
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Spatial-Importance-Based
Computation Scheme for Real-
Time Object Detection From 3D
Sensor Data

Otsu, Ryo; Shinkuma, Ryoichi; Sato, Takehiro; Oki,
Eiji; Hasegawa, Daiki; Furuya, Toshikazu

Otsu, Ryo ...[et al]. Spatial-Importance-Based Computation Scheme for
Real-Time Object Detection From 3D Sensor Data. IEEE Access 2022, 10:
5672-5680

2022

http://hdl.handle.net/2433/277851

This work is licensed under a Creative Commons Attribution 4.0
License.



Received November 6, 2021, accepted December 28, 2021, date of publication January 4, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3140332

Spatial-Importance-Based Computation Scheme
for Real-Time Object Detection From
3D Sensor Data
RYO OTSU 1, RYOICHI SHINKUMA 2, (Senior Member, IEEE),
TAKEHIRO SATO 1, (Member, IEEE), EIJI OKI 1, (Fellow, IEEE),
DAIKI HASEGAWA3, AND TOSHIKAZU FURUYA4
1Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
2Faculty of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
3ExaWizards Inc., Tokyo 105-0021, Japan
4Quantum Analytics, Inc., Hiroshima, 737-0821, Japan

Corresponding author: Ryoichi Shinkuma (shinkuma@shibaura-it.ac.jp)

This work was supported in part by the JST PRESTO under Grant JPMJPR1854; and in part by the JSPS KAKENHI, Japan, under Grant
21H03427 and Grant 21H03426.

ABSTRACT Three-dimensional (3D) sensor networks using multiple light-detection-and-ranging (LIDAR)
sensors are good for smart monitoring of spots, such as intersections, with high potential risk of road-
traffic accidents. The image sensors must share the strictly limited computation capacity of an edge
computer. To have the computation speeds required from real-time applications, the system must have a
short computation delay while maintaining the quality of the output, e.g., the accuracy of the object detection.
This paper proposes a spatial-importance-based computation scheme that can be implemented on an edge
computer of image-sensor networks composed of 3D sensors. The scheme considers regions where objects
exist as more likely to be ones of higher spatial importance. It processes point-cloud data from each region
according to the spatial importance of that region. By prioritizing regions with high spatial importance,
it shortens the computation delay involved in the object detection. A point-cloud dataset obtained by amoving
car equipped with a LIDAR unit was used to numerically evaluate the proposed scheme. The results indicate
that the scheme shortens the delay in object detection.

INDEX TERMS Smart monitoring, object detection, LIDAR sensor, point cloud, edge computing.

I. INTRODUCTION
The smart cities of tomorrow are expected to use smart
monitoring, particularly at intersections, to prevent traffic
accidents [1]. As Datondji et al. suggested [2], safety at
intersections is a critical global issue, as accidents at intersec-
tions are a major cause of road fatalities. Smart monitoring
using three-dimensional (3D) sensors, in particular, using
light detection and ranging (LIDAR) sensors, is a promis-
ing means to prevent such accidents [3], [4]. In particular,
a smart-monitoring system using multiple 3D sensors would
be effective for detecting objects such as cars, cyclists, and
pedestrians; in contrast, if a single 3D sensor only is used,
target objects can be easily occluded by foreground objects.

A 3D-object detector takes a point cloud of a scene as
input and produces an oriented 3D bounding box around each

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li .

detected object [5]. In smart monitoring, it is necessary for the
computation delay in object detection to be short as well as
for the detection to be accurate. However, the previous studies
on object detection using point clouds of scenes focused
mainly on the accuracy of the detection without considering
the computation time [5].

Applying edge computing to smart monitoring is straight-
forward and has an advantage in terms of reducing
communication latency between a network edge and a cloud
computer [6]. However, it is not easy to perform object
detection in real time with edge computers because their
computation power is limited. Typically, LIDAR sensors are
operated at frequency of 5 to 20 Hz, meaning they generate 5
to 20 frames per second. As we will show later, even using a
cloud server, the computation time of object detection on 3D
sensor data can be up to 200 to 300 milliseconds per frame.
As such, an edge computer might receive the next frame
of 3D data before it has finished processing the preceding

5672 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://orcid.org/0000-0002-4710-3950
https://orcid.org/0000-0003-2842-8941
https://orcid.org/0000-0002-6253-0942
https://orcid.org/0000-0003-2177-5027
https://orcid.org/0000-0001-5078-1712


R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

frame, meaning that it can’t process the 3D data in real
time.

This paper proposes a spatial-importance-based computa-
tion scheme that works on the edge computers of 3D sensor
networks composed of multiple LIDAR units. The scheme
splits up a point cloud into regions according to the spa-
tial importances of those regions; for example, regions with
objects such as cars, trucks, bicycles, and pedestrians are
more likely to be important ones for safety monitoring. The
points in these regions are then processed sequentially or
in parallel. Suppose that a point cloud has been split into
a number of high-importance regions and low-importance
regions. In the case of sequential processing, the data of
the high-importance regions are processed first; this short-
ens the computation time until a certain number of objects
are detected. In the parallel case, the computation on the
high-importance regions will likely finish earlier than that of
the low-importance regions, which tends to contain a lot of
data on roads, buildings, etc., in the background. In either
case, the delay in obtaining the object detection result is
shortened. In this study, we assume that a machine-learning
(ML) model that is pre-trained on a cloud computer is used to
perform object detection on the edge computer.We used a real
point-cloud dataset collected by a moving car equipped with
a LIDAR unit to numerically evaluate the proposed scheme.
The results indicate that the proposed scheme shortens the
computation time while meeting the accuracy required for
object detection.

As a means of overcoming the bandwidth limitation issue,
the authors previously presented schemes that differentiate
the compression rates of point cloud data in different spatial
regions in accordance with an importance score when the
data are transmitted from sensors to an edge computer [4],
[7]. In this paper, we address the processing time involved in
object detection.

The remainder of this paper is organized as follows.
Section II reviews previous studies on object detection
and image-sensor networks as an edge service. Section III
presents the proposed scheme. Section IV compares ML
models for object detection in terms of accuracy and compu-
tation time. Section V presents the results of a performance
evaluation using a point-cloud dataset and demonstrates an
implementation of the proposed scheme on an edge server.
Section VI concludes this paper.

II. RELATED WORK
A. 3D-IMAGE SENSOR NETWORK
3D sensors are useful for controlling autonomous vehi-
cles [8]. A number of networks composed of numerous 3D
sensors have been deployed experimentally to help control
autonomous vehicles. In 2006, the Intelligent Transportation
Systems (ITS) group at the University of Minnesota devel-
oped a testbed system that placed a network of 3D sensors
and radars near a rural intersection [9]. The network con-
stantly monitored the intersection and collected road-traffic

data from various perspectives. In 2009, Zhao et al. presented
a system for monitoring an intersection using a network of
3D sensors and video cameras [10]. The expected output of
this system consists of the motion trajectory of each mov-
ing object that entered the intersection and an estimation
of the object’s class, i.e., car, bus, bicycle, or pedestrian.
The system performs data transformations within the hori-
zontal plane, i.e., by using two translation parameters and
one rotation parameter, between the coordinate systems of
two neighboring 3D sensors. When a 3D sensor is used
as the reference frame, all laser points from different 3D
sensors are transformed into a common coordinate system.
In addition, the client computers are connected through a
network to a server computer, which broadcasts its local
time periodically to synchronize the time of all computers.
In 2011, Zhao et al. devised an algorithm for object detection
and tracking using 3D sensors installed at intersections [11].
In 2014, Strigel et al. collected a dataset at a public intersec-
tion in Aschaffenburg, Germany [3]. In their study, four 3D
sensors covered a wide area of the central intersection, two
3D sensors observed the sidewalks along the main road, and
eight 3D sensors observed three egresses of the intersection.
The 3D sensors synchronously operated at a frequency of
12.5 Hz. In 2019, Lv et al. devised a sensor infrastructure that
actively senses surrounding traffic with roadside 3D sensors
and broadcasts messages in real-time to connected vehicles
via dedicated-short-range-communication (DSRC) roadside
units [12]. Such broadcasted information may include posi-
tion corrections, a local map, and safety messages [13], [14].
None of these studies addressed the problem of how to
shorten the computation time of object detection by usingML
on an edge server.

B. OBJECT DETECTION FROM POINT-CLOUD DATA
Deep learning has been used on point clouds for handling
various tasks [5]. A well-studied task is detecting multiple
objects in a point cloud of a scene. The methods of detection
are categorized by the architecture of the detection process:
region proposal and single shot [5].

Region-proposal methods have a two-stage architecture:
first, regions where objects are likely to exist are identi-
fied. These regions are called proposals. Second, features
are extracted from each proposal to determine its label.
Region-proposal methods are further categorized as multi-
view, segmentation, or frustum [5]. The multi-view type gen-
erates 3D rotated boxes by fusing the features from different
view maps such as LIDAR front view, bird’s eye view, and
images. The segmentation type uses semantic segmentation
techniques to remove most of the background points and
generate large numbers of high-quality proposals on fore-
ground points. PointRCNN, a segmentation type developed
by Shi et al. [15], directly segments point clouds to obtain
foreground points and then fuses semantic local-spatial fea-
tures to produce high-quality 3D boxes. The frustum type
uses 2D object detection techniques to generate 2D object
proposals and makes 3D frustum proposals from each 2D

VOLUME 10, 2022 5673

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

proposal. A number of region-proposal methods, besides
the multi-view, segmentation, and frustum types, have been
devised. Namely, Shi et al. developed PointVoxel-RCNN
(PV-RCNN) [16], which uses a 3D convolutional neural net-
work and PointNet-based set abstraction [17] to extract fea-
tures of a point cloud. The input point cloud is voxelized and
the result is fed into a 3D sparse convolutional neural network
to generate 3D proposals. The learned voxel-wise features are
then encoded into a small set of key points via the voxel set
abstraction module. Finally, key points are aggregated into
region of interest (RoI) grid points. The features for each
proposal are learned and refined. A confidence level is given
to each proposal. Shi et al. also developed PART-A2 [18],
a neural network that consists of two stages: an object-
part-aware stage and an object-part aggregation stage. The
part-aware stage applies sparse convolution and sparse decon-
volution to the input point cloud to predict intra-object part
locations and generates 3D proposals. The part-aggregation
stage conducts RoI-aware point cloud pooling to aggregate
the object part information for each 3D proposal. The object
part aggregation network is applied to score boxes and it
refines the locations of objects on the basis of the features
of the parts and information from the part-aware stage.

In contrast to the region-proposal-based methods, single-
shot methods generate 3D bounding boxes directly through a
single-stage network without generating proposals or post-
processing. Single-shot methods are categorized on the
basis of the type of input data: BEV-based, discretization-
based, or point-based [5]. The BEV-based type takes a
bird’s eye view (BEV) representation as input, while the
point-based type takes raw points as input. The discretization-
based type–examples of which are SECOND [19] and
PointPillars [20]–converts a point cloud into a regular discrete
representation. In particular, SECOND takes raw points as
input and uses VoxelNet [21] to divide the point cloud into
evenly spaced voxels and encodes the features within each
voxel into a 4D tensor. Then, by using a sparse convolution
network [19], [22], the region-proposal network (RPN) gen-
erates object-detection results. PointPillars [20] organizes the
input point cloud into columns (pillars) by using a stacked
pillar tensor and a pillar index tensor. It uses PointNet [17] to
learn the features of the point cloud that has been organized
into pillars and encodes the learned features as a pseudo
image. A 2D object-detection pipeline is then used to deter-
mine 3D bounding boxes.

There are two methods of generating proposals and bound-
ing boxes: anchor-base and anchor-free [18]. The anchor-base
method defines anchors, i.e., the average box size for each
object, in advance and applies them sequentially to the fea-
ture map. The anchor-free method generates bounding boxes
directly from points belonging to the target objects by regress-
ing the difference of each point from the center. Point-RCNN
uses the anchor-free method, while SECOND, Pointpillars,
and PV-RCNN use the anchor-base method. PART-A2 uses
both methods.

C. REAL TIME OBJECT DETECTION AS EDGE SERVICES
Industry investment and research into edge computing,
in which computing and storing capabilities are placed at the
‘‘Internet’s edge’’ in close proximity tomobile devices or sen-
sors, have grown dramatically in recent years. Edge comput-
ing enables highly responsive cloud services for supporting
mobile computing, scalability, and privacy-policy enforce-
ment for the Internet of Things (IoT) and masking cloud
outages [23]. Edge computers are expected to use machine
learning, in particular, deep learning, so that they can obtain
effective representations of data in real time. However, due
to the limited computing capabilities and energy budgets of
edge computers, it is difficult for them to analyze data used
in real-time applications [24]. Here, Seyed Yahya et al. pro-
posed a lightweight convolutional neural network (L-CNN) to
handle the problem of using resource-limited edge computers
for object detection [6]. Depthwise separable convolution
is used to reduce the computing cost of a CNN without
sacrificing its accuracy [25]. The number of filters is also
reduced by focusing on human detection. A single-shot multi-
object detector (SSD) [26] is fused to the CNN architecture to
detect humans quickly and reliably. Seyed Yahya et al. also
presented a framework for transferring knowledge between
a deep neural network (DNN) and a shallow neural network
(SHNN) [27]. The SHNN helps to suppress the energy con-
sumed by the user-end device and the edge devices. The
edge device uses the DNN, not for detecting objects, but
for detecting changes in the image and updating the SHNN
model, because the diversity of objects appearing in any
image over a period of time is limited [28]. In particular, new
knowledge (such as ground truth encoded with new weights)
is transferred from each edge device to the user-end device to
update the SHNN model. Compared with a framework that
uses only a DNN model, Seyed Yahya et al.’s framework
reduces inference time and energy consumption while keep-
ing the loss in accuracy at an acceptable level.

III. PROPOSED SCHEME
A. SYSTEM MODEL
The system models of the proposed scheme are illustrated in
Fig. 1. One model (a) is for the sequential method; the other
is for the parallel method (b). The system consists of an edge
server andmultiple devices equipped with image-sensor units
(hereafter called sensors). Each sensor generates a stream
of point-cloud data frame by frame, i.e., sequentially. The
point-cloud data are transmitted from the sensors to the edge
server via a communication channel.

Each frame, the image capturer receives point-cloud data
from its corresponding image sensor unit and stores them
in the buffer. The transmitter transmits the data stored in
the buffer to the receiver of the edge server. The aggregator
aligns (transforms) the coordinates of the point-cloud data
received from each sensor and it aggregates the transformed
point-cloud data frame by frame. The region splitter splits the

5674 VOLUME 10, 2022

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

FIGURE 1. System models used in the proposed scheme.

point-cloud data into regions on the basis of the spatial impor-
tance determined from the spatial model. The object detector
detects pedestrians, cars, and bicycles from the point-cloud
data of each frame by using the pre-trained ML model on the
cloud server. The sequential method performs object detec-
tion sequentially region by region, while the parallel method
performs object detection on multiple regions in parallel by
using multiple object detectors.

Fig. 2 presents an example of how the sequential method
works. First, a point cloud is divided into regions in accor-
dance with their spatial importance scores; regions with
higher scores more likely contain objects such as cars, trucks,
bicycles, and pedestrians. Then, object detection is performed
on each region sequentially in descending order of the score
of the region. Fig. 2b illustrates the parallel method. After the
point cloud is divided into regions, object detection is per-
formed on every region in parallel. Since the regions with low
spatial importance scores contain a lot of background such
as roads and buildings, it is expected that the computation
time for the regions with higher scores of spatial importance
should be shorter.

B. PROBLEM FORMULATION
The problem of minimizing the total computational time of
object detection for the sequential method is as follows.

min
∑
i∈I

ts(d(xi(r))), (1)

s.t.
∑
i∈I

a(d(xi(r))) > α. (2)

Here, ts() denotes the time duration from the start to the
end of the computation, which equals the total computation
time using a model for object detection in the regions of
point-cloud data. A set of all divided regions I and the

FIGURE 2. Example of prioritized processing in the proposed scheme.

required accuracy of object detection α are given parameters.
The division format r , which determines how to split the
point cloud into multiple regions in accordance with the spa-
tial importance, is a decision variable. xi(r) denotes the
point-cloud data of region i ∈ I produced using r . d()
denotes the object detection model with xi(r) as its input.
a() denotes the accuracy, such as the precision and recall,
of object detection on the divided point cloud. Equation (1)
is the objective of the problem, which is to minimize the
total computational time of object detection on the divided
point-cloud data by appropriately selecting r . Equation (2)
is the constraint of the problem wherein the overall accu-
racy of object detection in the regions must be greater
than α.

As for the parallel method, the problem is to minimize the
longest of the computational times on the divided point-cloud
data by appropriately selecting r :

min max
i∈I

(tp(d(xi(r)))), (3)

s.t.
∑
i∈I

a(d(xi(r))) > α. (4)

Here, tp() denotes the time duration from the start to the
end of the computation, which equals the longest compu-
tation time for a region. Equation (3) is the objective of
the problem, while Equation (4), the constraint, is identical
to (2).

VOLUME 10, 2022 5675

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

Algorithm 1 Control Procedure of Proposed Scheme
Model-creation phase

1: f1, f2, . . . , fl ← l frames of point cloud collected in
advance

2: P ← spatial importance estimated from aggregation of
f1, f2, . . . , fl
Real-time object detection phase

3: Rj(j = 1, 2, . . . ,m) ← regions determined by spatial
importance P, where m is the number of regions; Rj with
smaller j has higher spatial importance.

4: pi(i = 1, 2, . . . , n) ← point-cloud data obtained by
sensors in real time, where n is the number of sensors.

5: for i = 1, 2, . . . , n do
6: for j = 1, 2, . . . ,m do
7: Pick a set of points in Rj from pi and add them

to qj
8: end for
9: end for

10: if S is True (Sequential method) then
11: for j = 1, 2, . . . ,m do
12: Run object detection for qj sequentially
13: end for
14: else (Parallel method)
15: Run object detection for q1, q2, . . . , qm in parallel
16: end if

C. CONTROL PROCEDURE
Algorithm 1 is the control procedure for prioritizing the com-
putations of the proposed scheme. It roughly consists of two
phases: model creation and real-time object detection. In the
model-creation phase, the spatial importances are estimated.
(The way of estimating the spatial importance is explained in
Section V-A.) In the real-time object-detection phase, point-
cloud data are divided up into regions on the basis of their
spatial importance. In the sequential method, object detection
is performed on the regions in descending order of their
spatial importance. In the parallel method, object detection
is performed for each divided region in parallel.

IV. COMPARISON OF OBJECT DETECTION METHODS
We examined a number of object-detection methods to find
ones suitable for the evaluation of the proposed scheme.

A. DATASET
TheKITTI dataset, whichwas published byGeiger et al. [29],
has been extensively used in studies on mobile robotics
and autonomous driving. The dataset contains 3D image
data recorded while a car, fitted with a Velodyne HDL-64E
LIDAR unit, was driven in and around Karlsruhe, Germany.
The raw data, collected at various locations (from local high-
ways to urban scenes), cover a wide variety of autonomous
driving scenarios with static and dynamic objects. The cam-
eras and LIDAR unit were installed 1.73 m and 1.65 m above
the ground and synchronously operated at 10-100 Hz. The

TABLE 1. Classification of object-detection methods.

dataset contains raw LIDAR data, camera images, the cali-
bration matrix of the camera, and object-label information,
which are all calibrated, synchronized, and timestamped.
Eight object labels ‘‘car,’’ ‘‘van,’’ ‘‘truck,’’ ‘‘pedestrian,’’
‘‘person,’’ ‘‘cyclist,’’ ‘‘tram,’’ and ‘‘misc.’’ (e.g., trailers
and Segways). The dataset is divided into training and test
sets. The whole dataset contains 7,481 frames with label
information. The average number of points per frame is
around 120,000.

B. OBJECT DETECTION METHODS
The Open-source Toolbox for 3D Object Detection from
Point Clouds (OpenPCDet), which was published by Open-
PCDet Development Team [30], has been extensively used
for object detection. We used this toolbox to implement the
object-detectionmethods. Although OpenPCDet provides six
object-detection methods, we compared only four of them:
SECOND [19], PV-RCNN [16], PART-A2-free [18], and
PART-A2 [18]. We used these methods with the default
models; it is included in future work how to set parameters for
the model of each method.We chose the ‘‘car,’’ ‘‘pedestrian,’’
and ‘‘cyclist’’ benchmarks from KITTI [31]. For each class,
three levels of difficulty were set: ‘‘easy,’’ ‘‘moderate,’’ and
‘‘hard.’’ We used 3,712 frames for training and 3,769 frames
for validation. The detection results were evaluated in terms
of computation time per frame, which equals to the total
computation time divided by the total number of frames, and
average precision (AP), which is used extensively as a metric
for detection accuracy [31].

C. PERFORMANCE COMPARISON
The cloud server was an Amazon EC2 g3.4xlarge with
Ubuntu OS version 18.04.5 equipped with sixteen Intel Xeon
E5-2686 v4 CPUs @ 2.7GHz with 122GiB memory and one
NVIDIA Tesla M60 GPU with 8GiB memory.

Fig. 3 shows the cumulative distribution function (CDF)
of computation time per frame measured for each object
detection method. SECOND is the fastest, which is rea-
sonable because it is a single-shot method that provides
bounding boxes directly without having to generate proposals
or aggregate features, while the others are region-proposal-
basedmethods. Table 2 shows theAP of each object-detection
method on the KITTI benchmarks. SECOND had almost the
same AP for cars as the other methods, although its APs for
pedestrians and cyclists were inferior to those of the other
methods. This comparison indicates that SECOND is reason-
able choice for evaluating the performance of the proposed
scheme. That is, we consider computation time to be the

5676 VOLUME 10, 2022

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

TABLE 2. Average precision of each object-detection method.

FIGURE 3. Cumulative distribution function of computational time of
object detection per frame.

primary factor limiting the capability of edge computing, and
SECOND is faster than the other methods, while its AP for
cars is acceptable.

D. SECOND
SECOND [19] consists of four parts: a voxel features and
coordinates converter, voxel feature extractor, sparse con-
volution layers, and RPN. It takes a raw point cloud of a
scene as input and converts them to voxel features and coor-
dinates. Then it uses two voxel-feature encoding layers [21]
and a fully connected network to extract the voxel features.
It applies a sparse convolution [19], [22] network to the
extracted features. The result of these operations converts the
point cloud into a number of sparse voxels, 5,000 to 8,000
voxels with a sparsity of nearly 0.005 in case of KITTI [29].
Finally, the RPN performs the object detection.

V. PERFORMANCE EVALUATION
A. SPATIAL IMPORTANCE CLASSIFICATION
Before describing the results of the performance evalua-
tion, let us describe how the point clouds were divided
into importance classes. Regions containing bounding boxes
extracted from the object-label information were assumed to
be important in object detection because objects are likely to
exist in such regions. For each object with a bounding box,
fifteen features are available from the object label informa-
tion of the KITTI dataset. Seven of those features, namely,
x position [m], y position [m], z position [m], object width
[m], object length [m], object height [m], and rotation angle
[rad], are used to extract the bounding boxes of the objects;
the locations and rotation angles are defined in the camera

FIGURE 4. Number of points in high- and low-importance regions.

TABLE 3. Computation time (in seconds) for all frames when running
each method on a cloud server.

TABLE 4. Computation time (in milliseconds) per frame when running
each method on a cloud server.

coordinates. Then, the point cloud was divided into just two
regions, i.e., a high- importance region and low-importance
one, depending on whether the points were inside or outside
the bounding boxes. Fig. 4 shows the numbers of points in
the high- and low-importance regions. The low-importance
region has twice as many point as the high-importance
region.

B. EVALUATION RESULTS
The measurement environment was the computational envi-
ronment described in Section IV-C. Frames with no points in
the high-importance region were removed from the validation
set. We compared the computation times, APs, and recalls of
the proposed scheme and the benchmark scheme, SECOND,
selected without splitting the data.

Table 3 lists the computation times for processing all
frames of the data. The overall region means the whole
cloud. The computation time for one frame can be derived

VOLUME 10, 2022 5677

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

TABLE 5. Recall for each region.

TABLE 6. AP for each region.

by dividing the values by 3,766, except for ‘‘the sequential
method for the overall region’’ where it can be derived by
dividing the value by 7,532. The computation time for one
frame of the high-importance region is shorter than those of
the low-importance and overall regions. Object detection for
the high-importance region took a shorter time because the
number of points in the high-importance region was smaller
than those in the low-importance and overall region. The
benchmark method was faster at processing the points in the
overall region. However, the sequential and parallel methods
were faster on the high-importance region. Moreover, the
computation time of the parallel method for the overall region
was not much longer than that of the benchmark method.
These results show that, by dividing the point-cloud data
on the basis of spatial importance, the proposed scheme
performed well in terms of reducing the computation time of
object detection.

Tables 5 and 6 show the recalls and APs. In this table,
the listed APs and recalls for the high- and low-importance
regions are for the parallel and sequential methods, which
performed identically in these terms. The ‘‘Overall’’ row
indicates the results of the benchmark method, which does
not split up the point-cloud data. Compared with the recall
for the overall region, the recall for pedestrians in the
high-importance region was high, while those for cars and
cyclists in the high-importance region was low. The same
trend appears for AP shown in Table 2. AP depends on the
preciseness of the size and angle of the bounding boxes
given by the label information in the dataset. The recalls
for cars and cyclists in the low-importance region are not
zero; namely, objects are detected even from points in the
low-importance region. We analyzed the positions within
the bounding boxes in the low-importance region and found
out that some of the points of cars and cyclists (such as
those at the front edges and rear edges of vehicles) were
included in the low-importance region. Consequently, in the
performance evaluation, if the label information was per-
fect, the accuracy of the high-importance region in terms
of recall and AP would be identical with that of the
benchmark.

TABLE 7. Computation time (in seconds) for all frames when running
each method on an edge server. Values in brackets indicate ratios relative
to the computation times listed in Table 3 when run on the cloud server.

TABLE 8. Computation time in milliseconds per frame when running each
method on an edge server. Values in brackets indicate ratios relative to
the computation times in Table 4 when run on the cloud server.

C. IMPLEMENTATION OF PROPOSED SCHEME ON
JETSON AS EDGE SEVER
The proposed scheme was implemented on an edge sever that
had a much lower computation power than that of the cloud
server used in the comparison described in Section IV-C. The
edge server was a Jetson Xavier NX from NVIDIA. It is
equipped with 384 NVIDIA CUDA R©cores, 48 tensor cores,
six Carmel ARM CPUs, and two NVIDIA deep-learning
accelerators (NVDLA) engines. In an experiment with over
59.7 GB/s of memory bandwidth, video encoding and decod-
ing, a Jetson Xavier NX was used to process high-resolution
data from multiple sensors and to run multiple modern neu-
ral networks in parallel simultaneously [32]. Table 7 shows
the computation times for processing all frames with the
Jetson Xavier NX. The computation time per frame is also
shown. The computation time of the edge server is 3.5 to 6.1
times longer than that of the cloud server shown in Table 3.
This result was as expected because the computation power
of the edge server is much lower than that of the cloud
server. The computation time of the sequential and parallel
methods used for the high-importance region was shorter
than that of the benchmark method; this result suggests that
the proposed scheme obtains object-detection results for the
high-importance region quicker than the benchmark method.

5678 VOLUME 10, 2022

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

VI. CONCLUSION
A spatial-importance-based computation scheme that works
on edge computers of image-sensor networks using multiple
LIDAR sensors was proposed. The scheme performs object
detection sequentially or in parallel in accordance with the
spatial importance of point-cloud data; it shortens the delay
involved in object detection. Multiple object-detection meth-
ods were compared in a numerical study using the KITTI
dataset. The point-cloud data of the dataset were divided into
high- and low-importance regions, in which the points in
each region were inside or outside bounding boxes. From
the results of the study, we chose to compare our method
with SECOND, a discretization type of detection method,
in terms of accuracy and computation time (average precision
and recall). The results of the evaluation showed that the pro-
posed scheme with the sequential or parallel method reduces
the computation time of object detection on cloud and edge
servers.

ACKNOWLEDGMENT
The evaluation results were partly obtained from research
commissioned by the National Institute of Information and
Communications Technology (NICT), Japan.

REFERENCES
[1] G. P. Hancke, B. de Carvalho e Silva, and G. P. Hancke, ‘‘The role of

advanced sensing in smart cities,’’ Sensors, vol. 13, no. 1, pp. 393–425,
2012. [Online]. Available: https://www.mdpi.com/1424-8220/13/1/393

[2] S. R. E. Datondji, Y. Dupuis, P. Subirats, and P. Vasseur, ‘‘A survey of
vision-based traffic monitoring of road intersections,’’ IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 10, pp. 2681–2698, Oct. 2016.

[3] E. Strigel, D. Meissner, F. Seeliger, B. Wilking, and K. Dietmayer, ‘‘The
ko-PER intersection laserscanner and video dataset,’’ in Proc. 17th Int.
IEEE Conf. Intell. Transp. Syst. (ITSC), Oct. 2014, pp. 1900–1901.

[4] K. Sato, R. Shinkuma, T. Sato, E. Oki, T. Iwai, D. Kanetomo, and
K. Satoda, ‘‘Prioritized transmission control of point cloud data obtained
by LIDAR devices,’’ IEEE Access, vol. 8, pp. 113779–113789, 2020.

[5] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, ‘‘Deep
learning for 3D point clouds: A survey,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 43, no. 12, pp. 4338–4364, Dec. 2021.

[6] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B.-Y. Choi, and T. R. Faughnan,
‘‘Real-time human detection as an edge service enabled by a lightweight
CNN,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2018,
pp. 125–129.

[7] R. Otsu, R. Shinkuma, T. Sato, and E. Oki, ‘‘Data-Importance-Aware
bandwidth-allocation scheme for point-cloud transmission in multiple
LIDAR sensors,’’ IEEE Access, vol. 9, pp. 65150–65161, 2021.

[8] R. Dominguez, E. Onieva, J. Alonso, J. Villagra, and C. Gonzalez,
‘‘LIDAR based perception solution for autonomous vehicles,’’ in Proc.
11th Int. Conf. Intell. Syst. Design Appl., Nov. 2011, pp. 790–795.

[9] L. Alexander, P.-M. Cheng, A. Gorjestani, A. Menon, B. Newstrom,
C. Shankwitz, and M. Donath, ‘‘The Minnesota mobile intersection
surveillance system,’’ in Proc. IEEE Intell. Transp. Syst. Conf., Sep. 2006,
pp. 139–144.

[10] H. Zhao, J. Cui, H. Zha, K. Katabira, X. Shao, and R. Shibasaki, ‘‘Sensing
an intersection using a network of laser scanners and video cameras,’’ IEEE
Intell. Transp. Syst. Mag., vol. 1, no. 2, pp. 31–37, Sep. 2009.

[11] H. Zhao, J. Sha, Y. Zhao, J. Xi, J. Cui, H. Zha, and R. Shibasaki, ‘‘Detection
and tracking of moving objects at intersections using a network of laser
scanners,’’ IEEE Trans. Intell. Transp. Syst., vol. 13, no. 2, pp. 655–670,
Jun. 2012.

[12] B. Lv, H. Xu, J. Wu, Y. Tian, Y. Zhang, Y. Zheng, C. Yuan, and S. Tian,
‘‘LiDAR-enhanced connected infrastructures sensing and broadcasting
high-resolution traffic information serving smart cities,’’ IEEE Access,
vol. 7, pp. 79895–79907, 2019.

[13] S. Atev, H. Arumugam, O. Masoud, R. Janardan, and
N. P. Papanikolopoulos, ‘‘A vision-based approach to collision prediction
at traffic intersections,’’ IEEE Trans. Intell. Transp. Syst., vol. 6, no. 4,
pp. 416–423, Dec. 2005.

[14] Z. Tian, P. Michael Kyte PHD, and H. Liu, ‘‘Vehicle tracking and speed
measurement at intersections using video detection systems,’’ Inst. Transp.
Eng. ITE J., vol. 79, no. 1, p. 42, 2009.

[15] S. Shi, X. Wang, and H. Li, ‘‘PointRCNN: 3D object proposal generation
and detection from point cloud,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 770–779.

[16] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li,
‘‘PV-RCNN: Point-voxel feature set abstraction for 3D object detec-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 10529–10538.

[17] R. Q. Charles, H. Su,M. Kaichun, and L. J. Guibas, ‘‘PointNet: Deep learn-
ing on point sets for 3D classification and segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 652–660.

[18] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, ‘‘From points to parts: 3D
object detection from point cloud with part-aware and part-aggregation
network,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 8,
pp. 2647–2664, Aug. 2020.

[19] Y. Yan, Y. Mao, and B. Li, ‘‘SECOND: Sparsely embedded convolutional
detection,’’ Sensors, vol. 18, no. 10, p. 3337, 2018.

[20] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
‘‘PointPillars: Fast encoders for object detection from point clouds,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12697–12705.

[21] Y. Zhou and O. Tuzel, ‘‘VoxelNet: End-to-end learning for point cloud
based 3D object detection,’’ in Proc. IEEE/CVFConf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4490–4499.

[22] B. Graham and L. van der Maaten, ‘‘Submanifold sparse convolutional
networks,’’ 2017, arXiv:1706.01307.

[23] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Comput.,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[24] G. Plastiras, M. Terzi, C. Kyrkou, and T. Theocharidcs, ‘‘Edge intel-
ligence: Challenges and opportunities of near-sensor machine learning
applications,’’ in Proc. IEEE 29th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Jul. 2018, pp. 1–7.

[25] L. Sifre and S. Mallat, ‘‘Rigid-motion scattering for image classification,’’
Ph.D. dissertation, Ecole Polytechnique, France, 2014.

[26] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[27] S. Y. Nikouei, Y. Chen, S. Song, and T. R. Faughnan, ‘‘Kerman: A hybrid
lightweight tracking algorithm to enable smart surveillance as an edge ser-
vice,’’ in Proc. 16th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC),
Jan. 2019, pp. 1–6.

[28] M. Farhadi and Y. Yang, ‘‘TKD: Temporal knowledge distillation for active
perception,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Mar. 2020, pp. 953–962.

[29] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics: The
KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237, 2013.

[30] O. D. Team. Openpcdet: An Open-Source Toolbox for 3D Object Detec-
tion From Point Clouds. Accessed: Nov. 5, 2021. [Online]. Available:
https://github.com/open-mmlab/OpenPCDet

[31] Kitti 3D Object Detection Benchmark Leader Board. Accessed:
Nov. 5, 2021. [Online]. Available: http://www.cvlibs.net/datasets/
kitti/eval_object.php?obj_benchmark=3d

[32] NVIDIA. Jetson Xavier NX Developer Kit | Nvidia Developer. Accessed:
Nov. 5, 2021, [Online]. Available: https://developer.nvidia.com/embedded/
jetson-xavier-nx-devkit

RYO OTSU received the B.E. degree in electrical
and electronic engineering from Kyoto University,
in 2019, and themaster’s degree from the Graduate
School of Informatics, Kyoto University, in 2021.
His research interest includes 3D-image sensor
networks.

VOLUME 10, 2022 5679

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



R. Otsu et al.: Spatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Data

RYOICHI SHINKUMA (Senior Member, IEEE)
received the B.E., M.E., and Ph.D. degrees in com-
munications engineering from Osaka University,
in 2000, 2001, and 2003, respectively. He joined
the Graduate School of Informatics, Kyoto Uni-
versity, andworked there as anAssistant Professor,
from 2003 to 2011, and as an Associate Professor,
from 2011 to 2021. He was a Visiting Scholar
at the Wireless Information Network Laboratory,
Rutgers University, from 2008 to 2009. In 2021,

he joined the Faculty of Engineering, Shibaura Institute of Technology,
as a Professor. His main research interest includes cooperation in hetero-
geneous networks. He is a fellow of the IEICE. He received the Young
Researchers’ Award from the IEICE in 2006, the Young Scientist Award
from Ericsson Japan in 2007, the TELECOM System Technology Award
from the Telecommunications Advancement Foundation in 2016, and the
Best Tutorial Paper Award from the IEICECommunications Society in 2019.
He was the Chairperson of the Mobile Network and Applications Technical
Committee of the IEICE Communications Society, from 2017 to 2019.

TAKEHIRO SATO (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees in engineer-
ing from Keio University, in 2010, 2011, and
2016, respectively. From 2011 to 2012, he was
a Research Assistant with the Keio University
Global COE Program, ‘‘High-Level Global Coop-
eration for Leading-Edge Platform on Access
Spaces,’’ established by the Ministry of Education,
Culture, Sports, Science and Technology of Japan.
From 2012 to 2015, he was a Research Fellow

with the Japan Society for the Promotion of Science. From 2016 to 2017,
he was a Research Associate at the Graduate School of Science and Technol-
ogy, Keio University. He is currently an Assistant Professor at the Graduate
School of Informatics, Kyoto University. His research interests include com-
munication protocols and network architecture for next-generation optical
networks. He is a member of the IEICE.

EIJI OKI (Fellow, IEEE) received the B.E. and
M.E. degrees in instrumentation engineering and
the Ph.D. degree in electrical engineering from
Keio University, Yokohama, Japan, in 1991, 1993,
and 1999, respectively. He was with Nippon
Telegraph and Telephone Corporation (NTT) Lab-
oratories, Tokyo, from 1993 to 2008, and the
University of Electro-Communications, Tokyo,
from 2008 to 2017. From 2000 to 2001, he was
a Visiting Scholar at Polytechnic University,

Brooklyn, NY, USA. In 2017, he joined Kyoto University, Japan, where he
is currently a Professor. His research interests include routing, switching,
protocols, optimization, and traffic engineering in communication and infor-
mation networks. He is a fellow of the IEICE.

DAIKI HASEGAWA received the B.E. and M.E.
degrees in civil engineering from Kyoto Uni-
versity, in 2009 and 2011, respectively. He is
currently with the development of AI-enabled ser-
vices for industrial innovation and social problems
solutions, ExaWizards Inc.

TOSHIKAZU FURUYA received the B.E. degree
from the Faculty of Culture and Information Sci-
ence, Doshisha University, in 2010, and the mas-
ter’s degree in business administration from Kyoto
University, in 2014, where he is currently pursu-
ing the Ph.D. degree with the Graduate School of
Informatics. He founded ExaWizards Inc., as anAI
startup company, in 2016. He is currently the CEO
of Quantum Analytics, Inc.

5680 VOLUME 10, 2022

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp




