, M2z = ki (morg + Io), h1(q) = —mog(rn + — O + sn/r (21b)
7o) sin(6h + sn/rh), andha(q) = —meogrorr sin(bn + sn/rh)- M2 h F Sh/Th,
In our experimental implementation, we use a highly- §=bh (21c)

ghgared harm.on-ic drive DC mqtor to drive _;he hhandh. Fgﬁ‘he new statey, represents the angular position of the center
this rleason, Ilt IS more convenient tol 00||'13| Fr t eI andst the object measured counterclockwise with respect to the
angular acceleration (created by a low-level acceleration ,yis of the world frame. This is the only configuration we

controller) as the system input rather than the torge are concerned with. The statgs and ¢ span the original

in (17a). I_Def_lnlng this new accele_ratlon control as= On velocity spacezy-z,. The reduced dynamics can now be
and substituting into (17), we rewrite the dynamics as

written
Oh = v, , (183) 7.]1 _ mog(Th + 7“0) SiIl(?]Q), (22a)
N Th
Sp = —7(m121} + hQ(Q)) (18b) S————
m22 =0
i i ionshi _ 1 m
By plugging (18) into (17a)_, the _relatlonshlp between the g = M+ (1 a2 )f’ (22b)
hand torquer, and the new input is found to be Th1n22 Th11122
~— ——
2 =02 =0
mig mi2 3
= — 2y - 22 . 1 :
™ (mll m22> ! mM22 ha+ (19) §=w. (22¢)
D. Friction Constraints We now use the following two theorems to apply backstep-

The previous derivations are predicated on the assumpti§#!d t0 the governing equations (22).
that sn — s, at all times, i.e., roling is guaranteed. For 1neorem3.1 ([10], [11]): Consider the system
some states and controls, however, rolling requires the han 3= f(2,8) (23a)
to “pull” on the object (negative normal forc,), and in é=u (23b)
others the required friction force magnituftanay be greater
than i f,, wherep is the Coulomb friction coefficient. The wherez € R™, £ € R, and f is a smooth function satisfying
condition that the contact forces satisfy the contactifiict f(0,0) = 0. Assume that the subsystem (23a) is stabilized by



a smooth state feedback control 1gw= «(z) with «(0) = Ny Y MY DY Y Y Y (O
0 and letV(z) be a smooth, positive-definite, and radially %@@@@@@@@
unbounded Lyapunov function satisfying

0.2 T T T T T T T

gf(z,oz(z)) <0, Vz#0.

Then the following state feedback control law

e ov
u= gf(zyf) - gh(zvﬂ) —cp (24)
globally asymptotically stabilizes the origin of the ovéra

system (23), where > 0, u = ¢ — a(z), and

1
h(z, p) := / 01(2,¢) ds.
o L 9C Jea)tsu _
Proof: The result follows from the Lyapunov function e s 1 15 2
W(z,&) = V(z) + 242 See [10] or [11]. [ e e

. . . Fig. 3. Simulation results showing, n2, and{ converging to zero. The
Theorem 3.2 ([11], [12]): Consider the nonlinear system quantity ;¢ is plotted instead of so it can be shown on the same scale

. asn; andns. The icons at top show the configurations of the disks every
Z_ = f(z) +9(2)¢ (25) 0.25 seconds.

E=u
wherez € R, and f, g are smooth functions satisfying ¢ = 01(17717772) with a Lyapunov functionW (i1,72) =
£(0) = 0. Let the state feedbadk= «(z) satisfyinga(0) = Vm) + zu°. ] )
0 globally asymptotically stabilize = 0. Then the following ~_ We next apply Theorem 3.2, the affine version of Theorem
smooth state feedback 3.1, to the overall system (22) in which thesubsystem is
dar oV in affine form7n = f(n) + g(n)¢. This yields the globally
= &(f(z) +9(2)¢) — 59(2) —c(€—a(z)) (26) asymptotically stabilizing state feedbackfor the overall
. . system (22). The associated Lyapunov function for the over-
globally asymptotically stabilizez,&) = O for the overall system is given by = W (11, 72) + %(5 — ). -
system (25). We conclude by noting that the dynamics of the trans-
Proof: See [11] or [12]. _ B formed disk-on-disk system (22) have the same form as the
Now we propose a glqbally asymptotically StabIIIZIngdynamics of the inertia wheel pendulum [13], which consists
controller for the disk-on-disk system (22). of a free-swinging pendulum with an actuated wheel at the

Prop_osition 3.3: The subgystem Coq;isting of (22a) ano“ree end. Olfati-Saber presents an alternative controlftaw
(22b) is globally asymptotically stabilized t6;,72) = the inertia wheel pendulum in [11].
(0,0) with the state feedback = a1 (11, 72), where

IV. SIMULATION RESULTS

e L {aa[al sin(n2)] — a—vh(n,u) —cp— 02771} , Simulation results with the control law (28) are shown in
o3 { Om Om b7y Figs. 3-4. The values of parameters used in the simulation
(27) are the actual values of the disk-on-disk system constlucte
where a(n;) = —cotanh(cimy) with 0 < ¢g < § and  for experimentim, = 0.142 kg, 7o = 0.08 m, I, = 0.4544 x
a >0, V(m) = 3nd p = n —alm), ¢c >0, and 1073 kg-m?, r, = 0.15 m, andl, = 5.36 x 10~ kg-m?. All
h= fol oy cos(a(ny) + su)ds as defined in Theorem 3.1.  angles are measured in radians, and all units are Sl unless
Furthermore, the overall system (22) is globally asympto@therwise noted.
ically stabilized to the origin(ny, n2,£) = (0,0, 0) with the According to Proposition 3.3, global asymptotic stability
state feedback guaranteed for positive gairigy, c1, ¢, k) with ¢ < 7/2. In
day OW practice, because the control law is nonlinear, gains iyigld
= Tn[f(n) +g(n)¢] — 37779(77) — k(€ —a1(n), (28)  good transient performance are found experimentally. We
Lo chose(cg, c1, ¢, k) = (1.5,5,4,4) for the simulation. Given
whereW (11,72) = V(m) +zp°, k > 0,andf(n), g(n) are  the initial conditions,(0) = 0.175 and assuming(0) =
given by ther-subsystem in affine form such that 0, the corresponding initial conditions df, and s, are

. oy sin(n2) 0 calculated a9),(0) = 0.502 and sp(0) = 0.026 from (14)
n=fmn)+g9m¢= { o } + [03] 13 and (21b).
Proof: First, the state feedbaclk, = «(n;) globally In the simulation, as shown in Fig. 3, all state variabjes

asymptotically stabilizes the subsystem (22a) with a Lyas,, and{ converge to zero, which physically means that the

punov functionV (n;) = %nf. Next, the input transformation object stabilizes to the position directly above the hand an
¢ = L (u— o9m) reduces (22b) ta, = u. Now applying that the angular velocities of the hand and object converge

g3

Theorem 3.1 for thig)-subsystem vyields the state feedbacko zero. The icons above Fig. 3 show the configurations of
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Fig. 6. Schematic of the experimental set-up showing signdispaith a
side view of the hand and object. The actual disk-on-diskesyss tilted
85.2° with respect to the horizontal plane.

on the object, allowing us to calculate its position and
orientation. This information is sent to the controller Pg1
stack via TCP/IP.

——— - B. Controller Implementation

Eﬁm%mcmﬁ,: 'Es,kconqoci'osrlf §X,§}g[;";§2feﬂ ii#g;;gﬁdh\iz;ﬂ,f;ﬁ?;gés The control algorithm is written in C++ and runs on the
for visual feedback of the object. PC104 stack. Using the QNX RTOS, the control loop runs
at 800 Hz in sync with the vision system. As the control
the two disks every 0.25 seconds. Note that the orientatiggyy requires the angular velocity of each disk, we apply
of the hand does not converge to zero while the velocityifferencing plus low-pass filters to the encoder and vision
of the hand¢ goes asymptotically to zero. This is becausegata to estimate velocity.
as mentioned earlier, we do not directly contfl or s, Since our control law (28) generates acceleration com-
individually, thus those variables are not necessarilyiredl  mandsv, we implement an additional acceleration control
to converge to zero. Figure 4 plots the minimum frictiongop converting these controls to the motor current requaest

coefficient . needed to ensure rolling as a function offrom the motor amplifier (Copley Controls Junus 800-1468).
time. At the beginning of the run, when the object is leftrhis inner controller is written

of center, the large control accelerationrequires a large . o . .
friction coefficient to prevent slipping. As the object bews icom = it (6h, v) + kp(bret — On) + ka(bret — On),  (29)
balanced above the hand, the friction coefficient requiced fwhereicom is the commanded motor current, is a feed-

rolling drops to zero. forward motor current based on the hand’s angular velocity

V. EXPERIMENTAL RESULTS and requested acceleratidhys andd,es are the desired hand

i position and velocity obtained by integrating the acceiena

A. Experimental Setup commandy(t), andk, andkq are PD gains. The feedforward
Figure 5 shows our disk-on-disk experimental setup. Theiotor current is based on the simple model

hand is the lower disk, actuated by a harmonic drive DC . ] . .

motor (Harmonic Drive RH-8D 6006) equipped with a 50:1 (i Jm)bh = kmi — pabhh — fsSQ0h), (30)

gear box and a 500 ppr quadrature encoder giving 100,0Q¢here.j, and.J;, denote the inertia of the hand and the motor

counts per revolution at the output shaft. The ObjeCt disk il%tor, respective|ykm is the motor constant, is the motor

free to roll on the hand. The disk-on-disk system is mOUnte&Jrrent,ud is a viscous friction Coefﬁcientfs is the torque

on an air table that provides frictionless support in a plangquired to overcome friction from rest, and the function

tilted 85.2° with respect to horizonta99.6% of full gravity). Sgr() returns the Sign of its argument_ The inertia of the

Both hand and object are madelgf! inch thick acrylic and  motor .J;, is the reflected inertia due to the gear box. We

the hand is encircled by a rubber band to increase frictionestimated the values dfy, 1g, and fs in motor modeling
The hand control algorithm runs on a PC104 stack witlxperiments, and the feedforward currénis calculated by

a QNX real-time operating system (RTOS). In addition taybstituting the commanded acceleratioand current hand

the angular position data from the encoder of the hangelocity 6}, into (30). After estimating the parameters of the

the controller utilizes the state of the object diSk, Whin'feedforward model, the PD gains were tuned experimenta”y

is determined using a high-speed vision system. The visiag reject modeling errors, yieldingp, kq) = (150,0.9).
system, consisting of a PhotonFocus TrackCam camera, a

Microenable 1Il frame grabber, and a Windows PC, allow$> Results and Discussion
us to implement real-time control of the system at 800 Hz. Figure 7 shows the state variablés,,n,,&) for one
The vision program, written in C++, tracks two dots (LEDs)experimental run. The initial condition of the experimeratsv
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Fig. 7. Experimental result showing the state variabjes o, £. The VI. CONCLUSIONS

control action starts at = 0.75 s. In this paper, we derived the kinematic and dynamic
equations of the disk-on-disk system. Based on these, we
derived and demonstrated a controller to balance the object

set at = (0,0.119,0), which means that initiall ) : - X
(1, 72,€) = (0, ,0) y sk at the unstable upright position. Future work will fecu

both disk t rest and the object disk laced wi ) ) A
Ofh CUSKs Were at Test and tne 9Dject cisk Was pace WIon motion planning and feedback stabilization of a broad

its center of mass at an angle @fl19 rad (.82°) relative ' : . . .
to the world y-axis. The object disk was kept at rest atclass of rolling trajectories for smooth planar objectdimgl

the initial position using a small block until control aatio ?r;l ;r\nootg planar r;a;ndsd(other than disks) moving with a
starts att = 0.75 s. After ny settles within the range of ull three degrees-ot-ireedom.
+5 % of the initial condition, i.e.0.006 rad, att = 1.93 s, ACKNOWLEDGMENTS

the RMS error ofn, is 0.0018 (0.103%). Similarly, after — \ye thank Philip Dames for his help with the construction

t =1.93 s, the RMS errors ofy, and¢, which are related ¢ 0 eynerimental setup, Nelson Rosa for writing the visio

to the angular velocities of the object and hand, @824 e and Georg &z for helpful discussions. This work was
and0.1438, respectively. Figure 8 shows that the inner |°°%upported by NSF grant 11S-0964665.

acceleration controller (29) provides satisfactory tmaghkof
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