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The aim of the present work was to investigate the microbiological, chemical, and sensory characteristics of red
wine subjected to post-fermentationmaceration that was extended to 90 days. For this purpose, the ‘Aglianico di
Taurasi’ grape was used as a case study. The total yeast concentration increased until day 40 of maceration and
decreased thereafter, whereas the concentration of lactic acid bacteria slightly increased. Dekkera/Brettanomyces
spp. and acetic acid bacteria were not detected. The yeast communitywas composed of Saccharomyces cerevisiae,
Zygosaccharomyces bisporus, Metschnikowia pulcherrima, Hanseniaspora guilliermondii, Hanseniaspora uvarum,
Pichia guilliermondii, Aureobasidium pullulans and Debaryomyces carsonii. Nine S. cerevisiae strains were detected
at high levels at different times of maceration.
The results of all the conventional chemical analyses of thewineswere in agreementwith the regulations of com-
mercial production and, interestingly, the changes in terms of concentration demonstrated the presence of yeast
and LAB populations that were not only alive but also in a metabolically active state until day 90 of maceration.
The alcohol and glycerol contents slightly increased until day 90. The concentrations of malic acid decreased,
whereas those of lactic acid slightly increased throughout the maceration process.
Furthermore, different durations ofmaceration resulted in significant differences in the total polyphenol content,
whichwas higher at 40–50 days. Themain phenolic compoundswere benzoic and cinnamic acids and catechins.
Interestingly, the highest ratio between (+)-catechin and (−)-epicatechinwas found on day 40. In addition, the
highest antioxidant activity was observed between days 40 and 50. The concentration of volatile organic com-
pounds, which were mainly represented by alcohols, increased until the end of the maceration process. Sensory
analysis revealed that samples that were subjected to maceration for a long period of time showed the highest
odour and taste complexity and no off-odours and/or off-flavours were detected. These data confirmed that ex-
tending post-fermentation maceration to 90 days has no negative impact on the microbiological, chemical and
sensory composition of wines, but affects the polyphenol content and potential health benefits of the resulting
wine.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ‘Aglianico di Taurasi’ grapevine is one of the economically
most important cultivars of the Campania region (Pomarici et al.,
2004). The quality of the resulting wine—the highest category is
‘Taurasi D.O.C.G.’—is well recognised (Piombino et al., 2004) and its
composition varies significantly depending on several factors, from
agronomic practices to the technology of vinification (Mazzei et al.,
2010).

Rate, kinetics, and duration of fermentation strictly depend on the
yeast population present in themust (Zambonelli, 1998). Themetabolic
activities of yeast on must components determine the production of
several compounds that significantly contribute to the aroma of wines
+39 091 6515531.
hetti).

ights reserved.
(Pretorius, 2000). An important step in the production of red wine is
represented by the maceration process, whose effects influence the
quality of the wine (Bautista-Ortín et al., 2005). The main purpose of
maceration is the extraction of colour compounds (anthocyanins and
phenolic substances) from the solid components of the grape. However,
this process also affects the sensory profile of the resulting wines
because other compounds such as aromatic substances and precursors,
nitrogen compounds, polysaccharides, andminerals are released during
themaceration process (De Beer et al., 2006). The transfer of these com-
pounds from grape skins and seeds to the must is influenced by several
factors, including temperature, contact duration, alcohol content, SO2

concentration, grape variety, maturation degree, and microbial popula-
tions (Romero-Cascales et al., 2005).

Four maceration techniques may be applied during wine production:
conventionalmaceration, consisting ofmoving themust from the bottom
of the vat to the top or immersing the floating layer of skins in the
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Fig. 1. Microbial loads of wine samples collected during experimental vinification of
“Aglianico di Taurasi” wine. Symbols: ●, TY on WL; ■, LAB on MRS; ▲, LAB on MLO.
Data represent the mean of four replicates of two independent experiments. Bars repre-
sent standard deviation of the mean. Vertical bars not visible are smaller than symbol
size. Abbreviations: AF, alcoholic fermentation; PFM, post-fermentation maceration.
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fermenting bulk or by transferring the entire liquid phase of the must
from one vat to another one (délestage); carbonic maceration, which is
carried out with whole grapes fermented in a CO2-rich environment;
pre-fermentation maceration or “cold soaking”, in which grape skins
and seeds are put in contact with the liquid must at low temperatures
one or two days before fermentation begins and the must is moved a
few times per day; and post-fermentation maceration of variable dura-
tion, i.e. a few days to 21 days (Ivanova et al., 2011; Gambuti et al., 2004).

The prolonged contact between grape skins and seeds with the
must allows a higher extraction of polyphenolic compounds, especially
catechins and proanthocyanidins (or condensed tannins) that are more
concentrated in the pulp of grape berries (Ivanova et al., 2011). Longer
macerations also provide stability of the colour compounds (Gómez-
Plaza et al., 2002). Among these, polyphenols are gaining interest due
to their positive effects (antioxidant, anticancer, cardioprotective, anti-
microbial, antiviral, and neuroprotective) on the consumers' health
(En-Qin et al., 2010).

The main objective of the present work was the evaluation of the
influence of long post-fermentation maceration on the evolution of
yeast and lactic acid bacteria (LAB) populations, release of polyphenol
compounds from skins and seeds, volatile organic compounds (VOCs),
and antioxidant activity of red wine. The ‘Aglianico di Taurasi’ cultivar
was used as model system.

2. Materials and methods

2.1. Experimental winemaking and sample collection

The experimental winemaking was carried out by prolonging the
contact between solid (grape skins) and liquid (wine) phases of grape
must to 90 days after the tumultuous phase of alcoholic fermentation.
This was considered an extension of the post-fermentation maceration
period.

The grapes of the ‘Aglianico di Taurasi’ grapevine were subjected to
the experimental vinification process that took place at the winery
‘Azienda Agricola Contrade di Taurasi’ located in Taurasi (Avellino, Cam-
pania, Italy) (41°00′11.94″N; 14°58′25.82″E).

Soon after harvest, the grapes were subjected to stemmer-crushing.
After placing the must into steel vats and adding potassium
metabisulphite (6 g/hL), it was inoculated with the autochthonous
starter strain Saccharomyces cerevisiae NF66 (culture collection of the
Department of Agricultural and Forest Science— University of Paler-
mo, Italy) (15 g/hl). The starter (used as paste) was characterised by
a viable cell concentration of 7.6 × 1012-colony forming units (CFU)/g.
Diammonium phosphate and diammonium sulphate salts (1:1)
(15 g/hL) were also added as activators of the fermentation process.
Eighty hectolitres of must were transferred into two stainless steel
vats (40 hL each) where the fermentation (8 days at 26 °C) took
place. During the tumultuous phase of alcoholic fermentation but
only after raising the cap, the content of each vat was mixed in
order to facilitate the contact between the solid and liquid phases
of the must. In particular, this was done three times per day in
order to remove the liquid phase from the bottom of a single vat to
the top of the same vat. Furthermore, from day 4 until day 8 of
alcoholic fermentation, each vat was subjected to one délestage per
day. This was done by transferring the entire liquid phase of the
must of each vat into empty stainless steel vats, letting them stand
for 4 h, and transferring the liquid phase back into the original vat.
The scope of this action was to facilitate the contact between the
liquid phase of the must with oxygen.

At the end of the tumultuous phase of alcoholic fermentation
(day 8), the bulk content (both liquid and solid phases) of each vat
was transferred into steel vats with a capacity of 5 hL. All vats were
filled until a final solid-to-liquid ratio of 1:3 was reached and closed
to avoid contact with oxygen. They were cooled at 16 ± 1 °C and
subjected to different durations of post-fermentation maceration:
13 d, which represented the control of post-fermentation macera-
tion, 20, 40, 50, 60, 70 and 90 d. The production of commercial
‘Aglianico di Taurasi’ wine after the tumultuous phase of alcoholic
fermentation is, in general, based on a maceration period of 13 d,
which is considered to be the minimal duration of maceration for
this wine. Thus, in this study, post-fermentation maceration of 13 d
was used as control trial. The vinification process, i.e., from grape
must until day 90 of post-fermentation maceration, was performed
in duplicate.

2.2. Microbiological analysis

Must samples collected from grapemust until the end of maceration
were serially diluted in Ringer's solution (Sigma-Aldrich, Milan, Italy).
Decimal dilutions were spread-plated (0.1 mL) onto Wallerstein Labo-
ratory (WL) nutrient agar (Oxoid, Basingstoke, UK) and incubated at
28 °C for 48–72 h to determine total yeast (TY) counts. The sample
dilutionswere also spread-plated onto Dekkera/Brettanomyces differen-
tial medium (Rodrigues et al., 2001) and incubated at 25 °C for 14 d to
detect presumptive Dekkera/Brettanomyces spp.

The Dekkera/Brettanomyces population was also counted by filtering
(0.45-μm pore size filter, Sartorius, AubagneCedex, France) the samples
using the same media and incubation conditions reported above. To
count the lactic acid bacteria (LAB), the sample dilutions were pour-
plated ontoMan, Rogosa, and Sharpe (MRS) agar (Oxoid) and incubated
at 28 °C for 48–72 h, and onto medium for Leuconostoc oenos (MLO)
agar (Caspritz and Radler, 1983) and incubated at 28 °C for 5 d. The
latter medium was used for the enumeration of acidophilic LAB. The
acetic acid bacteria (AAB) population was enumerated onto Kneifel
agar medium (OIV, 2010) and incubated at 25 °C for 10 d. All analyses
were carried out in duplicate.

2.3. Yeast isolation and identification

Yeasts were isolated only fromWL differential medium. At least five
colonies per morphology were randomly collected from the agar plates,
purified to homogeneity after several sub-culturing steps onto WL, and
at least three isolates (from each sample) sharing the samemorphology
were subjected to genetic characterisation.

DNA extraction was performed using the InstaGene Matrix kit
(Bio-Rad Laboratories, Hercules, CA) according to themanufacturer's
instructions. In order to perform a first differentiation of yeasts, all
selected isolates were subjected to restriction fragment length



Table 1
Molecular identification of yeasts.

R.P. Isolate code 5.8S Size of restriction fragments 26S

ITS CfoI HaeIII HinfI PCR

PCR

I TLMBRL119A 620 180 + 110 480 + 160 280 + 160 + 130 1100
II TLM43 650 285 + 300 + 50 420 + 150 + 90 325 + 325 1100
III TLMBRL38 750 320 + 310 + 105 750 350 + 180 + 160 + 60 1100
IV TLMBRL26A 750 320 + 310 + 105 750 350 + 200 + 180 1100
V TLMBRL15 400 220 + 90 280 + 100 210 + 190 1100
VI TLMBRL169 620 300 + 260 + 60 400 + 120 + 85 320 + 300 1100
VII TLM1 880 385 + 365 320 + 230 + 180 + 150 365 + 155 1100

VIII TLM135 790 300 + 275 + 110 + 90 690 + 100 390 + 225 + 150 1100

All values for the 5.8S-ITS PCR, 26S PCR and restriction fragments are given in bp.
Abbreviations: R.P., restriction profile; n.c., not cut.

a Restriction enzymes MseI and ApaI did not produce any cut fragment.
b According to BlastN search of D1/D2 26S rRNA gene sequences in NCBI database.
c The 5.8S-ITS gene was also digested with DdeI endonuclease confirming the restriction profile reported by Esteve-Zarzoso et al. (1999).
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polymorphism (RFLP) analysis of the region spanning the internal
transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene as re-
ported by Esteve-Zarzoso et al. (1999).

Five isolates representative of each group were subjected to addi-
tional enzymatic restriction targeting the 26 rRNA gene, as reported
by Settanni et al. (2012). One isolate per group was further processed
by sequencing the D1/D2 region of the 26S rRNA gene to confirm the
preliminary identification obtained by restriction fragment length poly-
morphism analysis. The D1/D2 region was amplified with the primers
NL1 and NL4 (O'Donnell, 1993). Polymerase chain reaction (PCR) prod-
ucts were visualised as described by Settanni et al. (2012). DNA se-
quencing reactions were performed at Primm Biotech S.r.l. (Milan,
Italy). The identities of the sequenceswere determined by BlastN search
against the NCBI non-redundant sequence database located at http://
www.ncbi.nlm.nih.gov.

2.4. Strain typing of S. cerevisiae isolates

Intraspecific characterisation of isolates belonging to S. cerevisiae
species was carried out by employing two techniques: interdelta analy-
sis with the primers delta12 and delta21 (Legras and Karst, 2003) and
microsatellite multiplex PCR based on the analysis of polymorphic mi-
crosatellite loci, i.e., SC8132X, YOR267C and SCPTSY7 (Vaudano and
Garcia-Moruno, 2008). The PCR products were analysed on 2% agarose
gels (w/v) in 1 × Tris/borate/EDTA buffer and visualised as reported
by Settanni et al. (2012).

2.5. Chemical analyses

2.5.1. Conventional parameters
The pH, alcoholic content, total titratable acidity, volatile acidity and

total and free sulphur dioxide (SO2) were determined in accordance
with the official methods described in the Commission Regulation
2776/90 (1990).

The amount of reducing sugarswas determined following the proce-
dures described by Lane and Eynon (1923). The total phenol content
was determined according to the Folin-Ciocalteu procedure (Narr Ben
et al., 1996). Free anthocyanins were measured by the pH-dependent
change in the colour, as proposed by Ribéreau-Gayon and Stonestreet
(1965).

The analysis of glycerol was carried out as follows: 1 mL ofwinewas
concentrated in a rotary evaporator at 80 ± 1 °C and the dried residue
was dissolved in 2 mLof ethanol. The obtained solutionwasfiltered and
1 μL was subjected to gas-chromatograph (GC) analysis on the GC1000
(Dani Instrument, Cologno Monzese, MI, Italy) equipped with a
programmed temperature vaporizer, flame ionisation detector and cap-
illary column (30 m, 250 mm i.d., 0.20 μm film thickness) (Rt2330,
Restek Corporation, Bellefonte, PA, USA). Glycerol was identified by
comparing the retention timewith that of pure glycerol (Sigma Aldrich,
St. Louis, MO) and quantification was performed using the external
standard method, i.e., calibration curve was constructed with different
concentrations (1, 2, 5 and 10 mg/L).

2.5.2. Organic acids
Organic acids were analysed as suggested by Palma and Barroso

(2002), with some modifications. Samples were sonicated (Bandelin,
Sonorex, Berlin, German) for 10 min at 40 ± 1 °C and 1-mL aliquots
were diluted (1:10) with milliQ H2O, centrifuged at 10,000 rpm for
10 min and filtered (Millipore 0.45 filters). Chromatographic analysis
of the samples was carried out as reported by Pereira et al. (2010).

2.5.3. Phenolic and antioxidant activity
Briefly, 10 mL of wine, acidified with ultrapure HCl to pH 2.0, was

extracted three times with 20 mL of ethyl ether. The organic phase
was concentrated on a rotary evaporator at 30 ± 1 °C and the residue
was dissolved in 10 mL of awater/methanolmixture (1:1). The analysis
was carried out by high-performance liquid chromatography with
diode-array detection, as described by Sakakibara et al. (2003).

Quantification was performed using the external standard meth-
od by constructing calibration curves. For this, (+)-catechin, (−)-
epicatechin, vanillic acid, gallic acid, caffeic acid, p-coumaric acid,
syringic acid, chlorogenic acid, sinapic acid, ellagic acid, resveratrol
and malvidin chloride were purchased from Sigma-Aldrich.

The analysis of the antioxidant activity was carried out according to
the technique reported by Brand-Williams et al. (1995). The antioxidant
activity was expressed as mM trolox-equivalents, a vitamin E analogue.

2.5.4. VOCs
Briefly, 10 mL of wine, spiked with 37.5 μg of 1-decanol as internal

standard (I.S.), was mixed with 1 mL of a 26% NaCl solution and subse-
quently extracted with 1 mL of dichloromethane. Samples were stirred
for 5 min and then centrifuged at 5 °C for 5 min at 5000 rpm. The VOC
analyses were carried out on an Agilent GC 6890 gas chromatograph
coupled to an Agilent 5973 mass-selective detector. The GC–mass
spectrometry (MS) conditions suggested by Boch-Fusté et al. (2007)
were employed. VOC identification was achieved by comparing the
mass spectra and GC retention times with those of the pure standard
compounds that were available and the data system library of the
GC–MS equipment (NIST 02 and WILEY 275) with a similar index
(i.e., N90%). The concentrations of the compounds were estimated

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
ncbi-tnm:650


Table 1
Molecular identification of yeasts.

Size of restriction fragmentsa Species (% identity)b Acc. no. Distribution (no. of isolates)

HinfI Must Alcoholic
fermentation

Post-fermentation
maceration

n.c. Aureobasidium pullulans (99) KF263940 (28)
445 + 390 + 180 + 50 Debaryomyces carsonii (99) JX456534 60 d (41)
n.c. Hanseniaspora guilliermondiic (99) KF263937 3 d (31), 8 d (24)
n.c. Hanseniaspora uvarumc (99) KF263939 3 d (22), 8 d (27)
n.c. Metschnikowia pulcherrima (99) KF263936 (37) 3 d (25)
n.c. Pichia guilliermondii (99) KF263938 (29) 3 d (38)
500 + 220 + 180 Saccharomyces cerevisiae (99) JX456533 3 d (35), 8 d (32) 13 d (41), 20 d (80),

40d (97), 50 d (77),
60 d (44), 70 d (27),
90 d (23)

445 + 225 + 190 + 125 + 60 + 50 Zygosaccharomyces bisporus (99) JX456535 60 d (37)
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by comparing their peak areas with those of the respective I.S. with
known concentration.

2.6. Sensory evaluation

The sensory profiles of the experimental wines characterised by
different times of maceration were evaluated using a descriptive meth-
od (UNI 10957, 2003). Ten judges were trained in a few preliminary
sessions, using different samples of commercial wines obtained from
the Aglianico cultivar by a post-fermentation maceration of about 12
15 d, in order to develop a common vocabulary for the description of
the sensory attributes of wine samples and to familiarise them with
scales and procedures. The standards used to define descriptors were
chosen according to Noble et al. (1987).

On the basis of the frequency of citation (N60%), 16 descriptors were
included in the analysis: colour intensity, odour intensity, odour
complexity, off-odours, fresh fruits, dried fruits, flowers, aromatic
herbs, spices (odour), sweet, hot (tactile in mouth), acid, astringent,
bitter, taste complexity, and off-flavour (taste). The wine samples
were randomly evaluated by assigning a score between 1.00 (absence
of sensation) and 9.00 (extremely intense) in individual booths under
incandescent white light.

2.7. Statistical analysis

All determinations and experiments were performed in triplicate,
and the results presented are the average value of three determinations.
Using data from chemical analyses, one way analysis of variance
(ANOVA) was performed to compare the long-macerated wines. Statis-
tical significancewas attributed to P values of b0.05. Thepost-hoc Tukey
test was applied for pairwise comparison. In addition, a principal
component analysis (PCA) was carried out. Statistical analysis was per-
formed using XLSTAT 2006, version 2006.6 (Addinsoft, Paris, France).
The resulting scores from the sensory analysis were averaged and com-
pared. The ANOVA test (STATISTICA software, StatSoft Inc., Tulsa, OK,
USA) was applied to identify significant differences among the wine
attributes.

3. Results

3.1. Microbiological analysis

The viable counts of the microbial groups investigated in this study
are reported in Fig. 1. The level in grape must was 5.75 Log CFU/mL.
The highest TY concentration was reached at beginning of alcoholic
fermentation (day 3) and decreased to 7 Log CFU/mL at the end of the
tumultuous phase of alcoholic fermentation (day 8). During post-
fermentation maceration, the TY concentration remained almost con-
stant at approximately 7 Log CFU/mL until day 40. Subsequently, it
decreased, reaching levels between 4.79 Log CFU/mL (day 50) and
6.18 Log CFU/mL (day 90).

The LAB populations reached a detectable value at the end of the
tumultuous phase of alcoholic fermentation. Their concentration
decreased by day 20 of post-fermentation maceration, both on MRS
agar and MLO, and was estimated at about 5 Log CFU/mL at the end of
the experimental process. Furthermore, no consistent difference was
found between total and acidophilic (presumptive Oenococci) LAB
during the entire period of observation. Dekkera/Brettanomyces spp. as
well as AAB were not detected, even after filtration of the samples.

3.2. Isolation, identification and distribution of yeasts

A total of 795 colonies were isolated from WL, purified to homoge-
neity, and separated based on the appearance of colony morphology.
All colonies were subjected to molecular identification. After restriction
analysis of the 5.8S-ITS region and 26S rRNA gene, the isolates were
clustered into eight groups (Table 1). Hanseniaspora guilliermondii
(group III), Hanseniaspora uvarum (group IV), Metschnikowia
pulcherrima (group V), S. cerevisiae (group VII) and Zygosaccharomyces
bisporus (group VIII) were directly identified by comparison of the
restriction bands with those available in the literature (Settanni et al.,
2012; Esteve-Zarzoso et al., 1999). The identification of groups I, II and
IV was concluded by sequencing of the D1/D2 domain of the 26S rRNA
gene, which allocated these isolates into the Aureobasidium
pullulans, D. carsonii and Pichia guilliermondii species, respectively.
The species A. pullulans was detected only in the must; on the other
hand, M. pulcherrima and P. guilliermondii were found both in the
must and in samples collected on day 3 of alcoholic fermentation.
H. guilliermondii and H. uvarum as well as S. cerevisiaewere the dom-
inant species during the tumultuous phase of alcoholic fermentation.
During the entire process of post-fermentation maceration, S.
cerevisiae was the species found at the highest concentrations,
whereas D. carsonii and Z. bisporus were detected only on day 60, at
concentrations of 5.31 and 5.79 Log CFU/mL, respectively.

3.3. Typing and distribution of S. cerevisiae strains

The 456 isolates belonging to the species S. cerevisiae were further
genetically characterised. The interdelta analysis was able to separate
the isolates into nine groups, whereas microsatellite multiplex PCR

ccdc:KF263940
ncbi-n:JX456534
ccdc:KF263937
ccdc:KF263939
ccdc:KF263936
ccdc:KF263938
ncbi-n:JX456533
ncbi-n:JX456535
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recognised seven different groups (data not shown), showing a lower
discriminatory power than the former technique.

The distribution of the different strains of S. cerevisiae during the
experimental vinification is reported in Fig. 2. No S. cerevisiae strains
were detected in the must; on the other hand, during the tumultuous
phase of alcoholic fermentation, only the deltaA profile was detected.
This pattern and the deltaC and deltaD profiles were mainly isolated
during the first days of maceration (13–20 d), in the intermediate
phase (40–60 d), and at the end of the process (90 d), respectively.
The deltaA profile corresponding to S. cerevisiaeNF66 (inoculated start-
er)wasdetected fromday 3 of fermentation until the endofmaceration.
In terms of diversity of S. cerevisiae, the highest numbers of different
strains at high concentrations were found between days 40 and 50 of
maceration.

3.4. Chemical analyses

The conventional parameters and organic acid contents of the wine
samples during vinification are reported in Table 2.

Most of the reducing sugars were converted to ethanol due to
the metabolic activities of yeast during the tumultuous phase of al-
coholic fermentation; they were not detectable on day 70 of post-
fermentation maceration. The alcohol content was 12.51% (v/v) at
the end of the tumultuous phase of fermentation and was 13.67%
(v/v) at the end of the maceration process.

Furthermore, pH and volatile acidity contents increased during the
monitored vinifications, whereas an opposite behaviour was observed
for total titratable acidity. The total phenol content varied with the
time of contact of grape skins and seeds with the wine. During fermen-
tation, it increased to 1167.42 mg/L (gallic acid) at the end of fermenta-
tion, but from days 13 to 40 of post-fermentation maceration, its
concentration increased by about 38% and remained almost constant
until the end of the process.

The highest concentration of total anthocyanins (241.48 mg/L) was
noted on day 50 of post-fermentation maceration, but the value esti-
mated at the end of the process was almost 100 mg/L lower; however,
total and free SO2 showed constant values during vinification.

The amount of glycerol increased consistently during the tumultu-
ous phase of alcoholic fermentation (Table 2). Its concentration in-
creased by less than 2.3 g/L during the post-maceration period,
reaching 13.38 g/L at the end of the process.
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Fig. 2. Distribution of S. cerevisiae strains during experimental vinification of “Aglianico di Taur
The nine strains are coded as deltaA, deltaB, deltaC, deltaD, deltaE, deltaF, deltaG, deltaH and d
The concentration of tartaric acid decreased to approximately 2 g/L
in the intermediate phase of post-fermentation maceration. Malic acid
showed a decreasing trend during the entire experimental period. The
lactic acid content increased to 2.65 g/L at the end of the tumultuous
phase of alcoholic fermentation; thereafter, its concentration did not
vary greatly (P N 0.05) between the beginning and the end of post-
fermentation maceration. However, the lowest values were observed
between days 40 and 50 of maceration.

The phenolic compounds identified and quantified during ex-
perimental vinification are reported in Table 3. The main com-
pounds belonging to this family were benzoic and cinnamic acids
and flavan-3-ols, which, together, represented more than 90% of
the phenolic fraction of the must and wine at any time of collec-
tion. In general, the phenolic concentration increased with increas-
ing maceration time, reaching a maximum value (854.9 mg/L) on day
90 of post-fermentation maceration. However, the rate of increase
was higher during the first 40 d of maceration: a decrease in the rate
was noted between day 40 (806.60 mg/L) and day 50 (653.40 mg/L),
after which it increased again. In particular, the concentration of
hydroxybenzoic and hydroxycinnamic acids and phenols reached a
maximum on day 40 showing values of 283.40, 255.00 and 8.00 mg/L,
respectively.

Among the benzoic acids, gallic acid was the most prevalent
acid starting from day 40 of maceration. However, the highest con-
centration was measured for syringic acid on days 13 and 20 and
its concentration (range: 35.82–49.04 mg/L) did not vary greatly
throughout the experiment. Except on day 50, caffeoylquinic acid
was the cinnamic acid with the highest concentration (N150 mg/L).
The main flavan-3-ol identified was (+)-catechin, whose concentra-
tion showed an irregular trend during the winemaking process. The
same behaviour was observed for (−)-epicatechin. In particular, at
day 8 of alcoholic fermentation, the ratio between (+)-catechin
and (−)-epicatechin was 3.57; it decreased to 2.82 on day 20 of
post-fermentation maceration and, thereafter, it reached the highest
value (3.58) on day 40 and the lowest value (2.0) on day 90 of
maceration.

Among the phenolic compounds present at concentrations lower
than those of benzoic acids, cinnamic acids and catechins, stilbenes
were represented by α-viniferin (a trimer of resveratrol) and trans-
resveratrol. In addition, it is worth noting that among the flavonols,
rutin and quercetin were detected.
50 60 70 90

ays)

deltaI

deltaH

deltaG

deltaF

deltaE

deltaD

deltaC

deltaB

deltaA

PFM 

asi” wine. Abbreviations: AF, alcoholic fermentation; PFM, post-fermentation maceration.
eltaI.



Ta
bl
e
2

Ch
em

ic
al

pa
ra
m
et
er
s
du

ri
ng

ex
te
nd

ed
m
ac
er
at
io
n
of

“A
gl
ia
ni
co

di
Ta

ur
as
i”
w
in
e.

Co
nv

en
ti
on

al
pa

ra
m
et
er
s

O
rg
an

ic
ac
id
s
(g
/L
)

pH
Re

du
ci
ng

su
ga

rs
(g
/L
)

A
lc
oh

ol
(%

v/
v)

TT
A

V
A

TP
TA

G
ly
ce
ro
l

To
ta
lS

O
2

Fr
ee

SO
2

Ta
rt
ar
ic
ac
id

A
ce
ti
c
ac
id

M
al
ic
ac
id

La
ct
ic
ac
id

M
us
t

3.
25

g
±

0.
03

23
6.
14

a
±

2.
11

n.
d.

h
8.
86

a
±

0.
15

0.
17

f
±

0.
04

34
9.
22

j
±

24
,2
1

15
0.
44

h
±

9.
76

n.
d.

j
n.
d.

j
n.
d.

j
2.
78

d
±

0.
07

n.
d.

g
2.
89

d
±

0.
27

n.
d.

A
F-
da

y
3

3.
37

e
±

0.
05

15
2.
87

b
±

3.
12

3.
84

g
±

0.
05

8.
66

b
±

0.
21

0.
49

a
±

0.
02

98
7.
84

i
±

37
,6
2

19
1.
07

d
±

16
.7
3

4.
24

i
±

0.
50

49
.0
8a

±
0.
24

26
.0
8a

±
0.
32

3.
22

a
±

0.
07

0.
33

d
,e
±

0.
09

3.
11

b,
c
±

0.
11

0.
18

h
±

0.
10

A
F-
da

y
8

3.
30

f
±

0.
07

10
.6
0c

±
2.
07

12
.5
1

f
±

0.
04

8.
17

d
±

0.
09

0.
37

d
±

0.
07

11
67

.4
2h

±
38

,9
3

20
1.
67

b
±

11
.1
6

9.
13

h
±

0.
33

44
.0
5b

±
0.
31

25
.0
5b

±
0.
11

3.
13

b
±

0.
07

0.
31

e
±

0.
07

3.
09

c
±

0.
10

2.
65

g
±

0.
11

PF
M
-d
ay

13
3.
29

f
±

0.
01

5.
98

d
±

1.
47

12
.7
9f

±
0.
04

8.
39

c
±

0.
35

0.
30

e
±

0.
02

13
26

.7
8g

±
53

.4
6

18
9.
25

e
±

13
.7
6

11
.1
5g

±
0.
72

43
.0
2c

±
0.
62

24
.6
3c

±
0.
21

3.
01

c
±

0.
07

0.
27

f
±

0.
03

3.
12

b
±

0.
23

2.
91

e
±

0.
21

PF
M
-d
ay

20
3.
45

d
±

0.
00

2.
96

e
±

2.
21

12
.9
7e

.f
±

0.
11

8.
15

d
±

0.
37

0.
39

c,
d
±

0.
00

15
92

.8
6f

±
31

.6
9

19
5.
83

c
±

16
.9
8

12
.8
9b

±
0.
47

41
.0
2e

±
0.
40

21
.4
7e

±
0.
19

2.
72

e
±

0.
47

0.
33

d
,e
±

0.
11

2.
75

e
±

0.
17

2.
87

b
±

0.
30

PF
M
-d
ay

40
3.
60

b
±
0.
10

2.
15

g
±

2.
13

13
.2
5e

±
0.
07

6.
95

h
±

0.
05

0.
40

c
±

0.
02

18
25

.9
1e

±
21

.6
0

18
3.
32

g
±

14
.7
8

12
.1
1f

±
0.
55

38
.5
5i

±
0.
33

20
.8
7g

±
0.
44

2.
03

h
±

0.
55

0.
35

c,
d
±

0.
04

2.
21

a
±

0.
11

2.
79

c
±

0.
29

PF
M
-d
ay

50
3.
56

c
±
0.
00

2.
07

h
±

1.
65

13
.4
1d

±
0.
35

7.
00

g
±

0.
18

0.
40

c
±

0.
02

18
38

.0
2c

±
47

.8
3

24
1.
48

a
±

12
.1
8

12
.3
5c

±
0.
52

40
.3
0g

±
0.
19

22
.6
3d

±
0.
12

2.
02

h
,i
±

0.
52

0.
31

e
±

0.
10

2.
06

f
±

0.
09

2.
56

d
±

0.
11

PF
M
-d
ay

60
3.
57

c
±

0.
00

1.
98

i
±

0.
97

13
.5
9c

±
0.
21

7.
19

f
±

0.
18

0.
43

b
±

0.
06

18
61

.6
2b

±
25

.9
7

18
8.
81

f
±

15
.9
7

12
.3
0d

±
0.
32

42
.1
2d

±
0.
27

21
.1
1f

±
0.
26

2.
00

g
±

0.
32

0.
38

b
±

0.
12

2.
02

g
±

0.
10

2.
58

f
±

0.
09

PF
M
-d
ay

70
3.
57

a
±

0.
01

n.
d.

f
13

.6
2b

±
0.
17

6.
94

h
±

0.
23

0.
47

a
±

0.
04

19
15

.0
1a

±
28

.0
8

14
5.
67

j
±

11
.0
8

12
.1
7e

±
0.
27

39
.0
6h

±
0.
18

20
.0
2i

±
0.
61

2.
11

i
±

0.
27

0.
41

a
±

0.
11

2.
05

f
±

0.
21

2.
56

f
±

0.
11

PF
M
-d
ay

90
3.
63

a
±

0.
03

n.
d.

f
13

.6
7b

±
0.
28

7.
31

e
±

0.
20

0.
41

b
,c
±

0.
06

18
37

.4
7d

±
32

.7
8

14
9.
60

i
±

10
.5
7

13
.3
8a

±
0.
78

40
.7
8f

±
0.
50

20
.0
9h

±
0.
59

2.
25

f
±

0.
78

0.
37

b
±

0.
09

1.
59

h
±

0.
18

3.
04

a
±

0.
12

A
F,
al
co
ho

lic
fe
rm

en
ta
ti
on

;P
FM

,p
os
t-
fe
rm

en
ta
ti
on

m
ac
er
at
io
n;

TT
A
,t
ot
al

ti
tr
at
ab

le
ac
id
it
y
(t
ar
ta
ri
c
ac
id

g/
L)
;V

A
,v
ol
at
ile

ac
id
it
y
(a
ce
ti
c
ac
id

g/
L)
;T

P,
to
ta
lp

he
no

ls
(g
al
lic

ac
id

m
g/
L)
;T

A
,t
ot
al

an
th
oc
ya

ni
ns

(m
al
vi
di
n
ch

lo
ri
de

m
g/
L)
;g

ly
ce
ro
l(
g/
L)
;

to
ta
lS

O
2
an

d
fr
ee

SO
2
(m

g/
L)
;n

.d
.,
no

t
de

te
rm

in
ed

(v
al
ue

s
b
de

te
ct
io
n
lim

it
).

a–
j:
D
iff
er
en

t
le
tt
er
s
in
di
ca
te

si
gn

ifi
ca
nt

di
ff
er
en

ce
s
be

tw
ee

n
m
ac
er
at
io
n
ti
m
e
fo
r
th
e
sa
m
e
sa
m
pl
e
fo
r
P
≤

0.
05

.

89N. Francesca et al. / International Journal of Food Microbiology 171 (2014) 84–93
The VOC family (Table 4) is composed of alcohols, esters, carbonyl
compounds, acids, lactones, phenols, hydrocarbons and other com-
pounds. Alcohols were not detected in themust but found at concentra-
tions of approximately 1.4 g/L on day 8 of alcoholic fermentation and
about 1.7 g/L on day 90 of post-fermentation maceration. The main
compoundswithin this class were 1-butanol, 3-methyl and phenylethyl
alcohol, which constituted more than 98% of total alcohols. The ester
concentration was 18.20 mg/L on day 8 of fermentation and reached
the highest value (52.57 mg/L) on day 90 of maceration. Among the
most frequently identified esters, the contents of 1-butanol, 3-methyl-
,acetate and hexanoic acid, ethyl ester decreased during maceration,
whereas an opposite behaviour was observed for butanedioic acid,
diethyl ester and propanoic acid, 2-hydroxy-,ethyl ester. Themain com-
pounds among aldehydes and ketones were nonanal and 5-phenyl-2-
pentanone, respectively; the concentrations of both compounds de-
creased during the experimental period. Methyl 4-hydroxybutanoate
was the major acid found. Its concentration increased to a maximum
level (44.68 mg/L) on day 40 of maceration and remained almost con-
stant until day 90. No significant difference was observed with regard
to the concentration of γ-butyrolactone between day 13 and day 90
(8.28 and 8.10 mg/L, respectively). The phenol class was mostly repre-
sented by 1H-indole-3-ethanol.

The antioxidant activity (data not shown) in the must was 2.56 mM
trolox equiv. and increased to 7.98 mM trolox equiv. on day 8 of fer-
mentation. The highest antioxidant activity (around 9.48 mM trolox
equiv.) of winewas observed between day 40 and day 60 ofmaceration.
These values were significantly different from that measured on day 13.

3.5. PCA of VOCs

The F1 and F2 components, selected from the PCA analysis, explain
72.09 and 17.15% of total variance, respectively, as illustrated in Fig. 3.

The main descriptors contributing to the F1 component were: alco-
hols, lactones, fatty acids, phenols and hydrocarbons of which the load-
ing value were 0.869, 0.823, 0.720, 0.708 and 0.706, respectively. On the
other hand, the F2 component was mainly characterised by other com-
pounds, esters, hydrocarbons and fatty acids; their respective loading
values were 0.580, 0.281, 0.166 and 0.148.

Except for themust and the samples taken after day 8 (AF-Day8) and
day 20 (PFM-Day20) of post-fermentation maceration, the wines were
located in the quadrant showing positive values of the F1 component.
In particular, the samples macerated for 50 days (PFM-Day50) and
70 days (PFM-Day70) were located in the same area showing similar
values of F1 components. On the other hand, among the macerated
wines, the samples taken after 20 days (PFM-Day20) and 90 days
(PFM-Day90) of maceration were furthest separated according to
their different values in terms of F1 components.

3.6. Sensory analysis

The wines obtained by using different periods of post-fermentation
maceration were evaluated by sensory analysis and the results are
reported in Table 5. Samples subjected to 40, 50 and 90 d of maceration
differed significantly (P b 0.05) from the other samples with regard to
the majority of odour and taste descriptors. In particular, the highest
values of odour intensity as well as odour and taste complexity were
displayed by the 40, 50 and 90 day samples. The wines on days 40
and 90 showed also the lowest values of acid, astringent and bitter
descriptors (taste). No off-odours and off-flavours were detected in all
samples analysed.

4. Discussion

The aim of the present study was to evaluate the influence of post-
fermentation maceration, extended to 90 days, on the microbial and
chemical composition of red wine. Microbiological results evidenced



Table 3
Concentration (mg/L) of phenols during experimental vinification of “Aglianico di Taurasi” wine.

Must Alcoholic fermentation Post-fermentation maceration

Day-8 Day-13 Day-20 Day-50 Day-70 Day-90

Σ hydroxybenzoic acids 12.93i 78.27i 144.55g 172.50g 203.30e 266.40c 282.30b

Gallic acid 3.22i ± 0.56 7.59h ± 1.06 26.25g ± 0.93 34.92g ± 0.99 79.77e ±2.82 117.80c ± 3.17 126.80b ± 3.77
Protocatechuic acid n.d.i 4.33h ± 0.14 5.90g ± 0.21 7.10d ± 0.20 6.56g ±0.23 7.33c ± 0.20 7.49b ± 0.22
p-Coumaroylquinic acid 9.71i ± 1.34 30.77h ± 1.67 55.06e ± 1.95 63.13b ± 1.79 50.11f ± 1.77 55.4da ± 1.49 57.06c ± 1.69
Vanillic acid n.d.i 4.25h ± 0.77 9.21e ± 0.33 10.68a ± 0.30 8.71f ± 0.31 9.34d ± 0.25 9.91c ± 0.29
Syringic acid n.d.j 31.33h ± 1.07 42.08d ± 1.49 49.04a ± 1.39 37.10f ± 1.31 44.78c ± 1.20 41.06e ± 1.22
Acylated syringic acid n.d.h n.d.h 6.05g ± 0.21 7.58f ± 0.21 21.04e ± 0.74 31.61b ± 0.85 40.01a ± 1.19

Σ hydroxycinnamic acids 80.39i 130.01h 179.09e 202.60c 175.30g 212.50b 213.60d

Caffeoylquinic acid 80.39i ± 2.78 120.7h ± 3,45 157.91a ± 5.58 176.5b ± 4.99 146.40d ± 5.18 177.5b ± 4.77 168.90e ± 5.02
Hydroxycinnamic acid n.d.g n.d.g 10.45c ± 0.37 12.00a ± 0.34 8.23f ± 0.29 9.69e ± 0.26 9.76d ± 0.29
Caffeic acid n.d.i 7.11g ± 0.18 6.18h ± 0.22 6.25g ± 0.18 7.97e ± 0.28 9.93c ± 0.27 13.1a ± 0.39
p-Coumaric acid n.d.h 2.29g ± 0.22 4.55f ± 0.16 7.87e ± 0.22 12.69d ± 0.45 15.41b ± 0.41 21.84a ± 0.65

Σ flavones n.d.i 4.55e 8.09b 8.53a 3.16h 4.74d 3.92f

Luteolin 7-O-glucoside n.d.i 4.55e ± 0.15 8.09b ± 0.27 8.53a ± 0.24 3.16h ± 0.11 4.74d ± 0.13 3.92f ± 0.12
Σ flavonols n.d.g 2.01f 4.94d n.d.g 2.81e n.d.g 6.93b

Rutin n.d.f 2.01e ± 0.23 4.94c ± 0.17 n.d.f 2.81d ± 0.10 n.d.f 4.91c ± 0.15
Quercetin n.d.b n.d.b n.d.b n.d.b n.d.b n.d.b 2.02a ± 0.06

Σ flavanones n.d.g 3.48g 5.27d 6.86a 5.43c 6.18b 4.23f

Narigenin n.d.h 3.48g ± 0.45 5.27d ± 0.19 6.86a ± 0.19 5.43c ± 0.19 6.18b ± 0.17 4.23f ± 0.13
Σ flavan-3-ols 16.55i 106.31h 148.44g 155.00f 240.00c 190.10e 310.50a

(−)-Gallocatechin n.d.f n.d.f 2.42a ± 0.09 0.93c ± 0.03 0.84d ± 0.03 0.73e ± 0.02 1.08b ± 0.03
(−)-Epigallocatechin 10.01i ± 0.49 52.83e ± 1.34 53.89d ± 1.90 59.19a ± 1.67 47.26h ± 1.67 51.08f ± 1.37 54.18c ± 1.61
(+)-Catechin 6.54i ± 1.67 37.49h ± 2.07 58.14g ± 2.06 59.52f ± 1.68 119.1c ±4.21 93.95f ± 2.52 156.90a ± 4.66
(−)-Epicatechin n.d.i 10.21h ± 0.88 20.57g ± 0.73 25.19f ± 0.71 54.16c ± 1.91 29.87e ± 0.80 78.30a ± 2.32
Epicatechin gallate n.d.h n.d.h 2.92g ± 0.10 3.34f ± 0.09 4.42e ± 0.16 4.78c ± 0.13 6.89b ± 0.20
Catechin gallate n.d.i 5.78h ± 0.32 10.50e ± 0.37 6.78g ± 0.19 14.17a ± 0.50 9.71f ± 0.26 13.17c ± 0.39

Σ phenols n.d.i 2.44h 5.78e 3.21g 5.72f 6.61c 6.93b

Pyrogallol n.d.i 2.44h ± 0.19 5.78e ± 0.20 3.21g ± 0.09 5.72f ± 0.20 6.61c ± 0.18 6.93b ±0.21
Σ stilbenes n.d.i 2.21h 6.15g 9.92e 9.42f 11.55b 15.78a
α-Viniferin n.d.i 1.27h ± 0.11 3.47g ± 0.12 5.48c ± 0.15 4.05f ± 0.14 5.31d ± 0.14 6.30a ± 0.19
trans-Resveratrol n.d.i 0.94h ± 0.23 2.68g ± 0.09 4.44f ± 0.13 5.37d ± 0.19 6.24c ± 0.17 9.48a ± 0.28

Σ lignans n.d.h 5.87g 8.94c 7.56f 8.32d 12.14b 10.62a

Unknown n.d.h 3.67e ± 0.12 4.73c ± 0.17 4.70c ± 0.13 3.47f ± 0.12 6.25a ± 0.17 3.94d ± 0.12
Flavolignan n.d.h 2.21g ± 0.10 4.21d ± 0.15 2.86f ± 0.08 4.85c ± 0.17 5.89b ± 0.16 6.68a ± 0.20

Total 109.87i 329.75h 505.50g 566.10f 653.40e 710.20c 854.90a

n.d.: Not detected (value under detection limit of 0.5 mg/L).
a–i: Different letters indicate significant differences between maceration time for the same sample for P ≤ 0.05.
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substantial concentrations of both yeast and LAB populations during the
entire period of post-fermentationmaceration. Furthermore, the chang-
es in their concentrations, during the experimental process suggested
the presence of yeasts and LAB that were not only alive but also meta-
bolically active. To our knowledge, no work has been carried out on
the evaluation of the concentrations of yeasts and LAB as well as their
analysis at the species and/or strain level during prolonged post-
fermentation maceration.

In this work, during the entire maceration process, S. cerevisiaewas
the main species found; in particular, except on day 60 when it was
detected at the same level as D. carsonii and Z. bisporus, it dominated
the yeast population. D. carsonii, a yeast species that is not commonly
associated with the wine environment, has been reported to possess
high β-glucosidase activity (Hernàndez-Orte et al., 2008), contributing
to the characteristic aroma of grapevine varieties (Zott et al., 2008). Z.
bisporus is not reported to be a relevant spoilage yeast species for
wines (Loureiro and Malfeito-Ferreira, 2003), although its presence
has been associated with the production of off-flavours in sherry wine
(Neuser et al., 2000).

However, very low species diversity was observed, which could be
explained by the stressing conditions (high ethanol concentration, low
pH and scarcity of nutrients) that characterise the process and result
in a strong selection. On the other hand, these stressing conditions did
not negatively affect the yeast diversity at the strain level of the S.
cerevisiae community. In fact, excluding the starter, eight different in-
digenous strains were detected during maceration and found at high
levels. Our results confirmed previous observations that the cellar envi-
ronment is a source of indigenous strains (Le Jeune et al., 2006; Guzzon
et al., 2011) that, once adapted to winemaking process, could also be
dominant under stressing conditions such as those that are characteris-
tic of prolonged maceration.

Furthermore, our work described for the first time the effects of the
activities of yeasts and LAB on wine composition during post-
fermentationmaceration extended to 90 days. In particular, yeast activ-
ities were clearly observed, i.e., lactic acid was degraded and malic acid
was converted to ethanol (Redzepovic et al., 2003) during the first
phase of maceration (from days 13 to 50). In addition, glycerol produc-
tion could be associated with the microbial metabolism due to glycero-
pyruvic fermentation observed during the increase in yeast at the end of
themaceration process (from days 70 to 90). As observed by several au-
thors (Gardner et al., 1993; Hernandez-Cortes et al., 2010), glycerol
could be produced by yeasts even if their concentration in wine is low,
at different phases of the winemaking process and under stressing
conditions.

During maceration, although at low concentrations, the influence of
LAB on the chemical composition of the wines was clearly shown. The
LAB activities started with the production of lactic acid by homolactic
fermentation on day 13 of maceration and were terminated with the
degradation of malic acid by malolactic fermentation between days 70
and 90. Furthermore, in this context, several studies (Alexandrea et al.,
2004; Capucho and San Romao, 1994; Schutz and Radler, 1974) showed
the capability of LAB to carry out fermentation even at very low concen-
trations as well as under stressing conditions and during different
phases of the winemaking process.

The production of glycerol and lactic acid is a desired phenomenon
with regard to sensory characteristics of red wines because they



Table 4
Concentration of volatile organic compounds (mg/L) during experimental vinification of “Aglianico di Taurasi” wine.

Compounds Descriptors Must Alcoholic fermentation Post-fermentation maceration

Day-8 Day-13 Day-20 Day-50 Day-70 Day-90

Σ alcohols n.d.i 1478.97h 1918.34 1563.42 1687.40 1598.57 1736.72
1-Butanol, 3-methyl- Burnt, alcohol n.d.i 865.89f ± 1.23 930.90b,c ± 7.07 855.01e ± 0.71 933.04 ± 3.54 856.27d,e ± 0.71 867.92d ± 1.41
1-Butanol, 2-ethyl- Burnt, alcohol n.d.c n.d.c 0.78a ± 0.00 0.34b ± 0.01 n.d.c n.d.c n.d.c

1,2-Propanediol Ripe fruit, alcohol n.d.b n.d.b n.d.b n.d.b n.d.b n.d.b n.d.b

2,3-Butanediol Fruity n.d.h 6.09g ± 0.06 11.33b ± 0.01 8.91d ± 0.01 24.68a ± 0.01 7.40f ± 0.01 9.05c ± 0.01
2-Heptanol, 3-methyl- Humid n.d.h 1.07e ± 0.04 2.21b ± 0.02 1.38d ± 0.01 5.24a ± 0.01 0.96f ± 0.01 1.54c ± 0.01
3-Buten- 2-ol, 2-methyl- Herbaceous n.d.b n.d.b n.d.b 1.60a ± 0.01 n.d.b n.d.b n.d.b

1-Propanol, 3-ethoxy- Fruity n.d.h 0.54g ± 0.03 0.78g ± 0.00 0.90f ± 0.01 0.95e ± 0.01 1.80b ± 0.01 1.95a ± 0.01
1-Pentanol, 3-methyl- Vinous, herbaceous, cacao n.d.g 1.11f ± 0.02 1.17e ± 0.00 1.07f ± 0.01 1.17e ± 0.01 2.52c ± 0.01 3.41a ± 0.01
1-Butanol, 2,3-dimethyl- Bitter, solvent n.d.e n.d.e n.d.e 0.73c ± 0.01 n.d.e 1.08a ± 0.01 0.55d ± 0.01
1-Hexanol Flower, green, cut grass n.d.g 4.27a ± 0.00 6.76a ± 0.00 4.68e ± 0.01 4.32g ± 0.01 4.35f ± 0.01 6.00b ± 0.01
5-Nonanol n.d.c n.d.c n.d.d n.d.d n.d.d 1.09a ± 0.01 1.07b ± 0.01
2-Heptanol, 4-methyl- Humid n.d.d n.d.d 0.11e ± 0.00 0.00f ± 0.00 0.00f ± 0.00 0.51b ± 0.01 0.56a ± 0.01
Phenylethyl Alcohol Floral, roses n.d.i 599.72h ± 4.22 963.64a ± 3.54 688.51f ± 2.12 717.67e ± 0.04 722.16e ± 1.41 843.83c ± 1.41
1,2-Butanediol, 1-phenyl- Bitter, solvent n.d.e 0.28d ± 0.02 0.68b ± 0.01 0.29e ± 0.01 0.33d ± 0.01 0.44c ± 0.01 0.83a ± 0.01

Σ esters 7.34i 18.20g 25.44 16.70 26.34 34.20 52.57
1-Butanol, 3-methyl-, acetate Roses, flowery n.d.i 4.22g ± 0.01 7.68a ± 0.01 4.45e ± 0.01 4.75d ± 0.01 4.28f ± 0.01 3.76g ± 0.01
1-Butanol, 2-methyl-, acetate Roses, flowery n.d.e 0.32d ± 0.00 0.43d ± 0.00 n.d.e 0.46c ± 0.01 0.54b ± 0.01 0.47c ± 0.01
Butanedioic acid, diethyl ester 2.07g ± 0.04 2.09g ± 0.02 3.27f ± 0.01 2.04g ± 0.01 5.43e ± 0.01 12.40b ± 0.01 29.35a ± 0.01
Octanoic acid, ethyl ester Fruit, sweet, soap, anise n.d.f n.d.f 0.94b ± 0.01 n.d.f 0.97b ± 0.01 0.53d ± 0.01 0.41e ± 0.01
Propanoic acid, 2-hydroxy-, ethyl ester 3.44i ± 0.02 7.45f ± 0.02 6.44f ± 0.01 6.06g ± 0.01 9.57e ± 0.01 11.92c ± 0.01 14.61b ± 0.01
Butanoic acid, 3-hydroxy-, ethyl ester, n.d.e n.d.e 0.49a ± 0.01 0.22e ± 0.01 0.00f ± 0.00 0.37c ± 0.01 0.42b ± 0.01
Hexanoic acid, ethyl ester Fruity, green, apple, anise 1.38h ± 0.01 1.45i ± 0.03 4.12a ± 0.01 2.54f ± 0.01 3.77b ± 0.01 2.74e ± 0.01 1.96g ± 0.01
Butanoic acid, hexyl ester n.d.f 2.67a ± 0.00 2.06b ± 0.01 1.38f ± 0.00 1.39f ± 0.01 1.42e ± 0.01 1.61d ± 0.01

Σ carbonyl compounds 0.72i 0.98h 4.42 2.33 1.84 2.74 3.84
Nonanal Cut grass 0.10f ± 0.01 0.12e,f ± 0.03 0.70a ± 0.01 0.50b ± 0.01 0.37c ± 0.01 n.d.f 0.17e ± 0.01
Benzaldehyde Sweet, fruity n.d.e n.d.e n.d.e n.d.e 0.34c ± 0.01 0.35c ± 0.01 0.55a ± 0.01
2-Pentanone, 5-phenyl- 0.62e ± 0.03 0.34f ± 0.04 2.77a ±0.01 1.21b ± 0.01 0.65f ± 0.01 0.67e,f ± 0.01 0.69d,e ± 0.01
Cyclobutanone, 2-methyl- n.d.f 0.34d ± 0.01 0.48d ± 0.01 0.45e ± 0.01 0.48d ± 0.01 1.45b ± 0.01 2.04a ± 0.01
3(2H)-Furanone, dihydro-5-isopropyl- Cotton candy n.d.e 0.18d ± 0.03 0.47a ± 0.02 0.17e ± 0.01 n.d.f 0.27d ± 0.01 0.39c ± 0.01

Σ fatty acid n.d.i 20.52g 28.09 13.92 43.95 38.06 57.35
Methyl 4-hydroxybutanoate Cheese n.d.h 20.19f ± 0.02 27.64e ± 0.01 13.92f ± 0.01 42.75b ± 0.01 36.71d ± 0.01 42.75b ± 0.01
Butanoic acid, 2-methyl- Parmesan cheese n.d.c n.d.c n.d.c n.d.c 0.34b ± 0.01 n.d.c 3.41a ± 0.01
Octanoic acid Fatty, unpleasant n.d.b n.d.b n.d.b n.d.b n.d.b n.d.b 8.98a ± 0.01
Hexanoic acid Grass, fruity n.d.g 0.33f ± 0.01 0.45f ± 0.01 n.d.g 0.87d ± 0.01 1.35c ± 0.01 2.21a ± 0.01

Σ lactones n.d.i 4.44f 8.28 4.10 7.63 7.22 8.10
γ-Butyrolactone Sweet, toast, caramel n.d.i 4.44f ± 0.02 8.28a ± 0.01 4.10f ± 0.01 7.63c ± 0.01 7.22d ± 0.01 8.10b ± 0.01

Σ phenols n.d.i 5.57g 12.36 10.55 6.52 8.31 12.25
p- Ethylguaiacol Spicy, coconut n.d.e n.d.e n.d.a n.d.a n.d.a n.d.a n.d.a

Phenol, 2,6-dimethoxy- Smoky, leather n.d.b n.d.b 1.50b ± 0.01 1.03c ± 0.01 0.00e ± 0.00 n.d.e 1.74a ± 0.01
Benzeneethanol, 4-hydroxy- Alcohol n.d.i 5.57g ± 0.03 n.d.b n.d.b n.d.b n.d.b 1.29a ± 0.01
1H-indole-3-ethanol Alcohol n.d.f 1.32b 10.86a ± 0.01 9.52b ± 0.02 6.52f ± 0.01 8.31d ± 0.01 9.22c ± 0.01

Σ hydrocarbons n.d.i 1478.97h 1.37 1.37 1.18 1.05 1.25
1,3-Cyclopentadiene, 5-(1-methylethylidene)- n.d.f 1.32b ± 0.35 1.37b ± 0.01 1.37b ± 0.01 1.18e ± 0.01 1.05f ± 0.01 1.25d ± 0.0 1

Σ other compounds n.d.e n.d.e n.d. n.d. n.d. 0.33 1.72
Diethyl dl-malate Over ripe, peach, cut grass n.d.e n.d.e n.d.e n.d.e n.d.e 0.33c ± 0.02 1.72a ± 0.01

Total 8.06i 1530.00h

n.d.: Not detected (value under detection limit of 0.5 mg/L); a–i: different letters indicate significant differences between maceration time for the same wine for P ≤ 0.05.

91
N
.Francesca

etal./InternationalJournalofFood
M
icrobiology

171
(2014)

84
–93



Must

AF-Day8

PFM-Day13PFM-Day20

PFM-Day50

PFM-Day70

PFM-Day90

-3

-2

-1

0

1

2

3

-20 -15 -10 -5 0 5 10 15 20

F
2 

(1
7.

15
 %

)

F1 (72.09 %)

Biplot (axes F1 and F2: 89.25 %)

Fig. 3. Score plot for the components F1 and F2 of samples collected during experimental vinification of “Aglianico di Taurasi” wines. Abbreviations: AF, alcoholic fermentation;
PFM, post-fermentation maceration. The samples analysed are as follows: AF-Day8, wine on day 8 of alcoholic fermentation; PFM-Day13, wine on day 13 of post-fermentation
maceration; PFM-Day20, wine on day 20 of post-fermentation maceration; PFM-Day50, wine on day 50 of post-fermentation maceration; PFM-Day70, wine on day 70 of post-
fermentation maceration; PFM-Day90, wine on day 90 of post-fermentation maceration.
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positively contribute to fullness, sweetness and roundness sensations
(Nurgel and Pickering, 2005). These data support the hypothesis that
prolonged maceration could improve the quality of wine due to the
activities of yeasts and LAB that are alive and in a metabolically active
state during the process.

The results of the phenol analysis confirmed that long maceration
improves the quality of the final product. A considerable increase in
the phenol compoundswas found until the end of the process. In gener-
al, maceration favours the extraction of monomeric tannins such as
(+)-catechin and (−)-epicatechin that could be responsible for the bit-
ter and acid taste of wine. In fact, maximum concentrations of catechins
were found at the end of maceration. This can be explained by the
slower extraction kinetics, because they undergo several substitutions
and have higher molecular weights (Ribereau-Gayon et al., 2003). On
the other hand, it is worth noting that the highest ratio between (+)-
catechin and (−)-epicatechin was reached after 40 d. This is an inter-
esting result because epicatechin is more astringent than its chiral
isomer (Noble et al., 1999). Thus, extension of the maceration phase
Table 5
Sensory scores of “Aglianico di Taurasi” wines carried out by different times of post-
fermentation maceration.

Descriptors Post-fermentation maceration

Day-13 Day-20 Day-50 Day-70 Day-90

Colour intensity 5.70e 5.65f 7.89a 7.32b 7.07d

Odour:
Intensity 6.80e 6.71f 7.31b 6.97d 7.56a

Complexity 5.41g 5.45f 6.86b 6.29d 7.19a

Fresh fruits 5.12a 4.88b 4.03d 3.31f 3.23g

Dried fruits 2.01f 1.84g 2.57d 3.32b 3.82a

Flowers 3.51a 3.16b 2.98d 3.04c 2.77f

Aromatic herbs 1.21f 1.09g 2.15d 2.33c 2.66b

Spices 1.18f 1.11g 2.09e 2.48b 3.15a

Taste:
Sweet 1.15f 1.09g 1.30b 1.22d 2.12a

Hot 2.21f 1.96g 2.25e 3.28b 3.39a

Acid 4.33a 4.07b 3.51d 3.49d 3.01e

Astringent 7.31a 7.24b 6.97c 6.43f 6.66e

Bitter 5.79b 6.12a 5.35d 5.01e 4.77g

Complexity 4.65g 4.94f 5.81c 5.61e 6.22a

a–g: Different letters indicate significant differences between maceration time for the
same sample for P ≤ 0.05.
up to 40 d may positively contribute to the sensation of roundness of
the wine as well as to increased phenol content.

However, with regard to technological, nutritional and sensory
properties, catechins represent themost important class of polyphenols
and their polymerization with anthocyanins determines the stability of
the wine colour (Muñoz et al., 1999).

Our study also showed interesting results in terms of the antioxidant
activity of the experimental wines. The highest antioxidant activity was
found between days 40 and 50, which corresponded to a high concen-
tration of total polyphenols as well as the highest ratio between (+)-
catechin and (−)-epicatechin.

The extended post-fermentation maceration process applied in this
work affected the concentration of free radicals. Today, wines with a
unique sensory profile and potential health benefits, such as antioxidant
activity are particularly requested by the consumers. PCA analysis of
VOCs demonstrated that prolonged maceration could greatly influence
the characteristics of wine. According to the highest VOC concentrations
aswell as high sensory scores, 90 day samples appeared clearly separat-
ed from those taken at the other collection times and, together with the
70 day samples, they were most distant from the control wine on day
13.

In conclusion, our study provides additional information on the
microbial ecology of wine showing that both yeasts and LAB are
able to exert metabolic activities even during post-fermentation
maceration that is extended to 90 days. Data obtained by chemical
and sensory analyses indicated that maceration in the range
40–50 d significantly improves the quality of the final product due
to the increase in sensory roundness and complexity as well as the
antioxidant activity of wine. In addition, the present study clearly
advances our knowledge on the polyphenol content and composi-
tion of wines when prolonged maceration is carried out, i.e., longer
than the common duration stated by the oenological practice for
the production of Aglianico wine. Further investigations on the
identification and distribution of LAB species could be useful to
allow complete interpretation of the effect of extended maceration
on the microbial ecology of wine. Additional experiments carried
out with different grape varieties and in different cellars could be
useful to advance our knowledge on the wine maceration process.

It is worth noting that, today, maceration processes as the one
described here are carried out in large-scale vinifications at private
farms and the wines produced according to this winemaking process
are commercially distributed and sold in several countries.
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