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THERMAL EFFECTS IN ANISOTROPIC
POROUS ELASTIC RODS

S. De Cicco1 and D. Ieşan2
1Dipartimento di Costruzioni e Metodi Matematici in Architettura,
Universitá degli Studi di Napoli “Federico II”, Napoli, Italy
2Octav Mayer Institute of Mathematics, (Romanian Academy), Iaşi, Romania

This research is concerned with the thermoelastic deformation of a porous anisotropic
right cylinder subjected to a thermal field independent of the axial coordinate. The
case of a material with a plane of elastic symmetry which contains the axis of cylinder
is considered. The solution of the problem is expressed in terms of solutions of some
generalized plane strain problems. It is shown that the temperature field produces
extension, torsion, and a plane strain. For this kind of anisotropy, an infinitesimal
twist produces a variation of volume fraction field. The method is used to study the
deformation of an inhomogeneous circular cylinder.

Keywords: Anisotropic solids; Generalized plane strain; Porous elastic bodies; Thermal stresses
in rods

INTRODUCTION

There has been much recent interest in the study of porous elastic materials. In
[1, 2], Cowin and Nunziato developed a theory of elastic materials with voids. The
intended applications of this theory are to elastic bodies with vacuous pores which
are distributed throughout material. In [3], Eringen introduced a special class of
bodies with microstructure, characterized by an isotropic microdeformation tensor.
In this case the material particles undergo a uniform microdilatation. In the absence
of microrotations the linear equations which describe the behaviour of an elastic
body with this kind of microstructure coincide with the equations of elastic materials
with voids established by Nunziato and Cowin in [1, 2]. In what follows we shall
refer to this model as a porous elastic continuum. The theory of elastic materials
with voids was investigated in various works (see, e.g., [4–9] and the references
therein). In recent years there has been some interest in the study of anisotropic
porous materials (see, e.g., [10–15]).

In this paper we consider the linear elastostatics of anisotropic porous
materials. We study the deformation of an inhomogeneous and anistropic right
cylinder subjected to a temperature field which is independent of the axial
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ANISOTROPIC POROUS ELASTIC RODS 365

coordinate. In the case of orthotropic porous elastic cylinders, a plane temperature
field produces no torsional effect [16]. We also note that if the medium has a plane
of elastic symmetry, normal to the axis of cylinder, then a temperature field which
is independent of the axial coordinate does not induce a torsion of the cylinder.
Moreover, we note that an infinitesimal twist produces no variation of porosity
(see, e.g., [16–18]). These aspects led us to investigate the case when the medium
has a plane of elastic symmetry which contains the axis of cylinder. In this paper
we show that for this kind of anisotropy a temperature field which is independent
of the axial coordinate produces torsional effects. Moreover, the torsion of the
cylinder induces a variation of volume fraction field. In recent years, research
activity on functionally graded materials has stimulated the interest in porous of
inhomogeneous elasticity (see, e.g., [19, 20] and the references therein). In this paper
the analysis is carried out for a subclass of inhomogeneous materials where the
constitutive coefficients are independent of the axial coordinate. The solution of
the problem is expressed in terms of solutions of some generalized plane strain
problems. In the next section we present the basic equations and the formulation of
the boundary value problem. Then we study the generalized isothermal plane strain
problem. We introduce four special generalized plane strain problems characterized
by external data which depend only on the constitutive coefficients. The solutions
of these problems will be used to solve the thermoelastic problem. In the following
section we solve the problem of a right cylinder subjected to a plane temperature
field and to extension, bending and torsion. We have introduced mechanical loads
in order to compare the effects of temperature field with those produced by
the resultants which act on the ends. The three-dimensional problem is reduced
to the study of some two-dimensional problems. The solution is used to study
the deformation of an inhomogeneous circular cylinder subjected to a prescribed
thermal field.

STATEMENT OF THE PROBLEM

We consider a body that in its undeformed state occupies the regular region
B of Euclidean three-dimensional space and is bounded by the piecewise smooth
surface �B. The deformation of the body is referred to the undeformed state and a
fixed system of rectangular cartesian axes Oxk. We designate by ni the components
of the outward unit normal of �B. We shall employ the usual summation and
differentiation conventions: Greek subscripts are understood to range over the
integers (1,2) whereas Latin subscripts (unless otherwise specified) to the range
(1,2,3); summation over repeated subscripts is implied and subscripts preceded by
a comma denote partial differentiation with respect to the corresponding cartesian
coordinate. We assume that the region B is occupied by a linearly porous elastic
material. Let ui be the components of the displacement vector field over B. Then,
the linear strain measure eij is defined by

eij =
1
2
�ui�j + uj�i� (1)

D
ow

nl
oa

de
d 

by
 [

D
r 

S.
 D

e 
C

ic
co

] 
at

 0
9:

00
 2

8 
O

ct
ob

er
 2

01
3 



366 S. DE CICCO AND D. IEŞAN

We denote by tij the stress tensor and by hk the equilibrated stress vector. The
surface force and the equilibrated surface force at a regular point of �B� are given by

ti = tjinj� h = hknk

respectively.
We stipulate that the region B from here on refers to the interior of a right

cylinder of length l with the open cross-section � and the lateral boundary S. The
rectangular cartesian coordinate frame is supposed to be chosen in such a way that
the x3-axis is parallel to the generators of B and the x1, x2-plane contains one of
the terminal cross-sections. We denote by �1 and �2, respectively, the cross-section
located at x3 = 0 and x3 = l� We assume that the generic cross-section is a simply
connected regular region. We denote L the boundary of �.

Throughout this discussion we assume that the material has a plane of elastic
symmetry which contains the axis of cylinder. Let x2Ox3 be the plane of elastic
symmetry. In this case the constitutive equations of a thermoelastic solid are

t11 = C11e11 + C12e22 + C13e33 + 2C14e23 + �1�− b1T

t22 = C12e11 + C22e22 + C23e33 + 2C24e23 + �2�− b2T

t33 = C13e11 + C23e22 + C33e33 + 2C34e23 + �3�− b3T

t23 = C14e11 + C24e22 + C34e33 + 2C44e23 + �4�− b4T (2)

t31 = 2C55e13 + 2C56e12� t12 = 2C56e13 + 2C66e12

h1 = 	1��1� h2 = 	2��2 + 	4��3� h3 = 	4��2 + 	3��3


 = −�1e11 − �2e22 − �3e33 − 2�4e23 − ��+mT

where � is the volume fraction field, T is the temperature measured from the
absolute temperature of the natural state, g is the intrinsic equilibrated body force,
and Cmn�m� n = 1� 2� � � � � 6�, �j� 	k� bk, �k = 1� 2� 3� 4��m and � are constitutive
coefficients. We assume that T is a prescribed function, independent of the axial
coordinate,

T = f�x1� x2�� �x1� x2� ∈ �1 (3)

In the absence of body loads, the equations of equilibrium are

tjk�j = 0� hj�j + g = 0 (4)

We suppose that the cylinder is free from lateral loading. On the lateral surface of
the cylinder we have the conditions

t	in	 = 0� h	n	 = 0 on S (5)

We assume that the cylinder B is subjected to extension, bending and torsion. We
introduce the mechanical loads in order to compare the effects of temperature field
with those produced by the resultants which act on the ends. Let R = �0� 0� R3�
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ANISOTROPIC POROUS ELASTIC RODS 367

and M = �M1�M2�M3� be prescribed vectors representing the resultant force and the
resultant moment about O of the tractions acting on �1. On �2 there are tractions
applied so as to satisfy the equilibrium conditions of the body. Consequently, for
x3 = 0 we have the conditions

∫
�
t	3da = 0 (6)

∫
�1

t33da = −R3�
∫
�1

x	t33da = �	�3M��
∫
�1

�	�3x	t�3da = −M3 (7)

where �ijk is the alternating symbol. We note that there is no contribution of the
equilibrated surface force in the resultant force and resultant moment (cf. [21]).

The problem consists in finding of the functions ui and � of class C2�B� ∩
C1�B� which satisfy the equations (1), (2) and (4) on B, the conditions (5) on the
lateral surface S� and the conditions (6) and (7) on the end �1.

We consider inhomogeneous materials for which the constitutive coefficients
are independent of the axial coordinate,

Crs = C̃rs�x1� x2�� 	k = 	̃k�x1� x2�� �j = �̃j�x1� x2�
(8)

bk = b̂k�x1� x2�� m = m̂�x1� x2�� � = �̃�x1� x2�

�x1� x2� ∈ �� �r� s = 1� 2� � � � � 6
 k = 1� 2� 3� 4�. We suppose that the constitutive
coefficients and temperature field are prescribed functions of class C�, and that the
domain � is C�-smooth.

By an admissible state on B we mean an ordered array of functions s =
�ui� �� eij� tij� hi� g� with the properties ui� � ∈ C2�B� ∩ C1�B�, eij ∈ C1�B� ∩ C0�B�,
eij = eji� tji� hi ∈ C1�B� ∩ C0�B�, tjk�j� hj�j , g ∈ C0�B�, tij = tji. We say that s =
�ui� �� eij� tij� hi� g� is an elastic state on B if s is an admissible state that satisfies the
equations (1)–(3) on B. We define the elastic potential W�s� associated to s by

2W�s� = C11e
2
11 + 2C12e11e22 + 2C13e11e33 + 4C14e11e23

+ 2�1e11�+ C22e
2
22 + 2C23e22e33 + 4C24e22e23 + 2�2e22�

+ C33e
2
33 + 4C34e23e33 + 2�3�e33 + 4C44e

2
23 + 4�4e23�

+ 4C55e
2
13 + 8C56e12e13 + 4C66e

2
12 + 	1���1�

2 + 	2���2�
2

+ 2	4��2��3 + 	3���3�
2 + ��2 (9)

We consider two elastic states s�	� = �u
�	�
i � ��	�� t

�	�
ij � h

�	�
i � g�	��, �	 = 1� 2�, on B and

introduce the notations

2W�s�	�� s���� = C11e
�	�
11 e

���
11 + C12�e

�	�
11 e

���
22 + e

���
11 e

�	�
22 �

+ C13�e
�	�
11 e

���
33 + e

���
11 e

�	�
33 �+ 2C14�e

�	�
11 e

���
23 + e

���
11 e

�	�
23 �

+ �1�e
�	�
11 �

��� + e
���
11 �

�	��+ C22e
�	�
22 e

���
22 + C23�e

�	�
22 e

���
33

+ e
���
22 e

�	�
33 �+ 2C24�e

�	�
22 e

���
23 + e

���
22 e

�	�
23 �+ �2�e

�	�
22 �

��� + e
���
22 �

�	��
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368 S. DE CICCO AND D. IEŞAN

+ C33e
�	�
33 e

���
33 + 2C34�e

�	�
23 e

���
33 + e

���
23 e

�	�
33 �+ �3��

�	�e
���
33

+ ����e
�	�
33 �+ 4C44e

�	�
23 e

���
23 + 2�4�e

�	�
23 �

��� + e
���
23 �

�	��

+ 4C55e
�	�
13 e

���
13 + 4C56�e

�	�
12 e

���
13 + e

���
12 e

�	�
13 �+ 4C66e

�	�
12 e

���
12

+ 	1�
�	�
�1 �

���
�1 + 	2�

�	�
�2 �

���
�2 + 	4��

�	�
�2 �

���
�3 + �

���
�2 �

�	�
�3 �

+ 	3�
�	�
�3 �

���
�3 + ���	����� (10)

It is easy to see that

2W�s�	�� s���� = t
�	�
ij e

���
ij + h

�	�
k �

���
�k − g�	����� (11)

If we take into account the equations (1), (4), (11) and the divergence theorem, then
we find that

2
∫
B
W�s�	�� s����dv =

∫
�B
�t

�	�
ji u

���
i + h

�	�
j �����njda (12)

In view of (9) and (10) we obtain

W�s�	�� s���� = W�s���� s�	��� W�s� s� = W�s� (13)

Clearly, (11) and (12) imply the relation

∫
�B
�t

�	�
ji u

���
i + h

�	�
j �����njda =

∫
�B
�t

���
ji u

�	�
i + h

���
j ��	��njda (14)

GENERALIZED PLANE STRAIN PROBLEM

Throughout this section we consider the isothermal theory �T = 0� and assume
that a body force f and an extrinsic equilibrated force p are given on B� We
suppose that on the lateral surface S are prescribed the surface force t̃ and the
equilibrated surface force h̃. We consider that f� p� t̃ and h̃ are all independent
of the axial coordinate, and that f and t̃ are parallel to the x1� x2-plane. Let s =
�ui� �� eij� tij� hj� g� be an admissible state on B. We say that s is an isothermal state
of generalized plane strain if

uj = uj�x1� x2�� � = ��x1� x2�� T = 0� �x1� x2� ∈ �1 (15)

The relations (15), (1) and (3) show that the functions eij� tij� hi and g are
independent of the axial coordinate. The constitutive equations reduce to

t11 = C11u1�2 + C12u2�2 + C14u3�2 + �1�

t22 = C12u1�1 + C22u2�2 + C24u3�2 + �2�

t33 = C13u1�1 + C23u2�2 + C34u3�2 + �3�

t23 = C14u1�1 + C24u2�2 + C44u3�2 + �4�

t31 = C55u3�1 + C56�u1�2 + u2�1�
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ANISOTROPIC POROUS ELASTIC RODS 369

t12 = C56u3�1 + C66�u1�2 + u2�1�

h1 = 	1��1� h2 = 	2��2 � h3 = 	4�2

g = −�1u1�1 − �2u2�2 − �4u3�2 − �� (16)

In the case of a generalized plane strain the equations of equilibrium are

t	i�	 + fi = 0� h	�	 + g + p = 0 on �1 (17)

The conditions on the lateral surface S are given by

t	in	 = t̃i� h	n	 = h̃ on L (18)

We suppose that fi� p� t̃i and h̃ are prescribed functions of class C�. The generalized
plane strain problem consists in finding the functions ui and � on �1 which satisfy
the equations (16) and (17) on �1 and the conditions (18) on L� We note that the
plane strain of isotropic porous elastic solids has been investigated in [21].

In the generalized plane strain the elastic potential is

2W0 = C11e
2
11 + 2C12e11e22 + 4C14e11e23 + 2�1e11�

+ C22e
2
22 + 4C24e22e23 + 2�2e22�+ 4C44e

2
23 + 4�4e23�

+ 4C55e
2
13 + 8C56e12e13 + 4C66e

2
12 + 	1���1�

2 + 	2���2�
2 + ��2 (19)

Let

u0
	 = c	 + �3�	c4x�� u0

3 = c3� �0 = 0

where ck, �k = 1� 2� 3� 4� are arbitrary constants. Then, �0 = �u0
1� u

0
2� u

0
3� �

0� is called
a plane rigid vector field.

Theorem 1. If the elastic potential W0 is a positive definite quadratic form, then any
two solutions of the generalized plane strain problem (15)–(18) are equal modulo a
plane rigid vector field.

Proof. In view of (16), (17) and (19), we get

2W0 = ti	ui�	 + h	��	 − g� = �t	iui + h	���	 + fiui + p� (20)

With the help of the divergence theorem we obtain

2
∫
�1

W0da =
∫
L
�t	iui + h	�n	ds +

∫
�1

�fiui + p��da (21)

We assume that the boundary value problem (16)–(18) has two solutions �u′
i� �

′� and
�u′′

i � �
′′�. We denote u∗

i = u′
i − u′′

i , �
∗ = �′ − �′′. The functions u∗

i and �∗ satisfy the
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370 S. DE CICCO AND D. IEŞAN

generalized plane strain problem corresponding to null body loads and null tractions
on L� Thus, from (21) we find that

∫
�1

W ∗da = 0 (22)

where W ∗ is the elastic potential corresponding to u∗
i and �∗. Since W ∗ is positive

definite, we find that u∗
��	 + u∗

	�� = 0� u∗
3�	 = 0 and �∗ = 0� Clearly, �u∗

i � u
∗
2� u

∗
3� �

∗� is
a plane rigid vector field. �

We suppose for the remainder of this paper that the elastic potential is positive
definite. Following Fichera [22] we can prove the following result.

Theorem 2. The boundary value problem (16)–(18) has solutions belonging to
C���1� if and only if the relations

∫
�1

fida+
∫
L
t̃ids = 0�

∫
�1

�3	�x	f�da+
∫
L
�3	�x	t̃�ds = 0 (23)

hold.

In the next section we will have occasion to use four generalized plane
strain problems P�k�� �k = 1� 2� 3� 4�. We denote by u

�k�
i and ��k�, respectively,

the displacement vector and the volume fraction field in the problem P�k�, �k =
1� 2� 3� 4�. The problems P�k�� �k = 1� 2� 3� 4�, are characterized by the equations of
equilibrium

t
�k�
	i�	 + f

�k�
i = 0� h�k�

	�	 + g�k� + p�k� = 0 (24)

the constitutive equations

t
�k�
11 = C11u

�k�
1�1 + C12u

�k�
2�2 + C14u

�k�
3�2 + �1�

�k�

t
�k�
22 = C12u

�k�
1�1 + C22u

�k�
2�2 + C24u

�k�
3�2 + �2�

�k�

t
�k�
33 = C13u

�k�
1�1 + C23u

�k�
2�2 + C34u

�k�
3�2 + �3�

�k�

t
�k�
23 = C14u

�k�
1�1 + C24u

�k�
2�2 + C44u

�k�
3�2 + �4�

�k�

(25)
t
�k�
31 = C55u

�k�
3�1 + C56�u

�k�
1�2 + u

�k�
2�1�

t
�k�
12 = C56u

�k�
3�1 + C66�u

�k�
1�2 + u

�k�
2�1�

g = −�1u
�k�
1�1 − �2u

�k�
2�2 − �4u

�k�
3�2 − ���k�

h
�k�
1 = 	1�

�k�
�1 � h

�k�
2 = 	2�

�k�
�2 � h

�k�
3 = 	4�

�k�
�2

on �1 and the boundary conditions

t
�k�
	i n	 = t̃

�k�
i � h�k�

	 n	 = h̃�k� (26)
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ANISOTROPIC POROUS ELASTIC RODS 371

on L� where

f
�1�
1 = �C13x1��1� f

�1�
2 = �C23x1��2� f

�1�
3 = �C34x1��2

f
�2�
1 = �C13x2��1� f

�2�
2 = �C23x2��2� f

�2�
3 = �C34x2��2

f
�3�
1 = C13�1� f

�3�
2 = C23�2� f

�3�
3 = C34�2 (27)

f
�4�
1 = �C14x1��1 − �C56x2��2� f

�4�
2 = �C24x1��2 − �C56x2��1

f
�4�
3 = �C44x1��2 − �C55x2��1

p�1� = −�3x1� p�2� = −�3x2� p�3� = −�3� p�4� = −�4x1

t̃
�1�
1 = −C13x1n1� t̃

�1�
2 = −C23x1n2� t̃

�1�
3 = −C34x1n2

t
�2�
1 = −C13x2n1� t̃

�2�
2 = −C23x2n2� t̃

�2�
3 = −C34x2n2

t̃
�3�
1 = −C13n1� t̃

�3�
2 = −C23n2� t̃

�3�
3 = −C34n2

t̃
�4�
1 = C56x2n2 − C14x1n1� t̃

�4�
2 = C56x2n1 − C24x1n2

t̃
�4�
3 = C55x2n1 − C44x1n2� h̃

�k� = 0� �k = 1� 2� 3� 4�

It is a simple matter to see that the necessary and sufficient conditions (23) for
the existence of solution are satisfied for each problem P�k�, �k = 1� 2� 3� 4�. We note
that the solutions of the problems P�k� depend only on the constitutive coefficients
and the domain �1.

THERMOELASTIC DEFORMATION OF THE ROD

In this section we study the problem of deformation of the considered cylinder
when the temperature field has the form (2). We seek the solution in the form

u	 = −1
2
a	x

2
3 − a4�3	�x�x3 +

4∑
k=1

aku
�k�
	 + w	�x1� x2�

u3 = �a1x1 + a2x2 + a3�x3 +
4∑

k=1

aku
�k�
3 + w3�x1� x2� (28)

� =
4∑

k=1

ak�
�k� + ��x1� x2�

where �u
�k�
i � ��k�� is the solution of the problem P�k�, �k = 1� 2� 3� 4�, wi and � are

unknown functions of the variables x1 and x2, and ak are unknown constants. From
(1)–(3) and (28) we obtain

t11 = C13�a1x1 + a2x2 + a3�+ C14a4x1 +
4∑

k=1

akt
�k�
11 + s11
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372 S. DE CICCO AND D. IEŞAN

t22 = C23�a1x1 + a2x2 + a3�+ C24a4x1 +
4∑

k=1

akt
�k�
22 + s22

(29)

t33 = C33�a1x1 + a2x2 + a3�+ C34a4x1 +
4∑

k=1

akt
�k�
33 + s33

t23 = C34�a1x1 + a2x2 + a3�+ C44a4x1 +
4∑

k=1

akt
�k�
23 + s23

t31 = −C55a4x2 +
4∑

k=1

akt
�k�
31 + s31� t12 = −C56a4x2 +

4∑
k=1

akt
�k�
12 + s12

hj =
4∑

k=1

akh
�k�
j + �j� g = −�3�a1x1 + a2x2 + a3�− �4a4x1

+
4∑

k=1

a
�k�
k g�k� + 


where t
�k�
ij � h

�k�
j and g�k�, �k = 1� 2� 3� 4�, are given by (25) and we have used the

notations

s11 = C11w1�1 + C12w2�2 + C14w3�2 + �1�− b1f

s22 = C12w1�1 + C22w2�2 + C24w3�2 + �2�− b2f

s33 = C13w1�1 + C23w2�2 + C34w3�2 + �3�− b3f

s23 = C14w1�1 + C24w2�2 + C44w3�2 + �4�− b4f (30)

s31 = C55w3�1 + C56�w1�2 + w2�1�� s12 = C56w3�1 + C66�w1�2 + w2�1�

�1 = 	1��1� �2 = 	2��2� �3 = 	4��2


 = −�1w1�1 − �2w2�2 − �4w3�2 − ��+mf

In view of (24), (27) and (29), the equations of equilibrium (4) reduce to

s	i�	 = 0� �	�	 + 
 = 0 on �1 (31)

By using (26), (27) and (29) we find that the boundary conditions (5) take the form

s	in	 = 0� �	n	 = 0 on L (32)

We conclude that the functions wi and � satisfy the equations of a thermoelastic
generalized plane strain corresponding to the temperature T = f . If we use the last
equation of equilibrium, then from (4) and the divergence theorem we find that

∫
�
t3	da =

∫
�
��x	t�3��� + x	t33�3�da =

∫
�
x	t33�3da+

∫
L
x	t�3n�ds
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ANISOTROPIC POROUS ELASTIC RODS 373

We conclude that the conditions (6) are satisfied on the basis of relations (29) and
the conditions (5). It follows from (7) and (29) that the constants ak, �k = 1� 2� 3� 4�,
satisfy the system

4∑
k=1

D	kak = �3	��M� +M∗
���

4∑
k=1

D3kak = −R3 − R∗
3�

4∑
k=1

D4kak = −M3 −M∗
3 (33)

Here, the constants Dmn� �m� n = 1� 2� 3� 4�, M∗
i and R∗

3 are given by

D	� =
∫
�1

x	�C33x� + t
���
33 �da� D	3 =

∫
�1

x	�C33 + t
�3�
33 �da

D	4 =
∫
�1

x	�C34x1 + t
�4�
33 �da� D3	 =

∫
�1

�C33x	 + t
�	�
33 �da�

D33 =
∫
�1

�C33 + t
�3�
33 �da� D34 =

∫
�1

�C34x1 + t
�4�
33 �da (34)

D4	 =
∫
�1

�x1�C34x	 + t
�	�
23 �− x2t

�	�
31 �da

D43 =
∫
�1

�x1�C34 + t
�3�
23 �− x2t

�3�
31 �da

D44 =
∫
�1

�x1�C44x1 + t
�4�
23 �− x2�t

�4�
31 − C55x2��da

R∗
3 =

∫
�1

s33da� M∗
	 =

∫
�1

�3	�x�s33da� M∗
3 =

∫
�1

�x1s23 − x2s13�da

As in classical elasticity [23] we can prove that the positive definiteness of the
elastic potential implies that

det�Dmn� > 0 (35)

Moreover, the relation (14) leads to

Dmn = Dnm� �m� n = 1� 2� 3� 4� (36)

It follows from (35) that the system (33) determines the constants a1� a2� a3 and a4.
We conclude that the solution of the problem is given by (28), where

�u
�k�
i � ��k��� �k = 1� 2� 3� 4�, are the solutions of the isothermal generalized plane

strain problems P�k�. �wi� �� is the solution of the thermoelastic generalized plane
strain problem (30)–(32) and the constants ak� �k = 1� 2� 3� 4�, are given by (33). As
in the classical thermoelasticity, the solution is expressed in terms of solutions of
some two-dimensional problems.

We note that the plane temperature (3) produces the following effects: (a) a
generalized plane strain parallel to the x1� x2-plane, characterized by the functions
wi and �
 (b) an extension of the cylinder due to the force R∗

3; (c) a bending due to
the moments M∗

1 and M∗
2 ; (d) a torsion of the cylinder due to the moment M∗

3 . We
also note that in this case the torsion of the cylinder produces a variation of volume
fraction field. If the medium has a plane of elastic symmetry, normal to the axis of
cylinder, then the temperature field (3) does not produce torsional effects.
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374 S. DE CICCO AND D. IEŞAN

APPLICATION

Let us consider a circular cylinder defined by B = �x � x21 + x22 < a2� 0 <
x3 < l�, �a > 0�. We assume that B is occupied by an inhomogeneous material
characterized by constitutive coefficients of the form

Cpq = C∗
pqe

−�r � 	k = 	∗ke
−�r � �k = �∗

ke
−�r

bk = b∗ke
−�r � m = m∗e−�r � � = �∗e−�r � � > 0 (37)

where C∗
pq, �p� q = 1� 2� � � � � 6�, 	∗k, �

∗
k, b

∗
k , �k = 1� 2� 3� 4�, m∗� �∗ and � are prescribed

constants, and r = �x21 + x22�
1/2. This kind of inhomogeneity has been intensively

studied in the literature (see, e.g., Lomakin [24]). We assume that the cylinder is
subjected to the temperature field

T = T ∗ (38)

where T ∗ is a prescribed constant. We suppose that the mechanical loads are
absent, i.e., R3 = 0� Mj = 0� First, we study the thermoelastic generalized plane
strain problem (30)–(32) corresponding to the temperature field (38). We seek the
solution of this problem in the form

w1 = �1x1T
∗� w2 = �2x2T

∗� w3 = �3x2T
∗� � = �T ∗ (39)

where �j and � are unknown constants. From (30) and (39) we obtain

s11 = �C11�1 + C12�2 + C14�3 + �1�− b1�T
∗

s22 = �C12�1 + C22�2 + C24�3 + �2�− b2�T
∗

s33 = �C13�1 + C23�2 + C34�3 + �3�− b3�T
∗

(40)
s23 = �C14�1 + C24�2 + C44�3 + �4�− b4�T

∗

s31 = s12 = 0� �j = 0


 = �m− �1�1 − �2�2 − �4�3 − ���T ∗

In what follows we assume that the constants �j and � satisfy the equations

C∗
11�1 + C∗

12�2 + C∗
14�3 + �∗

1� = b∗1

C∗
12�1 + C∗

22�2 + C∗
24�3 + �∗

2� = b∗2
(41)

C∗
14�1 + C∗

24�2 + C∗
44�3 + �∗

4� = b∗4

�∗
1�1 + �∗

2�2 + �∗
4�3 + �∗� = m∗

The positive definiteness of the elastic potential implies that the determinant of the
system (41) is different from zero, so that Eqs. (41) uniquely determine the constants
�j and �. By (37), (40) and (41) we find that

s	� = 0� s	3 = 0� 
 = 0� �	 = 0 (42)
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ANISOTROPIC POROUS ELASTIC RODS 375

Clearly, Eqs. (31) and the boundary conditions (32) are identically satisfied. Thus,
the solution of the boundary value problem (30)–(32) is given by (39) where the
constants �i and � are determined by (41).

Next we investigated the generalized plane strain problems P�k�, �k =
1� 2� 3� 4�. Let us prove that the solution of the problem P�3� is given by

u
�3�
1 = �1x1� u

�3�
2 = �2x2� �

�3�
3 = �3x2� ��3� = � (43)

where �i and � are constants determined by the system

C∗
11�1 + C∗

12�2 + C∗
14�3 + �∗

1� = −C∗
13

C∗
12�1 + C∗

22�2 + C∗
24�3 + �∗

2� = −C∗
23

(44)
C∗

14�1 + C∗
24�2 + C∗

44�3 + �∗
4� = −C∗

34

�∗
1�1 + �∗

2�2 + �∗
4�3 + �∗� = −�∗

3

In view of (25), (37), (43) and (44) we find that

t
�3�
11 = −C13� t

�3�
22 = −C23� t

�3�
33 = C13�1 + C23�2 + C34�3 + �3�

(45)
t
�3�
23 = −C34� t

�3�
31 = 0� t

�3�
12 = 0� h

�3�
i = 0� g�3� = �3

It is a simple matter to see that the functions t�3�ij , h�3�
j and g�3� given by (45) satisfy

the equations of equilibrium and the boundary conditions which characterize the
problem P�3�. From (34), (37), (42) and (45) we get

D	3 = 0� D43 = 0

D33 = 2��−2�C∗
33 + C∗

13�1 + C∗
23�2 + C∗

34�3 + �∗
3���1− e−�a�1+ �a�� (46)

R∗
3 = 2�T ∗�−2�C∗

13�1 + C∗
23�2 + C∗

34�3 + �∗
3�− b∗3��1− �1+ �a�e−�a�� M∗

i = 0

It follows from (36) and (46) that

D3	 = 0� D34 = 0 (47)

In view of (46) and (47), the system (33) reduces to

D	�a� +D	4a4 = 0� D33a3 = −R∗
3� D4�a� +D44a4 = 0

The solution of this system is

a1 = a2 = a4 = 0� a3 = −R∗
3/D33 (48)

where R∗
3 and D33 are given by (46). It follows from (28), (39), (43) and (48) that the

solution of the problem is

u1 = �a3�1 + �1T
∗�x1� u2 = �a3�2 + �2T

∗�x2

u3 = a3x3 + �a3�3 + �3T
∗�x2� � = a3�+ �T ∗

D
ow

nl
oa

de
d 

by
 [

D
r 

S.
 D

e 
C

ic
co

] 
at

 0
9:

00
 2

8 
O

ct
ob

er
 2

01
3 



376 S. DE CICCO AND D. IEŞAN

We note that the influence of material inhomogeneity on the behaviour of the
cylinder is reflected by the relations (46) and (48). We conclude that the temperature
field T ∗ produces a plane deformation parallel to the x1, x2-plane, an extension of
the cylinder and a uniform variation of volume fraction field.
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