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Abstract— This paper presents stabilization control of a
rolling manipulation system called the disk-on-disk. The system
consists of two disks in which the upper disk (object) is free to
roll on the lower disk (hand) under the influence of gravity. The
goal is to stabilize the object at the unstable upright position
directly above the hand. We use backstepping to derive a control
law yielding global asymptotic stability. We present simulation
as well as experimental results demonstrating the controller.

I. I NTRODUCTION

Nonprehensile manipulation primitives such as rolling,
sliding, pushing, and throwing are commonly used by hu-
mans but are often avoided by robots, who seem to prefer
grasping. Dynamic nonprehensile manipulation raises chal-
lenges in high-speed sensing and control, as the manipulated
object is not in static equilibrium throughout the process.
An advantage, however, is that dynamics can be exploited to
help the robot control object motions that would otherwise
be impossible [1], [2].

Our long-term goal is to develop a unified framework for
planning and control of dynamic robotic manipulation. A
typical manipulation plan consists of a sequence of manipula-
tion primitives chosen from a library of primitives, with each
primitive equipped with its own feedback controller. The
primitive under study in this paper is nonprehensile rolling
manipulation, where a single object rolls on the surface of a
controlled manipulator. Problems of interest include planning
the motion of the manipulator to achieve the desired rolling
motion of the object (e.g., [2], [3]) and feedback control to
stabilize the desired trajectory.

In this paper we study feedback stabilization of a canonical
rolling example: balancing a disk-shaped object on top of a
disk-shaped manipulator in a vertical plane. We constrain
the motion of the manipulator to rotation about its center.
Using backstepping and assuming rolling contact at all times,
we derive a control law that asymptotically stabilizes the
object to the balanced position from any initial state. The
basin of attraction is necessarily reduced, but still large, when
the contact is modeled according to Coulomb friction. We
conclude by demonstrating a successful implementation of
the rolling controller using high-speed vision feedback.

Several examples of control of rolling have been studied
in the literature. Among them is the ball and beam system
in which a ball rolls with one degree of freedom along a
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linear beam. The beam rotates in a vertical plane and the
ball rolls under gravity. To solve the stabilization problem,
approximate input-output linearization is used in [4]. In [5],
global asymptotic stability is achieved by a saturation control
law which uses state-dependent saturation levels. A related
problem is balancing a ball on a plate. In [6], a gimbal-
suspended plate is actuated by two independent motors to
control the position of a ball rolling on the plate. Another
type of ball and plate system is discussed in [7], where a
ball captured between two horizontal plates rolls in response
to the motion of one of the plates. The ball’s configuration
evolves according to the rolling kinematics (no dynamics).

For multi-fingered manipulation in [8], the rolling con-
straint is exploited in order to control both the pose of the
manipulated object and the paths of contact points along the
object’s surface. The roles of the shape and motion of the
manipulator on the motion of the rolling object were studied
in the context of the “butterfly” contact juggling trick in [3].
No analysis is provided of feedback stabilization of rolling
trajectories or balanced configurations, however.

In Section II, the kinematic and dynamic equations of the
disk-on-disk system are derived. In Section III, a globally
asymptotically stabilizing controller is designed based on
backstepping. Simulation and experimental results are pro-
vided in Sections IV and V, respectively.

II. DYNAMICS OF THE DISK-ON-DISK

In this section, we derive the kinematic and dynamic
equations of a smooth planar object rolling on a smooth,
motion-controlled planar manipulator, referred to as the
“hand.” We then restrict to the special case of the disk-on-
disk in Section II-C.

We define a coordinate frameuh-vh attached to the hand
and letxh ∈ R

2 be the position andθh be the orientation
of the frame in a world reference framex-y (Fig. 1). The
position and orientation of the frameuo-vo attached to the
center of mass of the object are given byxo ∈ R

2 and θo,
respectively.

The curve of the hand is parameterized by an arclength
parametersh ∈ R, and the shape of the hand is given by
ch(sh) ∈ R

2 in the uh-vh frame. The parametersh increases
counterclockwise along the hand. The object is parame-
terized by the arclength parameterso, where so increases
clockwise, and the object shape in theuo-vo frame is given by
co(so). With this choice, the pure rolling assumption yields
ṡh = ṡo. By an appropriate choice of the location ofso = 0,
we havesh = so at all times during rolling. For this reason,
we do not refer toso during rolling.
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Fig. 1. A schematic of a general planar rolling manipulation system. The
uh-vh frame is attached to the hand andθh denotes its orientation with
respect to thex-y world frame. Similarly, theuo-vo frame is attached to
the object andθo denotes the frame’s orientation.

Assuming the two disks maintain rolling contact at all
times, the system’s configuration is fully specified byq =
[xT

h , θh, sh]
T .

A. Kinematic Equations

As the whole configuration of the system can be described
by q = [xT

h , θh, sh]
T , in this subsection we express the

object’s positionxo and orientationθo, and their derivatives,
in terms ofq and its derivatives.

At a contact pointch(sh), the tangent vector is expressed
as t = c′h = [u′

h, v
′

h]
T at an angleφ = atan2(v′h, u

′

h) in the
uh-vh frame, where the symbol′ indicates a derivative with
respect to the parameter. Using the property‖ dch

dsh
‖ = 1 of

arclength parameterizations, the signed curvature of the hand
can be written as

κh(sh) =
dφh

dsh
= u′

h(sh)v
′′

h (sh)− u′′

h (sh)v
′

h(sh), (1)

whereκh > 0 means the hand is convex at the contact point.
Similarly, the signed curvature of the object is given by

κo(sh) =
dφo

dsh
= u′

o(sh)v
′′

o (sh)− u′′

o (sh)v
′

o(sh). (2)

Due to the opposite sense of the parameterization,κo < 0
indicates convexity. The relative curvature atsh is

κr(sh) = κh(sh)− κo(sh),

whereκr > 0 is required to guarantee a single contact point
locally.

The angle of the tangent vector measured in the world
reference frame is written as

θh + φh = θo + φo

yielding

θo = θh + atan2(v′h, u
′

h)− atan2(v′o, u
′

o), (3)

θ̇o = θ̇h + ṡhκr(sh), (4)

θ̈o = θ̈h + s̈hκr(sh) + ṡ2hκ
′

r(sh). (5)
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Fig. 2. A schematic of the disk-on-disk system. Both the hand and object
are circular disks, and the hand is constrained to rotate about its center.

To determine the relationship ofxo and its derivatives on
q and its derivatives, we start with the condition that the
contact point on the hand and object are coincident,

xh +R(θh)ch(sh) = xo +R(θo)co(sh), (6)

where the rotation matrixR(θ) ∈ SO(2) is given by

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]

.

Noticing that d
dt
R(θ) = θ̇R(θ + π

2 ) and plugging in (4), we
obtain

xo = xh +R(θh)ch −R(θo)co, (7)

ẋo = ẋh +
(
R(θh +

π
2 )ch −R(θo +

π
2 )co

)
θ̇h

+
(
R(θh)c

′

h − κrR(θo +
π
2 )co −R(θo)c

′

o

)
ṡh. (8)

The expression for̈xo is omitted due to length.
When the relative motion between the hand and the object

is of interest, the contact kinematics derived in [9] can be
used if the relative curvature is invertible.

B. Dynamic Equations

The dynamic equations are derived from Lagrange’s equa-
tions

d

dt

∂L

∂q̇
−

∂L

∂q
= τ (9)

with LagrangianL = K − U , where the kinetic energyK
and potential energyU are given by

K =
1

2

(

mhẋ
T
h ẋh + Ihθ̇

2
h +moẋ

T
o ẋo + Ioθ̇

2
o

)

, (10)

U = g(mhx
T
h +mox

T
o )

[
0
1

]

, (11)

wheremh, Ih andmo, Io are the mass and moment of inertia
of the hand and object, respectively, andg is the gravitational
acceleration. Inserting the expressions (4), (7), and (8) into
Lagrange’s equations (9) yields the dynamic equations.



C. Equations for the Disk-on-Disk System

We now derive the specific equations for the disk-on-disk
shown in Fig. 2. The radii of the hand and object disks arerh

and ro, respectively, and the hand is constrained to rotation
only, i.e.,xh = 0.

Given a contact point expressed in theuh-vh and theuo-vo

frames respectively as

ch(sh) =

[
−rh sin(sh/rh)
rh cos(sh/rh)

]

, co(sh) =

[
−ro sin(sh/ro)
−ro cos(sh/ro)

]

,

(12)
from (1) and (2) we obtain

κh = 1/rh, κo = −1/ro, κr =
rh + ro

rhro
. (13)

Consequently, using (3)–(5), we obtain

θo = θh + κrsh, θ̇o = θ̇h + κrṡh, θ̈o = θ̈h + κrs̈h. (14)

Substituting (12) into (7) and (8) and rearranging, we have

xo =

[
−(rh + ro) sin(θh + sh/rh)
(rh + ro) cos(θh + sh/rh)

]

, (15)

ẋo =

[
−(rh + ro) cos(θh + sh/rh)(θ̇h + ṡh/rh)

−(rh + ro) sin(θh + sh/rh)(θ̇h + ṡh/rh)

]

. (16)

Inserting these expressions into Lagrange’s equations, we
solve for the dynamics

m11θ̈h +m12s̈h + h1(q) = τh, (17a)

m21θ̈h +m22s̈h + h2(q) = 0, (17b)

wherem11 = Ih+Io+mo(rh+ro)
2, m12 = m21 = mo(rh+

ro)
2/rh + Ioκr, m22 = κ2

r (mor
2
o + Io), h1(q) = −mog(rh +

ro) sin(θh + sh/rh), andh2(q) = −mogroκr sin(θh + sh/rh).
In our experimental implementation, we use a highly-

geared harmonic drive DC motor to drive the hand. For
this reason, it is more convenient to consider the hand’s
angular acceleration (created by a low-level acceleration
controller) as the system input rather than the torqueτh

in (17a). Defining this new acceleration control asv = θ̈h

and substituting into (17), we rewrite the dynamics as

θ̈h = v, (18a)

s̈h = −
1

m22
(m12v + h2(q)). (18b)

By plugging (18) into (17a), the relationship between the
hand torqueτh and the new inputv is found to be

τh =

(

m11 −
m2

12

m22

)

v −
m12

m22
h2 + h1. (19)

D. Friction Constraints

The previous derivations are predicated on the assumption
that sh = so at all times, i.e., rolling is guaranteed. For
some states and controls, however, rolling requires the hand
to “pull” on the object (negative normal forcefn), and in
others the required friction force magnitudeff may be greater
thanµfn, whereµ is the Coulomb friction coefficient. The
condition that the contact forces satisfy the contact friction

constraint can be expressed abstractly as a constraint on the
state(q, q̇) and controlv:

0 ≤ F (q, q̇, v) ≤ µ.

The larger the friction coefficientµ, the larger the volume
of the state-control space that satisfies the friction conditions
for rolling. Outside of this volume, the object slips or falls
from the hand.

III. STABILIZATION CONTROL

In this section we propose a stabilizing controller based
on backstepping.

The system described by (18) can be expressed in state-
space form with the state variablez = [θh, θ̇h, sh, ṡh]

T as

ż1 = z2, (20a)

ż2 = v, (20b)

ż3 = z4, (20c)

ż4 = −
h2(z)

m22
−

m12

m22
v. (20d)

The job of the controller is to drive both velocitiesz2 and
z4 to zero with the center of mass of the object directly
above the center of the hand (the balanced position). It
is not possible to independently control bothz1 and z3,
however; they couple to determine the location of the center
of mass of the object. For this reason, we project away one
of the state dimensions and introduce the following change
of coordinates:

η1 = m22ṡh +m12θ̇h, (21a)

η2 = θh + sh/rh, (21b)

ξ = θ̇h. (21c)

The new stateη2 represents the angular position of the center
of the object measured counterclockwise with respect to the
y-axis of the world frame. This is the only configuration we
are concerned with. The statesη1 and ξ span the original
velocity spacez2-z4. The reduced dynamics can now be
written

η̇1 =
mog(rh + ro)

rh
︸ ︷︷ ︸

≡σ1

sin(η2), (22a)

η̇2 =
1

rhm22
︸ ︷︷ ︸

≡σ2

η1 +

(

1−
m12

rhm22

)

︸ ︷︷ ︸

≡σ3

ξ, (22b)

ξ̇ = v. (22c)

We now use the following two theorems to apply backstep-
ping to the governing equations (22).

Theorem 3.1 ([10], [11]): Consider the system

ż = f(z, ξ) (23a)

ξ̇ = u (23b)

wherez ∈ R
n, ξ ∈ R, andf is a smooth function satisfying

f(0, 0) = 0. Assume that the subsystem (23a) is stabilized by



a smooth state feedback control lawξ = α(z) with α(0) =
0 and letV (z) be a smooth, positive-definite, and radially
unbounded Lyapunov function satisfying

∂V

∂z
f(z, α(z)) < 0, ∀z 6= 0.

Then the following state feedback control law

u =
∂α

∂z
f(z, ξ)−

∂V

∂z
h(z, µ)− cµ (24)

globally asymptotically stabilizes the origin of the overall
system (23), wherec > 0, µ = ξ − α(z), and

h(z, µ) :=

∫ 1

0

[
∂f(z, ζ)

∂ζ

]

ζ=α(z)+sµ

ds.

Proof: The result follows from the Lyapunov function
W (z, ξ) = V (z) + 1

2µ
2. See [10] or [11].

Theorem 3.2 ([11], [12]): Consider the nonlinear system

ż = f(z) + g(z)ξ

ξ̇ = u
(25)

where z ∈ R
n, and f , g are smooth functions satisfying

f(0) = 0. Let the state feedbackξ = α(z) satisfyingα(0) =
0 globally asymptotically stabilizez = 0. Then the following
smooth state feedback

u =
∂α

∂z
(f(z) + g(z)ξ)−

∂V

∂z
g(z)− c(ξ − α(z)) (26)

globally asymptotically stabilizes(z, ξ) = 0 for the overall
system (25).

Proof: See [11] or [12].
Now we propose a globally asymptotically stabilizing

controller for the disk-on-disk system (22).
Proposition 3.3: The subsystem consisting of (22a) and

(22b) is globally asymptotically stabilized to(η1, η2) =
(0, 0) with the state feedbackξ = α1(η1, η2), where

α1 =
1

σ3

{
∂α

∂η1
[σ1 sin(η2)]−

∂V

∂η1
h(η, µ)− cµ− σ2η1

}

,

(27)

where α(η1) = −c0 tanh(c1η1) with 0 < c0 < π
2 and

c1 > 0, V (η1) = 1
2η

2
1 , µ = η2 − α(η1), c > 0, and

h =
∫ 1

0
σ1 cos(α(η1) + sµ)ds as defined in Theorem 3.1.

Furthermore, the overall system (22) is globally asymptot-
ically stabilized to the origin(η1, η2, ξ) = (0, 0, 0) with the
state feedback

v =
∂α1

∂η
[f(η) + g(η)ξ]−

∂W

∂η
g(η)− k(ξ − α1(η)), (28)

whereW (η1, η2) = V (η1)+
1
2µ

2, k > 0, andf(η), g(η) are
given by theη-subsystem in affine form such that

η̇ = f(η) + g(η)ξ =

[
σ1 sin(η2)

σ2η1

]

+

[
0
σ3

]

ξ.

Proof: First, the state feedbackη2 = α(η1) globally
asymptotically stabilizes the subsystem (22a) with a Lya-
punov functionV (η1) =

1
2η

2
1 . Next, the input transformation

ξ = 1
σ3

(u − σ2η1) reduces (22b) tȯη2 = u. Now applying
Theorem 3.1 for thisη-subsystem yields the state feedback
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Fig. 3. Simulation results showingη1, η2, andξ converging to zero. The
quantity 1

10
ξ is plotted instead ofξ so it can be shown on the same scale

asη1 andη2. The icons at top show the configurations of the disks every
0.25 seconds.

ξ = α1(η1, η2) with a Lyapunov functionW (η1, η2) =
V (η1) +

1
2µ

2.
We next apply Theorem 3.2, the affine version of Theorem

3.1, to the overall system (22) in which theη-subsystem is
in affine form η̇ = f(η) + g(η)ξ. This yields the globally
asymptotically stabilizing state feedbackv for the overall
system (22). The associated Lyapunov function for the over-
all system is given byW̄ = W (η1, η2) +

1
2 (ξ − α1)

2.
We conclude by noting that the dynamics of the trans-

formed disk-on-disk system (22) have the same form as the
dynamics of the inertia wheel pendulum [13], which consists
of a free-swinging pendulum with an actuated wheel at the
free end. Olfati-Saber presents an alternative control lawfor
the inertia wheel pendulum in [11].

IV. SIMULATION RESULTS

Simulation results with the control law (28) are shown in
Figs. 3-4. The values of parameters used in the simulation
are the actual values of the disk-on-disk system constructed
for experiment:mo = 0.142 kg, ro = 0.08 m, Io = 0.4544×
10−3 kg·m2, rh = 0.15 m, andIh = 5.36× 10−3 kg·m2. All
angles are measured in radians, and all units are SI unless
otherwise noted.

According to Proposition 3.3, global asymptotic stabilityis
guaranteed for positive gains(c0, c1, c, k) with c0 < π/2. In
practice, because the control law is nonlinear, gains yielding
good transient performance are found experimentally. We
chose(c0, c1, c, k) = (1.5, 5, 4, 4) for the simulation. Given
the initial conditionη2(0) = 0.175 and assumingθh(0) =
0, the corresponding initial conditions ofθo and sh are
calculated asθo(0) = 0.502 and sh(0) = 0.026 from (14)
and (21b).

In the simulation, as shown in Fig. 3, all state variablesη1,
η2, andξ converge to zero, which physically means that the
object stabilizes to the position directly above the hand and
that the angular velocities of the hand and object converge
to zero. The icons above Fig. 3 show the configurations of
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slipping at the contact during stabilization. The frictionforce changes sign
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Fig. 5. The disk-on-disk experimental setup. The hand is actuated by a
harmonic drive DC motor. A high speed camera and vision system isused
for visual feedback of the object.

the two disks every 0.25 seconds. Note that the orientation
of the hand does not converge to zero while the velocity
of the handξ goes asymptotically to zero. This is because,
as mentioned earlier, we do not directly controlθh or sh

individually, thus those variables are not necessarily required
to converge to zero. Figure 4 plots the minimum friction
coefficient µ needed to ensure rolling as a function of
time. At the beginning of the run, when the object is left
of center, the large control accelerationv requires a large
friction coefficient to prevent slipping. As the object becomes
balanced above the hand, the friction coefficient required for
rolling drops to zero.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Figure 5 shows our disk-on-disk experimental setup. The
hand is the lower disk, actuated by a harmonic drive DC
motor (Harmonic Drive RH-8D 6006) equipped with a 50:1
gear box and a 500 ppr quadrature encoder giving 100,000
counts per revolution at the output shaft. The object disk is
free to roll on the hand. The disk-on-disk system is mounted
on an air table that provides frictionless support in a plane
tilted 85.2◦ with respect to horizontal (99.6% of full gravity).
Both hand and object are made of1/4 inch thick acrylic and
the hand is encircled by a rubber band to increase friction.

The hand control algorithm runs on a PC104 stack with
a QNX real-time operating system (RTOS). In addition to
the angular position data from the encoder of the hand,
the controller utilizes the state of the object disk, which
is determined using a high-speed vision system. The vision
system, consisting of a PhotonFocus TrackCam camera, a
Microenable III frame grabber, and a Windows PC, allows
us to implement real-time control of the system at 800 Hz.
The vision program, written in C++, tracks two dots (LEDs)
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Frame 
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PC 104 

Stack

Junus

Amp

motor

camera
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motor
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Fig. 6. Schematic of the experimental set-up showing signal paths with a
side view of the hand and object. The actual disk-on-disk system is tilted
85.2◦ with respect to the horizontal plane.

on the object, allowing us to calculate its position and
orientation. This information is sent to the controller PC104
stack via TCP/IP.

B. Controller Implementation

The control algorithm is written in C++ and runs on the
PC104 stack. Using the QNX RTOS, the control loop runs
at 800 Hz in sync with the vision system. As the control
law requires the angular velocity of each disk, we apply
differencing plus low-pass filters to the encoder and vision
data to estimate velocity.

Since our control law (28) generates acceleration com-
mandsv, we implement an additional acceleration control
loop converting these controls to the motor current requested
from the motor amplifier (Copley Controls Junus 800-1468).
This inner controller is written

icom = iff (θ̇h, v) + kp(θref − θh) + kd(θ̇ref − θ̇h), (29)

where icom is the commanded motor current,iff is a feed-
forward motor current based on the hand’s angular velocity
and requested acceleration,θref and θ̇ref are the desired hand
position and velocity obtained by integrating the acceleration
commandv(t), andkp andkd are PD gains. The feedforward
motor current is based on the simple model

(JL + Jm)θ̈h = kmi− µdθ̇h − fssgn(θ̇h), (30)

whereJL andJm denote the inertia of the hand and the motor
rotor, respectively,km is the motor constant,i is the motor
current,µd is a viscous friction coefficient,fs is the torque
required to overcome friction from rest, and the function
sgn(·) returns the sign of its argument. The inertia of the
motor Jm is the reflected inertia due to the gear box. We
estimated the values ofkm, µd, and fs in motor modeling
experiments, and the feedforward currentiff is calculated by
substituting the commanded accelerationv and current hand
velocity θ̇h into (30). After estimating the parameters of the
feedforward model, the PD gains were tuned experimentally
to reject modeling errors, yielding(kp, kd) = (150, 0.9).

C. Results and Discussion

Figure 7 shows the state variables(η1, η2, ξ) for one
experimental run. The initial condition of the experiment was
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Fig. 7. Experimental result showing the state variablesη1, η2, ξ. The
control action starts att = 0.75 s.

set at(η1, η2, ξ) = (0, 0.119, 0), which means that initially
both disks were at rest and the object disk was placed with
its center of mass at an angle of0.119 rad (6.82◦) relative
to the world y-axis. The object disk was kept at rest at
the initial position using a small block until control action
starts att = 0.75 s. After η2 settles within the range of
±5 % of the initial condition, i.e.,0.006 rad, att = 1.93 s,
the RMS error ofη2 is 0.0018 (0.103◦). Similarly, after
t = 1.93 s, the RMS errors ofη1 and ξ, which are related
to the angular velocities of the object and hand, are0.0024
and0.1438, respectively. Figure 8 shows that the inner loop
acceleration controller (29) provides satisfactory tracking of
the commanded hand accelerationv.

The control gains used in our experiments are
(c0, c1, c, k) = (0.6, 5.0, 3.5, 3.5), which are similar
but not identical to our simulation gains. The simulation
and experiment differ in a number of ways, including
discrete-time implementation, approximate control of the
motor acceleration, quantized position sensing, continuous
small perturbations from the air table, etc. We found
that these experimental gains reduced the appearance of
small-amplitude limit cycles near the balanced configuration.

The friction coefficient to prevent slipping is required to
be greater than 0.31 for this experiment, which is the largest
at the beginning of the run. The actual friction coefficient
of 2.0, which is obtained from an empirical measurement,
ensures rolling during the experiment.

We might ask whether it is possible to balance the object
at a position not directly above the center of the hand. This is
not practically possible, as the vertical contact force needed
to cancel gravity necessarily creates a moment about the
object’s center of mass. This means that the object (and the
hand) must rotate at a constant angular acceleration, resulting
in unbounded velocities. This can be seen in equations (22)
by plugging a constant value intoη2 and settingη̇2 = 0.

We are currently working on another valid control objec-
tive of stabilization at the upright position while both the
hand and object disks rotate (roll) at constant velocities or
rotate to a specific orientation.
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Fig. 8. Experimental result showing the command and actual accelerations.
The actual acceleration follows the command acceleration satisfactorily.

VI. CONCLUSIONS

In this paper, we derived the kinematic and dynamic
equations of the disk-on-disk system. Based on these, we
derived and demonstrated a controller to balance the object
disk at the unstable upright position. Future work will focus
on motion planning and feedback stabilization of a broad
class of rolling trajectories for smooth planar objects rolling
on smooth planar hands (other than disks) moving with a
full three degrees-of-freedom.
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